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Abstract 

 

Forces acting on an airfoil are often found using 

computational fluid dynamics, and the accuracy of the solution is 

highly dependent on the type and resolution of the grid used to 

capture the flow. The simplest way to increase the resolution of a 

grid is to globally increase the number of grid points. This method 

results in significantly higher accuracy at the expense of 

computing time, and therefore is not generally the best solution. 

Alternatively, the error can be reduced without significantly 

increasing the computation time if the grid points are moved such 

that the points cluster around areas of high errors. Previous efforts 

have used gradients of properties such as pressure or density as a 

surrogate for error.  These techniques have limited success since 

the errors in the force calculation are not always linked to high 

solution gradients; the grid points that are closest to the airfoil have 

the largest impact on the accuracy of the force calculations, while 

the flow behind an airfoil does not affect the lift and drag on the 

airfoil. A previously proposed solution to this problem came in the 

form of using adjoint flow equations, which provide a direct link 

between the computed force coefficients and truncation errors in 

the flow field. This method has been developed theoretically, but 

has only been verified computationally using an unstructured grid. 

The focus of this paper is to implement the adjoint adaptation for 

structured grids and to examine the error in force calculations for 

several different types of grids. A newly-written program which 

applies an elliptic grid smoother to an algebraic grid was used to 

generate the grids. Once this elliptic grid was created, it was read 

into a separate flow solver to find the coefficients of lift and drag 

of the airfoil. A double wedge airfoil in a supersonic stream was 

selected to test the program because an analytical solution for lift 

and drag could be used for comparison.  
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1 Background 

The type of grid that is used in a flow solver has a significant effect on the 

accuracy of solutions found using computational fluid dynamics (CFD). Different 

grids have varying levels of success in capturing large changes in a flow 

characteristic, such as pressure or density. These high-gradient features tend to 

cause larger errors in the flow solution than do relatively uniform flow areas. In 

order to reduce the error in these parts of the flow field, the grid needs to be 

refined to better capture the gradient. One way to refine the grid is to perform a 

global grid refinement by increasing the number of grid points. The major 

drawback to the method is that more grid points cause the flow solver to require 

more CPU and memory usage to find a solution. Since increasing the number of 

grid points can be time prohibitive, it is common to refine the grid locally instead 

of globally. One method is to arbitrarily select an area to refine herein termed 

“local clustering”. This method is useful if an area of particularly high gradient in 

the flow is known a priori. Another method of grid refinement is to look at the 

features of the flow as they emerge and use them to cluster the grid accordingly. 

These methods are not as effective as they could be because they look at the entire 

flow, and not the part of the flow which has the greatest impact on the purpose of 

the calculation, namely to predict the forces. The coefficients of lift and drag are 

dependent on the pressures acting on the surface of the airfoil. Therefore, the flow 

which is behind the airfoil has little or no affect on the force calculations. Yet 

existing grid refinement techniques that are driven by density or pressure 

gradients refine the flow behind the airfoil in addition to the flow over the airfoil. 
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One proposed solution to this problem was to use a set of adjoint Euler equations. 

Giles provided a theoretical framework, and it has been verified computationally 

using an unstructured grid
1
. The purpose of this paper is to implement the adjoint 

adaptation for structured grids and to compare the error in force calculations for 

several different types of grids. 

2 Technical Approach 

The first step towards finding a computational solution is to create a basic 

algebraic grid, shown in Fig. 1 for a double-wedge airfoil in a supersonic free-

stream: 

 

 

Figure 1: The Algebraic Grid 

The algebraic grid is defined by 8 separate blocks which form the grid. 

The corners of these blocks are specified and are used to create boundary lines for 

each of the blocks. The boundaries are then evenly divided, giving a set of grid 
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points on the boundary. The internal points are created from these points using 

transfinite interpolation: 

( ) ( )
( )( ) ( ) ( ) JIJIji

jijijijiji

xxxx

xxxxx

,,11,,

,,,,,

1111

11

ξηξηηξηξ

ηηξξ
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where ξ and η are given as: 

1

1

−
−

=
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i
ξ   i = 1,…, I      (2) 

1

1

−
−

=
J

j
η   j = 1, …, J   (3) 

i and j represent the index of a grid point within each block, and I and J represent 

the maximum values of i and j respectively. On the ξ = constant boundaries, i is 

equal to 1 or I, and on the η = constant boundaries, j is equal to 1 or J.  

