
Syracuse University Syracuse University 

SURFACE SURFACE 

Syracuse University Honors Program Capstone 
Projects 

Syracuse University Honors Program Capstone 
Projects 

Spring 5-1-2008 

Optimization of Production, Maintenance, Design and Reliability Optimization of Production, Maintenance, Design and Reliability 

for Multipurpose Process Plants: an Analysis and Revision of for Multipurpose Process Plants: an Analysis and Revision of 

Models Models 

Christopher L. McGann 

Follow this and additional works at: https://surface.syr.edu/honors_capstone 

 Part of the Other Chemical Engineering Commons 

Recommended Citation Recommended Citation 
McGann, Christopher L., "Optimization of Production, Maintenance, Design and Reliability for 
Multipurpose Process Plants: an Analysis and Revision of Models" (2008). Syracuse University Honors 
Program Capstone Projects. 533. 
https://surface.syr.edu/honors_capstone/533 

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program 
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone 
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/250?utm_source=surface.syr.edu%2Fhonors_capstone%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/533?utm_source=surface.syr.edu%2Fhonors_capstone%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


1 
 

1 Introduction 

1.1 Motivation 

The design and operation of an optimal chemical or biochemical 

process is a priority for chemical engineers.  It is the duty of a chemical 

engineer to build the most efficient process possible and therefore, seek to 

limit the characteristics of a process that will decrease productivity while 

augmenting the characteristics that increase productivity.  In the development 

of a chemical or biochemical process the selection of an optimal combination 

of resources is of extreme importance to the engineer.  An appropriate 

selection of process units combined with an effective production plan allows 

for high process efficiencies, which translates into greater profits.  Therefore, 

process optimization is a main concern for chemical engineers at the design 

stage.  As a result of this importance, a great deal of research in the chemical 

engineering field is devoted to developing methods to optimize plant 

processes.   

  There are many ways to optimize a chemical process; one could use a 

cost-benefit analysis or another similar type of qualitative analysis.  However, 

with the advent of computers it has become easier to solve complex 

mathematical problems.  It is now possible to analyze problems quantitatively 

that could not be analyzed as such in the past.  Therefore, mathematical 

programming has become a useful tool for modeling and optimizing chemical 

processes.  It has the advantage of producing a quantitative picture of a 

chemical process that can be analyzed in scientific terms thus removing the 

subjectivity of a qualitative analysis.  A set of equations, variables, parameters 

and constraints provides the means for modeling a chemical process 

mathematically.  This model can then be solved in order to maximize certain 

components of the process such as production of a product while minimizing 

others such as the production of a waste by-product. 

Multipurpose plants can especially benefit from process optimization.  

In these process plants different products or different batches of the same 

product may take different pathways through the plant depending upon the 

availability of process units.  An example of this could be a paint process 

where different batches of the same color are blended in different mixers due 

to some production constraint.  The resulting paint is the same for each batch, 
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but not all the batches used the same process pathway.  The multipurpose 

process plant is the type of process that is analyzed in this research paper. 

1.2 Problem Definition 

 The problem that this type of research addresses can be defined as: 

how can a chemical or biochemical process be best modeled and optimized 

through mathematical programming?  However, the scope of that question is 

quite large for this research paper.  Instead, as will be seen, the focus of this 

research paper can be summarized as: how can initial reliabilities be best 

allocated through mathematical programming and optimization?  To this end, 

a model from a specific paper is analyzed and then revised.  

1.3 Objective 

This research analyzes the mathematical modeling and optimization of 

the production planning, maintenance scheduling, design and reliability of 

generic multipurpose process plants.  The models of the multipurpose process 

plants are formulated as mixed-integer linear programming (MILP) problems 

in the General Algebraic Modeling System (or GAMS) developed by the 

GAMS Development Corporation
1
.  The models are then solved using two 

different types of solvers on the NEOS Servers
2
.  Two separate published 

works and the respective models contained in each are considered in this 

research.  The first work was put forth by E.N. Pistikopoulos et. al.
3
 and 

contains the basic framework from which all the other models discussed in this 

research are based.  However, it does not take into account initial reliability as 

a potential variable.  The second published paper considered in this research 

was put forth by H.D. Goel et. al.4 as a revision of the E.N. Pistikopoulos et. 

al. paper.  This paper includes the addition of the initial reliability allocation as 

a variable that can be optimized.  It is this second paper that is of special 

importance.  This research paper introduces a revision of the mathematical 

formulation that H.D. Goel et. al. uses to describe the initial reliability 

allocation.  The revision introduced in this work is more elegant 

mathematically and decreases the resources used by the solver.  As such it is 

an improvement on the H.D. Goel et. al. model.   

1.4 Outline 

This research paper has several goals: first, there is an in-depth 

analysis of the characteristics as well as the methods associated with the type 
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of process optimization research used for these models.  Section 2 is devoted 

to this goal.  Second, there is a detailed description of the mathematics of each 

of the models in Section 3.  This covers the two models introduced in the E.N. 

Pistikopoulos et. al. paper, the model H.D. Goel et. al. develops and the 

revision of the H.D. Goel et al. introduced in this paper.  Third, in Section 4, 

there is a detailed description of the results of the reproductions of the three 

published models as well as the results from the new revision model.  Fourth, 

in Section 5, conclusions are drawn and possible avenues for future research 

are discussed.    

2 Literature and Methods Review 

 This section contains a review of the theory and the methods that form 

the framework of the models.  The models from the two published works that 

are analyzed in this paper have common theoretical frameworks that must be 

described in order to better understand how the models represent a process.  

There are certain assumptions and methods used by those who are involved in 

the research of this particular type of process model optimization.  A 

discussion of these assumptions and methods will illuminate the limitations as 

well as the strengths of the models developed in this vein of research. 

2.1 Optimization and Mathematical Modeling 

The underlying assumption that forms the foundation of this particular 

type of research is that processes can be modeled mathematically and 

optimized through the maximization or minimization of an objective function.  

