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ABSTRACT

The major goal of signal detection is to distinguish between hypotheses about the state of

events based on observations. Typically, signal detection can be categorized into central-

ized detection, where all observed data are available for making decision, and decentralized

detection, where only quantized data from distributed sensors are forwarded to a fusion cen-

ter for decision making. While these problems have been intensively studied under para-

metric and semi-parametric models with underlying distributions being fully or partially

known, nonparametric scenarios are not well understood yet. This thesis mainly explores

nonparametric models with unknown underlying distributions as well as semi-parametric

models as an intermediate step to solve nonparametric problems.

One major topic of this thesis is on nonparametric decentralized detection, in which

the joint distribution of the state of an event and sensor observations are not known, but

only some training data are available. The kernel-based nonparametric approach has been

proposed by Nguyen, Wainwright and Jordan where sensors’ quality is treated equally. We

study heterogeneous sensor networks, and propose a weighted kernel so that weight pa-

rameters are utilized to selectively incorporate sensors’ information into the fusion center’s

decision rule based on quality of sensors’ observations. Furthermore, weight parameters

also serve as sensor selection parameters with nonzero parameters corresponding to sen-

sors being selected. Sensor selection is jointly performed with decision rules of sensors

and the fusion center with the resulting optimal decision rule having only a sparse number

of nonzero weight parameters. A gradient projection algorithm and a Gauss-Seidel algo-

rithm are developed to solve the risk minimization problem, which is non-convex, and both

algorithms are shown to converge to critical points.

The other major topic of this thesis is composite outlier detection in centralized scenar-

ios. The goal is to detect the existence of data streams drawn from outlying distributions



among data streams drawn from a typical distribution. We study both the semi-parametric

model with known typical distribution and unknown outlying distributions, and the non-

parametric model with unknown typical and outlying distributions. For both models, we

construct generalized likelihood ratio tests (GLRT), and show that with the knowledge

of the KL divergence between the outlier and typical distributions, GLRT is exponentially

consistent (i.e, the error risk function decays exponentially fast). We also show that with the

knowledge of the Chernoff distance between the outlying and typical distributions, GLRT

for semi-parametric model achieves the same risk decay exponent as the parametric model,

and GLRT for nonparametric model achieves the same performance when the number of

data streams gets asymptotically large. We further show that for both models without any

knowledge about the distance between distributions, there does not exist an exponentially

consistent test. However, GLRT with a diminishing threshold can still be consistent.
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CHAPTER 1

INTRODUCTION

The major goal of signal detection is to distinguish between hypotheses about the state

of events based on observations. A variety of detection problems have been intensively

studied and widely used in different areas such as radar systems and automatic control.

Based on different assumptions on data availability, signal detection can be classified as

centralized detection and decentralized detection. In centralized detection, all observed

data are available for decision making. In decentralized detection, only compressed data

from distributively located sensors are communicated to a fusion center, where a decision

is made.

In both centralized and decentralized detection problems, one critical factor that affects

decision accuracy is the knowledge of the joint distribution of the states and observations.

Most of the previous studies [1–3] assume that such knowledge is known fully or partially.

Such parametric approaches are justified, because the joint distribution can be learned via

sampled data in advance. Also, implicitly, the two processes of learning the distribution

and designing detection rules are taken care of separately. However, such separation may

not be preferable when the distribution is dynamic and changes fast over time. In this case,

estimating the time-varying distribution may significantly increase system complexity. Fur-

thermore, errors in estimating the distribution can propagate to reduce detection accuracy.
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Thus, it is desirable to make decisions directly based on training data without explicitly

estimating the distribution. Such approaches are referred to as nonparametric method. In

this thesis, we focus on the design of such nonparametric approaches for both centralized

and decentralized detection problems, where distributions are only partially known or un-

known.

1.1 Nonparametric Decentralized Detection

In the decentralized detection problem (see, e.g., [4–6]), a number of sensors receive ob-

servations about the state of an event, and then each sensor individually quantizes its ob-

servations and forwards quantized information to a fusion center. Finally, the fusion center

determines the state of the event based on its received information from the sensors. The

goal is to jointly find optimal decentralized quantization rules for sensors and a decision

rule for the fusion center to achieve the best system performance.

Nonparametric (de)centralized detection was studied previously, e.g., [1–3], in which

detectors are typically designed to perform well only for specific statistical environments.

A learning-based nonparametric linear regression problem was studied in [7]. More re-

cently, a kernel-based classification approach was proposed in [8] for solving the nonpara-

metric decentralized detection problem, which is more generally applicable with mathe-

matical guarantees on the performance. The basic idea is to use a kernel as a measure

for capturing similarity between new and training data (e.g., observations). The decision

is then made to classify the new observation to the class to which the new observation is

closest. In general, a decision rule is expressed as a linear combination of kernels between

a new observation and the training data. More formally, the kernel function is associated

with a reproducing kernel Hilbert space (RKHS), over which the decision rule of the fusion

center is searched to optimize a given loss function (such as the probability of detection

error and the hinge loss function) jointly with the local decision rules for individual sen-
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sors. It has been shown by numerical examples in [8] that the kernel-based approach yields

better performance than other approaches based on estimating joint distributions. Further-

more, compared to parametric approaches, such a kernel-based nonparametric approach is

also applicable for the case with correlated observations, in which the correlation is implic-

itly embedded into training data and their influence on the decision rules are automatically

incorporated by optimizing empirical risk functions determined by the training data.

Thus, one major component of this thesis studies more realistic sensor networks, which

generalize the system models studied in [8, 9] to heterogeneous networks, in which sen-

sors’ observations can have different quality and belong to different alphabets. This can be

due to their different locations in capturing the environmental event. Furthermore, sensors’

transmissions to the fusion center can be subject to different rate constraints (in terms of

bits per observation), and hence sensors’ quantization levels are different. These heteroge-

neous features are well justified in practice. Sensor networks are typically deployed over

a large area geographically. Hence, the noise levels in observations may vary from site to

site, which naturally causes the quality of the observations to vary from sensor to sensor.

Moreover, sensors’ transmissions to the fusion center are typically over wireless channels,

whose quality depends on the surrounding wireless scattering environments. Hence, their

transmission rates to the fusion center can be different. More specifically, potential appli-

cations of heterogeneous models can include geographical distributed sensing [4], intru-

sion detection in wireless sensor networks [10], distributed equipment failure detection [4],

multi-static airborne radar [11]. Thus, our goal in this work is to design nonparametric de-

cision rules which take heterogeneous features of networks into consideration for achieving

as good performance as possible.

We summarize our main contributions as follows.

• We incorporate a novel weighted kernel into the risk minimization framework pro-

posed in [8] for nonparametric decentralized detection. In this way, the fusion cen-

ter’s decision rule is optimized over the Hilbert space (i.e., the RKHS) associated
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with the weighted kernel, and thus can selectively incorporate information from sen-

sors based on the quality of these information sources.

• We develop a gradient projection algorithm and a Gauss-Seidel algorithm to opti-

mize the regularized non-convex risk minimization problem with differentiable loss

functions. We show that both algorithms converge to critical points. We also provide

a Gauss-Seidel algorithm to optimize the risk function with non-differentiable hinge

loss function.

• We derive performance bounds based on Rademacher complexity over the union

of all weighted RKHSs. We characterize conditions on the sample complexity to

guarantee asymptotically small estimation error. We also establish the connection

between the probability of error and the risk function in our optimization problem.

1.2 Sensor Selection in Decentralized Detection

In nonparametric decentralized detection, it is also desirable that the approach can yield

efficient sensor selection algorithms, i.e., selecting a subset of sensors that provide the

best performance among all possible subsets. Such a problem has significant practical im-

portance, because it is preferable in many cases that only a subset of sensors with good

observation quality provide data to a fusion center due to constraints in communication

resources and power constraints on sensors. However, sensor selection is in general a chal-

lenging problem. The main reason is that the quality of sensors is not easily parameterized

into the performance metric, and hence sensor selection can only be done through a com-

binatorial optimization problem, for which the algorithm is not scalable as network size

enlarges.

Sensor selection problem has been intensively studied previously in both parameter es-

timation [12–14] and detection [15,16] to balance between the consumption of communica-

tion resources and system performance. In general, sensor selection is a difficult problem,
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because it is challenging to design efficient algorithms that overcome exhaustive search

over all possible subsets of sensors for optimizing the performance. Majority of previous

work studied sensor selection under parametric/semi-parametric models (e.g. [15–19]), in

which the statistical distribution of event states and observations or the relationship of sys-

tem parameters and observations is known fully or partially. A number of approaches for

sensor selection have been proposed. The work [20] and [21] considered scenarios that

only one sensor is selected at a time, hence complexity of exhaustive search is reduced.

The work [22] provided more efficient algorithms than exhaustive search based on bounds

on objective functions. The work [23] utilized specific structures of performance metric

to design efficient algorithms that have low computational complexity. In general, these

algorithms may perform well for specific problems, but did not provide a systematic way

of treating the problem.

More recently, approaches based on convex relaxation for sensor selection were pro-

posed in a few works. In [17], sensor selection was formulated as a Boolean-convex

problem, where relaxation was then taken to allow discrete Boolean variables to take con-

tinuous values. This problem was further generalized to nonlinear measurement models

in [24]. [12] studied sensor selection in stochastically forced networks by relaxing the non-

convex constraint in the mean-square deviation minimization problem. [13] applied the

method introduced in [17] to non-myopic sensor selection problem for target tracking. [14]

further generalized the study of sensor selection for parameter estimation to the case where

the measurement noise is correlated. All these works investigated sensor selection for

parameter estimation, while our work studies sensor selection for detection problem in

decentralized systems.

In our design of nonparametric approaches to solve decentralized detection problems as

described in the previous section, we wish to address the sensor selection problem jointly

with learning the decision rules. More specifically, we summarize our main contributions

as follows.
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• Using the weighted kernel as described in the previous section, we incorporate the

sensor selection function into the framework by introducing an l1 regularization on

weight parameters to the risk function so that the resulting optimal decision rule con-

tains sparse nonzero weight parameters, i.e., only the most contributive sensors are

selected. Thus, the kernel weight parameters (i.e., sensor selection strategy) and de-

cision rules for sensors and the fusion center are jointly optimized in order to achieve

the best performance. The advantages and properties of such an approach are de-

scribed as follows: (1) The sensor selection problem can now be solved via recent

celebrated techniques of Lasso and compressed sensing [25–28], which significantly

reduces computational complexity; (2) The regularization parameter of l1 can flex-

ibly control sparsity of sensor selection and its trade-off with the performance of

decision making; and (3) This sensor selection approach preferably selects sensors

with independent observations, and removes highly correlated (and hence redundant)

observations, thus achieving dimension reduction as well.

• We provide numerical results to demonstrate effectiveness of our sensor selection

algorithms and the corresponding properties.

1.3 Composite Outlier Detection

The outlier hypothesis testing problem has recently attracted intensive attention. The outlier

hypothesis refers to a certain scenario associated with data exhibiting unusual characteris-

tics as opposed to the typical hypothesis associated with data capturing normal behavior.

Often data under the two hypotheses are assumed to be generated by certain outlier and typ-

ical statistical distributions. The goal of outlier hypothesis testing is to detect the outlying

data streams generated under the outlier hypothesis (i.e., distribution). Solutions to such

type of problems can be applied to many application domains such as homogeneity test-

ing and classification [29–32] and decoding over discrete memoryless channels [33]. We
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note that the outlier hypothesis testing problem is distinct from the outlier detection in data

mining [34, 35], which does not assume any underlying statistical distributions to model

the data and consequently does not come with performance guarantee. On the other hand,

outlier hypothesis testing can be analyzed with performance guarantees due to underlying

statistical models associated with the hypotheses.

Most previous studies on outlier hypothesis testing have focused on identifying outliers

from a number of data streams, where each data stream is drawn either from an outlying or

typical distribution. The problem is essentially a multiple hypothesis testing problem with

each hypothesis corresponding to a certain subset of data streams being outliers. In [36],

the parametric problem is studied, where the distributions are assumed to known. In [37],

the nonparametric problem is studied, where the distributions are assumed to be discrete

and unknown a priori. The generalized likelihood ratio test is designed which applies

the empirical distributions of the data to replace the true distributions. [38] also studied a

nonparametric problem, but extended the distributions to be arbitrary (including continuous

distributions). In particular, kernel-based tests based on the distance metric of maximum

mean discrepancy were proposed.

The above studies of identification of outliers implicitly assumed that outliers exist in

observations. In practice, it is typically of importance to initially determine whether or not

outliers even exist before further efforts to specify outliers. Thus, one major topic of this

thesis is to address the problem to distinguish between the null hypothesis with no exis-

tence of outliers and the alternative hypothesis with one or more outliers exist in a number

of data streams. More specifically, suppose a large number, say M , of observation data

sequences are given with each sequence generated either by a typical or outlying distribu-

tion (denoted by π and µ, respectively). The goal is to determine whether or not there exist

outlier(s). Such a type of problems can be viewed as a binary composite hypothesis testing

problem, because the alternative hypothesis consists of multiple possibilities corresponding

to different subset of sequences being outliers. In particular, the focus of this thesis is to
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study the semi-parametric model where the typical distribution is known but the outlying

distribution is unknown a priori, and the nonparametric model where neither typical nor

outlying distribution is known a priori.

The general problem of composite hypothesis testing has been well studied previously.

These studies mainly focused on parametric models, which assume that data are gener-

ated by known distributions such as Gaussian or Bernoulli distributions. For example, [39]

studied the problem of testing a composite hypothesis against a simple alternative where

all hypotheses are associated with Gaussian distributions. [40] studied the same problem

with independent and arbitrarily distributed observations. [41] studied a general paramet-

ric binary composite hypothesis testing problem under arbitrary discrete distributions. All

these studies adopted Neyman-Pearson formulation, i.e., minimizing the type II error sub-

ject to a given constraint on the type I error. [39] studied the existence of uniformly most

powerful test under Neyman-Pearson setting for a variety of specific composite detection

problems. [40] applied likelihood ratio threshold test (LRTT) and derived exact asymptotics

of error probability for a more general composite detection model. [41] applied GLRT and

demonstrated the optimal error exponent under Neyman-Pearson setting.

In this thesis, we adopt a type of minimax performance metric, i.e., minimizing the

risk of the addition of the type I and type II errors, where the type II error is maximized

over all sub-hypotheses. Under such a performance metric, it is not even clear what is an

optimal test for the parametric model in the general binary composite problem. However,

our outlier hypothesis testing problem has special structures to be exploited. For example,

the alternative hypothesis contains symmetric subhypotheses if only one outlier possibly

exists. Moreover, we are interested in the exponent of the risk function as the number of

samples in each data sequence gets asymptotically large.

We summarize our main contributions as follows.

• As necessary understanding towards semi-parametric and nonparametric models, we

first show that for the parametric composite outlier hypothesis testing problem, the
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GLRT is exponentially consistent and achieves the optimal exponent of the risk func-

tion given by the Chernoff distance between π and µ.

• For the semi-parametric model with known π and unknown µ, we construct GLRT

based on π and the empirical distribution of data for µ. We show that such a test is

exponentially consistent given KL divergence between π and µ, and can achieve the

optimal exponent for the parametric model given Chernoff distance between π and

µ. The test is thus optimal in terms of the error decay rate. We also show that with-

out any knowledge of µ, a universally consistent test can still be constructed if the

threshold in GLRT properly scales with the sample size, but exponential consistency

is not possible.

• For the nonparametric model, we construct GLRT based on empirical distributions

for both π and µ. We show that such a test is exponentially consistent given KL

divergence between µ and the uniform mixture of true distributions generating all

sequences. Moreover, such a test achieves the optimal exponent for the parametric

model as the number of sequences goes to infinity given Chernoff distance between

π and µ. Similarly to the semi-parametric case, without any knowledge of π and µ, a

universally consistent test can still be constructed if the threshold in GLRT properly

scales with the sample size, but exponential consistency is not possible.

1.4 Publications and Thesis Organization

As a summary, my PhD work so far has lead to two journal publications [42, 43] and one

journal in preparation [44], three conference publications [45–47]. The list of publications

is provided as follows.

Journal Publications

J1 W. Wang, Y. Liang, and E. P. Xing, “Collective support recovery for multi-design multi-

response linear regression,” IEEE Transactions on Information Theory, vol. 61, no. 1,
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pp. 513–534, 2015.

J2 W. Wang, Y. Liang, E. P. Xing, and L. Shen, “Nonparametric decentralized detection

and sparse sensor selection via weighted kernel,” IEEE Transactions on Signal Pro-

cessing, vol. 64, no. 2, pp. 306–321, 2016.

J3 W. Wang, Y. Liang, and H. V. Poor, “Nonparametric composite outlier detection,” in

preparation.

Conference Publications

C1 W. Wang, Y. Liang, and E. Xing, “Block regularized lasso for multivariate multi-

response linear regression,” in Proceedings of the Sixteenth International Conference

on Artificial Intelligence and Statistics (AISTATS), 2013, pp. 608–617.

C2 W. Wang, Y. Liang, E. P. Xing, and L. Shen, “Sparse sensor selection for nonparamet-

ric decentralized detection via l1 regularization,” in IEEE International Workshop on

Machine Learning for Signal Processing (MLSP), 2014, pp. 1–6.

C3 W. Wang, Y. Liang, and H. V. Poor, “Nonparametric composite outlier detection,” to

appear in Proc. Asilomar Conf. Signals, Systems and Computers, 2016.

The rest of the thesis is organized as follows. In Chapter 2, we present our result for the

nonparametric decentralized detection problem. In Chapter 3, we present the convergence

analysis of the algorithms for solving regularized empirical risk minimization problem,

which arises in nonparametric decentralized detection. In Chapters 4 and 5, we present

our results respectively for semi-parametric and nonparametric composite outlier detection.

Finally, in Chapter 6, we summarize the contributions of the thesis and describe some future

directions.
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1.5 Multi-task Linear Regression

As I initially started my PhD study, I worked on an interesting problem of multi-task learn-

ing of linear regression models. This part of work is not under the main theme of this thesis,

and is hence not included in detail in the thesis. In this section, we briefly introduce our

results here as well as the background and the state-of-the art.

Linear regression is a simple but practically very useful statistical model, in which a

response vector Y can be modeled as

Y = Xβ +W

where X ∈ Rn×p is the design matrix containing n samples of feature vectors, β =

(β1, . . . , βp) ∈ Rp contains regression coefficients, and W ∈ Rn is the noise vector. The

goal is to find the regression coefficients β such that the linear relationship is as accurate

as possible with regard to a certain performance criterion. The problem is more interesting

in high dimensional regime with a sparse regression vector, in which the sample size n can

be much smaller than the dimension p of the regression vector.