The initial algebraic grid is generally not smooth, so two Poisson 

equations are used to smooth the grid: 

xx yy
Pξ ξ+ =           (4)  

 
xx yy

Qη η+ =                  (5) 

In theory, these equations can be solved using Dirichlet boundary 

conditions on ξ and η and with the prescribed forcing functions P and Q. 

However, this requires a computational grid, which we are trying to generate. 

Thompson showed that when these equations are inverted
2
, they can be 

used to solve for new grid point locations directly.  Thompson’s inverted 

equations are: 

  ( ) ( )2 0x Px x x Qxξξ ξ ξη ηη ηα β γ+ − + + =     (6) 

  ( ) ( )2 0y Py y y Qyξξ ξ ξη ηη ηα β γ+ − + + =     (7) 



4 

where α, β, and γ are defined as 

2 2
x yη ηα = +      (8) 

22

ξξγ yx +=      (9) 

ηξηξβ yyxx +=     (10) 

In order to create a grid, the discrete representations of the partial derivatives xη, 

xξ, yη, and yξ are defined using central differencing: 
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The elliptic grid is generated using a point-Jacobi iterative scheme, using the 

algebraic grid as the initial solution. To do this, (6) and (7) can be rearranged to 

find the change in the initial grid point’s location: 
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Once all of the changes have been computed, the updated grid points are found 

by: 

( ) ( ) jioldjinewji xxx ,,, ∆+= ω     (15) 

( ) ( ) jioldjinewji yyy ,,, ∆+= ω     (16) 

 

where ω is the under-relaxation factor that has been set to an arbitrary value of 

0.75. This value is small enough to reduce the possibility of the grid diverging, 

but is high enough that it does not drastically increase the number of iterations 

required for convergence of the grid solver.  

In Eq (13) and (14), the forcing functions P and Q can be calculated in a 

variety of ways. For example, several authors have used P and Q to generate grids 

with prescribed off-boundary spacing and angles. Here, P and Q will be used to 

perform the grid adaptation. Following the method developed by Eisemann
3
, P 

and Q can be used to equi-distribute a field variable w by: 

( )/w w
P

w

ξ ηβ α−
=     (17) 

( )/ w w
Q

w

ξ ηβ γ− +
=     (18) 

 

The definition of the equi-distribution function w is described below. Once 

the forcing functions are found, the elliptic grid generator calculates the new 

values of x and y for each grid point. After finding a new x and y for each grid 

point, the local values of w have to be updated to account for changes in the x and 

y values of a grid points. This is accomplished using: 
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y
y

w
x

x

w
w ∆

∂
∂

+∆
∂
∂

=∆     (19) 

where 
w

x

∂

∂
and 

w

y

∂
∂

 are calculated by: 

ξηηξ
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−
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∂
∂
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ξηηξ
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wxwx

y
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−
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=

∂
∂

    (21) 

Here wξ and wη are computed in a similar manner to Eqs (11) and (12). 

Equations (11)-(21) only pertain to the internal grid points of the grid. For points 

on a boundary, the grid points are only moved along the ξ or η directions, as 

opposed to the internal points which are moved in both directions. This 

modification allows the points to slide along the boundary, without changing the 

shape and location of the boundary line. The points are moved by treating the 

boundary as a one-dimensional arc. Modified forms of Thompson’s inverted 

equations, Eq (6) and (7) are used to find the change: 

0=+ ξξξ Pss      (21) 

0=+ ηηη Qss      (22) 

where P and Q are defined as: 

w

w
P

ξ=      (23) 

w

w
Q

η=      (24)  

In Eq (23) and (24), wξ and wη are defined as before. Eq. (21) and (22) can be 

rearranged to solve for the grid point’s movement: 
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where sξ, sη are defined as: 
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For the ξ = constant boundaries only (22), (24), (26), and (28) are used, and for 

the η = constant boundaries, only (21), (23), (25) and (27) are used. The ∆s value 

can be used to update the Cartesian coordinates of the grid point: 

ξ
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ji
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The w value can be updated at the grid point by: 
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η
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After each iteration, the program checks to see if the grid had converged. 