In other words, the assumption is that one can represent a chemical process 

through a system of interrelated equations, variables and parameters, which 

then can be optimized by solving one of the equations for a maximum or 

minimum value.  As discussed previously it is of extreme importance to the 

design engineer that a chemical process be an optimal one.  An optimal 

process, by its very nature, is a process that contains high efficiency and 

therefore, costs less and produces more.  In any engineering discipline, 

whether it is chemical or mechanical or electrical, it is the goal of the engineer 

to design for efficiency.  As a result of this there is a tremendous amount of 

interest, in terms of research and otherwise, into not only designing optimal 

chemical processes, but also finding ways to design optimal chemical 

processes.  The latter, of course, is the focus of this research.   
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In the research discussed in this paper the optimization of chemical 

processes is accomplished by creating and solving a mathematical model.  In 

general, models are thought of as something tangible such as a model airplane, 

but models can also be abstract.  This is the case of a mathematical model, 

which is a collection of algebraic symbolism that represents the internal 

relationships of the entity that is being modeled (for the purposes of this paper 

the “entity” is the chemical process).  The characteristics of a process such as 

the movement of material or the uptime of a unit are modeled through the use 

of equations, inequalities and logic5.  For example, the law of conservation of 

mass demands that matter be neither created nor destroyed through normal 

chemical means.  To ensure that the mathematical model does not violate this 

law a material balance equation is used as a constraint.  In the mathematical 

model, the equations that serve as constraints dictate limitations of a particular 

process and therefore, the limitations of a possible solution.  These equations 

may take the form of equalities or inequalities depending on the process 

relationship.  These equations are composed of scalars and sets of parameters 

and variables, which are organized through the use of indices.  The value of a 

scalar will always be constant, while the value of a parameter may change 

based on the index.  The value of a variable is free-floating and will be 

determined by the optimization of the model
5
.  Finally, there is the objective 

function which optimizes the model by being solved for a maximum or 

minimum value.  However, how does finding the maximum value (or 

minimum value) of the objective function optimize the model?  The objective 

function organizes a portion or all of the variables used in the model into some 

universal mathematical relationship.  By finding the maximum or minimum 

value of that relationship, different values for the variables are chosen by a 

solver.  These values are considered to be optimal as they provide the largest 

or smallest value to the objective function5.  The mathematical process models 

discussed in this work are all optimized using a similar objective function.  A 

profit equation is maximized in order to determine the optimal production, 

maintenance, design and reliability characteristics of the process.  The total 

costs associated with the model, such as the fixed costs of the process units, 

are subtracted from the total revenue of the process.  The total revenue is a 

function of the amount of product produced multiplied by the price of that 
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product.  The actual math associated with these models as well as the 

important characteristics of this type of process optimization such as state-task 

networks are discussed in further detail in later sections
3
.   

2.2 Linear Programming, Integer Programming and MILP 

There are different types of mathematical models, but there are three 

main classifications: linear programming models, non-linear programming 

models and integer programming models.   

Linear programming (LP) models are the simplest of all the 

mathematical programming models since they only contain linear equations.  

In these models there is no multiplication or division or other non-linear 

combination of variables.  A variable in a linear programming problem can 

only be either added or subtracted from another variable.  Parameters and 

scalars, however, are not restricted.  On the other hand non-linear 

programming models (NLP) will contain non-linear functions such as X1X2 or 

X2/(X1X3)
5.   

LP Optimization
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Fig. 1 Graphical Representation of LP Optimization 

Fig. 2 Graphical Representation of NLP Optimization 
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The consequences of a linear model can best be described 

geometrically.  Figure 1 shows the axes of two variables and the constraints of 

a model depicted as boundaries forming the model’s feasible region.  It is 

inside the feasible region that a feasible solution for the model can be 

discovered; the points inside the region satisfy all of the constraints.  Figure 2 

demonstrates a similar situation, but with a non-linear constraint that results in 

one of the boundaries becoming curved.  The significance of this curvature 

becomes clear when both models are optimized.  If an objective function 4X1 

+ 3X2 = Y is to be maximized for Y then the slope RS representing the 

function will have to come in contact with the feasible region, but only on a 

boundary.  In this way the variables would equal a point in the feasible region, 

satisfying the constraints, but the solution of the objective function would be 

at a maximum6.  Points A, B and C demonstrate different values of the 

objective function.  Point A is inside the feasible region satisfying the 

constraints but it is not the maximum number.  Point B is outside the feasible 

region and although it is the largest number, it is not a solution.  Point C is the 

only point that is a maximum and satisfies constraints.  Point C gives an 

optimal solution and does so very clearly; it is right on a vertex. The curvature 

in the non-linear model creates a difficult situation.  A vertex is very easy to 

distinguish, but finding the maximum point on a curve either requires iteration 

or calculus.  Therefore, non-linear problems are more difficult to solve.  This 

should illustrate the simplicity of finding a solution for linear programming 

problems, which usually means a faster solving time for computerized models.  

For this reason, it is important solve linear models. 

Integer programming (IP) is a very useful form of modeling that uses 

integer values and linear constraints.  IP has a surprisingly wide range of uses; 

if a particular variable had to represent an indivisible unit such as a person or a 

car then integer programming could be used to optimize that particular model.  

The resulting value after optimization for the number of people or cars would 

be a whole number in an integer programming model.  The usefulness of 

integer programming becomes readily apparent when the integer variables are 

limited to either a 0 or 1 value.  In effect, the integer variable becomes a 

binary variable, which allows for logical constructions in the form of “yes” or 

“no” decisions.  In fact, these logical constructions are essential to the models 
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discussed in this research.  Preventive maintenance, process design and initial 

reliability allocation would be impossible without these logical underpinnings.  

The IP models become extremely complex very quickly due to the way in 

which they are solved
5
.   

One of the more successful methods, the branch and bound method 

illustrates the complexity. First, the model is relaxed as if it was a normal LP 

model and a solution is determined.  Then a systematic search begins as the 

solver attempts to find a suitable integer solution. The solver algorithm creates 

a tree of submodels of the original model and also introduces new constraints.  

These new constraints attempt to force integer values for the IP variables.  If a 

feasible solution exists the solver will eventually find an integer solution for 

the model.  Unfortunately this could take a long time, but when the integer 

variables are binary variables then the process is becomes much easier6. 

The last type of mathematical model is used in the models described 

later in this paper and is actually a combination of the two models above.  The 

mixed-integer linear programming model combines continuous variables and 

integer variables.  Essentially, this is an integer programming model with 

added relaxation due to the continuous variables.  In fact, IP is divided into 

two different categories: pure integer programming (PIP) and mixed-integer 

programming (MIP) 
5
.  MILP models are extremely useful when optimizing 

processes because there are certain aspects of a process that can be “selected” 

using the logical constructions only an IP model can make available.  