In order to estimate the sparse regression vector, the optimization problem with an l1-

constraint on β (referred to as Lasso) has been studied based on the idea in some seminal

works ( [25–27]). The l1-regularized estimator has been proved in [48] to have similar

behavior to Dantzig Selector, which was proposed in [49]. Various efficient algorithms

have been developed to solve the above convex problem efficiently (see a review mono-

graph [50]), although the objective function is not differentiable everywhere due to l1-

regularization. Moreover, the l1-regularization is critical to force the minimizer to have

sparse components as shown in [25–27]. A vast amount of recent work has studied the high

dimensional linear regression problem via l1-regularized Lasso under various assumptions,

e.g., [26, 28, 51–62].
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Generalized from the l1-regularized linear regression problem which aims at selecting

variables individually, group Lasso is applied to regression vector β in the linear regression

model to select grouped variables (e.g., [63–66]. This line of research is further gener-

alized to block-regularization for high-dimensional multi-response (i.e., multi-task) linear

regression problem, (see, e.g., [67, 68] and references therein). For a multi-task regression

problem, we have the following model:

Y = XB∗ +W (1.1)

where Y ∈ Rn×K of which each column corresponds to the output of one task, X ∈ Rn×p

is the design matrix, the regression matrix B∗ ∈ Rp×K has each column corresponding

to the regression vector for one task, and W ∈ Rn×K has each column corresponding

to the noise vector of one task. For each column Y (k) of the matrix Y , it is clear that

Y (k) = Xβ∗(k) +W (k), where β∗(k) and W (k) are the corresponding columns in B∗ and W .

Then each column is a single-task linear regression problem and can be solved individually.

However, the K individual problems (i.e., tasks) can also be coupled together via a block

regularized Lasso and solved jointly in one problem. Various types of block regularization

have been proposed and studied including l1/l2-regularization in [68], lp/lq-regularization

in [69], l1/lq-regularization in [70], l1/l∞-regularization in [71, 72], l1/l2-regularization

in [73], and l1/lq-regularized Lasso in [74].

In the multi-response linear regression problem given in (1.1), the design matrix is

identical for all tasks, i.e., X is the same for all column vectors of Y and B∗. However, in

many applications, it is often the case that different output variables may depend on design

variables that are different or distributed differently. Thus, the resulting model includes K

linear regression models with different design matrices and is given by:

Y (k) = X(k)β∗(k) +W (k) (1.2)
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for k = 1, . . . , K, where Y (k) ∈ Rn, X(k) ∈ Rn×p, β∗(k) ∈ Rp, and W (k) ∈ Rn. We refer

to the above problem as the multi-design multi-response (MDMR) linear regression model,

and the goal is to recover β∗(k) for k = 1, . . . , K jointly. For fixed matricesX(1), . . . , X(K),

the problem has been studied in [75, 76] via the l1/l2-regularized Lasso and via a variant

of orthogonal matching pursuit in [76]. For random design matrices, this model has been

studied via l1/l∞-regularized Lasso in [77] and via l1/l1 + l1/l∞-regularized Lasso in [78]

for incorporating both row sparsity and individual sparsity.

In our work, we study the MDMR problem for random design matrices via l1/l2-

regularized Lasso. In our model, it is assumed that the design matrices are Gaussian

distributed and are independent across tasks. Furthermore, the distributions of design ma-

trices are also different across tasks. For each task k, the row vector of X(k) is Gaus-

sian with mean zero and the covariance matrix Σ(k) for k = 1, . . . , K. The noise vec-

tors and hence the output vectors are also Gaussian distributed and independent across

tasks. We are interested in joint recovery of the union of the support sets (i.e., the support

union) of regression vectors β∗(1), . . . , β∗(K). We collect these vectors together as a matrix

B∗ =
[
β∗(1), . . . , β∗(K)

]
.

We adopt the l1/l2-regularized Lasso problem for recovery of the support union. In

this way, the K linear regression problems are coupled together via the regularization con-

straint. We show that this approach is advantageous as opposed to individual recovery of

the support set for each linear regression problem. This is because the K regression mod-

els may share their samples in joint support recovery so that the total number of samples

needed can be significantly reduced compared to performing each task individually.

In the following, we summarize the main contributions of this work.

• Our results contain two parts: the achievability and the converse, corresponding re-

spectively to sufficient and necessary conditions under which the l1/l2-regularized

Lasso problem recovers the support union for the MDMR linear regression problem.

Our proof adapts the techniques developed in [58] and in [68], but involves nontrivial
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development to deal with the differently distributed design matrices across tasks.

• We show that under certain conditions that the distributions of the design matri-

ces satisfy, if n > cp1ψ(B∗,Σ(1:K)) log(p − s), where cp1 is a constant, then the

l1/l2-regularized Lasso recovers the support union for the MDMR linear regression

problem; and if n < cp2ψ(B∗,Σ(1:K)) log(p − s), where cp2 is a constant, then the

l1/l2-regularized Lasso fails to recover the support union. ψ(B∗,Σ(1:K)) captures the

sparsity of B∗ and the statistical properties of the design matrices, which are impor-

tant in determining the sufficient and necessary conditions for successful recovery of

the support union. Thus, ψ(B∗,Σ(1:K)) log(p− s) serves as a sharp threshold on the

sample size.

• The property of ψ(B∗,Σ(1:K)) also captures the advantages of the multi-task Lasso

over solving each problem individually via the single-task Lasso. We show that when

the K tasks share the same support sets (although the design matrices can be differ-

ently distributed), ψ(B∗,Σ(1:K)) = 1
K

max1≤k≤K ψ(β∗
k
,Σ(k)). This means that the

number of samples needed per task for multi-task Lasso to jointly recover the sup-

port union is reduced by K compared to that of single-task Lasso to recover each

support set individually. On the other hand, if the K tasks have disjoint support

sets, then ψ(B∗,Σ(1:K)) = max1≤k≤K ψ(β∗(k),Σ(k)). This implies that the multi-

task Lasso does not provide gain in the sample size needed per task for support

recovery compared to single-task Lasso. Between these two extreme cases, tasks

can have overlapped support sets with different overlapping levels, and the impact of

these properties on the sample size for recovery of the support union is quantitatively

captured by ψ(B∗,Σ(1:K)).

As we mentioned before, the MDMR model has also been studied in [77] and [78],

in which l1/l∞ and l1/l1 + l1/l∞-regularization were adopted for support union recovery,

respectively. In these studies, sharp threshold on sample complexity is characterized only
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for K = 2 and under special conditions on 1
n
X

(k)T
Sk

X
(k)
Sk

. In our work, using l1/l2-regularized

Lasso, we are able to characterize the sharp threshold under standard regularization condi-

tions.
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CHAPTER 2

KERNEL-BASED DECENTRALIZED

DETECTION

In this chapter, we propose a kernel-based approach for nonparametric decentralized de-

tection over a heterogeneous sensor network. We first describe the model of decentralized

detection, and introduce the concept of weighted kernel. We then incorporate weighted ker-

nel into the empirical risk minimization framework for decentralized detection, and analyze

the performance of such an approach. In particular, we characterize how close the empirical

approximate risk function is to the true risk function. We finally provide numerical results

to compare our approach with other competitive nonparametric approaches, and demon-

strate the performance of sensor selection via weighted kernel. We note that the design of

algorithms for solving the risk minimization problem and analysis of the performance of

algorithms are presented in the next chapter.

2.1 Model Description

We study the nonparametric decentralized detection over a sensor network. The system

model is depicted in Fig. 2.1. In such a system, let Y denote the state of an environmen-
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Fig. 2.1: Illustration of decentralized detection

tal event, which can take binary values +1 and −1. Suppose there are S sensors in the

network, which can receive observations about Y . We use Xs to denote the observation

received by sensor s for s = 1, . . . , S, and use X = (X1, . . . , XS) to denote the observa-

tions of all sensors. Each sensor quantizes its observation based on its own local decision

rule (i.e., quantization rule). We denote Zs as the quantized value of Xs by sensor s. We

let Z = (Z1, . . . , ZS) denote quantized symbols from all sensors. We assume that both

Xs and Zs have finite alphabets Xs, Zs, correspondingly. Therefore, X and Z have finite

alphabet sets, i.e., X = X1 × X2 × . . . × XS and Z = Z1 × Z2 × . . . × ZS . We note

that although sensor observationsX are often continuous variables in practice, sensors typ-

ically digitize their measurements to improve robustness of further processing and reduce

processing complexity. The decision rule of a sensor can be generally characterized by a

probability distribution Qs(z
s|xs), which implies that sensor s quantizes xs into zs with the

probability Qs(z
s|xs). Thus, random decision rules for sensors are allowed. All sensors

then forward their quantized information to a fusion center, which combines all received

information from sensors, and makes a decision about the state of the environmental event
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Y . The fusion center’s decision rule can be written as a function w(Z).

We note that this work implicitly assumes that sensing environment is static. In practice,

as quality of sensors changes over time, the training techniques developed in this work

can be performed every a certain period in order to adapt decision rules to the change.

In fact, treatment of such an issue can lead to a number of research topics such as how

to exploit similarity of decision rules across time to reduce computation complexity of

training process, which is left for future work.

2.2 Preliminaries on Kernel

In this section, we briefly introduce the basic concepts, definitions and results on learning

with kernels. This is the major technique that this work applies. A reader can refer to [79]

for more details. We let X be a nonempty set, and define a kernel function as follows.

Definition 2.1. A function k(·, ·) : X ×X → R is called a kernel if for all positive integer

m and all x1, · · · , xm ∈ X , the m × m matrix K with elements Kij = k(xi, xj) for

i, j = 1, . . . ,m is positive semidefinite.

Given a kernel function k(·, ·), we define a feature mapping Φ : x ∈ X → k(·, x), which

maps an element x ∈ X to a function k(·, x). We then define a vector space containing

f(·) =
m∑
i=1

αik(·, xi)

where m is any positive integer, αi ∈ R, and x1, · · · , xm ∈ X are arbitrary. For this vector

space, we define an inner product between f and another function g(·) =
∑m′

j=1 βjk(·, x′j)

as

〈f, g〉 =
m∑
i=1

m′∑
j=1

αiβjk(xi, x
′
j).

In particular, this implies 〈k(·, x), k(·, x′)〉 = k(x, x′). It can be shown that after completing

such a vector space, we obtain a Hilbert space, referred to as a reproducing kernel Hilbert
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space (RKHS) associated with the kernel k. We next formally define the RKHS as follows.

Definition 2.2. Consider a Hilbert space H containing functions f : X → R. It is called

a reproducing kernel Hilbert space (RKHS) if there exists a kernel k(·, ·) : X × X → R

with the following properties:

− k has the reproducing property:

〈f, k(·, x)〉 = f(x) for all f ∈ H,

− k spansH, i.e.,H is the completion of a vector space spanned by k(·, x) for x ∈ X .

We next introduce the important kernel Representer Theorem [79], which is useful for

characterizing the optimal solution in empirical risk minimization.

Theorem 2.1. [79] Let Ω : [0,∞) → R be a strictly monotonic increasing function, X

be a nonempty set, c : (X × R2)m → R ∪ {∞} be an arbitrary risk function, and H be

the RKHS associated with a kernel k. Then each minimizer f ∈ H of the regularized risk

function

c

(
(x1, y1, f(x1)), . . . , (xm, ym, f(xm))

)
+ Ω(‖f‖H)

admits a representation of the form

f(·) =
m∑
i=1

αik(·, xi).

2.3 Weighted Kernel

In this work, we search decision rules for the fusion center over the RKHS H associated

with a kernel function k(·, ·) : Z × Z → R. Thus, we can express the fusion center’s

decision rule as:

w(z) = 〈w(·),Φ(z)〉H
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where w(·) ∈ H and Φ(z) = k(·, z).

It is clear that the performance of the fusion center’s decision rule critically depends on

the RKHS over which it is chosen and its associated kernel function. In [8], the adopted

kernel functions are uniform across sensor’s information, i.e., uniform across Zs for s =

1, . . . , S. Thus, the corresponding Hilbert space contains functions (i.e., decision rules

of the fusion center) that treat the information across sensors equally. However, these

decision rules may not perform well enough for scenarios, where the sensors’ information

have different quality. In such cases, it is desirable that the fusion center’s decision rule

weigh the sensors’ information selectively based on the quality of their observations.

Therefore, we propose to use weighted kernels so that their associated RKHS allows

decision rules of the fusion center to selectively incorporate sensors’ information using

weight parameters. We further introduce the kernel weight parameters into the risk mini-

mization framework so that these weight parameters (and hence its associated RKHS) are

jointly selected with the decision rules for the fusion center and sensors to optimize the

performance. Thus, the impact of the heterogeneous features of the network are naturally

incorporated into the fusion center’s decision rules via selecting the optimal weight param-

eters (i.e., the RKHS that these decision rules lie in).

As an example weighted kernel, the weighted first-order count kernel is given by

kβ(z, z′) =
S∑
s=1

βsI[zs = z′s], (2.1)

where I[·] is an indicator (characteristic) function, and βs ≥ 0 for s = 1, . . . , S are weight

parameters. We collect these parameters into a vector β = (β1, . . . , β
S). It can be shown

that the weighted count kernel satisfy the definition of kernel.

It can be seen that each weight parameter βs in (2.1) represents the contribution of

sensor s to the decision rule of the fusion center. Thus, the Hilbert space Hβ over which

the decision rule of the fusion center is chosen is spanned by the weighted count kernel
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kβ(·, ·).

Remark 2.1. Our study uses the weighted count kernel as an example kernel. In fact,

weight parameters can be introduced to more general types of kernels for selectively count-

ing information with unequal quality in decision making. Our problem formulation, algo-

rithm design, and performance analysis are generally applicable to these cases as well.

2.4 Problem Formulation with Sensor Selection

In this work, we consider nonparametric decentralized detection, and assume that the joint

distribution P (Y,X) is unknown. Instead, a set of training data are available, i.e., (yi, xi)

for i = 1, . . . , N . We adopt the framework of the empirical risk minimization for decentral-

ized detection as in [8] and further introduce weighted kernel and incorporate l1 regulariza-

tion for kernel weight parameters in order for sparse sensor selection. More specifically, we

jointly find optimal weight parameters β, decision rulew(Z) for fusion center, and decision

rules Qs(z
s|xs) for all sensors (s = 1, . . . , S) that minimize the following l1 regularized

empirical risk function:

min
βs≥0 for s=1,...,S
w∈Hβ ,Q∈Q

N∑
i=1

∑
z

φ(yi〈w(·),Φβ(z)〉Hβ)Q(z|xi) +
λ1

2
‖w‖2

Hβ + λ2‖β‖l1 (2.2)

where φ(·) is a convex loss function such as the logistic or hinge loss functions,Hβ denotes

the Hilbert space associated with the weighted count kernel kβ(z, z′), Φβ(z) = kβ(·, z), and

Q is the set that includes all possible conditional probabilities Q(z|x) that decompose as

Q(z|x) =
∏S

s=1Qs(z
s|xs). Such decomposability is because sensors follow independent

local decision rules. The set Q is formally defined as follows.

We note that it is computationally complex to solve the above optimization problem due

to the expectation of φ(·) taken over Q(z|xi). Hence, as in [8], we consider the following
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lower bound as a relaxation of (2.2) due to Jensen’s inequality

min
βs≥0 for s=1,...,S
w∈Hβ ,Q∈Q

N∑
i=1

φ(yi〈w(·),Φ′β(xi)〉Hβ) +
λ1

2
‖w‖2

Hβ + λ2‖β‖l1 (2.3)

where Φ′β(xi) =
∑

z Φβ(z)Q(z|xi) ∈ Hβ . In Section 2.5, we study how close the above

empirical risk function is to the true risk function. We also show that the above empirical

risk function provides an upper bound on the probability of detection error, which justifies

using this function as an approximation.

In the above problem, l1 regularization for kernel weight parameters encourages sparse

weight (i.e., sensor) selection. The coefficient λ2 controls the sparsity level of sensor se-

lection, and thus controls the trade-off between sensor selection and the overall system

performance. For systems with stringent communication constraints on sensors’ transmis-

sions to the fusion center, λ2 needs to be large so that only a small fraction of sensors are

selected to participate in decision making. Given the sparsity level, the risk minimization

guarantees that selected sensors are those with good quality of observations and can hence

contribute best to decision making.

Our goal is to jointly design decision rule w(Z) for the fusion center, decision rules

Qs(z
s|xs) for sensors, and sensor selection strategy in order to achieve the best system

performance.

2.5 Performance Analysis

In this section, we study how close the empirical approximate risk function given in (3.3)

that we optimize is to the true risk function. We also provide an upper bound on the

probability of decision error based on the risk function, which justifies using such a function

as the objective function.

We first define some notations. We let the alphabet sizes of X1, . . . , XS be bounded
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by Lx, and let the alphabet sizes of the quantized variables Z1, . . . , ZS be bounded by

Lz. Let f = (β, w,Q) denote one set of decision rules, where β ∈ RS with bounded

l1 norm in RKHS (i.e., ‖β‖l1 ≤ Γβ), w ∈ Hβ with bounded norm (i.e., ‖w‖Hβ ≤ Γw),

and Q ∈ Q, which includes all possible conditional probabilities Q(z|x) that decompose

as Q(z|x) =
∏S

s=1 Qs(z
s|xs). Here, the norm constraints on β and w are justified by

the regularization terms in (2.3). We also let β
f
, wf , and Qf denote the corresponding

components of f = (β, w,Q).

We let F denote the set of all functions f = (β, w,Q) as defined above, which is a

subset ofRS×Hβ×Q. In this work, we particularly consider two special but useful subsets

of F : F0 and F1. The set F0 consists all functions with Q in the set Q0 of deterministic

conditional probability distributions. In this case, sensors’ decision rules are deterministic.

The set F1 consists of all functions with each component Qs(z
s|xs) having the following

property: given any xs, zs is uniformly distributed among a subset or a full set of values

it can take. For example, suppose the alphabet set of zs is Zs = {−1, 0,+1}. Given xs,

both Q(zs = 0|xs) = Q(zs = +1|xs) = 1/2 and Q′(zs = −1|xs) = Q′(zs = 0|xs) = 1/2

are valid in the set F1. Clearly, such set Q1 allows randomized decision rules for sensors.

Many practically useful decision rules fall as special cases of the above two sets. For

example, quantization rules and their randomized versions which are widely used in signal

processing fall into the above two sets, respectively.

Bounds on Rademacher Complexity. Rademacher complexity [80] captures the rich-

ness of the function class over which our decision rules are chosen, and plays an impor-

tant role in determining how close the empirical approximate risk function is to the true

risk function. Thus, we first provide bounds on this important quantity. We define the

Rademacher complexity RN(F) of the set F as follows:

RN(F) := EX,σ sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

σif(Xi)

∣∣∣∣∣ (2.4)
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where the Rademacher variables σ1, . . . , σN are independent and uniformly distributed on

{−1,+1} and X1, . . . , XN are i.i.d samples generated based on the distribution PX .

We consider a subset F̃ ⊂ F associated with a Q̃ ⊂ Q of Q functions. We have the

following proposition for the case of the weighted count kernel.

Proposition 2.1. An upper bound on the Rademacher complexity for any F̃ ⊂ F associ-

ated with weighted count kernels and with a Q̃ ⊂ Q of Q functions is given by

RN(F̃) ≤
Γw
√

Γβ

N

N + 2(N − 1)

√
N log |Q̃|


1
2

, (2.5)

where |Q̃| denotes the size of the set Q̃. In particular, for F̃ = F0, the upper bound is given

by

RN(F0) ≤
Γw
√

Γβ

N

N + 2(N − 1)
√
NSLx logLz


1
2

. (2.6)

For F̃ = F1, the upper bound is given by

RN(F1) ≤
Γw
√

Γβ

N

N + 2(N − 1)
√
NSLzLx log 2


1
2

. (2.7)

Remark 2.2. Rademacher complexity RN(F̃)→ 0 as N →∞ if log |Q̃|
N
→ 0.