The convergence is found by looking at the movement of each grid point: 

22
yxs ∆+∆=∆      (32) 

where ∆x and ∆y are the change in position of the grid point.  If the maximum 

value of ∆s over the whole domain is less than the selected convergence value of 

10
-4

, then the grid is determined to be converged. Once the elliptic grid creator has 

converged, it is read into the flow solver to calculate the lift and drag on the 

airfoil.  

The flow solver that is used to calculate the lift and the drag on the airfoil 

was developed by Dr. John F. Dannenhoffer III
4
. It approximates the Euler 

equations via a Lax-Wendroff scheme with added first-order dissipation at the 

shocks. It also computes the adjoint solution via backward differentiation of the 

basic scheme.  

Once the flow solver finds a solution, it outputs the density and adjoint 

values at each grid point. These values are used to find new values of w, which 

can be used to modify the grid. The new grid is then used in the flow solver. 

These steps are repeated several times to ensure a highly accurate flow solution. 

Fig. 2 shows the creation of an elliptic grid using the values of the density 

gradient for the refinement parameter. The initial algebraic grid is shown in Fig. 

1. 
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(a) 

 

(b) 

Figure 2: Creation of an Adaptive Grid Using Density Gradient 

Fig. 2a shows the grid after the first adaptation, while Fig. 2b shows the 

grid after the final adaptation. The grid becomes increasingly clustered around the 

oblique shock waves in the flow because these features experience a high change 

in density.  
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Sometimes the grid can be modified in a simpler way by clustering the 

grid points in regions specified by the user. An example of this type of grid 

clustering uses hyperbolic tangent stretching. This type of clustering moves the 

grid points on the boundary closer to a specified point, as shown in Fig. 3: 

 

Figure 3: Clustering by Hyperbolic Stretching 

  The stretching in Fig. 3 was applied at the leading edge, the trailing edge, 

and the mid point of the airfoil since these are known locations of shock waves 

and expansion waves. The off-body spacing was controlled in a similar manner. 

3 Computed Results 

The flow solution was calculated on three different types of grids. The 

first type of grid was a simple algebraic grid with no adaptation. The second type 

of grid examined used local clustering at the leading edge, trailing edge, and 

midpoint of the airfoil. The final type of grid used an adaptive grid smoother with 

the forcing functions P and Q. The adaptive grid was modified using the density 

difference, adjoint, and a combination of density and adjoint. The accuracy of the 
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computational solution for each grid was determined by first calculating the 

analytical solution. 

 

3.1 Analytical Solution 

In order to determine the accuracy of different grid modification 

techniques, the true forces acting on the airfoil are first found analytically. An 

airfoil is selected where the forces can be easily calculated using knowledge of 

compressible flow. The airfoil in the test case is a double wedged airfoil with 

leading and trailing edge angles of 20°. The airfoil is subjected to a flow with a 

free-stream Mach number of 2.0 at a 5° angle of attack. To find the coefficients of 

lift and drag, the pressure acting on the upper and lower surfaces of the airfoil are 

calculated. The airfoil experiences a shock wave both above and below the 

leading edge of the airfoil. It also experiences an expansion fan at the corner in 

the middle of the airfoil. Fig 4 illustrates the shock and expansion waves acting on 

the airfoil.  

 

Figure 4: Airfoil Used to Verify Accuracy 

The pressures P2 and P4 are calculated by finding the Mach numbers behind the 

leading edge shock using a standard oblique shock reference table. The pressures 

P2 
P3 P1 

P4

 

P5 

10° 

5° 
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P3 and P5 can be found using a Prandtl – Meyer expansion wave function table.  

The values of the pressures are given in Table 1. 