However, there are other characteristics of a process where it is better to have 

a continuous variable.  

2.3 Multipurpose plants and State-Task Networks (STN) 

The research that is conducted in this paper deals with multipurpose 

process plants with time horizons that are divided into periods.  These periods 

serve a specific importance to be discussed in the next section.  As mentioned 

in the Introduction, multipurpose process plants are plants that produce a 

variety of products through a number of different but interrelated pathways.  

This is different from a multiproduct plant where a number of different 

products produced all follow the same sequence or pathway.  In multipurpose 

plants, process units share the burden of producing different products.  For 

example, returning to the paint process mentioned in the introduction, consider 
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a situation where there are four blends of paint and four mixers.  However, 

there is always one mixer that is offline due to maintenance.  In this 

circumstance one or all of the mixers might alternate between the task of 

blending different paints in such a way that certain levels of demand for all 

four paints continues to be met.  Under these conditions, the task the process 

unit undertakes becomes more important to understanding the process than the 

unit itself.  Therefore, it no longer makes sense to use the traditional flowsheet 

representation of a chemical process.  Instead a state-task network (STN) is 

introduced7.  
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E. Kondili et. al. introduces and discusses the benefits of a STN 

representation when compared to a normal recipe representation of a chemical 

process.  Figure 3 is a slightly modified reproduction of a figure in their work.  

E. Kondili et. al. points out the difficulty with determining whether Task 1 

produces a state that gets divided between Task 2 and 3 or that it alternatively 

produces two separate states that wholly get sent to Task 2 and 3.  However, in 

an STN representation of the process there is no confusion as depicted by 

Figures 4 and 5, which are also modifications of figures from the E. Kondili 

et. al. paper.  In Figure 4, Task 1 clearly produces only one state and in Figure 

5, Task 1 produces two separate states.  The STN is made up of two different 

nodes: state nodes (circles) and task nodes (squares).  A state is any material 

that exists in the process; it can be a feed or a process intermediate or a final 

product.  A task is any operation that exists in the process.   

Fig. 3 Normal Recipe Representation of a Chemical Process 
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 In their paper, E. Kondili mentions that an STM is suitable for any 

type of operation whether it’s continuous, semicontinuous or batch.  They also 

provide these two rules for the construction of a STN: 

1. A task has as many input (output) 

states as different types of input (output) 

material. 

2. Two or more streams entering the 

same state are necessarily of the same 

quality. If mixing of different streams is 

involved in the process, then this   

operation should form separate task
7
. 

The math involved in a STN will be discussed in greater detail when the 

models are introduced but it is sufficient to note that the connection between 

states and tasks are defined by two sets.  The first delineates which states serve 

as input for a given task and the second delineates which states serve as an 

output for a given task.  Also, the models include two sets that are the exact 

opposite of the two previously stated sets (i.e. set of tasks capable of receiving 

material from a given state).  Process units are still considered in these process 

Fig. 4  STN Representation – Version 1 

Fig. 4  STN Representation – Version 2 



10 
 

models and are described by a set that groups units capable of performing a 

given task
7
.       

2.4 Availability, Time Periods, Process Unit Failure Rate and 

Maintenance 

 The scheduling of plant production cycles is a major concern for field 

chemical engineers of multipurpose plants.  It is critically important to match 

demand with supply especially in industries such as the manufacture of 

foodstuffs or other perishables.  However, it is not always possible to predict 

demand in the long-term.  When this is possible plant management normally 

dedicates all the resources of the plant to a single product so as to minimize 

costly changeovers.  However, when the demand for a particular product 

fluctuates in the short-term it becomes difficult to run the plant in “campaigns” 

and therefore, the multipurpose plant must adjust its production planning so 

that it can produce all necessary products without having too much downtime 

for the units7.  This might result in a situation similar to the paint process 

described in the previous section where a process unit shares the burden of a 

particular task.  Regardless, the plant must maximize the utilization of all its 

assets.  However, the extent to which the plant can maximize asset utilization 

is directly related to the availability of the process units
3
.  Availability is 

defined as the “fraction of time over a defined period (the mission time) that a 

component or system is fully operational
8
.”   Furthermore, the availability of a 

process unit is directly related to the unit’s maintenance schedule as well as its 

failure rate (i.e. the unit’s reliability).   

In the researched process models the reliability of a process unit is 

described by an increasing failure rate that affects the availability in two ways.  

First, the unit could fail and have to be fixed; this is corrective maintenance.  

Secondly, the failure rate plays a role in how the unit is maintained so that it 

doesn’t fail; this is preventive maintenance.  Both forms of maintenance cut 

into the amount of time a particular process unit is available to complete a 

task3.   

 The failure rate used in the models of the research report is regarded as 

the number of failures for a given time period.  The mathematical 

representation of this is: 
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N jT = m j(s) ds
0

T

#  

where N jT  stands for the expected number of failures and m j(s) is the number 

of failures per unit time.  The expected number of failures is simply the failure 

rate integrated across the time period T  3.  If the failure rate is constant as it is 

in process models then the equation simplifies down to the failure rate 

multiplied by the time period.  This makes perfect sense: 

N jT = m j(T- 0) = m jT  

However, it has to be noted that this does not always result in a whole number 

of failures.  In fact, it is quite possible for there to be only a fraction of a 

failure for a given time period.  This can be confusing: how can there only be 

a fraction of a failure?  A process unit either fails or it functions normally.  

While this is true it is not easily replicated mathematically.  The very nature of 

failure is that its occurrence is uncertain.  One cannot predict exactly when a 

failure will occur.  However, the likelihood or rate at which a unit fails can be 

ascertained through statistical analysis.  A good way to think about the failure 

rate is that it is how the model accounts for that future failure; it does so a little 

portion per period.  This concept will become clear when the relationship 

between the failure rate and other parts of the model is discussed.  