Bounds on True Risk Function. We define three risk functions of interest as follows.

Let

Êφ(Y wf (X)) =
1

N

N∑
i=1

φ(yiwf (xi))

denote the empirical approximate risk, where the approximation lies in taking the expected
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value over Z inside the loss function φ(·) (i.e., the relaxation in (2.3)). We further let f̂

denote its corresponding minimizer, i.e.,

f̂ = argmin
f∈F

Êφ(Y wf (X)). (2.8)

Let Eφ(Y wf (X)) denote the expected approximate risk, and let f̃ denote its corresponding

minimizer

f̃ = argmin
f∈F

Eφ(Y wf (X)).

The true risk function is Eφ(Y wf (Z)) = EY XEZφ(Y wf (Z)), and we let f ∗ denote its

corresponding minimizer, i.e.,

f ∗ = argmin
f∈F

Eφ(Y wf (Z)).

Since we use the empirical approximate risk as the objective function, our approximation

lies in two parts: (1) data-dependent objective function (estimation error) (2) taking the

expected value over Z inside the loss function φ(·) (approximation error). We first analyze

the estimation error, i.e., we analyze the gap

Eφ(Y wf̂ (X))− Eφ(Y wf̃ (X)),

which suggests how close our optimal solution f̂ based on the empirical risk is to the

optimal solution f̃ based on the expected risk.

Proposition 2.2. Suppose the logistic or hinge loss function is used, and f̂ and f̃ are

minimizers over F̃ . Then for any small 0 < δ < 1, with probability larger than 1− δ,

Eφ(Y wf̂ (X))− Eφ(Y wf̃ (X))

≤ 4RN(F) + 2(1 + Γw
√

Γβ)

√
2 log 1

δ

N
. (2.9)
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Remark 2.3. Following from Proposition 2.1, if log |Q̃|
N
→ 0 as N →∞, then RN(F)→ 0

asN →∞. In this case, Proposition 2.2 implies that the estimation error is asymptotically

small with high probability. Furthermore, for the cases with Q̃ = Q0 and Q̃ = Q1, the

above condition becomes S
N
→ 0 as N → ∞. Namely, if the number of sensors does not

scale as fast as the number of samples, the estimation error is asymptotically small with

high probability.

We next study the gap between the empirical approximate risk and the true risk (includ-

ing both estimation and approximation errors). We let

f̂0 = argmin
f∈F0

Êφ(Y wf (X)),

which is the decision rule that optimizes the empirical approximate risk over the set F0. It

can be shown (as in [8]) that with a probability at least 1 − 2δ, the true risk is bounded by

the empirical approximate risk as follows:

Êφ(Y wf̂ (X))− 2LφRN(F)− Γφ

√
2 log 1

δ

N

≤ Eφ(Y wf∗(Z)) ≤ Êφ(Y wf̂0(X)) + 2LφRN(F0) + Γφ

√
2 log 1

δ

N
, (2.10)

where Lφ is the Lipschitz constant of φ(·), and Γφ is a uniform bound on φ(·). It is clear

that the bounds on the Rademacher complexity characterize how close the empirical ap-

proximate risk function is to the true risk.

Remark 2.4. Following Proposition 2.1 and Remark 2.2, the optimal empirical approxi-

mate risk serves as good lower and upper bounds if log |Q̃|
N
→ 0 as N →∞.

Bounds on Error Probability. The basic performance measure for the problem of

decentralized detection is the probability of decision error, which is not computable in the

nonparametric case. We next provide a connection between the probability of decision
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error and the risk function.

Proposition 2.3. With a probability at least 1 − δ, the probability of error based on the

weighted count kernel is respectively bounded by the risk functions based on logistic loss

φl(·) and hinge loss φh(·) as follows:

P (Y wf∗(Z) < 0) ≤ 1

log 2
Eφ(Y wf∗(Z))

≤ 1

log 2

Êφl(Y wf̂0(X)) + 2RN(F0) + Γφ

√
2 log 1

δ

N

 , (2.11)

and

P (Y wf∗(Z) < 0) ≤ Eφ(Y wf∗(Z))

≤ Êφh(Y wf̂0(X)) + 2RN(F0) + Γφ

√
2 log 1

δ

N
(2.12)

where RN(F0) is bounded in (2.6) and Γφ = 1 + Γw
√

Γβ .

Proof. Due to the property of the hinge loss function,

P (Y wf∗(Z) < 0) = EI[Y wf∗(Z) < 0] ≤ Eφ(Y wf∗(Z)). (2.13)

Then applying (2.10), we obtain the desired bound. If the logistic loss is used, then we

obtain the bound by following the above steps except noticing that

EI[Y wf∗(Z) < 0] ≤ 1

log 2
Eφ(Y wf∗(Z)). (2.14)

The above Proposition implies that as the number of samples becomes large (and if

RN(F0) → 0), the true risk and the empirical risk (or a scaled version of it) serve as
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upper bounds on the probability of decision error. This connection justifies using these risk

functions as the objective function.

2.6 Proof of Upper Bound on Rademacher Complexity

We note that wf (X i) = 〈wf ,Φ′β(X i)〉Hβ , and obtain the following upper bound.

RN(F̃)

= E sup
f∈F̃

∣∣∣∣∣ 1

N

N∑
i=1

σiwf (X i)

∣∣∣∣∣
= E sup

‖β‖1≤Γβ ,‖w‖Hβ≤Γw,Q∈Q̃

∣∣∣∣∣ 1

N

N∑
i=1

σi〈w,Φ′β(X i)〉Hβ

∣∣∣∣∣
(a)

≤ Γw
N

E sup
‖β‖1≤Γβ ,Q∈Q̃

∥∥∥∥∥
N∑
i=1

σiΦ
′
β(X i)

∥∥∥∥∥
Hβ

(b)

≤ Γw
N

√√√√√E sup
‖β‖1≤Γβ ,Q∈Q̃

∥∥∥∥∥
N∑
i=1

σiΦ′β(X i)

∥∥∥∥∥
2

Hβ

=
Γw
N

E sup
‖β‖1≤Γβ ,Q∈Q̃

N∑
i=1

∥∥∥Φ′β(X i)
∥∥∥2

Hβ

+ 2E sup
‖β‖1≤Γβ ,Q∈Q̃

∑
1≤i<j≤N

σiσj〈Φ′β(X i),Φ
′
β(Xj)〉Hβ


1
2

(2.15)

where the step (a) follows from the Cauchy-Schwartz inequality, and (b) follows from the

Jensen’s inequality.

For the first term in (2.15), we have the following bound for any realization of xi

sup
‖β‖1≤Γβ ,Q∈Q̃

N∑
i=1

∥∥∥Φ′β(xi)
∥∥∥2

Hβ
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= sup
‖β‖1≤Γβ

Q∈Q̃

N∑
i=1

∑
z,z′

Q(z|xi)Q(z′|xi)〈kβ(·, (z)), kβ(·, (z′))〉Hβ

= sup
‖β‖1≤Γβ

Q∈Q̃

N∑
i=1

∑
z,z′

Q(z|xi)Q(z′|xi)
S∑
s=1

βsI[zs = z′s]

= sup
‖β‖1≤Γβ ,Q∈Q̃

N∑
i=1

S∑
s=1

βs
∑
zs

Q2(zs|xsi )

≤ N sup
‖β‖1≤Γβ

S∑
s=1

βs

≤ NΓβ (2.16)

For the second term in (2.15), we follow the arguments in the proof of Proposition 4 in

Section in [8] and use the property of the weighted count kernel, and obtain

2E sup
‖β‖1≤Γβ ,Q∈Q̃

∑
1≤i<j≤N

σiσj〈Φ′β(X i),Φ
′
β(Xj)〉Hβ

≤ 2(N − 1)

√
N

2
sup

‖β‖1≤Γβ

sup
z,z′

kβ(z, z′)

√
2 log |Q̃|

= 2(N − 1)

√
N

2
sup

‖β‖1≤Γβ

sup
z,z′

S∑
s=1

βsI[zs = z′s]

√
2 log |Q̃|

≤ 2(N − 1)

√
N

2
Γβ

√
2 log |Q̃|

= 2(N − 1)Γβ

√
N log |Q̃|. (2.17)

Combining (2.16) and (2.17), we obtain

RN(F̃) ≤
Γw
√

Γβ

N

(
N + 2(N − 1)

√
N log |Q̃|

) 1
2

. (2.18)

For the case when F̃ = F0, (2.6) follows from (2.18) by setting Q̃ = Q1 and noticing

that |Q0| = LLxSz .
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For the case when F̃ = F1, (2.7) follows from (2.18) by setting Q̃ = Q0 and noticing

that the number of possible conditional distributions Q(z|x) ∈ Q1 is bounded by

|Q1| =
((

Lz
1

)
+

(
Lz
2

)
+ · · ·+

(
Lz
Lz

))LxS
≤ 2LzLxS. (2.19)

2.7 Proof of Upper Bound on Estimation Error

We apply the following well-known result, which provides a uniform bound on the differ-

ence between empirical and expected risk functions over a function class.

Lemma 2.1. [81] Let the loss function φ(·) be Lipschitz continuous with constant Lφ, and

let Γφ be a uniform bound on φ(·). Further assume that Y ∈ {−1, 1}. Then, for any small

0 < δ < 1, with probability larger than 1− δ,

sup
f∈F
|Êφ(Y f(X))− Eφ(Y f(X))|

≤ 2LφRN(F) + Γφ

√
2 log 1

δ

N
. (2.20)

Applying Lemma 2.1, we have the following bound for our problem:

Eφ(Y wf̂ (X))− Eφ(Y wf̃ (X))

≤ 2 sup
f∈F
|Êφ(Y wf (X))− Eφ(Y wf (X))|

≤ 4LφRN(F) + 2Γφ

√
2 log 1

δ

N

≤ 4RN(F) + 2Γφ

√
2 log 1

δ

N
, (2.21)

where the last step follows because Lφ ≤ 1 for the logistic and hinge loss functions.

Next we derive a bound for Γφ. We first show that both the logistic and hinge loss
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functions satisfy

φ(x) ≤ 1 + |x|. (2.22)

It is clear that (2.22) holds for the hinge loss function φ(x) = (1 − x)+. For the logistic

loss function φ(x) = log (1 + e−x), if x ≥ 0, then

log
(
e−x + 1

)
< e−x ≤ 1 + |x|. (2.23)

Now, if x < 0, then e−x+1 > e−x + 1, because ex+1 > ex + 1 for all x > 0. This implies

that

log
(
e−x + 1

)
< log

(
e−x+1

)
= 1− x ≤ 1 + |x|. (2.24)

Hence, (2.22) holds for all x for the logistic loss function.

We now bound Γφ of the two loss functions with decision rules using the weighted

count kernel as follows.

Γφ = sup
f∈F ,y∈{±1},x∈XS

|φ(ywf (x))|

= sup
f∈F ,y∈{±1},x∈XS

|φ(y〈wf ,Φ′β(x)〉Hβ)|

≤ 1 + sup
‖β‖1≤Γβ ,‖w‖Hβ≤Γw

Q∈Q,y∈{±1},x∈XS

|yi〈wf ,Φ′β(x)〉Hβ |

= 1 + sup
‖β‖1≤Γβ ,‖w‖Hβ≤Γw,Q∈Q,,x∈XS

|〈wf ,Φ′β(x)〉Hβ |

(a)

≤ 1 + Γw sup
‖β‖1≤Γβ ,Q∈Q,,x∈XS

‖Φ′β(x)‖Hβ

(b)

≤ 1 + Γw
√

Γβ (2.25)

where (a) follows from the Cauchy-Schwartz inequality, and (b) follows from the steps in

(2.16). This concludes the proof.
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Fig. 2.2: Comparison of probabilities of error among four approaches.

2.8 Numerical Results

In this section, we demonstrate the performance of our approach and its associated proper-

ties based on the following experiments.

The joint distribution of the event and observations are chosen as follows. (Such dis-

tribution is chosen for generating data samples, and is not exploited in designing decision

rules.) In our experiment, the state of the event y takes two values +1 and −1 with equal

probability, and the sensors’ measurements xs for s = 1, . . . , S are noisy versions of y,

i.e., xs = y + ns, where the noise variable ns can take three values {−1, 0,+1}. It is

clear that even if ns = +1, there is only half probability that the observation xs causes

confusion about y, because when y = +1, there is no confusion. The case when ns = −1

is similar. In all numerical results, we assume that P (ns = −1) = P (ns = +1), and

introduce a quantity of probability of uncertainty (POU) that equals P (ns = +1) for rep-

resenting the quality of sensor’s observations. For example, if ns has the distribution such

that P (ns = 0) = 0.5, P (ns = +1) = 0.25 and P (ns = −1) = 0.25, then POU = 0.25

indicating the probabilities that observations confuse about the event state.
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Comparison with Other Approaches. We first compare our approach with the fol-

lowing three competitive test methods.

• Likelihood-ratio majority voting (LrMV): each sensor s computes P̂ (Xs = t|Y =

1)/P̂ (Xs = t|Y = −1) for each value that Xs can take based on training samples,

and then sends +1 to the fusion center if the ratio is greater than 1 for the received

observation, and sends −1 otherwise. The fusion center’s decision rule is based on

majority voting of sensors’ decisions.

• Likelihood-ratio support vector machine (LrSVM): each sensor performs the same likelihood-

ratio test as in LrMV and transmits the compressed Zs to the fusion center. The fusion

center’s decision rule is based on support vector machine method with training samples

{Z1
i }Ni=1, . . . , {ZS

i }Ni=1.

• Uniform-weighted kernel (Uniform kernel): similar to our weighted kernel method with

weight parameters βs = 1 for all sensors s = 1, 2, . . . , S as in [8].

In this experiment, we choose logistic function as loss function and apply Algorithm

2. To compare our approach with the above methods, we generate the same training and

testing samples for all approaches. We first perform the weighted kernel method using,

which produces the selected sensors. For the LrMV, LrSVM, and Uniform kernel methods,

the fusion center collects decisions only from sensors that have already been selected by the

weighted kernel method for a fair comparison. Fig. 2.2 plots the error probabilities for all

approaches, and clearly demonstrates that our weighted kernel based approach outperforms

all other competitive methods.

Performance on Sensor Selection. As described in the previous sections, sensor se-

lection is performed via kernel weight parameter β selection, and is jointly designed with

the sensors’ local decision rules Q and the fusion center’s decision rule w. In this sub-

section, we study how sensor selection affects the performance of the system in such joint

design, i.e., the joint optimization over (α, β,Q). In the following experiments, we apply

Algorithm 1.



34

We first study how the regularization parameter λ2 controls the number of sensors se-

lected, i.e., sparsity of sensor selection. We study a network with S = 40 sensors which

have independent observations. For each λ2, we let the value of POU of sensors gradually

increase from sensors s = 1 to s = S as the index s increases. Hence, the sensors’ measure-

ment quality reduces as the index of sensors increases. Fig. 2.3 provides the optimal weight

parameters versus POUs (i.e., versus sensors) for a number of values of λ2. It is clear for

each value of λ2, sensors with smaller values of POU (i.e, better quality of observations)

are assigned higher weight parameters, suggesting these sensors are more contributive in

the fusion center’s decision rule. In particular, nonzero weight parameters are assigned to

sensors with better quality. This is reasonable because if only limited sensors are selected

to participate in decision making, selected sensors should have better observation quality.

Furthermore, as the value of λ2 increases, less sensors are chosen (with nonzero weight pa-

rameters βs) indicating that the regularization parameter λ2 indeed can control the sensor

selection sparsity.

We next study the influence of sparsity of sensor selection on the performance (i.e., the

testing error probability). In Fig. 2.4, we plot the testing error probability versus the number

of sensors selected. It can be seen that as more sensors are selected, the error probability

decreases, because more sensors better clarify the fusion center’s decision. However, it

is also clear from the figure that even a small fraction of sensors already guarantee small

probability of error. For example, when S = 40, with 25% of sensors selected, the error

probability is already almost zero, and furthermore, with only 10% of sensors selected,

the error probability is 10−3. This suggests that selecting only a small fraction of sensors

for decision making does not sacrifice much performance but can save a large amount of

communication resources.

We are also interested in applying our approach to scenarios, in which sensors are clus-

tered into groups with sensors in the same group having highly correlated observations.

In our experiment, sensors are divided into groups with the same size, and each group
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has a representative sensor. Within each group, each sensor has probability 0.8 to have the

same observation with the representative sensor, and probability 0.2 to have an independent

observation. Observations across different groups are independent. We set λ2 = 4, 5, 7 re-

spectively for groups with sizes 2, 3, 4. In Fig. 2.5, we plot the weight parameters versus

sensor indices. Furthermore, group numbers such as G1 and G2 are also marked below

the sensor indices indicating which group corresponding sensor belongs to. It can be seen

that for most groups, only one sensor has nonzero weight, and is hence selected. This

demonstrates that our sensor selection approach based on the weighted kernel is very effec-

tive to remove redundant data and achieve dimension reduction, thus significantly saving

resources for communication from sensors to the fusion center. We further note that by

adjusting values of λ2, it is also possible that entire groups are eliminated or more than one

sensors are selected in one group depending on the sparsity level that we want to achieve.
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CHAPTER 3

ALGORITHMS FOR NONPARAMETRIC

DECENTRALIZED DETECTION

In Chapter 2, we formulate a regularized empirical risk minimization problem (2.3) to

jointly optimize decentralized decision rules and sensor selection strategies. Such an op-

timization problem is non-convex. In this chapter, we first design efficient algorithms to

solve such an optimization problem. We then introduce recent results on convergence anal-

ysis of non-convex minimization problem and apply these results to analyze the algorithms

that we propose.

3.1 Algorithm Design

In this section, we develop algorithms to solve the risk minimization problem (2.3), in

which the minimization is taken over three types of variables β, w and Q. It is clear that the

risk function is not convex jointly over these variables. In general, designing algorithms that

converge to a global optimal solution for non-convex optimization is challenging. In many

cases, even convergence to a critical point can be difficult. Moreover, the l1 regularization

term in (2.3) is a non-smooth function, which further complicates the problem. In this
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section, we first develop two algorithms for the case where φ(·) is a differentiable loss

function such as logistic and exponential loss functions, and then address the case where

φ(·) is a non-differentiable loss function such as hinge loss function. We study convergence

of these algorithms in Section 3.3.

For the case with differentiable φ(·), we first note that since w is a function belonging

to a given RKHS associated with kβ , it is not possible to optimize over β (i.e., the cor-

responding RKHS) but keeping w in a particular RKHS fixed. In another word, w and β

are not independent parameters that can be alternatively optimized. To solve this problem,

we note that following an argument similar to the kernel Representer Theorem [79], the

minimizer of the problem given in (2.3) with fixed Q and β takes the form

w =
N∑
i=1

αiyiΦ
′
β(xi) =

N∑
i=1

∑
z∈Z

αiyiΦβ(z)Q(z|xi) (3.1)

for some parameters α = (α1, . . . , αN), which are projection parameters of w along kernel

functions in Hβ . It is then clear that α,Q and β are independent parameters, and the opti-

mization problem (2.3) can be solved equivalently by optimizing over these three types of

parameters. Therefore, problem (2.3) is equivalent to the following optimization problem:

min
βs≥0 for s=1,...,S
Q∈Q,α∈RN

G(α, β,Q), (3.2)

where

G(α, β,Q) =
N∑
i=1

φ

(
yi

N∑
j=1

αjyj

[
S∑
s=1

βs
∑
zs

Qs(z
s|xsi )Qs(z

s|xsj)

])

+
λ1

2

N∑
i=1

N∑
j=1

αiyiαjyj

[
S∑
s=1

βs
∑
zs

Qs(z
s|xsi )Qs(z

s|xsj)

]
+ λ2‖β‖l1 . (3.3)

In Algorithm 1, we develop a gradient projection algorithm to solve the non-convex risk

minimization problem (3.2) with a continuous loss function. Here, we combine three types
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Algorithm 1 Decentralized Detection via Gradient Projection-Based Method
Input: S, {yi, x1

i , . . . , x
S
i }ni=1.