Table 1: Pressure Over the Airfoil 

 

The coefficients of the forces in the x and y directions acting on the airfoil 

are computed by: 

( ) ( )5 34 2

2

1 11

2
cos cos

x

P PP P
C

P PM
θ θ

γ

    −−
= +    

     
   (33) 

( ) ( )5 34 2

2

1 11

2
sin sin

y

P PP P
C

P PM
θ θ

γ

    −−
= +    

     
   (34) 

The angle θ is the angle between the surface of the airfoil and the 

horizontal, M1 is the free-stream Mach number, and γ is the specific heat ratio, 

taken to be 1.4 for this case.  In the test case, the value of θ   is 10°.  Once the 

coefficients of forces in the x and y directions are found, they are converted into 

lift and drag coefficients. The coefficient of drag was found to be 0.0938 and the 

coefficient of lift was found to be 0.215.  

3.2 Global Refinement 

The global refinement took the algebraic grid and added more grid points. 

Two refinements were performed and the error in the lift and drag calculations 

was examined. After the first refinement, the grid increased from a 61 x 41 grid to 

Location Pressure 

P2/P1 .179 

P3/P1 .235 

P4/P1 .0702 

P5/P1 .392 

P5 .146 
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a 121 x 81 grid. The second refinement increased the number of points to 241 x 

161 points. Fig. 5 shows the grid after each global refinement: 

 

(a) 

 

 

(b) 
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(c) 

Figure 5: Global Grid Refinement. (a) 61x41 Grid (b) 121x81 (c) 241x161 

Fig. 6 illustrates the error in the coefficient of lift and drag after each 

refinement: 
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Figure 6: Affect of Global Refinement on the Accuracy 
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Fig. 6 shows that increasing the number of grid points initially caused a 

large decrease in the error associated with the calculations. Refining the grid 

further, however, did not cause significant change in results. This was caused by a 

combination of the added dissipation and round-off error. Table 2 shows the 

number of iterations it took the flow solver to converge for the different number 

of grid points.  

Table 2: Iterations until Convergence 

 

The number of iterations it took for the flow solver to converge increased 

when the number of grid points increased. Also, each iteration took longer to 

complete because there were more points on the grid. As a result, increasing the 

number of points greatly increased the computation time. Fig. 7 shows the 

relationship between the error in the calculation and the computational time costs, 

which was calculated by multiplying the number of iterations by the number of 

points in the grid.  

Number of points Iterations 
2501 1410 
9801 1807 

38801 2808 
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Figure 7: Computational Time for Global Refinement 

Fig. 7 shows that simply increasing the number of points to increase the 

accuracy of the solution is not an effective method.  

3.3 Local Clustering 

Local clustering was examined next by a priori stretching the 61 x 41 grid. 

Hyperbolic tangent stretching was used at the middle, leading and trailing edges 

of the airfoil. Fig. 8 shows two grids with different initial spacing. 
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(a) 

 

(b) 

Figure 8: Local Clustering with Initial Spacing Specified: (a) .025 (b) 0.00312  
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 The effects on the accuracy by clustering the grid points near the edges is 

shown in Fig. 9 
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Figure 9: The Accuracy of a Grid Compared to the Spacing 

Fig. 9 shows that the accuracy of the grid increases for coefficients of lift 

and drag as the clustering increases. The results also show that when the grid 

becomes too highly clustered, it loses accuracy. As the grid is clustered, it 

decreases the error in the part of the grid where the clustering occurs, but the 

clustering causes the spacing between other cells to increase, and the error in 

those areas increases. When clustering becomes too great, the reduction in error 

caused by the clustering is not enough to overcome the increase in error of the 

other grid points. Fig. 8b clearly shows the areas with poor refinement when 

clustering becomes too high. Unlike the global refinement method, the local 

clustering does not drastically increase the computational time. 
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A major drawback to the local clustering method is that it assumes the 

locations of major flow features are known. Unfortunately for most airfoils, the 

location of a shock wave is not known a priori, as it can move depending on the 

Mach number and angle of attack.  

3.4 Adaptive Scheme 

 The adaptive scheme can be performed based on several different flow 

properties. This study examined a refinement parameter based on density 

difference, the adjoint flow solution, and the product of the density difference and 

the adjoint. 