 In the process models researched in this work it is assumed that the 

failure rates increase at constant rate.  A constant rate of increase was assumed 

because it simplified the mathematical model.  The time horizon considered in 

these models is broken up into equal length time periods.  For example, if the 

time horizon were two years then the time period could potentially be 104 

weeks or 24 months.  The time period is important to the scheduling of 

production as well as the scheduling of maintenance.  However, for now, it is 

sufficient to recognize that the failure rate increases for each time period, but 

that the failure rate is also constant for that time period.   Figure 6 

demonstrates this graphically3.  The c j1 represents the failure rate for unit j 

during time period 1.  The horizontal line just beneath the symbol represents 

that failure rate.  This demonstrates how the failure rate stays constant until the 

maximum allowed periods before maintenance represent by xj.   
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Maintenance actions play an important role in the failure rates of a 

given process unit.  When a preventive maintenance action is taken the failure 

rate is returned to its original value or the value it has when it is “new.”  This 

is a very important assumption made in the model; a preventive maintenance 

action will return the model to as-good-as-new conditions (AGAN).  The 

graph repeats itself to represent how the failure rate is AGAN after 

maintenance.  If failure occurs then only corrective maintenance action is 

taken and the unit is returned to (AGAO) conditions3.  However, this idea of 

corrective maintenance is not as explicit mathematically as preventive 

maintenance because of the ideas describe earlier in this section.  Finally, there 

is a maximum number of periods that can pass between preventive 

maintenance periods before another action must return the unit to AGAN 

conditions3. 

2.5 Design and Initial Reliability 

The mathematical process models considered in this work have two 

remaining components: design characteristics and the initial reliability 

characteristics.  A crucial aspect of process optimization in multipurpose 

plants is determining the number of units that are necessary to carry out all of 

the tasks in a way that is profitable.  Sometimes it might make sense to include 

duplicate units if maintenance scheduling puts a particular unit out of 
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commission.  It is a common practice for process engineers to include back-up 

units or design the process to have several duplicate units working below full 

capacity so that even if one malfunctions there is still enough capacity in the 

remaining units for the process to continue normally.  Since the selection of 

units plays an important role in process design it is also included in these 

process optimization models3.  Furthermore, the size of a particular process 

unit is also variable in these models.  The inclusion of the initial reliability 

allocation feature stems from the fact that some process units may have lower 

failure rates than others4.  This may be due to better design, superior materials 

or some other advantage not present in the generic process unit.  However, in 

the models discussed in this work the increased initial reliability comes at a 

higher initial capital cost.  The method of initial reliability allocation is the 

main focus of the experimentation aspect of this report.  

3 Process Models Mathematics 

In the following sections the mathematics of the models from the two 

published works are presented and discussed.  Four models are discussed in 

this section, but each model builds on the previous either by increased 

complexity or revision.  The four models are the Multiperiod Production 

Planning and Maintenance Model and the Simultaneous Design, Production, 

and Maintenance Planning Model proposed by E.N. Pistikopoulos et. al., the 

Design, Reliability, Production and Maintenance Planning model proposed by 

H.D. Goel et. al. and the Revision of the Design, Reliability, Production and 

Maintenance Planning model, which is introduced in this project. 

3.1 Multiperiod Production Planning and Maintenance Planning 

Model 

 This model encompasses two components: the first is a multiperiod 

production component and the second is the maintenance scheduling 

component.  The purpose of the first is to actually describe the process: the 

flow of materials, the number of batches a unit produces, the capacity of the 

process units and the demand for products.  The second part of the model 

describes the maintenance schedule and also determines how the failure rate 

affects the uptime of the process units.       
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 Appendix A summarizes the mathematics that is used in all four 

models that are to be discussed and therefore, only a description of the 

importance of each equation will be discussed here: 

3.1.1 Model Structure 

 The fundamental aspect of the math behind the process models is the 

index.  The index decreases the complexity of the model by allowing a few 

general variables or parameters to represent all the different aspects of the 

process model.  For example, let the index j  represents all of the different 

units that can exist in the model and let the variable V  represents the size of a 

unit.  If there are several different units then there has to be several different V  

variables.  Instead of more letters a subscript is used to denote the different 

unit size variables: Vj .   This decreases the complexity of the model and 

neatens the mathematics.  The use of indexes becomes increasingly important 

when a certain variable has 3 or 4 indexes.   

The next building block in the model framework is the set.  The set 

serves to organize the model as well as limit its size.  For example, there may 

be ten different process unit sizes that exist in the model, but only four maybe 

appropriate for a particular unit.  A set could be formed that contains only the 

four available sizes for the given process unit.  The addition of an index would 

make this notation even simpler as a different symbol for each different 

process unit would not be needed just a subscript j  denoting the unit: } j .  The 

result is a set of all possible sizes for unit j.   

There are six indices used in the first model representing the process 

tasks i , the process units j , the time periods t , the states of material s , the 

utilities u  and the number of periods since the last maintenance action i .  

There are also 6 sets representing the set of states that are consumed or 

produced by task i  (Si , Si), the set of tasks consume or produce state s  

(Ts, T s), the set of tasks for which unit j  is suitable ( I j ) and the set of units for 

which task i  is suitable (Ki).  

3.1.2 Resource Utilization Constraint 

piNijt

i ! I j

! # U jt 6j, t  
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This inequality restricts the number of batches Nijt  of a particular task 

produced by a unit in a given time period.  The inequality states that the total 

time spent completing tasks can not exceed the uptime U jt  of the unit for a 

given period.  The total time spent completing tasks is found by summing the 

number of batches for a given task multiplied by the processing time pi  of the 

batch for a given task. 

3.1.3 Capacity Constraints 

z ij
min

Vj Nijt # Bijt # z ij
max

VjNijt 6i, j ! Ki, t  

 This inequality limits the amount of material Bijt  that can be 

processed by a particular unit in a given time period for a given task.  The 

simplest function of this equation states that the amount of material processed 

for a given task-unit combination has to be less than the size Vj  of the unit 

multiplied by the number of batches for a given task-unit combination.  The 

utilization factors, z ij
min

 and z ij
max

, simply complicate the capacity 

constraint by further limiting the feasible region for Bijt .   

3.1.4 Material Balance Constraints 

Sst = Ss, t-1+ t
is
Bijt

j ! Kj
! -

i ! Ts
! tisBijt

j ! Kj
! -

i ! Ts
! Dst 6s, t  

 The material balance constraint ensures that amount of material present 

in the process remains constant (i.e. mass is neither created nor destroyed).  