Step 0: Initialize α ∈ RN , β where βs ≥ 0 for s = 1, . . . , S, Q ∈ Q
Step k:
• Gradient step: for t ≤ 1/L,

(α(k), β̂
(k)
, Q̂(k)) = (α(k−1), β(k−1), Q(k−1))− t5(α,β,Q) G(α(k−1), β(k−1), Q(k−1));

(3.4)

• Projection of β

β(k) = argminβs≥0

∥∥∥β − β̂(k)
∥∥∥
l2

; (3.5)

• Projection of Q

Q(k) = argminQ∈Q
∥∥∥Q− Q̂(k)

∥∥∥
l2

; (3.6)

Output: Sensor decision rules Qs(Z
s|Xs) for s = 1, . . . , S, and fusion center decision

rule w(Z).

of parameters together as one multi-dimensional vector (α, β,Q), and update the entire vec-

tor at each step. We note that the non-differentiable term ‖β‖l1 can be changed to
∑S

s=1 β
s

by exploiting the constraints βs ≥ 0. In this way, the risk function becomes differentiable

and hence much easier to handle. Thus, the algorithm performs a two-step update. Step

1 takes the gradient of the objective function over (α, β,Q) to generate (α(k), β̂
(k)
, Q̂(k))

as in (3.4), where L denotes the Lipschitz constant of the objective function G(α, β,Q).

Then step 2 projects β̂
(k)

and Q̂(k) into the corresponding constraint sets {β : βs ≥ 0} and

Q, respectively. The projection of vector β̂
(k)

is to keep all non-negative entries and set all

negative entries to be 0. The projection of Q can be performed by solving a constrained

convex optimization problem (3.6). Using the KKT conditions, the close-form expression

of the optimizer can be derived. Due to the fact that the projections can be performed

with exact close-form solutions, the convergence of the algorithm can be further shown in

Section 3.3.

Algorithm 2 provides an alternative method (refered to as the Gauss-Seidel method) for
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Algorithm 2 Decentralized Detection via Regularized Gauss-Seidel Method
Input: S, {yi, x1

i , . . . , x
S
i }ni=1.

Step 0: Initialize α ∈ RN , β where βs ≥ 0 for s = 1, . . . , S, Q ∈ Q
Step k:
• Fix β(k−1) and Q(k−1), for tα ≤ 2/L, update

α(k) = α(k−1) − tα5α G(α(k−1), β(k−1), Q(k−1)); (3.7)

• Fix α(k) and Q(k−1), for tβ ≤ 1/L update

β(k) = argminβs≥0

∥∥∥β − β(k−1) + tβ 5β G(α(k), β(k−1), Q(k−1))
∥∥∥
l2

; (3.8)

• Fix α(k) and β(k), for tQ ≤ 1/L, update

Q(k) = argminQ∈Q
∥∥∥Q−Q(k−1) + tQ5Q G(α(k), β(k), Q(k−1))

∥∥∥
l2

; (3.9)

Output: Sensor decision rules Qs(Z
s|Xs) for s = 1, . . . , S, and fusion center decision

rule w(Z).

solving the non-convex optimization problem (3.2) with a continuous loss function. Instead

of taking (α, β,Q) as one vector and optimizing over all variables together, this algorithm

optimizes three types of variables α, β andQ alternately and recursively. More specifically,

with β and Q fixed, α is updated by gradient descent approach as the objective function G

is differentiable over α and there is no constraint on α. With α and Q fixed, β is updated

by gradient projection method with a close-form expression as in Algorithm 1. Similarly,

with α and β fixed, Q can also be updated by gradient projection method with a close-form

expression as explained in Algorithm 1. The convergence of this algorithm is shown in

Section 3.3.

We now consider the problem (3.2) with a non-differentiable loss function such as the

hinge loss function. In this case, the gradient-based Algorithms 1 and 2 are not applicable

any more. As such, we develop a coordinate descent algorithm (as described in Algorithm

3) for solving the problem (3.2) with φ(·) being hinge loss function. We note that the

inner loop of Algorithm 3 follows the idea of conjugate duality provided in [8]. Our new
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ingredient here lies in the outer loop of the algorithm for optimizing the weight parameters

β. We describe our algorithm in detail as follows.

(1) Inner loop: β is fixed (i.e., the RKHS is fixed), and the decision rules w and Q are

alternatively optimized.

(1a) Optimization overw withQ fixed. As we argue before, the optimalw =
∑N

i=1 αiyiΦ
′
β(xi).

For the hinge loss function, it is convenient to apply the conjugate duality argument (i.e.,

Fenchel Duality) and find the optimal α in the dual domain. The dual problem turns out

to be a constrained quadratic optimization problem that is easy to solve, and the optimal

solution α∗ takes the following form:

α∗i =



0 α̂∗i ≤ 0

α̂∗i 0 < α̂∗i <
1
λ1

1
λ1

α̂∗i ≥ 1
λ1

for i = 1, 2, ..., N, (3.10)

where

α̂∗i =
1−

∑
j 6=i αjyiyj

[∑S
s=1 β

s
∑

zs Qs(z
s|xsi )Qs(z

s|xsj)
]

y2
i

∑S
s=1 β

s
∑

zs Qs(zs|xsi )Qs(zs|xsi )
.

(1b) Optimization over Q with w fixed. The subgradient method is used to alternatively

update Qs(z
s|xs) for each sensor s and each value of xs at a step keeping all other Q values

fixed. An element in the subdifferential of the objective function with respect to Qs(z
s|xs)

is given as follows.

−λ1

2

N∑
i=1

N∑
j=1

αiyiαjyj
[
βs
(
Qs(z

s|xsi )I(xsj = xs) +Qs(z
s|xsj)I(xsi = xs)

)]
(3.11)

Furthermore, since this is a constrained optimization problem subject to linear constraints

on Q, i.e.,
∑

zs Q(zs|xs) = 1 for s = 1, . . . , S and for all possible values of xs, conditional

(sub)gradient method for simplex problems in [82, Section 2.2.2] can be applied. Alter-
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natively, a projection step as in Algorithms 1 and 2 can be taken to update Q in order to

satisfy the constraints.

(2) Outer loop: (α,Q) are fixed, and the l1 regularized risk function is optimized over

β in order to find the best weight parameters (i.e., to perform sensor selection).

We apply alternating direction method of multipliers (ADMM) [83]. Since α and Q

are fixed, we treat them as constants and reformulate our objective function with only the

argument β as follows.

G(β) =
N∑
i=1

φ(〈β, di〉) + 〈β, h〉, (3.12)

where di is an S-dimensional vector with the s-th entry equals yi
∑N

j=1 αjyj
∑

zs Qs(z
s|xsi )Qs(z

s|xsj)

and h = λ1

∑n
i=1 αidi/2 + λ2

~1S with ~1S = [1, 1, . . .]TS×1. Our goal is to optimize the fol-

lowing function using ADMM:

F (β) = G(β) + i{βs≥0, s=1,2,...,S}(β) =
N∑
i=1

gi(β) +H(β), (3.13)

where

iC(x) =


0 if x ∈ C

+∞ otherwise

,

gi(β) = φ(〈β, di〉), and H(β) = 〈β, h〉 + i{βs≥0, s=1,2,...,S}(β). To apply ADMM, it is

desirable that the proximity of each term in F (β) is easy to derive, where the proximity of

a function f(x) is defined as follows:

proxf (x̃) = argmin
x
f(x) +

1

2
‖x− x̃‖2.

It can be shown that the proximity of each term gi(β) for i = 1, 2, ..., N is given by:



43

proxµgi(β̃) =



β̃ 1− 〈β̃, di〉 ≤ 0

1−〈β̃,di〉
‖di‖2

di + β̃ 0 < 1− 〈β̃, di〉 < µ‖di‖2

β̃ + µdi 1− 〈β̃, di〉 ≥ µ‖di‖2

, (3.14)

and the proximity of H(β) takes a close-form expression with the s-th component given

by:

[
proxµH(β̃)

]
s

=


β̃s − µhs β̃s − µhs ≥ 0

0 β̃s − µhs < 0

. (3.15)

Then applying ADMM, we initialize ν(0) = β(0), u(0)
i = 0 for i = 1, 2, ..., N and

provide the iteration steps for optimizing over β as follows:



γ(k)
i

= proxgi/ρ(ν
(k−1) − u(k−1)

i ) for i = 1, 2, ..., N

ν(k) = proxH/(Nρ)(γ̄
(k) + ū(k−1))

u
(k)
i = u

(k−1)
i + γ(k−1)

i
− ν(k−1) for i = 1, 2, ..., N,

(3.16)

where in the second step of updating ν(k), γ̄(k) = 1
N

∑N
i=1 γ

(k)
i

and ū(k−1) = 1
N

∑N
i=1 u

(k−1)
i .

When the above algorithm terminates, we set β = γ̄.

3.2 Preliminaries on Non-convex Optimization

Although it is in general difficult to design algorithms that converge to a global minimizer

of a non-convex function, recent results in [84, 85] establish convergence to critical points
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Algorithm 3 Decentralized Detection for Hinge Loss Function
Input: S, {yi, x1

i , . . . , x
S
i }ni=1.

Step 0: Initialize α ∈ RN , β where βs ≥ 0 for s = 1, . . . , S, Q ∈ Q
Step k:
• Inner loop: fix β, optimize alternatively over w and Q

− Fix all Q functions, compute the optimal w by solving optimal parameters α
following (3.10);

− Fix w, compute the optimal Q(z|x) using the subgradient method by exploiting
(3.11);

− Repeat until inner loop converges;

• Outer loop: fix α and Q functions, and compute the optimal β following (3.16);

• Repeat inner and outer loops until converge.
Output: Sensor decision rules Qs(Z

s|Xs) for s = 1, . . . , S, and fusion center decision
rule w(Z).

in non-convex optimization. In this section, we introduce the results in [84–86] together

with necessary definitions, which are useful for studying our algorithms in the next section.

We first note that the subdifferential ∂f(x) plays an important role in convergence anal-

ysis for non-convex optimization problems, which can be defined based on Fréchet subd-

ifferential ∂̂f(x). We refer a reader to [84] for those definitions. We next define critical

points based on Fréchet subdifferential.

Definition 3.1. A point x ∈ D is referred to as a critical point of a function f : D → R if

0 ∈ ∂f(x).

We note that the subdifferential ∂f(x) in the above definition is for non-convex func-

tions based on Fréchet subdifferential ∂̂f(x), which is different from the subdifferential for

convex functions. We further note that the set of all critical points includes all local optimal

solutions of an objective function. Hence, x is a critical point of f is a necessary but not

sufficient condition for x to be a minimizer of f .

In [84], convergence to critical points in non-convex optimization is established for

Kurdyka-Łojasiewicz (KL) functions, the definition of which is given below.

Definition 3.2. (a) The function f : Rn → R∪{+∞} is said to have Kurdyka-Łojasiewicz
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(KL) property at x∗ ∈ dom∂f if there exists η ∈ (0,+∞], a neighborhood U of x∗, and a

continuous concave function ψ : [0, η)→ R+ such that:

(i) ψ(0) = 0,

(ii) ψ is a C1 function on (0, η),

(iii) for all t ∈ (0, η), ψ′(t) > 0,

(iv) for all x in U ∩ {x : f(x∗) < f(x) < f(x∗) + η}, the KL inequality holds

ψ′(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1,

where dist(0, ∂f(x)) denotes the distance from the origin to the set ∂f(x).

(b) Proper lower semicontinuous functions that satisfy KL inequality at each point of

dom∂f are referred to as KL function.

We further define the type of C1 function, which appears in the above definition.

Definition 3.3. The function f : D → R is a C1 function if all partial derivatives of f (i.e.,

∂f
∂xj

(x) for all j) are continuous at each point in the set D, where D ⊆ Rn is the domain of

the function.

In [84], the convergence of the gradient projection algorithm for constrained non-

convex optimization problems is established, which is summarized as follows.

Theorem 3.1. [84] Let h : Rn → R be a differentiable function whose gradient is L-

Lipschitz continuous, and let C be a nonempty closed subset of Rn. Suppose ε ∈ (0, 1
2L

)

and a sequence of stepsize γk satisfy ε < γk <
1
L
− ε. Consider a sequence (xk)k∈N that

complies with

xk+1 ∈ PC(xk − γk 5 h(xk)), with x0 ∈ C. (3.17)

If the function f = h + iC is a KL function and if (xk)k∈N is bounded, then the sequence

(xk)k∈N converges to a point x∗ in C and x∗ is a critical point of f .
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In [84], the convergence of an inexact regularized Gauss-Seidel method is also estab-

lished, which is summarized as follows.

Theorem 3.2. [84] Consider minimization of a function f : Rn1×...×Rnp → R
⋃
{+∞}

having the following structure

f(x) = Q(x1, ..., xp) +

p∑
i=1

fi(xi), (3.18)

where Q is a C1 function with locally Lipschitz continuous gradient, and fi : Rni →

R
⋃
{+∞} is a proper lower semicontinuous function for i = 1, 2, ..., p. Assume that f

defined in (3.18) is a KL function which is bounded from below. Let (xk)k∈N be a sequence

generated by the following steps:

Step 0: Take 0 < λ < λ̄ <∞ and x0 = (x0
1, ..., x

0
p) inRn1 × ...×Rnp .

Step k: Find xk+1 and vk+1 inRn1 × ...×Rnp such that

fi(x
k+1
i ) +Q(xk+1

1 , ..., xk+1
i−1 , x

k+1
i , ..., xkp) +

1

2
〈Aki (xk+1

i − xki ), xk+1
i − xki 〉

≤ fi(x
k
i ) +Q(xk+1

1 , ..., xk+1
i−1 , x

k
i , ..., x

k
p); (3.19)

vk+1
i ∈ ∂fi(xk+1

i ); (3.20)

‖vk+1
i +5xi

Q(xk+1
1 , ..., xk+1

i , xki+1, ..., x
k
p)‖ ≤ bi‖xk+1

i − xki ‖, (3.21)

where i = 1, ..., p, and the sequence of symmetric positive definite matrices (Aki ) of size

ni have eigenvalues lie in [λ, λ̄]. If (xk)k∈N is bounded, then it converges to some critical

point of f .
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3.3 Convergence of Gradient Projection-Based Algo-

rithm

In this section, we analyze convergence of Algorithm 1 that we propose in Section 3.1. It

is clear that the risk function in our minimization problem is not jointly convex over the

three types of variables α, β and Q. By leveraging recent developments for non-convex

optimization problems [84] (see Theorems 3.1 and 3.2), we show that this algorithm con-

verges to critical points of the objective function. This result is provided in the following

theorem.

Theorem 3.3. If the loss function φ(·) is a real analytic function, G(α, β,Q) is Lip-

shitz continuous with constant L. Then Algorithm 1 converges to some critical point of

G(α, β,Q).

Remark 3.1. A wide range of functions including both logistic loss and exponential loss

functions are real analytic. Thus, convergence of Algorithm 1 established in Theorem 3.3

is applicable to a large set of loss functions.

To understand the above remark, we introduce the definition of real analytic functions,

and a lemma that captures sufficient conditions for a function to be real analytic.

Definition 3.4. [87] A function f(x), with domain on an open subset U ⊆ Rm and range

R, is called real analytic on U , if for each x̂ ∈ U , the function f(x) may be represented by

a convergent power series in some neighborhood of x̂.

Hence, a real analytic function is continuous and has continuous and real analytic partial

derivatives of all orders [87]. The following lemma provides a simple way to verify real

analytic functions.

Lemma 3.1. [87] Let f(x) be infinitely differentiable on some open set U ∈ Rm. Then

f(x) is real analytic on U if and only if, for each x̂ ∈ U , there is an open ball V with
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x̂ ∈ V ⊆ U , and constants C > 0 and R > 0 such that the derivatives of f(x) satisfy

∣∣∣∣∂|µ|f∂xµ
(x)

∣∣∣∣ ≤ C · µ!

R|µ|
, ∀x ∈ V, (3.22)

where µ is any positive integer.

Following the above lemma, it is easy to check that a wide range of functions including

both logistic loss and exponential loss functions are real analytic.

The rest of the section is devoted for the proof of Theorem 3.3.

Proof. Since Algorithm 1 uses the standard projection method as described in Theorem

3.1, it suffices to show that F (α, β,Q) = G(α, β,Q) + i{βs≥0, s=1,2,...,S}(β) + i{Q∈Q}(Q) is

a KL function, where G(α, β,Q) is defined in (3.3).

It is shown in [88] that subanalytic functions have the KL property. Hence, in order to

prove that F (α, β,Q) is a KL function, it suffices to show that it is a subanalytic function.

It is also shown in [89] that the sum of subanalytic functions is still a subanalytic function.

Hence, it suffices to show that each term of F (α, β,Q) is a subanalytic function.

We next introduce the definition of subanalytic functions and special cases of such

functions, which are useful in proof.

Definition 3.5. [90](Subanalytic Function) A subset D ∈ Rn is called subanalytic if each

point of D admits a neighborhood V for which D
⋂
V can be represented as

D
⋂

V = {x ∈ Rn : (x, y) ∈ U},

where U is a bounded semi-analytic subset of Rn × Rm for some m ≥ 1. A function

f : Rn → R
⋃
{+∞} is called subanalytic if its graph {(x, λ) ∈ Rn+1 : f(x) = λ} is a

subanalytic set.

Definition 3.6. [84](Semi-algebraic Function) A subset D ∈ Rn is called semi-algebraic
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if it can be represented as

D =

p⋃
i=1

q⋂
j=1

{x ∈ Rn : pij(x) = 0, qij(x) > 0},

where pij , qig : Rn → R are real polynomial functions for 1 ≤ i ≤ p, 1 ≤ j ≤ q. A

function f : Rn → R
⋃
{+∞} is called semi-algebraic if its graph {(x, λ) ∈ Rn+1 :

f(x) = λ} is a semi-algebraic subset ofRn+1.

Definition 3.7. [90](Semi-analytic Function) A subset D ∈ Rn is called semi-analytic if

each point of D admits a neighborhood V for which D
⋂
V can be represented as

D
⋂

V =

p⋃
i=1

q⋂
j=1

{x ∈ V : pij(x) = 0, qij(x) > 0},

where pij , qig : V → R are real analytic functions (see Definition 3.4) for 1 ≤ i ≤ p,

1 ≤ j ≤ q. A function f : Rn → R
⋃
{+∞} is called semi-analytic if its graph {(x, λ) ∈

Rn+1 : f(x) = λ} is a semi-analytic set.