3.4.1 Density Difference Redistribution 

 

The adapted grid scheme clustered the grid based on differences in density 

instead of arbitrarily clustering the grid. The contours of density around the airfoil 

are shown in Fig. 10: 
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Figure 10: Contours of Density 



20 

The contours of density clearly show the shock waves and expansion 

waves at the locations expected. The strongest shock wave is at the lower leading 

edge, as evident by the closeness of the contours. From the contours of density, 

the equi-distribution function w was calculated. The equi-distribution function is 

based on the refinement parameter, R: 

max

max

1
1

w
w R

R

−
= +     (35) 

For the density difference redistribution, R is defined as the difference between 

the maximum and minimum density at the grid points immediately surrounding 

the specified location. The contours of w are shown in Fig. 11: 
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Figure 11: Initial Contours of w 

The contours of w are highest where the density gradient is the highest, 

which is along the shock waves and the expansion waves.  These high values of w 
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cause the forcing functions P and Q to be highest at these locations, as shown in 

Fig. 12: 
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Figure 12: (a) Contours of P (b) Contours of Q 
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The contours of P and Q are highest where the shock and expansion waves 

are. It is at these locations where the grid will be clustered. The final grid based 

on the initial flow solution is shown in Fig. 13: 
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Figure 13: Adapted Grid for First Flow Solution 

This grid was used in the flow solver to find a new flow solution. After 

several adaptations, the grid was modified to: 
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Figure 14: Final Grid after 4 Adaptations 

The grid becomes even more clustered around shock and expansion waves 

after successive adaptations. Fig. 15 shows the error in the adapted grid solution 

after each adaptation cycle.  
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Figure 15: Error after Successive Adaptations Based on Density Distribution 

From Fig. 15, it is clear that the adaptive scheme eventually converges to a 

non-zero error. This occurs because the number of grid points, which is fixed, is 

insufficient to achieve an error of zero. 

The accuracy of the density adaptive scheme is compared to the algebraic 

and clustering schemes for a 61x 41and is shown in Table 3.  

Table 3: Percent Error Associated with Different 61x41 Grids 

 

From Table 3, it is clear that both the adaptive and the local clustering 

schemes reduce the amount of error in the calculation. It appears, however, that 

local clustering improves the accuracy more than the adaptive scheme. For the 

wedge airfoil, it is difficult to tell when the optimum configuration has been 

 Cd Cl 

Algebraic 0.0916 0.0488 

Adapted - Density 0.0322 0.0105 

Clustering (.00312) 0.0213 0.0095 
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reached, and clustering further can increase error as seen in Fig. 9. The density 

difference adaptive grid method does not have this problem. 

The problem of the local clustering technique can be seen by examining 

the grid with respect to the flow solution. Fig. 16 shows the contours of pressure 

from the flow solution superimposed on top of the grid for both the adaptive grid 

and the clustered grid 

 

(a) 
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(b) 

Figure 16:  Adapted Grid (a) and Clustered Grid (b) Over Flow Solution 

The adaptive grid has clustering which is aligned with the shock waves, 

refining the grid near the locations with the highest change in density. The grid in 

Fig. 16b is poorly refined further from the focal point of the clustering. Looking at 

the pressure gradient of the flow superimposed over the grid, it is evident that 

some of this poor refinement occurs in high gradient areas. This poor refinement 

is not reflected in a comparison of the accuracies of the two solutions, however. 

From Table 3, the clustered grid had less error than the adaptive grid. The reason 

for this is that the clustered grid moves the grid lines closer to the airfoil. Since 

the flow closest to the airfoil has the most affect on the calculations of lift and 

drag, increasing the resolution close to the grid also increase accuracy. The 

adaptive scheme clusters the grid far from the airfoil as well as behind it. This 
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clustering does not improve accuracy because the flow in those locations does not 

affect the lift and drag on the airfoil. 

3.4.2 Adjoint Redistribution 

 

Using the adjoint solution as the refinement parameter was examined and 

compared to the accuracy of an adaptive grid using the density gradient. The 

adjoint solution was proposed because it ignores the flow behind the airfoil and 

instead looks at the flow which has the largest effect on the forces acting on the 

airfoil. 
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Figure 17: Contours of Adjoint Solution 

From Fig. 17 it is apparent that the adjoint solution is highest at the inflow 

boundary, as well as the leading edge of the airfoil. The inflow boundary is 

important because it controls the Mach waves that impinge on the airfoil. This can 
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result in a significant change in the lift and drag on the airfoil. The flow around 

the leading edge is extremely important as well because the shocks are located 

around this point. The lower edge shock is stronger, so the adjoint is larger on the 

bottom of the airfoil than it is on the top. Behind the airfoil, the adjoint is nearly 

zero, which was expected since the flow behind the airfoil does not affect the 

forces on the airfoil. The adjoint is also zero far above and below the airfoil. 