This equation can be broken down into three different components the input, 

the output and the remainder.   The remainder is depicted by the left hand side 

of the equation and is simply the amount of state that is stored in a given time 

period (Sst ).  This is equal to the input minus the output.  The input is the 

amount of material stored in a given state for the previous time period 

(Ss, t-1) and the amount of material that is processed into that state in the 

current time period ( t
is
B ijt

j ! K j

!
i ! Ts

! ).  The output is the amount of the given 

state that is processed into a different state ( t
is
B ijt

j ! K j

!
i ! Ts

! ) and it is the amount 

of the given state that is delivered to the customers (Dst ).  At certain points in 

the analysis of these models a sixth term is added to this equation to account 

for the initial amount of state in time period 1 as will be seen later.  The 
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summation terms may be difficult to understand.  However, Bijt  is only the 

amount of material processed for a given task-unit-time period combination, 

but the given state may be produced or processed in other task-unit-time 

period combinations.  Therefore, the model must “find” and sum up all the 

other places that the state can be produced or processed.  

3.1.5 Demand Constraints 

Dst
min

# Dst # Dst
max

6s, t  

 The demand constraints simply state only so much or so little of a 

given state can be delivered to the customers in a given time period.   

3.1.6 Utility Constraints 

buij~Nijt + duij~Bijt # Aut
max

H 6u, t
~=0

pi -1

!
j ! Ki
!

i
!  

 The utility constraints are actually not used in this research, but they 

simply limit the amount of batches that can be produced and the amount of 

material that can be produced due to plant restrictions such as the availability 

of process water or heat. 

3.1.7 Failure Rate Constraints 

The failure rate constraints are the one of the more complicated parts 

of the process models, but they are essential in the determination of the 

maintenance scheduling as well as the uptime of the process unit.  As was 

stated previously, there is maximum number of periods xj that may pass 

before a preventive maintenance action is taken.  Therefore, the index i , 

which denotes the number of periods since the last maintenance period, has to 

be less than or equal to x j.  However, it is assumed that maintenance always 

takes place at the beginning of a period and therefore i  never equals zero.   As 

i  increases the failure rate increases until the unit is preventively maintained 

or i  equals xj and preventive maintenance is forced.  At this point the c ji  

parameter must be discussed.  This parameter is the failure rate value for the 

unit i  periods since the last preventive maintenance.  It is this parameter that 

determines how the failure rate increases from period to period.  For example, 

a process unit could have a failure rate of 0.002 when i  is equal to 2 and then 

when i  is equal to 3 the failure rate could be 0.004.  It must be noted that this 
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c ji is different from the continuous variable m jt  which is the actual failure rate 

of the unit during a given time period.  The last two important components of 

the failure rate constraints are the binary variables: X jt  and Z jti .  The X jt  is 

equal to 1 when preventive maintenance occurs during the time period and 

equal to 0 when it does not occur.   The Z jti  is equal to 1 during a given period 

when maintenance was last performed i  periods ago.   When one of these 

variables is equal to 1 it can be thought of as “yes” decision while 0 would be 

a “no” decision.  The following are the failure rate constraints: 

m jt = c jiZ jti

i = 1

x j

! 6j, t  

Zjti # Xj, t- i 6j, t,i = 1,f,x j  

Z jti = 1
i = 1

x j

! 6j, t  

 The first equation is responsible for actually reporting the failure rate 

while the next two equations are responsible for making sure that only one c ji  

is chosen.  The first equation is the summation of each potential failure rate 

multiplied by the Z jti  decision variable.  Only one of these Z jti  will be equal 

to 1 and therefore only one c ji  will be chosen.  To prevent there from being 

more than one “yes” for Z jti  in a given unit-time period combination the third 

equation stipulates the summation of the Z jtis must be equal to 1.  Therefore, 

only one Z jti  for a given unit-time period (jt) can be equal to 1.  The second 

constraint is how the model ensures that when any maintenance action (X jt ) 

was last taken it is accounted for in future Z jti  variables because only the Z jti  

with the correct i  will be equal to 1.  

3.1.8 Uptime Definitions and Constraints 

The uptime constraints further confuse and complicate matters, 

especially as there are multiple definitions of process unit uptimes.  The 

uptime of a unit is the period of time that the unit is expected to be perform its 

normal functions.  Therefore, the expected number of failures as well as the 

preventive maintenance schedule play an important role in determining how 

much uptime there will be for a given process unit.  The time devoted to 

corrective and preventive maintenance must be subtracted from the total 

period time.  However, this can be done in a three different ways: 
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Case 1: Failure can occur at all times: during both minimal repair and 

preventive maintenance. 

Case 2: Failure cannot occur during preventive maintenance. 

Case 3: Failure can not occur during minimal repair or preventive 

maintenance.  

The equations are listed in order according to its respective case: 

Ujt = H (1 - D j
cm jt) - D j

pX jt 6j, t  

Ujt = (H - D j
pXjt) (1 - D j

cm jt) 6j, t  

Ujt = (H - D j
pXjt) / (1 + D j

cm jt) 6j, t  
3 

 In Case 1, the total uptime U jt  is equal to the total duration of the time 

period H  subtracted by the time devoted to corrective maintenance HD j
cm jt  

minus the time devoted to preventive maintenance D j
pX jt if it occurs.  The 

significance of the binary variable is that if the preventive maintenance does 

not occur then that term is equal to zero.  In the second term the Hm jt  

component provide the number of failures for the time period and the D j
c  

component is simply the amount of repair time per repair.  Similarly the D j
p  

parameter is the time it takes for preventive maintenance to take place.   

However, Case 1 is only accurate if failure can occur during 

maintenance.  Case 2 is needed if failure can not occur during preventive 

maintenance.  The math in this situation is very similar but there is an extra 

term :D j
pX jtD j

cm jt .  This term adds back any repair time that would have taken 

place during preventive maintenance.  This is simply done by multiplying the 

preventive maintenance time by the failure rate/repair time combination and 

then adding it back to the equation.  This might be confusing, but if the D j
pX jt  

component acts in the same way that H  does when multiplied against the 

D j
cm jt

10.   

In Case 3, there is no failure during repair or maintenance duties.  This 

scenario requires a little more sophisticated math.  According to the simplified 

failure rate equation given in section 2.4 (N jT = m j(T - 0) = m jT ), the 

number of failure is equal to the failure rate multiplied by the length of time.  