We note that a real polynomial function must be a real analytic function and hence a

semi-algebraic function is semi-analytic. It is also clear from Definition 3.7 that a real-

analytic function is also semi-analytic. It is shown in [91] that any semi-analytic function

is subanalytic. Thus any real analytic, semi-algebraic, or semi-analytic function is subana-

lytic.

Based on the above property, it suffices to show that each term of F (α, β,Q) is real

analytic, semi-algebraic or semi-analytic. The first term given below

N∑
i=1

φ

(
yi

N∑
j=1

αjyj

[
S∑
s=1

βs
∑
zs

Qs(z
s|xsi )Qs(z

s|xsj)

])

is composition of a real analytic loss function φ(·) and a polynomial function, which is also

real analytic. It has been shown in [87] that the composition of real analytic functions is
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also real analytic. Therefore the above term is real analytic. It is also clear that the term∑S
s=1 β

s and the term

λ1

2

N∑
i=1

N∑
j=1

αiyiαjyj

[
S∑
s=1

βs
∑
zs

Qs(z
s|xsi )Qs(z

s|xsj)

]

are both real polynomial, and hence are both real analytic.

Furthermore, it is also clear that the indicator function i{βs≥0, s=1,2,...,S}(β) is semi-

algebraic, because its graph is {(β, λ) ∈ Rn+1 : βs ≥ 0, λ = 0}. Similarly, i{Q∈Q}(Q) is

also semi-algebraic. Therefore, each term of F (α, β,Q) is a subanalytic function, which

implies that F (α, β,Q) is a KL function. This concludes the proof.

3.4 Convergence of Regularized Gauss-Seidel Algorithm

In this section, we analyze the convergence of Algorithm 2. Since the objective function

is uniformly bounded below by zero, Algorithm 2 based on Gauss-Seidel method must

converge. Since the risk function is not jointly convex over the three types of variables α,

β and Q, Algorithm 2 may not converge to a global joint optimal solution. However, based

on Theorem 3.2, we provide convergence of Algorithm 2 to critical points as follows.

Theorem 3.4. Assume the loss function φ(·) in (3.2) is a real analytic function and is

bounded below, G(α, β,Q) is Lipshitz continuous with constant L. Let (α(k), β(k), Q(k)) be

a sequence of variables generated by Algorithm 2. Then the sequence converges to some

critical point of G(α, β,Q) given in (3.3).

We note that the convergence argument of Algorithm 2 exploits the fact that the objec-

tive function takes the structure (3.18) [84, 92]. For Algorithm 3 developed for the case

with the non-differentiable loss function, the objective function cannot be expressed in the

form given in (3.18). Because the loss function including all three types of variables cannot

be viewed as the Q function in (3.18). In this case, it is difficult to establish convergence to
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a critical point.

The rest of the section devotes to the proof of Theorem 3.4.

Proof. The proof apply the convergence result on proximal regularization of Gauss-Seidel

method (see Theorem 3.2). It has been shown that F (α, β,Q) is a KL function and it is

clear that the function is bounded below. It is also clear that G(α, β,Q) is a C1 function. It

is then sufficient to check that the conditions (3.19), (3.20), and (3.21) in Theorem 3.2 are

satisfied when updating α, β, and Q.

We first note that in the context of Theorem 3.2,Q(x1, ..., xp) = G(α, β,Q) with p = 3,

x1 = α, x2 = β, and x3 = Q, f1(x1) = 0, f2(x2) = i{βs≥0, s=1,2,...,S}(β), and f3(x3) =

i{Q∈Q}(Q).

We then introduce the following lemma to help our proof.

Lemma 3.2. Let f : Rn → R be a C1 function and Lipschitz continuous over a set C with

the constant L. Then for any two points x, z in C,

f(z) ≤ f(x) + 〈5f(x), z − x〉+
L

2
‖z − x‖2. (3.23)

Verifying the conditions for updating α:

Step (3.7) implies that

5αG(α(k), β(k), Q(k)) =
1

tα
(α(k) − α(k+1)). (3.24)

Therefore,

‖ 5α G(α(k), β(k), Q(k))‖ =
1

tα
‖α(k) − α(k+1)‖,

which implies that (3.21) is satisfied by setting v(k+1)
α = 0. It is also clear that such v(k+1)

α

satisfies (3.20) with f1(x1) = 0.
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Using Lemma 3.2, we can show that

G(α(k+1), β(k), Q(k))− L

2
‖α(k+1) − α(k)‖2

+ 〈5αG(α(k), β(k), Q(k)), α(k) − α(k+1)〉

≤ G(α(k), β(k), Q(k)). (3.25)

Substituting5αG(α(k), β(k), Q(k)) in (3.24) into (3.25), we obtain

G(α(k+1), β(k), Q(k)) +

(
1

tα
− L

2

)
‖α(k+1) − α(k)‖2

≤ G(α(k), β(k), Q(k)). (3.26)

Since tα ≤ 2/L, the coefficient 1
tα
− L

2
is a positive constant when k varies, which guaran-

tees that (3.19) holds with Aki =
(

1
tα
− L

2

)
I .

Verifying the conditions for updating β:

Following (3.8), we obtain

∥∥∥β(k+1) − β(k) + tβ 5β G(α(k+1), β(k), Q(k))
∥∥∥

≤
∥∥∥tβ 5β G(α(k+1), β(k), Q(k))

∥∥∥ . (3.27)

Hence,

∥∥∥β(k+1) − β(k)
∥∥∥2

+ 2〈β(k+1) − β(k), tβ 5β G(α(k+1), β(k), Q(k))〉 ≤ 0. (3.28)
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Using Lemma 3.2, we can show that

G(α(k+1), β(k+1), Q(k))− L

2
‖β(k+1) − β(k)‖2

+ 〈5βG(α(k+1), β(k), Q(k)), β(k) − β(k+1)〉

≤ G(α(k+1), β(k), Q(k)). (3.29)

Combining with (3.28), we obtain

G(α(k+1), β(k+1), Q(k)) + (
1

2tβ
− L

2
)‖β(k+1) − β(k)‖2

≤ G(α(k+1), β(k), Q(k)). (3.30)

By choosing tβ ≤ 1/L, the update on β satisfies the condition (3.19) withAki =
(

1
tβ
− L

2

)
I .

We define the feasible space of β as Cβ = {β : βs ≥ 0 for s = 1, 2, . . . , S}. The

updating step (3.8) can be equivalently written as

β(k+1) =argminβ
1

2tβ

∥∥∥β − β(k)

+tβ 5β G(α(k+1), β(k), Q(k))
∥∥∥2

+ iCβ(β). (3.31)

The problem (3.31) implies that the solution β(k+1) satisfies the following property:

0 ∈∂iCβ(β(k+1)) +5βG(α(k+1), β(k), Q(k))+

1

tβ
(β(k+1) − β(k)) (3.32)

Hence, there exists v(k+1)
β ∈ ∂iCβ(β(k+1)) such that

v
(k+1)
β +5βG(α(k+1), β(k), Q(k)) +

1

tβ
(β(k+1) − β(k)) = 0.
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We hence have

∥∥∥v(k+1)
β +5βG(α(k+1), β(k), Q(k))

∥∥∥
=

1

tβ

∥∥∥(β(k+1) − β(k))
∥∥∥ . (3.33)

We further derive

∥∥∥v(k+1)
β +5βG(α(k+1), β(k+1), Q(k))

∥∥∥
≤
∥∥∥v(k+1)

β +5βG(α(k+1), β(k), Q(k))
∥∥∥

+
∥∥∥5βG(α(k+1), β(k+1), Q(k))−5βG(α(k+1), β(k), Q(k))

∥∥∥
≤ 1

tβ

∥∥∥(β(k+1) − β(k))
∥∥∥+ L

∥∥∥(β(k+1) − β(k))
∥∥∥ . (3.34)

where the last step follows from (3.33) and the fact that G(α, β,Q) is Lipshitz continuous

with constantL. Therefore, the updating step on β satisfies the conditions (3.20) and (3.21).

Verifying the conditions for updating Q follows the steps similar to those for β. This

concludes the proof.
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CHAPTER 4

SEMI-PARAMETRIC COMPOSITE

OUTLIER DETECTION

In this chapter, we study the composite outlier detection problem in semi-parametric sce-

nario, where typical distribution is known but outlying distributions are not known. We first

give the mathematical description of composite outlier detection and the preliminary stud-

ies on parametric models. Then we study the single outlier model and multi-outlier model

and investigate the conditions for GLRT to be consistent or exponentially consistent.

4.1 Problem Formulation

Suppose there are M data sequences represented by y(i) for i = 1, 2, . . . ,M . Each data

sequence consists of n independent and identically distributed (i.i.d.) samples, and different

sequences are generated independent of each other. Among these sequences, a typical

sequence contains samples drawn from a distribution π; and an outlying sequence contains

samples drawn from a distribution µ. We assume that µ 6= π, and both µ and π are discrete

over a support set Y . Our goal is to determine the existence of outlier sequences, i.e.,
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distinguish between the following two hypotheses:

H0 : All sequences y(i) are typical, for i = 1, 2, . . . ,M.

H1 : There exist at least one outlier sequence.

Denote all data sequences as yMn =
(
y(1), y(2), . . . , y(M)

)
. A test δ : yMn → {H0, H1}

maps realization of data sequences yMn into either H0 or H1. Under the null hypothesis

H0, yMn takes one underlying distribution, i.e., all samples are generated independently

by π. However, under the alternative hypothesis H1, yMn may take multiple distributions

depending on which sequences are outliers. For the simple single outlier model, H1 corre-

sponds to the case with only one outlier sequence, where the one outlier can be any of M

sequences. For a more general multi-outlier model, H1 corresponds to the case with t ≥ 1

outliers, where the index set S of outliers can be any subset of M = {1, . . . ,M} such

that cardinality |S| = t. Thus, the above problem can be viewed as a binary composite

hypothesis testing problem with multiple sub-hypotheses under H1.

We measure the performance of a test δ using type I error e1(δ) and type II error e2(δ).

Type I error refers to the probability that null hypothesis H0 occurs but δ decides the alter-

native hypothesis H1, and is given by

e1(δ) = PH0(δ = 1); (4.1)

whereas type II error refers to the probability that H1 occurs but δ decides H0, and is given

by

e2(δ) = PH1(δ = 0). (4.2)



57

We define the following risk function R(δ) to measure the overall performance of a test

R(δ) = PH0(δ = 1) + max
S∈M:|S|=t

PH1(δ = 0). (4.3)

A test δ is said to be consistent if the risk function R(δ) decays to zero as the sample

size n goes to infinity. We further define the exponent ER(δ) of the risk function as

ER(δ) = lim
n→∞

− 1

n
logR(δ). (4.4)

A test is said to be exponentially consistent if ER(δ) > 0, i.e., the risk function R(δ)

converges to zero exponentially.

4.2 Parametric Model

While the analysis of the parametric model with both π and µ being known can be im-

plied from previous work/existing understanding, we include it here as an intermediate

step towards analysis of the semi-parametric and non-parametric models, which are the

main focus of the work. This section also sets up the notations that we adopt in the work.

We first consider the simple case of the single outlier scenario, i.e., there exists only

one outlier under H1. We develop the GLRT as follows. First, under H0, the likelihood of

observing yMn is given by

P0(yMn) = L0(yMn, π) =
n∏
k=1

M∏
j=1

π(y
(j)
k )

= exp

{
−n

M∑
j=1

H(γj)− n
M∑
j=1

D(γj‖π)

}
(4.5)

where γj denotes the empirical distribution of y(j), and D(p‖q) denotes the KL divergence
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between distributions p and q given as follows

D(p‖q) =
∑
y

p(y) log
p(y)

q(y)
. (4.6)

Secondly, underH1 with the i-th sequence being the outlier, the likelihood of observing

yMn is given by

Pi(y
Mn) = Li(y

Mn, π, µ) =
n∏
k=1

[
µ(y

(i)
k )
∏
j 6=i

π(y
(j)
k )

]

= exp

{
−n

M∑
j=1

H(γj)− nD(γi||µ)− n
∑
j 6=i

D(γj||π)

}
. (4.7)

We apply the GLRT given by

δ(yMn) :
1

n
log

maxi Pi(y
Mn)

P0(yMn)

H1

≷
H0

τ,

where τ is a threshold constant. Substituting (4.5) and (4.7) into the above test, we obtain

the following test for our problem:

max
i

D(γi‖π)−D(γi‖µ)
H1

≷
H0

τ. (4.8)

Differently from multi-hypothesis testing in [37], a threshold is needed for binary com-

posite hypothesis testing here. Furthermore, the value of threshold τ is critical to the per-

formance of the test. To have an intuitive understanding of how to set τ , we first note that

under H0, all γi for i = 1, . . . ,M converges to π for large n, and thus the test value (i.e.,

the left side of (4.8)) converges to −D(π‖µ) as n goes to infinity. Then under H1, γj of

the outlier converges to µ, and hence D(γj‖π) − D(γj‖µ) converges to D(µ‖π). Other

γi for i 6= j still converges to π, and the corresponding D(γj||π) − D(γj||µ) converges

to −D(π||µ). Thus, the overall test value converges to D(µ||π) under H1. Therefore, a

threshold τ between D(µ||π) and −D(π||µ) should distinguish between the two hypothe-
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ses, and hence we set τ = 0. The following theorem characterizes the optimality of the

above GLRT in terms of the decay rate of the risk function.

Theorem 4.1. Consider the binary composite outlier detection problem (4.1) with single

outlier. Suppose µ and π are both known. The GLRT (4.8) with the threshold τ = 0 is

exponentially consistent, and achieves the optimal exponent of the risk function R(δ) given

by

ER(δ) = C(µ, π), (4.9)

where C(p, q) denotes the Chernoff distance between distributions p and q given by

C(p, q) = max
0≤λ≤1

− log

(∑
y

p(y)λq(y)1−λ

)
. (4.10)

Proof. This proof consists of two parts. The achievability proof (see Section 4.5) de-

velops the upper bound on the risk function for the GLRT, and shows that the exponent

ER(δ) = C(µ, π) can be achieved. The optimality proof (i.e., the converse proof) justifies

that C(µ, π) is the optimal exponent among all tests, which we develop as follows.

Consider the following simple binary hypothesis testing problem.

H0 : All sequences y(i) are typical, i = 1, 2, . . . ,M.

H1 : Only sequence y(1) is outlier. Other sequences are typical. (4.11)

Under H0,
(
y

(1)
k , y

(2)
k , . . . , y

(M)
k

)
follows the joint distribution

∏M
i=1 π for k = 1, . . . , n.

Under H1,
(
y

(1)
k , y

(2)
k , . . . , y

(M)
k

)
follows the joint distribution µ

∏M−1
i=1 π for k = 1, . . . , n.

Based on [93, Theorem 11.9.1], the optimal error exponent under the Bayesian risk (with
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the uniform prior) is given by

C

(
M∏
i=1

π , µ

M−1∏
i=1

π

)
= C(π, µ). (4.12)

It is easy to see that any test for the composite problem results in a smaller risk function

for the simple binary problem (4.11). Thus, the exponent of the composite problem cannot

exceed C(π, µ) for the simple binary problem.

We next consider a more general model with multiple outliers, i.e., the number of out-

liers t ≥ 1 in (4.1). We assume that t is fixed and known. We further take a more general

model, assuming each sequence i is drawn from a certain outlying distribution µi if it is an

outlier, where µi for i = 1, . . . ,M are not necessarily the same. We use {µ} to denote the

set of outlying distributions µi for i = 1, 2, . . . ,M . All sequences take the same typical

distribution π if they are not outliers.

To develop a test, we note that the likelihood function under H0 is the same as P0(yMn)

in (4.5), and under H1, the likelihood corresponding to outliers with indexes in S is given

by

PS(yMn) = Ls(y
Mn, π, {µ})

=
n∏
k=1

∏
j∈S

µj(y
(j)
k )
∏
j /∈S

π(y
(j)
k )


= exp

−n
M∑
j=1

H(γj)− n
∑
j∈S

D(γj||µj)− n
∑
j /∈S

D(γj||π)

 (4.13)

Thus, the GLRT

δ(yMn) :
1

n
log

maxS,|S|=t PS(yMn)

P0(yMn)

H1

≷
H0

τ
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can be expressed further as

max
S∈M,|S|=t

∑
j∈S

D(γj||π)−D(γj||µj)
H1

≷
H0

τ. (4.14)

To further simplify the notation, suppose S = {j1, j2, . . . , jt}. Then let µS :=
∏t

k=1 µjt

and γS =
∏t

k=1 γjt . Also denote πt =
∏t

i=1 π. Then the above test can be rewritten as

max
S,|S|=t

D(γS||πt)−D(γS||µS)
H1

≷
H0

τ. (4.15)

To set the threshold in the above test, we analyze the test value under H0 and H1 similarly

to the single outlier model. The test value converges to −minS∈M,|S|=tD(πt||µS) under

H0 since γS → πt, and converges toD(µS||π) where S contains the indexes of true outliers

under H1. Apparently, D(µS||π) can take different values as the index set S changes. It

is clear that τ = 0 distinguishes between the two hypotheses. The following theorem

characterizes the performance of the above GLRT.

Theorem 4.2. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose both π and µj for j = 1, 2, . . . ,M are known.

The GLRT (4.14) with the threshold τ = 0 is exponentially consistent, and achieves the

optimal exponent of the risk function R(δ) given by

ER(δ) = min
S∈M,|S|=t

C(µS, πt). (4.16)

Proof. See Section 4.6.

We note that Theorem 4.2 for t = 1 generalizes Theorem 4.1 to allow sequences to take

different outlying distributions if they are outliers.
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4.3 Semiparametric Single Outlier Model

We next extend our study to the semi-parametric model, where typical distribution π is

known but outlying distributions {µ} are unknown. We first study the simpler model with

a single outlier in this section, and then generalize our study to the model with multiple

outliers in section 4.4.

We first note that the likelihood function under H0 is the same as that in (4.5) for the

parametric model, because the typical distribution π is known. However, under H1, since µ

is unknown, the likelihood function cannot be written out directly. Instead, under the sub-

hypothesis that sequence i is the outlier, we compute the likelihood as follows by replacing

µ with its estimate µ̂i = γi, where γi is the empirical distribution of sequence i.

P̂i(y
Mn) = Li(y

Mn, π, γi)

=
n∏
k=1

[
γi(y

(i)
k )
∏
j 6=i

π(y
(j)
k )

]

= exp

{
−n

M∑
j=1

H(γj)− nD(γi||γi)− n
∑
j 6=i

D(γj||π)

}

= exp

{
−n

M∑
j=1

H(γj)− n
∑
j 6=i

D(γj||π)

}
(4.17)

Thus, GLRT

δ(yMn) :
1

n
log

maxi P̂i(y
Mn)

P0(yMn)

H1

≷
H0

τ

takes the following form by substituting (4.5) and (4.17)

max
i
D(γi||π)

H1

≷
H0

τ. (4.18)

In order to get insight about how to choose τ , we note that the test value (i.e., the
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left-hand side of (4.18)) converges to 0 under H0 because γi → π for all i = 1, . . . ,M ,

and converges to D(µ||π) under H1 because γi → µ if sequence i is the outlier. There-

fore, choosing 0 < τ < D(µ||π) should distinguish between the two hypotheses, as we

characterize in the following theorem.

Theorem 4.3. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose π is known and µ is unknown. Further assume that D(µ||π) is known.