Using the adjoint as the refinement parameter results in the contours of w shown 

in Fig. 18: 

 

 

Figure 18: Initial Contours of w based on Adjoint 
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The contours of w show that the P and Q values should be highest close to 

the airfoil, as well as in the area swept forward from the airfoil. Fig. 19 shows the 

values of P and Q:  
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Figure 19: (a) Contours of P  (b) Contours of Q 
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The values of P and Q cause the grid to be swept forward and also brought 

in close to the airfoil, as seen in Fig. 20: 
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Figure 20: Grid Modified Based On Adjoint Solution 

The grid in Fig. 20 is based on the initial flow solution. Like the density 

adaptive scheme, this grid is used to find a new flow solution. After several 

adaptations, the final grid is found:  
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Figure 21: Elliptic Grid Based on Adjoint Solution.  

As with the density adaptation, adapting the grid based on the adjoint 

solution causes the error in the coefficient of lift and drag to decreases after 

successive adaptations of the grid as shown in Fig. 22: 
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Figure 22: Error in Solution Using Adjoint Adaptation 
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The error in the lift calculation was compared to the error found using 

density adaptation: 

Adjoint and Density Adaptation Comparison
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Figure 23: Comparison of Error in Cl of Adjoint and Density Adaptation 

Fig. 23 shows that simply using the adjoint solution does not improve the 

accuracy of the solution as much as the density-difference adaptation. The adjoint 

results in a less accurate solution because it refines the area far in front of the 

airfoil. While this flow area has a high effect on the solution, the flow is uniform 

in this location, so the truncation error in the flow calculation is likely to be very 

small. 

3.4.3 Product Adaptation 

Another way to create the refinement parameter is to cluster the grid in the 

flow area which experiences both high error and has a high impact on the forces 

acting on the airfoil. To cluster the grid at this location, the product of the density 

difference and the adjoint solution was found. This value became the new 
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refinement parameter for product refinement. The initial contours of the equi-

distribution function w are shown in Fig. 24: 
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Figure 24: Initial Contours of w for Product Adaptation 

The values of w are highest along the lower edge shock wave, as well as 

the upper edge shock and both the expansion waves. It is highest here because the 

shock wave has both a high density gradient and a large affect on the computed 

forces. Taking the product of the density gradient and the adjoint solution causes 

w to equal zero ahead of the airfoil where the density gradient is zero, and behind 

the airfoil where the adjoint solution is zero. As a result, w is only non-zero at 

locations close to the airfoil. The values of P and Q for the product adaptation are 

shown in Figure 25: 
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Figure 25: Product Adaptation Forcing Functions (a) P (b) Q 

Fig. 26 shows the resultant grid when the values of P and Q are applied to 

the elliptic grid:  
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Figure 26: Initial Grid from Product Adaptation 

As expected, the grid is only modified near the surface of the airfoil, along 

the leading edge shocks, and near the expansion wave. The grid is no longer 

modified near the trailing edge shocks. The grid after several adaptations is shown 

in Fig. 27: 
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Figure 27: Final Grid after Product Adaptation 

The errors in the coefficients of lift and drag after successive adaptations 

are shown in Figure 28: 
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Figure 28: Error in Cl and Cd Using Product Adaptation 



37 

The error in the coefficients of lift and drag drops quickly and converges 

to a finally error value. A comparison with the error in the coefficient of lift of 

previously mentioned adaptive grids is shown in Fig. 29: 
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Figure 29: Cl Error Resulting from 3 Different Adaptive Grids 

Using the product of the adjoint and the density provided a much more 

accurate solution than the adjoint alone. The solution is not as accurate as the grid 

adapted based on density gradient, but the two solutions are very similar in 

accuracy. The results did not confirm that the adjoint solution improved the 

accuracy of the solution. This can be explained by the construction of the grid. 