Now if the T is just the time period minus the repair and maintenance time 

then the following equation can be derived: 
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T= H- D j
cN jT - D j

pXjt . 

Upon the substitution of N jT the following equation is derived: 

T = H - D j
cm jtT - D j

pX jt . 

The variable T is simply the uptime of the unit for a given period: 

U jt = H - D j
cm jtU jt - D j

pX jt  

and when the equation is solved for the uptime then the Case 3 equation can 

be derived: 

U jt =
1 + D j

cm jt

H - D j
pX jt  

This final equation clearly shows that the uptime will increase in value 10. 

Unfortunately, there is one more complication with the model and that 

is that the failure rate m jt  is a variable as well as the decision variable X jt  and 

the Case 2 and Case 3 uptime equations are made non-linear.  As discussed 

earlier, non-linear models are harder to solve.  However, the following 

constraints and changes to the Case 2 and 3 uptime equations can linearize the 

model: 

XZ jti # Zjti 6j, t,i = 1,f,x j  

X jt = XZ jti
i = 1

x j

! 6j, t  

Case 2 

U jt = H - HD j
c c jiZ jti -
i = 1

x j

! D j
pX jt + D j

pD j
c c jiXZ jti
i = 1

x j

! 6j, t  

Case 3 

U jt =
1 + D j

cc ji

HZ jti - D j
pXZ jti

i = 1

x j

! 6j, t . 

3.1.9 Objective Function 

The objective function is the most important part of the model.  The 

maximization or minimization of this feature of the model is what leads to the 

optimization of the process.  In the process models that are researched in this 

paper the objective function is a profit equation that is maximized.  The 

following is the mathematical representation of the profit equation: 

max U = h stDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
p X jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

!
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The profit equation will change as the models increase in complexity, but the 

basic idea remains the same.  The left hand side of the equation shows the 

maximization of the profit variable U.  The first term on the right hand side of 

the equation is the total revenue from all of the deliveries made to the 

customer.  The revenue found from a single delivery is the price hst  multiplied 

by the amount Dst .  From this, the costs of the process are subtracted.  The 

second term can actually be ignored since it is not used in these models, but it 

represents the costs associated with the utilities.  The third term is the cost 

associated with the preventive maintenance.  It simply multiplies a cost factor 

C jt
p  against the decision variable and then summates all of these up for all time 

periods and units.  The final term is the corrective maintenance cost.  The 

terms inside the parenthesis find the time spent on corrective maintenance by 

subtracting the uptime of the unit and the time spent on preventive 

maintenance from the total time.  This is divided by the corrective 

maintenance time which would give the total number of corrective repairs, 

which is then multiplied by a cost factor C jt
c .  Then all the costs for each 

period and unit are summated and subtracted from the revenue.  The result is 

an equation for the profit that can be maximized in order to optimize all the 

variables in process model.  

3.2 Simultaneous Design, Production, and Maintenance Planning 

This model increases the complexity of the preceding model by 

allowing the design of the process model to be optimized.  This means that 

there are some revisions of the previous equations but also the addition of new 

equations and variables.  The Simultaneous Design, Production, and 

Maintenance Planning Model has the ability to choose whether or not units 

should be included in the process and also the size of these units.  However, 

this also means that the profit equation has to be adjusted to include design 

cost factors.  

3.2.1 Model Structure Additions 

First, another index k is added to differentiate between possible unit 

sizes.  A new set W j of potential unit sizes for a given unit is included and 

several new parameters are introduced.  The V jk  parameter provides a unit size 

for a given unit while N ijt
max  is used to limit the number of batches for a task-
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unit-time period.  The cost factors K j
0, the fixed cost for a unit, and K j

1, the 

variable size cost factor, are included in the model. Two new binary variables 

are used as decision variables to choose units, E j  and their size, E jk .  Finally, a 

continuous variable Vj  for the unit size is also included.  

3.2.2 Design Constraints 

The two following equations are the design constraints that 

respectively choose the units to be included in the process and choose the size 

of the units: 

E j = E jk

k ! } j

! 6j  

Vj = V jkEjk

k ! } j

! 6j 

The first equation creates a situation where if a particular unit is chosen 

(E j=1) then a size, but only one size, must be chosen from a set of different 

sizes suitable for the unit.  The second equation demonstrates how the chosen 

size decision variable can be translated into a number.  The result from this 

equation provides a numerical value for the volume of the E jk  decision 

variable.  Due to the first equation only one E jk  can equal 1 for a given unit 

and size.  As a result, in the second equation only one term on the right hand 

side of the equation will there be a E jk  equal to 1 multiplied by the size (or 

volume) parameter.  The volume parameter will correspond to specific 

decision variable E jk .  As a result of the interaction of these two equations, a 

particular unit will be designated a particular size (or volume).  

3.2.3 Revisions  

The addition of a design component to the model requires the revision 

of some of the constraints.  For instance, the capacity constraints are changed 

to the following due to the addition of the second design constraint: 

z ijt
min V jkE jkNijt # Bijt #

k ! } j

! z ijt
max V jkE jkNijt

k ! } j

! 6i, j ! Ki, t . 

However, this revision creates its new problems as the E jkNijt  is non-linear 

and therefore, it must be linearized in order to keep the model in a MILP form.  

First, a new variable can be introduced: 

ENijkt / E jkNijt 6i, j ! Ki,k ! } j, t  

along with two constraints to integrate the new variable into the model’s math: 
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ENijkt # Nij
maxEjk 6i, j ! Ki,k ! }j, t  

Nijt = ENijkt 6i,
k ! } j

! j ! Ki, t  

The capacity constraint then becomes: 

z ijt
min V jkENijkt # Bijt #

k ! } j

! z ijt
max V jkENijkt

k ! } j

! 6i, j ! Ki, t  

The maximum number of batches N ij
max can be found by: 

Nijt
max =

pi

U j
max

6i, j ! Ki 

and U j
max can be found using the following equations with the first for Cases 1 

and 2: 

U j
max = H(1 - D j

cm j1) 6j 

and the second for case 3: 

U j
max =

(1 + D j
cm j1)

H
6j  

The uptime constraints for Case 1 and 2 are also adjusted: 

Case 1 

U jt = H (E j - D j
cm jt) - D j

pX jt 6j, t  

Case 2 

U jt = HE j - HD j
c c jiZ jti -
i = 1

x j

! D j
pX jt + D j

pD j
c c jiXZ jti
i = 1

x j

! 6j, t  

3.2.4 Maintenance Constraints 

Two maintenance constraints are added in order to make sure that 

preventive maintenance actions only occur if the unit exists: 

Xjt # E j 6j, t  

Z jti

i = 1

xj

! = E j 6j, t  

The second equation is an adjustment of the previous equation shown here: 

Z jti = 1
i = 1

x j

! 6j, t  

3.2.5 Objective Function 

Finally, the profit equation is adjusted so that the fixed cost and the 

variable size cost are included.  This simply requires the following term: 

(K j
0Ej + K j

1 V jkEj)
k ! W j

!
j

!  
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where the cost factors are included only if the decision variables equal 1.  The 

profit equation now looks like this: 

max U = hstDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
pX jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

! - (K j
0E j

j

!