Then the GLRT (4.8) with the threshold τ ∈ (0, D(µ||π)) is exponentially consistent, and

achieves the exponent of the risk function R(δ) given by

ER(δ) = min

{
τ, min
q:D(q||π)≤τ

D(q||µ)

}
. (4.19)

Proof. See Section 4.7.

It is interesting to note that the exponential consistency of GLRT does not require the

full knowledge of µ but only the value of D(µ||π) to set a appropriate threshold. Further-

more, the appearance of µ in the exponent does not mean that µ is exploited in the test,

but only implies that the performance depends on the underlying outlying distribution. The

optimization problem minq:D(q||π)≤τ D(q||µ) does not have an explicit solution. However,

this problem is convex and can be solved numerically in an efficient manner.

It is also clear that the exponent ER(δ) varies by choosing different threshold τ ∈

(0, D(µ||π)). The following corollary characterizes the value of τ that yields the maximum

error exponent.

Corollary 4.1. The exponent ER(δ) is equal to C(π, µ) if τ = C(µ, π), which is optimal

for the semi-parametric model with a single outlier.

Proof. We want to argue that minD(q||π)≤τ D(q||µ) has optimal valueC(µ, π) if τ = C(µ, π).
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Here we introduce two other helping problems that we have already known the solutions.

min
q
D(q||π)

s.t. D(q||π) ≥ D(q||µ) (4.20)

min
q
D(q||µ)

s.t. D(q||π) ≤ D(q||µ) (4.21)

We know from [93] that both problems have the same solution q∗ and optimal valueD(q∗||µ) =

D(q∗||π) = C(π, µ). We will argue that (4.53) with τ = C(µ, π) has the same solution q∗

by contradiction. Suppose (4.53) has a minimizer q̂ different from q∗. Since q∗ is a feasible

point for problem (4.53), then D(q̂||µ) < D(q∗||µ). From constraint of (4.53) we also

know

D(q̂||π) < C(π, µ). (4.22)

Consider two different cases.

• D(q̂||µ) < D(q̂||π)

In this case q̂ is a feasible point for (4.20). Therefore, D(q∗||π) = C(π, µ) ≤

D(q̂||π), which contradicts (4.22).

• D(q̂||µ) ≥ D(q̂||π)

q̂ is a feasible point for (4.21). Therefore C(π, µ) ≤ D(q̂||µ), which contradicts

(4.22).

So (4.53) also has the optimal value C(π, µ). Considering τ = C(π, µ) in this case, the

solution of (4.53) is equal to C(π, µ). Since the optimal error exponent for parametric

model is alsoC(π, µ), this is the optimal error exponent for the semi-parametric model.
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Corollary 4.1 implies the following two facts: (1) Setting τ = C(µ, π) achieves the

best risk decay exponent over all threshold in GLRT; and (2) Such GLRT achieves the best

risk decay exponent over all tests for semi-parametric model, because the exponent is the

same as that for the parametric model. Thus, the error performance of the semi-parametric

model in terms of the risk decay exponent can be as good as that of the parametric model as

long as the threshold τ is set to be C(π, µ). Hence, only the knowledge of C(π, µ) instead

of the full knowledge of µ is required.

On the other hand, if no information about µ is available, the following theorem states

that there does not exist a test that is exponentially consistent for all µ.

Theorem 4.4. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose π is known and µ is unknown. For any test δ constructed without any

knowledge about outlier distribution, there must exist a µ such that δ is not exponentially

consistent.

Proof. The theorem follows as a special case of Theorem 4.7 for multi-outlier model.

Theorem 4.4 essentially claims that it is impossible to construct an exponentially con-

sistent test for all µ without any knowledge about the distance between µ and π such as

D(µ||π) and C(π, µ). It is thus of interest to explore whether there exists consistent test

for all µ in such a case although exponential consistency for all µ is not possible. The

following theorem provides such a solution.

Theorem 4.5. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose π is known and µ is unknown. Further assume that D(µ||π) and C(π, µ)

are unknown. Set the threshold τ to satisfy τn → 0 and

τn >
|Y| log(n+ 1)

n
, (4.23)

where |Y| is the cardinality of the support set of π and µ. Then GLRT is universally

consistent. Furthermore, the type II error is universally exponentially consistent.
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Proof. The theorem follows as a special case of Theorem 4.8 with t = 1.

It is clear that choosing τ within (0, D(µ||π)) is necessary for GLRT to be consistent.

Moreover, large distance between τ and 0 guarantees small type I error, and large distance

between τ and D(µ||π) guarantees small type II error. Since D(µ||π) is unknown, a di-

minishing τn eventually falls in the range (0, D(µ||π)) for large enough n by sacrificing

exponential consistency of type I error while still keeping exponential consistency of type

II error. Furthermore, τn cannot converge to zero faster than the test value (i.e., the left-hand

side of (4.18)) under H0, which is guaranteed by the condition (4.23).

4.4 Semi-parametric Multi-outlier Model

We further generalize our study to the semi-parametric model with t outliers, in which

sequence i takes the distribution µi if it is an outlier for i = 1, . . . ,M . We assume that the

number t of outliers is fixed and given.

In order to construct the GLRT, we first note that the likelihood function under H0 is

the same as (4.5). Under H1 and the sub-hypothesis with sequences supported in S being

outliers, we compute the likelihood as follows by replacing µi with its empirical estimate

γi for i ∈ S.

P̂S(yMn) = Ls(y
Mn, π, {γ})

=
n∏
k=1

∏
j∈S

γj(y
(j)
k )
∏
j /∈S

π(y
(j)
k )


= exp

−n
M∑
j=1

H(γj)− n
∑
j /∈S

D(γj||π)

 (4.24)



67

Then the corresponding GLRT

δ(yMn) :
1

n
log

maxS,|S|=t P̂S(yMn)

P0(yMn)

H1

≷
H0

τ

can be expressed as follows by substituting (4.5) and (4.25)

max
S∈M,|S|=t

D(γS||πt)
H1

≷
H0

τ. (4.25)

To set the threshold τ , we note that the test value (i.e., the lefthand side of (4.25)) con-

verges to 0 underH0 because γj → π for j = 1, 2, . . . ,M , and converges to
∑

j∈S D(µj||π)

under H1 and outliers are supported on S. Different from the single outlier problem,∑
j∈S D(µj||π) varies for different S. Hence, in order for the threshold τ to distinguish

between H0 and any sub-hypothesis associated with S, it is reasonable to choose

0 < τ < min
S∈M,|S|=t

D(µS||πt).

Theorem 4.6. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose π is known but µj for j = 1, 2, . . . ,M are

unknown. Further assume that minS∈M,|S|=tD(µS||πt) := d is known. Then the GLRT

(4.14) with the threshold τ ∈ (0, d) is exponentially consistent, and achieves the risk decay

exponent R(δ) given by

min{α(δ), β(δ)} (4.26)

where α(δ) = τ and β(δ) is given by

min
S∈M

s.t. |S|=t

min
qM=

{q1,...,qM}

D(qS||µS) +D(qSc||πM−t)

s.t. D(qS′||πt) ≤ τ for all S ′, |S ′| = t. (4.27)
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Proof. See Section 4.8.

In the above theorem, α(δ) and β(δ) respectively correspond to the exponents of the

type I and type II error probabilities. It can be seen that the GLRT with the specified τ is

exponentially consistent test without knowing the exact outlying distributions {µ} but only

the distance minS∈M,|S|=tD(µS||πt). Although the exponent given as the solution to the

convex optimization problem (4.27) does not have an explicit form, it can be solved using

numerical methods efficiently. It can also be verified that the optimization problem (4.27)

reduces to that in Theorem 4.6 for the single outlier model by setting t = 1 and µj = µ for

j = 1, 2, . . . ,M .

The following corollary characterizes the value of τ that yields the maximum error

exponent.

Corollary 4.2. The exponent of the risk is equal to minS∈M,|S|=tC(µS, πt) if τ =

minS∈M,|S|=tC(µS, πt), which is optimal for the semi-parametric multi-outlier model.

Proof. By choosing τ = minS,|S|=tC(µS, πt), α(δ) = minS,|S|=tC(µS, πt). Our goal is to

show (4.62) also has optimal value minS,|S|=tC(µS, πt). Optimal value of (4.62) is larger

than or equal to

min
S, |S|=t

min
qS
D(qS||µS)

s.t. D(qS||πt) ≤ τ (4.28)

Denote S∗ = argminS C(µS, πt), this optimization problem is further lower bounded

by

min
qS∗

D(qS∗||µS∗)

s.t. D(qS∗||πt) ≤ τ (4.29)
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This is similar to problem (4.53) we solved in single outlier model. This problem can

achieve C(µS∗ , πt) if τ = C(µS∗ , πt). This analysis shows (4.62) has a solution no smaller

than C(µS∗ , πt). Since the overall error exponent cannot exceed that of parametric model,

optimal value of (4.62) equals C(µS∗ , πt).

Note that the error exponents achieve for the semi-parametric model is the same as that

of the parametric model, which justifies our error exponents are the optimal.

Corollary 4.2 implies that GLRT achieves the same exponent of the risk as the para-

metric model, and thus is optimal in terms of the risk decay exponent over all tests for

semi-parametric model as long as the threshold τ is set to be minS∈M,|S|=tC(µS, πt).

The next two theorems are in parallel to the single outlier model, providing understand-

ing for the case with no knowledge about the outlying distributions {µ} at all.

Theorem 4.7. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose π is known but µj for j = 1, 2, . . . ,M are

unknown. For any test δ constructed without any knowledge about outlier distributions,

there must exist {µ} such that δ is not exponentially consistent.

Proof. See Section 4.9.

Theorem 4.8. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose π is known but µj for j = 1, 2, . . . ,M are

unknown. Further assume that no information on distance between π and {µ} is known.

Set the threshold τ in GLRT to satisfy τn → 0 and

τn >
t|Y| log(n+ 1)

n

where |Y| is the cardinality of the support set of π and µ. Then GLRT is universally

consistent. Furthermore, the type II error is universally exponentially consistent.
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Proof. To analyze if type I error probability is universally consistent, we derive the upper

bound for it.

P0(δ = 1) = P0

 ⋃
S,|S|=t

{∑
i∈S

D(γi||π) ≥ τ

}
≤
(
M

t

)
P0

(∑
i∈S1

D(γi||π) ≥ τ

)

≤
(
M

t

)
(n+ 1)t|Y|P0

(∑
i∈S1

D(γ∗i ||π) ≥ τ, γ∗i is the observed type for i ∈ S1

)

=

(
M

t

)
(n+ 1)t|Y| exp(−nτ)

=

(
M

t

)
exp(t|Y| log(n+ 1)− nτ)

=

(
M

t

)
exp

(
n

(
t|Y| log(n+ 1)

n
− τ
))

(4.30)

Plug in τn >
t|Y| log(n+1)

n
and τn → 0, P0(δ = 1) converges to 0, which indicates the

type I error probability is universally consistent.

To analyze type II error exponent β(δ), we can investigate (4.62). τ → 0 as n → ∞,

which makes solution of (4.62) to converge to minS,|S|=tD(qS||πt) as n → ∞. Therefore

the type two error is exponentially consistent by choosing this diminishing τn.

4.5 Proof of Optimality for Single Outlier Parametric

Model

We characterize achievable error exponent of the risk function under GLRT by analyzing

the type I and type II errors using Sanov’s Theorem. First of all, the type I error is given by

P0(δ = 1) = P0(max
i
D(γi||π)−D(γi||µ) ≥ 0)

= P0

(
(γ1, γ2, . . . , γM) ∈ EMn

α

)
(4.31)
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where EMn
α is given by

EMn
α = {(q1, . . . , qM) : D(q1||π)−D(q1||µ) ≥ 0

or D(q2||π)−D(q2||µ) ≥ 0

......

or D(qM ||π)−D(qM ||µ) ≥ 0}.

Applying Sanov’s Theorem to (4.31), we obtain the error exponent α(δ) of the type I

error as the solution of the following optimization problem.

α(δ) = min
(q1,...,qM )∈EMn

α

D

(
M∏
i=1

qi

∥∥∥∥∥πM
)

(4.32)

Due to the non-convexity of the set EMn
α , the problem cannot be solved directly. How-

ever, this problem can be simplified by observing EMn
α as the union of M subsets given

by

EMn
α ={(q1, . . . , qM) : D(q1||π)−D(q1||µ) ≥ 0}⋃

{(q1, . . . , qM) : D(q2||π)−D(q2||µ) ≥ 0}⋃
......⋃
{(q1, . . . , qM) : D(qM ||π)−D(qM ||µ) ≥ 0} (4.33)

Hence, solving (4.32) can be decomposed into finding an optimal solution on each subset

and then taking the minimum over all M solutions. Therefore, (4.32) is equivalent to the

following problem

min
i=1,...,M

min
(q1,...,qM )

D(q1||π) +D(q2||π) + . . .+D(qM ||π)

s.t. D(qi||π)−D(qi||µ) ≥ 0 (4.34)
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Due to the symmetry of (4.34) over i = 1, . . . ,M , the optimization problem can be further

equalized and simplified to

min
q
D(q||π)

s.t. D(q||π)−D(q||µ) ≥ 0 (4.35)

The solution to (4.35) has been given in [93] to equal C(π, µ), which is the exponent of the

type I error.

We next study the type II error exponent β(δ) by analyzing the error under each sub-

hypothesis. Suppose sequence 1 y(1) is the outlier, and the error probability is given by

P1(δ = 0) = P1(max
i
D(γi||π)−D(γi||µ) ≤ 0)

= P1

(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
(4.36)

where EMn
β is given by

EMn
β = {(q1, . . . , qM) : D(q1||π)−D(q1||µ) ≤ 0

and D(q2||π)−D(q2||µ) ≤ 0

......

and D(qM ||π)−D(qM ||µ) ≤ 0}.

Applying Sanov’s Theorem to (4.36), the error exponent of P1(δ = 0) is the limit of
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solution of the following.

min
(q1,...,qM )∈EMn

β

D

(
M∏
i=1

qi||µπM−1

)

s.t.



D(q1||π)−D(q1||µ) ≤ 0

D(q2||π)−D(q2||µ) ≤ 0

. . .

D(qM ||π)−D(qM ||µ) ≤ 0.

We observe that constraints in the above problem are separable, and hence the opti-

mal solution can be computed via summation over the solutions to the following M sub-

problems:

min
q1

D(q1||µ)

s.t. D(q1||π)−D(q1||µ) ≤ 0 (4.37)

and

min
qi

D(qi||π)

s.t. D(qi||π)−D(qi||µ) ≤ 0

for i = 2, . . . ,M. (4.38)

Apparently, the optimal solution to (4.37) equals Chernoff distance C(µ, π) as shown in

[93], and the optimal value for (4.38) is 0 by setting qi = π. Therefore the error exponent

for P1(δ = 0) is given by C(µ, π). Furthermore, due to the symmetry of sub-hypothesis

under H1 in the error performance, we conclude that the maximum of the error exponent

of the type II error over all sub-hypothesis is also given by C(µ, π). Thus, the risk decay

exponent of GLRT is given by C(µ, π).
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4.6 Proof of Optimality for Multi-Outlier Parametric

Model

This proof consists of the optimality argument that justifies the exponent can be no larger

than minS, |S|=tC(µS, πt) and the achievability proof that shows such an exponent can be

achieved by GLRT.

Proof of optimality. We first note that H1 contains sub-hypotheses, each of which corre-

sponds to outliers supported by one index set S ∈M with the size t. For a given such a set

S, consider the following simple binary hypothesis testing problem

H0 : All sequences y(i) are typical, i = 1, 2, . . . ,M.

H1 : There exist outlier sequences with index in known set S

It is clear that the optimal error exponent for the above problem is C(µS, πt).

Furthermore, any test for our binary composite problem can be applied to the above

problem, and it is easy to see that the risk function of the composite problem is lower

bounded by the type II error of the above problem. Hence, the exponent of the composite

problem is upper bounded by C(µS, πt). Such an argument can be applied to all S ∈ M

with |S| = t, and we conclude that the exponent of the composite problem is upper bounded

by minS∈M, |S|=tC(µS, πt).

Proof of achievability. We also analyze the achievable error exponent of the risk function

under GLRT using Sanov’s Theorem. The probability of type I error is given by

P0(δ = 1) = P0

(
max
S,|S|=T

∑
j∈S

D(γj||π)−D(γj||µj) ≥ 0

)

= P0

(
(γ1, γ2, . . . , γM) ∈ EMn

α

)
(4.39)
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where EMn
α is given by

EMn
α =

{
(q1, . . . , qM) :

∑
j∈S

D(qj||π)−D(qj||µj) ≥ 0 for at least one S ∈M

}
.

(4.40)

We apply Sanov’s Theorem and evaluate the error exponent α(δ) of the type I error as

the solution of the following optimization problem.

min
S, |S|=t

min
qj , j∈S

∑
j∈S

D(qj||π)

s.t.
∑
j∈S

D(qj||π)−D(qj||µj) ≥ 0 (4.41)

To simplify this problem, we can define a joint distribution of qj1 , qj2 , . . . , qjt for j1, j2, . . . , jt ∈

S.

qS(y1, y2, . . . , yt) = qj1(y1)× qj2(y2)× . . .× qjt(yt) (4.42)

Then (4.41) can be simplified as

min
S, |S|=t

min
qj , j∈S

D(qS||πt)

s.t. D(qS||πt)−D(qS||µS) ≥ 0, (4.43)

which is similar to the type I error exponent optimization problem in the single outlier case.

This has an optimal value

min
S, |S|=t

C(µS, πt).

We next explore the type II error exponent β(δ) by analyzing the error under each sub-

hypothesis. Assume set S with size t is the true index set for outlier sequences, and the
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error is given by

PS(δ = 0) = PS

(
max
S,|S|=t

∑
j∈S

D(γj||π)−D(γj||µj) ≤ 0

)

= PS
(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
, (4.44)

where EMn
β is given by

EMn
β =

{
(q1, . . . , qM) :

∑
j∈S

D(qj||π)−D(qj||µj) ≤ 0 for all S ∈M

}
. (4.45)

Applying Sanov’s Theorem, the error exponent of PS(δ = 0) is given by

min
qj , j=1,...,M

∑
j∈S

D(qj||µj) +
∑
j∈Sc

D(qj||π)

s.t.
∑
j∈S′

D(qj||π)−D(qj||µj) ≤ 0 for all S ′, |S ′| = t (4.46)

Since the index set S varies, the error exponent for different S also varies. Considering

the overall type II error exponent is dominated by the smallest one, thus the type II error

exponent β(δ) is given by

min
S, |S|=t

min
qj , j=1,...,M

∑
j∈S

D(qj||µj) +
∑
j∈Sc

D(qj||π)

s.t.
∑
j∈S′

D(qj||π)−D(qj||µj) ≤ 0 for all S ′, |S ′| = t. (4.47)

Solution of (4.47) is apparently larger than or equal to the solution of

min
S, |S|=t

min
qj , j=1,...,M

∑
j∈S

D(qj||µj)

s.t.
∑
j∈S

D(qj||π)−D(qj||µj) ≤ 0 (4.48)
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which has the solution given by minS, |S|=tC(µS, πt). This analysis indicates the decay

exponent of the risk function is no smaller than minS, |S|=tC(µS, πt). Combining with

the optimality result, we can conclude that the optimal exponent for the risk function is

minS, |S|=tC(µS, πt).