Since the leading and trailing edge of the airfoil are held constant, the grid behind 

the airfoil cannot be used to better refine the grid along the surface. As a result, 

the refinement behind the airfoil does not harm the accuracy of the density 

adaptive technique. A comparison of the grid near the surface of the airfoil shows 

the grid to be similar for both the density and product adaptations.  
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(b) 

Figure 30: Grid around the Airfoil: (a) Density (b) Product  

The product adaptation clustered the grid slightly closer to the airfoil than 

the density, but it did not improve the accuracy. One explanation as to why the 

product refinement is not as accurate as the density refinement is the type of 

airfoil used. The wedge airfoil was selected because its analytical solution is 

known for supersonic flows. It is possible that the case is not representative of 

actual airfoils such as the NACA0012. For standard airfoil shapes in a transonic 
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flow, the shock does not occur at the leading edge, but rather in the middle of the 

airfoil. As a result, the product of the adjoint solution and the density may work 

better than simply density gradient in that case.  

The adaptive technique is better than simple global refinement regardless 

of which property is used for the refinement parameter.  
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Figure 31: Error in Adaptive Schemes Compared to Error in Global 

Refinement 

 After a single adaptation of the density adaptive scheme and after two 

iterations of the density and adjoint adaptive scheme the solution is more accurate 

than applying a global grid refinement from 61x41 grid to a 121x81 grid. Since 

the adaptive grid accomplishes this accuracy without increasing the computational 

time dramatically, it is preferred over the global refinement.  

4 Summary 

A study was performed that examines the accuracy with which a CFD 

simulation could predict the lift and drag coefficients on an airfoil. A double 
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wedge airfoil in a supersonic free-stream was used because an analytical solution 

could be found for comparison. Three different grid modifications were made in 

this study: global refinement, local clustering, and adaptive refinement. For the 

adaptive refinement, three different functions of the flow solution were used to 

define the equi-distribution function. 

Global refinement found that increasing the resolution of the grid also 

increased the accuracy of the solution. Unfortunately, the computational time 

increased significantly as the error decreased. The global refinement was also 

limited in the accuracy level it could obtain. After the second refinement, the 

accuracy had only increased slightly, while the computational time increased by a 

factor of 6.  

Local refinement found that the accuracy could be increased greatly by 

clustering the grid at the leading and trailing edges, as well as at the middle of the 

airfoil. The accuracy continued to improve as the clustering was increased, until a 

certain point was reached. After too much clustering, the accuracy decreased 

because it left other areas of the grid with poor refinement. This method worked 

the best for the double wedge airfoil in a supersonic flow because the locations of 

flow features such as shock and expansion waves were known. It would not work 

as well for a transonic airfoil such as the NACA0012 where the shock location is 

not known.  

Adaptive refinement found that using a refinement parameter based on the 

density difference produced the most accurate adaptive solution. The density 

difference scheme adapted the grid well along the shocks and expansion waves. It 
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also refined the grid behind the airfoil, where the flow has little effect on the 

forces acting on the airfoil. The adaptive grid based on the adjoint solution caused 

the grid to be refined in the areas where the flow had the greatest effect on the 

force calculations. This grid was clustered in front of the airfoil where the flow 

was uniform, and had very little error. As a result, the adjoint adaptation was less 

accurate than the density difference adaptation. The final adaptive scheme 

examined used the product of the density difference and the adjoint solution. This 

scheme clustered the grid around the flow features near the airfoil and eliminated 

the refinement of the flow behind the airfoil. The product adaptation resulted in a 

grid slightly less accurate than the density-difference grid.  

Care must be taken in generalizing the results of this study. First, only a  

2-D double wedge airfoil in an inviscid supersonic flow was examined. It is quite 

likely that the details of the adaptation will differ in the presence of strong 

boundary curvatures and boundary layers. Second, only one CFD scheme was 

used. Schemes with higher inherent accuracy might also show different behaviors, 

especially with the adaptive technique. Finally, only isolated airfoil calculations 

were considered. Internal flows might exhibit different kinds of behaviors not 

seen here. 

With all the warnings described above, it is clear that the adaptive grid 

refinement is a powerful technique that should become a standard part of all CFD 

calculations.  
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