+ K j
1 V jkE j)
k ! W j

!

 

3.3 Design, Reliability, Production and Maintenance Planning Model 

This model was introduced by H.D. Goel, et. al. and it increases the 

complexity of the previous model.  The theory behind this new model is not 

difficult to understand, but it uses a very complex and somewhat cumbersome 

mathematical framework.  This model introduces the concept that the initial 

reliability of a process unit is a variable that can be chosen by introducing a 

new decision variable.  In the same way a large size process unit has a greater 

cost; a more reliable process unit will also have a greater cost.  The 

optimization of this model in effect determines whether or not the lower 

reliability is in fact worth the extra cost.  There is a number of different 

reliability optimization methods present in the literature.  These formulations 

can either focus on the reliability of the process units or on the redundancy of 

the process units.   In this research, an initial failure rate for a unit is selected 

for a given process unit; a more reliable process unit will have lower initial 

failure rates.   

As with the previous model the introduction of new complexities 

results in the revision of some of the equations; the reliability model is not an 

exception.  The revisions as well as the new math are discussed in the 

following sections. 

3.3.1 Model Structure Additions 

First, a new index l  is added to describe the initial failure rates and a 

new set is introduced g j which denotes the set of possible initial failure rates 

for a given unit.  Several new parameters are added: m jl
 describes an initial 

failure rate for a given unit, K jl
2  describes the cost factor for a unit given a 

specific initial failure rate and a j describes a failure rate increment given a 

specific unit.  New variables include a decision variable E j  for choosing an 
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initial failure rate given a unit and a continuous variable c ji  for the failure rate 

value for a unit given a maintenance action that took place periods ago.  

3.3.2 Reliability Allocation Constraints 

The following equations are the three new reliability allocation 

constraints: 

c j1 = m jlE jl

i = 1

gl

! 6j 

E j = E jl

l ! gl

! 6j  

c ji = c j,i- 1 + a j 6j, 2 # i # x j 

The first equation chooses the initial reliability just as the size of a unit is 

chosen.  The second equation makes sure that only one failure rate is chosen 

and that the unit must exist for that failure rate to be chosen.  If the left hand 

side of the equation is equal to 1 then only one of the initial failure rate 

decision variables may be equal to 1 as well.  Finally, the last equation 

provides means for increasing the failure rate.  It simply states that the failure 

rate given that maintenance occurred i  periods ago is equal to the previous 

failure rate plus the incremental change a j  in failure rate for the given unit.   

3.3.3 Failure Rate Constraint Revisions 

All of the failure rate equations remain the same as they had been in 

the previous model with one very important exception: 

m jt = c jiZ jti

i = 1

x j

! 6j, t  

This equation needs to be revised since it is no longer a linear equation.  The 

c ji  is now a variable and as a result c jiZ jti  is a nonlinearity which must be 

made linear.  A continuous variable h jti  is now introduced and defined as 

h jti / c jiZ jti .  The following constraints are introduced: 

c ji - c ji
max(1 - Zjti) # hjti # cji - c ji

min(1 - Zjti) 6j, t,i= 1fx j 

c ji
minZjti # hjti # c ji

maxZjti 6j, t,i= 1fx j 

The new parameters c ji
max and c ji

min are given by the following equations: 

c ji
max = max

l ! gl

(m jl) + x ja j 6j 

c ji
min = min

l ! gl

(m jl) 6j 
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The first equation takes the greatest initial failure rate for a given unit and adds 

x ja j  which will provide the greatest failure rate that can be seen in the model 

for a given unit.  The x ja j term collects all the possible increases in the 

failure rate.  The second equation simply takes the lowest possible initial 

failure rate which will be equal to the smallest possible failure rate that could 

be seen in the model.  These two parameters serve as bounds for the 

constraints above. 

This method of linearization was demonstrated by C. Floudas9 (1995) 

in Nonlinear and Mixed-Integer Optimization and introduced by C.C. Petersen 

(1971).  The goal behind this math is that h jti  has to equal c jiZ jti  when the 

decision variable is equal to 1 while the h jti  has to equal 0 when the decision 

variable equals 0.  Therefore, the h jti  equals the failure rate only when there 

should be a failure rate to report.  Two different cases are possible; the first is 

that the decision variable equals 1.  The first equation simplifies to the 

following: 

c ji # hjti # c ji 6j, t,i= 1fx j 

and the second to: 

c ji
min

# hjti # c ji
max

6j, t,i= 1fxj. 

In this case the h jti  variable takes on the value of the failure rate as it should 

and the second constraint is satisfied as the failure rate value falls within the 

two parameters.  However, if the decision variable is equal to 0 then the 

following results: 

c ji - c ji
max # hjti # c ji - c ji

min 6j, t,i= 1fx j 

0 # hjti # 0 6j, t,i= 1fx j  

This time the h jti  is forced to equal zero, but it will still satisfy the first 

constraint because the left hand side of h jti   is a negative number and the right 

hand side is a positive number (or either could be equal to zero) (Floudas 245).  

Finally, the c jiZ jti  is substituted by the h jti  to form: 

m jt = h jti

i = 1

x j

! 6j, t  

and the model becomes linear again.   
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3.3.4 Other Revisions 

Only two revisions are necessary; one is made to the objective function 

and the second is made to the maximum number of batches equation.  In order 

to account for the initial failure rate cost factor the term K jl
2 E jl

l ! g j

!  is attached 

to the profit equation to give the following: 

max U = hstDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
pX jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

! - (K j
0E j

j

!