4.7 Proof of Exponentially Consistency for Semi-parametric

Single Outlier Model

We characterize achievable error exponent of the risk function under GLRT by analyzing

the type I and type II errors using Sanov’s Theorem. We analyze type I error probability

P0(δ = 1) first.

P0(δ = 1) =P0(max
i
D(γi||π) ≥ τ)

=P0((γ1, γ2, . . . , γM) ∈ EMn
α ) (4.49)

where EMn
α is given by

EMn
α = {(q1, . . . , qM) : D(q1||π) ≥ τ

or D(q2||π) ≥ τ

......

or D(qM ||π) ≥ τ}.

Applying Sanov’s Theorem to the above error probability and exploring the symmetry

of the optimization problem over i = 1, . . . ,M , the type I error exponent α(δ) is the
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optimal value of the following problem.

α(δ) = min
q
D(q||π) (4.50)

s.t. D(q||π) ≥ τ (4.51)

SinceD(q||π) can achieve any value within the interval [0, D(µ||π)], (4.50) has optimal

value τ , which establishes that α(δ) is positive.

We can further derive the exponent β(δ) for type II error using Sanov’s Theorem. With-

out loss of generality, we suppose the first sequence y(1) is the outlier sequence. The corre-

sponding error probability is

P1(δ = 0) = P1(max
i
D(γi||π) ≤ τ)

= P1

(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
(4.52)

where EMn
β is given by

EMn
β = {(q1, . . . , qM) : D(q1||π) ≤ τ

and D(q2||π) ≤ τ

......

and D(qM ||π) ≤ τ}.

Apply Sanov’s Theorem, the exponent for P1(δ = 0) is the optimal value of the follow-

ing problem.

β(δ) = min
q
D(q||µ) (4.53)

s.t. D(q||π) ≤ τ (4.54)

The above equality holds for scenarios with other sequence being outlier, which justifies
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that the type II error exponent is given by (4.53).

Since D(µ||π) > τ , the distribution µ is not a feasible point of (4.53). Thus, (4.53) has

a positive optimal value. Since the exponents for both type I and type II error probabilities

are positive, GLRT is exponentially consistent. The overall error exponent is dominated by

the smaller one, which is given by

min

{
τ, min
D(q||π)≤τ

D(q||µ)

}
. (4.55)

4.8 Proof of Exponentially Consistency for Semi-parametric

Muli-outlier Model

We analyze the type I and type II error probabilities using Sanov’s Theorem. The type I

error probability is given by

P0(δ = 1) = P0

(
max
S,|S|=t

D(γS||πt) ≥ τ

)
= P0

(
(γ1, γ2, . . . , γM) ∈ EMn

α

)
, (4.56)

where EMn
α is given by

EMn
α =

{
(q1, . . . , qM) :

∑
j∈S

D(qj||π) ≥ τ for at least one S ∈M

}
. (4.57)

Applying Sanov’s Theorem, we obtain the type I error exponent α(δ) given by

min
S, |S|=t

min
qj , j∈S

∑
j∈S

D(qj||π) s.t.
∑
j∈S

D(qj||π) ≥ τ

= min
S, |S|=t

min
qS

D(qS||πt) s.t. D(qS||πt) ≥ τ

= τ (4.58)

To analyze the type II error, if S is the true index set for outlier sequences, then the
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corresponding error probability is given by

PS(δ = 0) = PS( max
S,|S|=t

(γS||πt) ≤ τ)

= PS
(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
, (4.59)

where EMn
β is given by

EMn
β =

{
(q1, . . . , qM) :

∑
j∈S

D(qj||π) ≤ τ for all S ∈M

}
. (4.60)

Then the overall type II error exponent is dominated by the smallest exponent of error

probabilities over all possible index sets of outlier sequences, and is given by

β(δ) = min
S, |S|=t

lim
n→∞

− 1

n
logPS( max

S,|S|=t
(γS||πt) ≤ τ). (4.61)

Applying Sanov’s Theorem, we obtain the type II error exponent β(δ) given by

min
S, |S|=t

min
qj , j=1,...,M

∑
j∈S

D(qj||µj) +
∑
j∈Sc

D(qj||π)

s.t.
∑
j∈S′

D(qj||π) ≤ τ for all S ′, |S ′| = t

= min
S, |S|=t

min
qS

D(qS||µS) +D(qSc ||πM−t)

s.t. D(qS′||πt) ≤ τ for all S ′, |S ′| = t. (4.62)

Since minS,|S|=tD(µS||πt) > τ , (qS, qSc) = (µS, πM−t) is not a feasible point, which

implies that the solution of (4.62) is positive. Since both α(δ) and β(δ) are positive, GLRT

is exponentially consistent.
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4.9 Proof of Converse for Semi-parametric Multi-outlier

Model

This proof follows the steps similar to those in the proof of Theorem 11 in [37]. We include

the proof here for completeness.

We first show that the empirical distribution (γ1, . . . , γM) and π are sufficient statistics

for the error exponent. The idea is to show that for any test δ, there exists another test δ′,

which depends only on (γ1, . . . , γM) and π, and achieves the same error exponent.

Denote T(γ1,...,γM ) as the set of allM sequences that have empirical distributions (γ1, . . . , γM).

Within T(γ1,...,γM ), δ may decide either H0 or H1 for each sequence. Denote T 0,δ
(γ1,...,γM ) ⊆

T(γ1,...,γM ) as the set of sequences over which δ decides H0, and T 1,δ
(γ1,...,γM ) ⊆ T(γ1,...,γM ) as

the set of sequences over which δ decidesH1. Apparently T(γ1,...,γM ) = T 0,δ
(γ1,...,γM )

⋃
T 1,δ

(γ1,...,γM ).

We let δ′ map all sequences within T(γ1,...,γM ) to only H0 or H1.

Given δ, we construct δ′ such that it decides H0 if |T 0,δ
(γ1,...,γM )| ≥

1
2
|T(γ1,...,γM )|, and H1

otherwise. It follows that

max{P0(δ′ = 1), P1(δ′ = 0)} ≤ 2 max{P0(δ = 1), P1(δ = 0)}.

Hence, the error exponent of δ′ is the same as error exponent of δ. Therefore, empirical

distribution (γ1, . . . , γM) and π are sufficient statistics for the error exponent.

We next show that there does not exist a test δ that is exponentially consistent for ar-

bitrary set of outlier distributions {µ}. We argue by contradiction. Suppose such a test δ

exists. The type I error exponent of δ is

α(δ) = lim
n→∞

− 1

n
logP0(δ = 1) > ε. (4.63)

Since δ is independent of {µ}, the lower bound of type I error exponent ε is also indepen-
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dent of {µ}. Denote {(q1, . . . , qM) : δ = 0} and {(q1, . . . , qM) : δ = 1} as the decision

regions for H0 and H1 respectively under δ. Then there must exist ε such that α(δ) > ε and

β(δ) > 0 for all possible {µ} using this test δ.

We next construct the following set Z of distributions

Z =

{
(q1, . . . , qM) :

M∑
i=1

D(qi||π) ≤ ε

2

}
. (4.64)

We want to argue Z ⊆ {(q1, . . . , qM) : δ = 0}. Suppose this is not true and there exists

(q̂1, . . . , q̂M) ∈ Z and (q̂1, . . . , q̂M) ∈ {(q1, . . . , qM) : δ = 1}. Using Sanov’s Theorem,

lim
n→∞

− 1

n
logP0(δ = 1) = min

(q1,...,qM )∈{δ=1}

M∑
i=1

D(qi||π) (4.65)

Considering the existence of (q̂1, . . . , q̂M), the above value is no larger than ε/2, which

contradicts (4.63). Therefore Z ⊆ {(q1, . . . , qM) : δ = 0}.

We next analyze the type II error exponent

β(δ) = lim
n→∞

− 1

n
logP1(δ = 0).

Applying Sanov’s Theorem and combining the fact that Z ⊆ {(q1, . . . , qM) : δ = 0}, we

obtain

β(δ) ≤ min
S,|S|=t

min
qi,i=1,...,M

∑
i∈S

D(qi||µi) +
∑
i/∈S

D(qi||π)

s.t. (q1, . . . , qM) ∈ Z (4.66)

For any ε, there must exist {µ} that minS,|S|=t
∑

i∈S D(µi||π) < ε
2
. For such {µ}, we can

construct the solution of (4.66) as (q1, . . . , qM), where

qi = µi for i ∈ S, qi = π for i /∈ S. (4.67)
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This solution makes β(δ) = 0, which is a contradiction.
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CHAPTER 5

NONPARAMETRIC COMPOSITE

OUTLIER DETECTION

In this chapter, we study the composite outlier detection problem in nonparametric scenario,

where both the typical distribution and the outlying distributions are unknown. We study

the single outlier model and multi-outlier model and investigate the conditions for GLRT

to be consistent or exponentially consistent.

5.1 Single Outlier Model

We construct GLRT based on the idea of using the empirical distributions to estimate µ and

π. Differently from the parametric and semi-parametric models, the typical distribution π

is also estimated from the average of all empirical distributions of typical sequences. Under

H0 with no outliers, we estimate π as

π̃0 =

∑M
i=1 γi
M

, (5.1)
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and the corresponding likelihood function is given by

P̃0(yMn) = L0(yMn, π̃0) =
n∑
k=1

M∑
j=1

π̃0(y
(j)
k )

= exp

{
−n

M∑
j=1

H(γj)− n
M∑
j=1

D(γj||π̃0)

}
. (5.2)

Under H1 and the sub-hypothesis that sequence i is the outlier, we use the average of

empirical distributions of all sequences except y(i) to estimate π, and the empirical distri-

bution of y(i) to estimate µ as follows.

π̃i =

∑
j 6=i γj

M − 1

µ̃i = γi

The corresponding likelihood function is given by

P̃i(y
Mn) = Li(y

Mn, π̃i, γi)

=
n∏
k=1

(
γi(y

(i)
k )
∏
j 6=i

π̃i(y
(j)
k )

)

= exp

{
−n

M∑
j=1

H(γj)− n
∑
j 6=i

D(γj||π̃i)

}
(5.3)

Hence, GLRT, which is given as

δ(yMn) :
1

n
log

maxi P̃i(y
Mn)

P̃0(yMn)

H1

≷
H0

τ

can be further expressed as follows by substituting the likelihoods under H0 and H1

max
i

[
D(γi||π̃0) +

∑
j 6=i

(D(γj||π̃0)−D(γj||π̃i))

]
H1

≷
H0

τ. (5.4)
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In order to get insight about how to choose τ , we note that under H0, π̃0, π̃i and γi all

converge to π for i = 1, . . . ,M , and hence the test value (i.e., the lefthand side of (5.4))

converges to 0. Under H1, although π̃0 is different from π̃i for all i = 1, . . . ,M , this

difference is relatively small if the sequence number M is large. For a large M , we expect

the second term
∑

j 6=i (D(γj||π̃0)−D(γj||π̃i)) is close to 0. Under H1, the dominant part

of the test value is the first term D(γj||π̃0), which is close to D

(
µ

∥∥∥∥ 1
M
µ+ M−1

M
π

)
as

γj → µ and π̃0 → 1
M
µ+ M−1

M
π.

Theorem 5.1. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose neither π nor µ is known. But assume that D
(
µ

∥∥∥∥ 1
M
µ+ M−1

M
π

)
:= d is

known. Then the GLRT (5.4) with the threshold τ ∈ (0, d) is exponentially consistent, and

achieves the exponent of the risk function R(δ) given by

ER(δ) = min{α(δ), β(δ)} (5.5)

where

α(δ) = min
qj , j=1,...,M

D(q1||π) +D(q2||π) + . . .+D(qM ||π)

s.t. D(q1||q̄) +
∑
j 6=1

[D(qj||q̄)−D(qj||q̄−1)] ≥ τ (5.6)

and

β(δ) = min
qj , j=1,...,M

D(q1||µ) +
∑
j 6=1

D(qj||π)

s.t. D(qk||q̄) +
∑
j 6=k

[D(qj||q̄)−D(qj||q̄−k)] ≤ τ

for k = 1, 2, . . . ,M. (5.7)

Furthermore, in the above definitions for α(δ) and β(δ), q̄ =
∑M

j=1 qj/M and q̄−i =
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∑
j 6=i qj/(M − 1) for i = 1, . . . ,M .

Proof. See Section 5.3.

To demonstrate whether α(δ) and β(δ) are positive, we are interested in finding the

lower bounds of them. To analyze the lower bound of α(δ), suppose the solution of problem

(5.6) is (q∗1, q
∗
2, . . . , q

∗
M). The optimal value is

α(δ) =
M∑
j=1

D(q∗j ||π)

≥
M∑
j=1

D(q∗j ||π)−
M∑
j=1

D
(
q∗j ||q̄∗

)
+
∑
j 6=i

D(q∗j ||q̄∗−i) + τ

=
M∑
j=1

∑
y

q∗j (y) log
q̄∗(y)

π(y)
+
∑
j 6=i

D(q∗j ||q̄∗−i) + τ

= MD(q̄∗||π) +
∑
j 6=i

D(q∗j ||q̄∗−i) + τ

≥ τ (5.8)

The first inequality follows from the constraint of (5.6).
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The lower bound for β(δ) is as follows.

β(δ) ≥


min

qj , j=1,...,M
D(q1||µ) +

∑
j 6=1

D(qj||π)

s.t. D(q1||q̄) +
∑
j 6=1

(D(qj||q̄)−D(qj||q̄−1)) ≤ τ

=


min

qj , j=1,...,M
D(q1||µ) +

∑
j 6=1

D(qj||π)

s.t. D (q1||q̄) + (M − 1)D (q̄−1||q̄) ≤ τ

=


min

qj , j=1,...,M
D(q1||µ) +

∑
j 6=1

D(qj||π)

s.t. D
(
q1||

1

M
q1 +

M − 1

M
q̄−1

)
+ (M − 1)D

(
q̄−1||

1

M
q1 +

M − 1

M
q̄−1

)
≤ τ

≥


min
q1,q̄−1

D(q1||µ) + (M − 1)D(q̄−1||π)

s.t. D
(
q1||

1

M
q1 +

M − 1

M
q̄−1

)
≤ τ

(5.9)

For the first inequality, we adapt from (5.7) by removing all constraints for k = 2, 3, . . . ,M

and leaving the constraint for k = 1. Since τ < D

(
µ

∥∥∥∥ 1
M
µ+ M−1

M
π

)
, (q1, q̄−1) = (µ, π)

is not a feasible point for (5.9), which indicates solution of this problem must be positive.

Since both α(δ) and β(δ) are lower bounded by 0, GLRT is exponentially consistent.

Furthermore, such exponential consistency does not exploit full knowledge of distributions

but only the distance between distributions in terms of the KL divergenceD
(
µ

∥∥∥∥ 1
M
µ+ M−1

M
π

)
to set the threshold in GLRT. For largeM ,D

(
µ

∥∥∥∥ 1
M
µ+ M−1

M
π

)
is close toD(µ||π), which

implies that the range for setting threshold for the nonparametric model is almost the same

as that for the semi-parametric model. We also note that both optimization problems (5.6)

and (5.7) have no explicit solutions but can be solved numerically.

The following corollary characterizes the asymptotic exponent as M gets large.

Corollary 5.1. As M → ∞, the exponent of R(δ) converges to C(π, µ) if τ = C(µ, π),

which is the optimal exponent that can be achieved for the nonparametric model with a
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single outlier over all tests.

Proof. We analyze the lower bounds for both α(δ) and β(δ). Since α(δ) ≥ τ , we have

α(δ) ≥ C(µ, π). (5.10)

Optimization problem in (5.36) can be rewritten as follows.

min
qj , j=1,...,M

M∑
j=1

D(qj||π)

s.t.
M∑
j=1

D (qj||q̄)−
∑
j 6=i

D(qj||q̄−i) ≥ τ (5.11)

Suppose (q∗1, q
∗
2, . . . , q

∗
M) is the true solution for this problem. Define q̄∗−1(M) =∑M

j=2 q
∗
j/(M − 1). Observe q̄∗−1(M) → π as M → ∞, otherwise the optimal value is

infinity.

This problem can be equally written as

min
q1
D(q1||µ) + (M − 1)D(q̄∗−1(M)||π)

s.t. D

(
q1

∥∥∥∥∥ 1

M
q1 +

M − 1

M
q̄∗−1(M)

)
≤ τ (5.12)

which is lower bounded by

min
q
D(q||µ)

s.t. D

(
q

∥∥∥∥∥ 1

M
q +

M − 1

M
q̄∗−1(M)

)
≤ τ (5.13)

We are interested in the behavior of this problem as M →∞. Such a limit behavior can be

analyzed using the following theorem for objection functions that are Γ-convergence and

equi-coercive.
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Theorem 5.2. Let (X, d) be a metric space, let {fn} be a equi-coercive sequence of func-

tions on X , and let {fn} Γ-converges to f , then minx∈X f(x) exists and

min
x∈X

f(x) = lim
n→∞

inf
x∈X

fn(x). (5.14)

Definition 5.1. Let (Y, d) be a metric space and consider a sequence of functions {fn}

where fn : Y → [−∞,∞]. We say that {fn} Γ-converges to a function f : Y → [−∞,∞]

if the following properties hold.

(i)(Liminf Inequality) For every y ∈ Y and every sequence {yn} ⊂ Y such that yn → y,

f(y) ≤ lim inf
n→+∞

fn(yn) (5.15)

(ii)(Limsup Inequality) For every y ∈ Y and there exists {yn} ⊂ Y such that yn → y,

f(y) ≥ lim sup
n→+∞

fn(yn) (5.16)

Definition 5.2. A sequence of function fn : Y → R̄ is equi-coercive if there exists a

compact set K (independent of n) such that inf{fn(y) : y ∈ Y } = inf{fn(y) : y ∈ K}.

It is easy to check (5.13) is equi-coercive and Γ-converges to the following problem

min
q
D(q||µ)

s.t. D (q||π) ≤ τ (5.17)

By choosing τ = C(µ, π), this problem has optimal value C(µ, π), which means so-

lutions of both (5.34) and (5.39) are lower bounded by C(µ, π) as M → ∞. Since the

optimal error exponent for the parametric model is C(µ, π), the error exponent for non-

parametric model can not achieve better than this. Then we can conclude the exponent
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C(µ, π) is optimal.

The above corollary implies that GLRT for nonparametric model achieves the same

risk decay exponent as the parametric model in the asymptotic regime of large number of

sequences.

The next two theorems provide understanding for the case without any knowledge about

distributions.

Theorem 5.3. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose neither π nor µ is known. For any test δ constructed without any knowl-

edge about typical and outlier distributions, there must exist a pair µ and π such that δ is

not exponentially consistent.

Proof. The theorem follows from Theorem 4.4.

Although there does not exist an exponentially consistent test for all pairs of µ and π

without any knowledge about them, it is of interest to construct consistent test in such case.

Theorem 5.4. Consider the binary composite outlier detection problem (4.1) with a single

outlier. Suppose neither π nor µ is known. Further assume that no information about the

distance between the distributions is known. Set the threshold τ to satisfy τn → 0 and

τ >
M |Y| log(n+ 1)

n
,

where |Y| is the cardinality of the support set of π and µ. Then GLRT is universally

consistent. Furthermore, the type II error is universally exponentially consistent.

Proof. The theorem follows as a special case of Theorem 5.7 where t = 1.

Similarly to the semi-parametric model, a diminishing τn eventually falls into the de-

sirable range of τ that can distinguish between the hypotheses.
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5.2 Multi-outlier Model

In this subsection, we study the nonparametric model with t outliers, in which sequence i

takes the distribution µi if it is an outlier for i = 1, . . . ,M . We assume that the number t of

outliers is fixed and given. We further assume that neither π nor {µ} = {µi}Mi=1 is known.

To construct GLRT, underH0 with no outlier, we estimate π by the average of empirical

distributions of all observed sequences

π̃0 =

∑M
i=1 γi
M

(5.18)

and obtain the same likelihood function as the single-outlier case.

Under H1 and the sub-hypothesis with sequences supported in S being outliers, we

use the average of empirical distributions of all sequences except those supported by S to

estimate π, and the empirical distribution of y(i) to estimate µi as follows.

π̃−S =

∑
j /∈S γj

M − t
(5.19)

µ̃i = γi for i ∈ S (5.20)

Then the corresponding likelihood under H1 is given by

P̃S(yMn) = LS(yMn, π̃−S, {γ})

=
n∏
k=1

∏
j∈S

γj(y
(j)
k )
∏
j /∈S

π̃−S(y
(j)
k )


= exp

−n
M∑
j=1

H(γj)− n
∑
j /∈S

D(γj||π̃−S)

 (5.21)
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Thus, GLRT given by

δ(yMn) :
1

n
log

maxS,|S|=t P̃S(yMn)

P̃0(yMn)

H1

≷
H0

τ

can be further written as

max
S,|S|=t

∑
j∈S

D(γj||π̃0) +
∑
j /∈S

(D(γj||π̃0)−D(γj||π̃−S))

 H1

≷
H0

τ. (5.22)

In order to get insight about how to choose τ , we note that under H0, π̃0, π̃−S and γj all

converges to π for j = 1, 2, . . . ,M and |S| = t. Therefore, the test value converges to 0.

UnderH1, π̃0 and π̃−S does not deviate from each other too much if the outlier sequences is

only a small portion of all sequences. Then the second term
∑

j /∈S(D(γj||π̃0)−D(γj||π̃−S))

is negligible small term if t/M is a small value. The first term converges to a value close

to D
(
µS

∥∥∥∥∏t
i=1

(
1
M

∑
j∈S µj + M−t

M
π
))

for large enough M when S is the true outlier

index set.

Theorem 5.5. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose π is known but µj for j = 1, 2, . . . ,M are

unknown. Further assume that minS∈M,|S|=tD

(
µS

∥∥∥∥∏t
i=1

(
1
M

∑
j∈S µj + M−t

M
π
))

:= d

is known. Then the GLRT (5.22) with the threshold τ ∈ (0, d) is exponentially consistent,

and achieves the risk decay exponent R(δ) given by

ER(δ) = min{α(δ), β(δ)} (5.23)
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where

α(δ) = min
{qj}Mj=1

M∑
j=1

D(qj||π)

s.t.
M∑
j=1

D

(
qj

∥∥∥∥∥
∑M

i=1 qi
M

)
−
∑
j /∈S

D

(
qj

∥∥∥∥∥
∑

i/∈S qi

M − t

)
≥ τ

for any S s.t. |S| = t (5.24)

β(δ) = min
S:|S|=t

min
{qj}Mj=1

∑
j∈S

D(qj||µj) +
∑
j /∈S

D(qj||π)

s.t.
M∑
j=1

D

(
qj

∥∥∥∥∥
∑M

i=1 qi
M

)
−
∑
j /∈S′

D

(
qj

∥∥∥∥∥
∑

i/∈S′ qi

M − t

)
≤ τ

for all S ′ ∈M s.t. |S ′| = t (5.25)

Proof. See Section 5.4.

Using similar techniques in studying single outlier model, we can argue both α(δ) and

β(δ) are lower bounded by 0. Solution (q∗1, q
∗
2, . . . , q

∗
M) of problem (5.24) satisfies

α(δ) =
M∑
j=1

D(q∗j ||π)

≥
M∑
j=1

D(q∗j ||π)−
M∑
j=1

D(q∗j ||q̄∗) +
∑
j /∈S

D(q∗j ||q̄∗−S) + τ

= MD(q̄∗||π) +
∑
j /∈S

D(q∗j ||q̄∗−S) + τ

≥ τ (5.26)

where q̄∗ =
∑M
i=1 q

∗
i

M
and q̄∗−S =

∑
i/∈S q

∗
i

M−t .
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Also optimal value of problem (5.25) is lower bounded by

β(δ) ≥ min
S

min
qj , j=1,...,M

∑
j∈S

D(qj||µj) +
∑
j /∈S

D(qj||π)

s.t.
∑
j∈S

D

(
qj

∥∥∥∥∥ t

M
q̄S +

M − t
M

q̄−S

)

+ (M − t)D

(
q̄−S

∥∥∥∥∥ t

M
q̄S +

M − t
M

q̄−S

)
≤ τ

≥ min
S

min
qj , j=1,...,M

D(qS||µS) + (M − t)D(q̄−S||π)

s.t. D

(
qS

∥∥∥∥∥
t∏
i=1

(
t

M
q̄S +

M − t
M

q̄−S

))

+ (M − t)D

(
q̄−S

∥∥∥∥∥ t

M
q̄S +

M − t
M

q̄−S

)
≤ τ

≥ min
S

min
qj , j=1,...,M

D(qS||µS) + (M − t)D(q̄−S||π)

s.t. D

(
qS

∥∥∥∥∥
t∏
i=1

(
t

M
q̄S +

M − t
M

q̄−S

))
≤ τ (5.27)

Given τ < D

(
µS

∥∥∥∥∏t
i=1

(
1
M

∑
j∈S µj + M−t

M
π
))

, the solution must be positive. Com-

bining the lower bounds for both α(δ) and β(δ), GLRT is exponentially consistent.

The following Corollary characterizes the asymptotic exponent as M gets large.

Corollary 5.2. As M → ∞, the exponent of R(δ) converges to minS,|S|=tC(µS, πt) if

τ = minS,|S|=tC(µS, πt) and t/M → 0, which is the optimal exponent that can be achieved

for the nonparametric model with a single outlier over all tests.

Proof. Since α(δ) ≥ τ , we have

α(δ) ≥ min
S, |S|=t

C(µS, πt). (5.28)

To analyze type II error exponent β(δ), we follow from its lower bound (5.27). Denote
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the solution of (5.27) as (q∗S, q̄
∗
−S). It can be equally written as

min
qS
D(qS||µS) + (M − t)D(q̄∗−S||π)

s.t. D

(
qS

∥∥∥∥∥ t

M
q̄S +

M − t
M

q̄∗−S

)
≤ τ (5.29)

We can see that q̄∗−S(M)→ π as M →∞.

This is further lower bounded by

min
S,|S|=t

min
qS
D(qS||µS)

s.t. D

(
qS

∥∥∥∥∥ t

M
q̄S +

M − t
M

q̄∗−S(M)

)
≤ τ (5.30)

Take a limit M →∞ and apply Theorem 5.2. this is equivalent to

min
S

min
qS
D(qS||µS)

s.t. D(qS||πt) ≤ τ, (5.31)

which has solution minS, |S|=tC(µS, πt) for τ = minS, |S|=tC(µS, πt). Both α(δ) and β(δ)

are lower bounded by minS, |S|=tC(µS, πt). Since this is the optimal error exponent for the

parametric model, this is the optimal for nonparametric model.

In the above corollary, the condition t/M → 0 guarantees that there are not too many

outliers so that estimate of the typical distribution π can be accurate enough.

The following two theorems provide understanding for the case even without any knowl-

edge about the distance between the distributions.

Theorem 5.6. Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose neither π nor µj for j = 1, 2, . . . ,M is known.

For any test δ constructed without any knowledge about typcial and outlier distributions,
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there must exist {µ} and π such that δ is not exponentially consistent.

Proof. The theorem follows from Theorem 4.7.

Theorem 5.7. . Consider the binary composite outlier detection problem (4.1) with t out-

liers, where t is fixed and known. Suppose π is known but µj for j = 1, 2, . . . ,M are

unknown. Further assume that no information on distance between π and {µ} is known.

Set the threshold τ in GLRT to satisfy τn → 0 and

τ >
M |Y| log(n+ 1)

n
,

where |Y| is the cardinality of the support set of π and µ. Then GLRT is universally

consistent. Furthermore, the type II error is universally exponentially consistent.

Proof. To analyze if type I error probability is universally consistent, we derive the upper

bound of it.

P0(δ = 1) = P0

 ⋃
S,|S|=t


 M∑
j=1

D(γj||π̃0)−
∑
j /∈S

D(γj||π̃−S)

 ≥ τ




≤ P0

 ⋃
S,|S|=t

{
M∑
j=1

D(γj||π̃0) ≥ τ

}
≤
(
M

t

)
P0

(
M∑
j=1

D(γj||π̃0) ≥ τ

)

=

(
M

t

)
P0

(
M∑
j=1

D(γj||π)−MD(π̃0||π) ≥ τ

)

≤
(
M

t

)
P0

(
M∑
j=1

D(γj||π) ≥ τ

)

≤
(
M

t

)
(n+ 1)M |Y| exp(−nτ)

=

(
M

t

)
exp

(
n

(
M |Y| log(n+ 1)

n
− τ
))

(5.32)

Plug in τn > M |Y| log(n+1)
n

. P0(δ = 1) converges to 0, which indicates the type I error
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probability is universally consistent.

To analyze type II error exponent β(δ), we can investigate the lower bound (5.27).

τn → 0 as n → ∞, which makes qj = q̄ for j = S. Therefore q̄−S = qj for j = S,

which makes solution of (5.27) positive. Therefore type II error probability is exponentially

consistent.

The above theorem implies that without knowing how much π is distinct from {µ}, a

diminishing τn helps to keep the type II error exponentially decaying to zero while keeping

the type I error decaying to zero although not exponentially.

5.3 Proof of Exponentially Consistency for Single Out-

lier Model

We characterize the exponent of the risk function by analyzing the type I and type II errors

using Sanov’s Theorem. The type I error probability is given by

P0(δ = 1) =P0

(
max
i

[
D(γi||π̃0) +

∑
j 6=i

(D(γj||π̃0)−D(γj||π̃i))

]
≥ τ

)

=P0((γ1, γ2, . . . , γM) ∈ EMn
α ), (5.33)

where EMn
α is given by

EMn
α = {(q1, . . . , qM) : D(q1||q̄) +

∑
j 6=1

(D(qj||q̄)−D(qj||q̄−1)) ≥ τ

or D(q2||q̄) +
∑
j 6=2

(D(qj||q̄)−D(qj||q̄−2)) ≥ τ

......

or D(qM ||q̄) +
∑
j 6=M

(D(qj||q̄)−D(qj||q̄−M)) ≥ τ}.
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To calculate the corresponding error exponent α(δ), we apply Sanov’s Theorem and

obtain

α(δ) = min
i=1,...,M

αi(δ), (5.34)

where

αi(δ) = min
qj , j=1,...,M

D(q1||π) +D(q2||π) + . . .+D(qM ||π)

s.t. D(qi||q̄) +
∑
j 6=i

(D(qj||q̄)−D(qj||q̄−i)) ≥ τ (5.35)

and q̄ =
∑M

j=1 qj/M , q̄−i =
∑

j 6=i qj/(M − 1) for i = 1, 2, . . . ,M . We note that the

optimization problems in (5.34) have identical solutions for different i = 1, 2, . . . ,M .

Therefore, we simplify (5.34) as

α(δ) = min
qj , j=1,...,M

D(q1||π) +D(q2||π) + . . .+D(qM ||π)

s.t. D(q1||q̄) +
∑
j 6=1

(D(qj||q̄)−D(qj||q̄−1)) ≥ τ. (5.36)

We next analyze the type II error by exploring all underlying distributions. Given the

i-th sequence is the true outlier, the error probability is given by

Pi(δ = 0) = Pi

(
max
i

[
D(γi||π̃0) +

∑
j 6=i

(D(γj||π̃0)−D(γj||π̃i))

]
≤ τ

)

= Pi
(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
, (5.37)
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where EMn
β is given by

EMn
β = {(q1, . . . , qM) : D(q1||q̄) +

∑
j 6=1

(D(qj||q̄)−D(qj||q̄−1)) ≤ τ

and D(q2||q̄) +
∑
j 6=2

(D(qj||q̄)−D(qj||q̄−2)) ≤ τ

......

and D(qM ||q̄) +
∑
j 6=M

(D(qj||q̄)−D(qj||q̄−M)) ≤ τ}.

Applying Sanov’s Theorem to the above equation, we obtain the exponent β(δ) as fol-

lows.

β(δ) = min
i=1,...,M

βi(δ) (5.38)

where

βi(δ) = min
qj , j=1,...,M

D(qi||µ) +
∑
j 6=i

D(qj||π)

s.t. D(qk||q̄) +
∑
j 6=k

(D(qj||q̄)−D(qj||q̄−k)) ≥ τ for k = 1, 2, . . . ,M.

(5.39)

Due to the symmetry of this problem over i = 1, 2, . . . ,M , the exponent is given by

β(δ) = min
qj , j=1,...,M

D(q1||µ) +
∑
j 6=i

D(qj||π)

s.t. D(qk||q̄) +
∑
j 6=k

(D(qj||q̄)−D(qj||q̄−k)) ≥ τ for k = 1, 2, . . . ,M.

(5.40)
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5.4 Proof of Exponentially Consistency for Muli-outlier

Model

We characterize the exponent of the risk function by analyzing the type I and type II errors

using Sanov’s Theorem. Type I error probability is given by

P0(δ = 1) = P0

max
S,|S|=t

∑
j∈S

D(γj||π̃0) +
∑
j /∈S

(D(γj||π̃0)−D(γj||π̃−S))

 ≥ τ


= P0

(
(γ1, γ2, . . . , γM) ∈ EMn

α

)
, (5.41)

where EMn
α is given by

EMn
α =

{
(q1, . . . , qM) :

∑
j∈S

D(qj||q̄) +
∑
j /∈S

(D(qj||q̄)−D(qj||q̄−S)) ≥ τ

for at least one S ∈M
}
. (5.42)

To calculate the corresponding exponent α(δ), we apply Sanov’s Theorem and obtain

α(δ) given by the solution of the following problem.

min
S,|S|=t

min
qj , j=1,...,M

D(q1||π) +D(q2||π) + . . .+D(qM ||π)

s.t.
∑
j∈S

D(qj||q̄) +
∑
j /∈S

(D(qj||q̄)−D(qj||q̄−S)) ≥ τ. (5.43)

To analyze the type II error exponent, we first assume that S is the set containing the

true outlier indexes, and obtain the following type II error probability

PS(δ = 0) = PS

max
S,|S|=t

∑
j∈S

D(γj||π̃0) +
∑
j /∈S

(D(γj||π̃0)−D(γj||π̃−S))

 ≤ τ


= PS

(
(γ1, γ2, . . . , γM) ∈ EMn

β

)
, (5.44)
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where EMn
β is given by

EMn
β =

(q1, . . . , qM) :
∑
j∈S

D(qj||q̄)) +
∑
j /∈S

(D(qj||q̄)−D(qj||q̄−S)) ≤ τ for all S ∈M

 .

(5.45)

We then apply Sanov’s Theorem to the above equation and obtain the corresponding expo-

nent β(δ) given by the solution of the following problem.

min
S,|S|=t

min
qj , j=1,...,M

∑
j∈S

D(qj||µj) +
∑
j /∈S

D(qj||π)

s.t.
∑
j∈S′

D(qj||q̄) +
∑
j /∈S′

(D(qj||q̄)−D(qj||q̄−S′)) ≤ τ for all |S ′| = t. (5.46)
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

In this section, we first summarize the results presented in this thesis, and then describe a

few future research directions.

6.1 Concluding Remarks

Although signal detection has been intensively studied for decades, semi-parametric and

nonparametric detection models are still not well-understood yet. In this thesis, we ad-

dressed two categories of signal detection problems: a) nonparametric decentralized detec-

tion in Chapter 2 and 3, and b) semi-parametric/nonparametric composite outlier detection

in centralized setting in Chapter 4 and 5. We summarize the main contributions reported in

this thesis as follows.

In Chapters 2 and 3, we generalized the kernel-based nonparametric decentralized de-

tection framework [8] proposed by Nguyen, Wainwright, and Jordan, and introduced the

idea of using weighted kernel to heterogeneous networks. In particular, the kernel weight

parameters serve to selectively incorporate sensors’ information into the fusion center’s
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decision rule based on quality of sensors’ observations. Furthermore, via l1 regulariza-

tion, weight parameters also serve as sensor selection parameters with nonzero parameters

corresponding to sensors being selected. We then designed gradient projection-based al-

gorithm and Gauss-Seidel algorithm to solve the joint optimization of weight parameters

and sensors’ and fusion center’s decision rules, and showed that both algorithms converge

to critical points. We also demonstrated the performance of our approach via numerical

experiments.

In Chapters 4 and 5, we studied the composite outlier hypothesis testing problem under

both the semi-parametric and nonparametric models. For both models, we constructed

GLRT, and have shown that with the knowledge of the KL divergence between the outlier

and typical distributions, GLRT is exponentially consistent. We also showed that with the

knowledge of the Chernoff distance between the outlier and typical distributions, GLRT

for semi-parametric model achieves the same risk decay exponent as the parametric model,

and GLRT for nonparametric model achieves the same performance as M → ∞. We

further showed that for both models without any knowledge about the distance between

distributions, there does not exist an exponentially consistent test. However, GLRT with a

diminishing threshold can still be consistent.

6.2 Directions for Future Research

We conclude this thesis by pointing out some directions for future research.

As generalization of the nonparametric decentralized detection problem, nonparametric

multi-level sensor networks is of great interest to explore. In multi-level sensor networks,

the uppermost level of the sensors receive observations of the event. All other sensors at

the lower levels receive quantized outputs from its upper level and then quantize them into

single variables. It is expected that sensor selection and regularization term are also related

to network structures in this case. Group regularization on sensors’ weight parameters
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should be designed based on the network structures. It is vital to study the impacts of

different levels of sensors on the fusion center’s decision rule. Since the computation of

the decision rules over the multi-level sensor network is complex, it is also important to

develop effective computation techniques.

Our work on composite outlier detection model assumes that each data sequence con-

sists of i.i.d. samples. It is interesting to explore the scenarios in which data samples are

correlated, for example, following Markov distributions. By constructing the likelihood of

Markov observations from the their empirical distributions, we can apply GLRT to inves-

tigate semi-parametric and nonparametric Markov models. It is important to compare the

asymptotic error performance and required constraints of Markov models to the indepen-

dent observation models. The effect of the order of Markov distributions (the number of

previous states that current state depends on) on the error performance is another interesting

problem to study.

It is also interesting to study the composite outlier detection model in the online setting,

in which data arrive in real time. Then, instead of performing test after all data are collected,

sequential hypothesis testing rules are more desirable, which continuously test hypotheses

as samples come and can decide to terminate the process if a decision can be made to

meet the required performance constraints. It is of importance to analyze the asymptotic

error performance of such sequential tests, and further compare the expected delay with the

number of samples used in non-sequential tests to achieve the same error performance.
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