+ K j
1 V jkE j + K jl

2 E jl

l ! g j

! )
k ! W j

!

 

The N ij
max equation present in the previous model also has to be adjusted in 

order to account for the change in failure rate formulations: 

N ij
max =

pi

H (1 - D j
cmin
l ! gl

(m jl))
6i, j ! Ki

* 

The purpose of this function is to find the maximum number of batches that 

can occur in for a given unit-task.  The maximum number of batches can be 

found when the failure rate is the smallest since this would provide the longest 

uptime for that unit.  This equation is similar to the one in the previous model 

except that the failure rate term is adjusted.  In the previous model the failure 

rate term was D j
cm j1since in the first time period the failure rate was 

guaranteed to be the lowest.  However, with the new ability to decide the 

initial failure rate there are several different failure rates the model must 

choose from.  The greatest number of batches will exist when the failure rate 

is the smallest.  Therefore, the model takes the smallest failure rate out of the 

set of failure rates for a given process unit using the min function.     

3.4 Revision of the Design, Reliability, Production and Maintenance 

Planning Model 

The model developed by H.D. Goel et. al. uses very complicated 

mathematics in their model; by introducing new variables and constraints the 

model becomes quite cumbersome.  The time spent by the solver increases 

dramatically and in short, the model becomes significantly harder to solve.  

The model presented in this section accomplishes the same goal as the 

previous model but with far fewer variables and mathematical complexities. 
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3.4.1 Reliability Allocation and Failure Rate Constraint Revisions 

Aside from the reliability and failure rate constraints of the previous 

model all other aspects of the math are unchanged.  The major modification to 

the previous model is to where and how the initial failure rate is chosen.  In 

the previous model the reliability allocation constraints were separate from the 

failure rate constraints.  However, in this model the failure rate constraints are 

merged with the reliability constraints using a new failure rate parameter: 

dc jl .  The dc jl  parameter is the initial failure rate differential.  This 

differential is used in the following failure rate constraint: 

m jt = c ji Z jti

i = 1

x j

!  

The differential is combined with the initial failure rate decision variable E jl  

in the following way: 

m jt = c jiZ jti

i = 1

x j

! - dc jlE jl

l = 1

gl

! 6j, t  

The differential, if chosen, subtracts itself from the failure rate.  Instead of 

actually choosing an initial failure rate as in the previous model, a nominal 

failure rate exists from which all possible initial failure rates can be utilized by 

subtracting different initial failure rate differentials.  For example, if the 

nominal failure rate begins at a value of 0.002 for Unit A and this is deemed to 

be the most cost effective then the E jl  decision variable will equal zero for all 

available initial failure rate differentials.  Therefore, for Unit A the equation 

would resemble the following for all potential time periods: 

m jt = c jiZ jti - 0
i = 1

x j

! 6j, t  

However, if the optimal failure rate is actually 0.0015 for a given unit then the 

E jl  decision variable will choose the initial failure rate differential that equals 

0.0005 (provided that it exists).  The result would be that the equation would 

now resemble the following for all potential time periods: 

m jt = c jiZ jti - 0
i = 1

x j

! .0005 6j, t  

The second term acts as a constant value that will adjust the failure rate for 

every time period and has the same effect on the failures as if the initial failure 

rate had just been “chosen” like it was in the previous model.  This 
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methodology keeps the c ji  a parameter and therefore, the entire equation 

remains linear.  There is no need for the linearization constraints and only one 

further reliability allocation constraint is needed:   

E j = E jl

l ! gl

! 6j  

This equation simply makes sure that an initial failure rate is chosen only for 

units that exist.  It also makes sure that only one differential is chosen for any 

one unit.  All of the other constraints in the previous model pertaining to 

reliability allocation or the linearization of c jiZ jti  can be deleted.  The m jl
 is 

replaced with dc jl , the a j  is no longer needed and c ji  becomes a parameter 

again.    

4 Model Experimentation: Results and Analysis 

The following section provides the results and analysis of the 

experimentation of the previously discussed mathematical process models.  A 

single problem representing a simple process was used for each mathematical 

formulation discussed in the previous section.  This was done so that the 

results could be compared with each other.  For each different mathematical 

formulation, this process was modeled using the GAMS modeling 

environment1 and then they were solved using the NEOS solver network2.  

The solver used in the experimentation was either the XPRESS solver or the 

CPLEX 10.1.0 solver.    

4.1 The Problem and Important Definitions 
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 Fig. 7  STN under analysis for this research project 
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The process that is under experimentation is represented by the STN in 

Figure 7 with the process unit relationships represented by Table 1
7
. In this 

process there are three process units and there are also three storage tanks 

represented by Table 2.  Table 1 demonstrates which units are suitable for the 

tasks shown in the STN.  It should be noted that in the mathematics of model 

the storage tanks are not considered to be process units.  Although in a 

physical sense the storage tanks are units in a process they are not considered 

to be a process unit here.  The reason for this is that the tank doesn’t actually 

perform any tasks; however, a tank’s capacity serves as an upper bound for the 

storage of materials variable Sst .  Since the capacities of the three tanks are 

considered infinite there is no need for an upper bound on Sst  for these 

materials.  However, there is no tank for State A and therefore, any State A 

that is produced in a given period must immediately be used by Unit 2 or Unit 

3.  An upper bound of 0 exists for the Sst  variable of state A.   

Each model was analyzed as part of a two year time horizon split into 

periods of one month.  Therefore the number of time period t will be equal to 

24.   

 The results of each experiment are reported in a table of the different 

components of the model.  The definitions of these components are important 

to know.  The first section of any table will be the statistical results of the 

optimization of a given model.  The following will be present in this section: 

Solver Type – This will either be the XPRESS or CPLEX solver  

OPTCR – This is the value of the relative optimality tolerance1 

Binary Variables – The number of binary variables 

Continuous Variables – The number of continuous variables 

Table 1 Process Unit Details 
for STN (same for all models) 

Table 2 Storage Unit Details 

for STN (same for all models) 
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Constraints – The number of constraining equations 

Relative Gap – The relative difference between the optimal solution 

and the LP fully relaxed solution (best possible 

solution) 

CPU Time – The number of seconds the CPU takes to compute final 

solution1 

 Iterations -   The number of iterations the solver uses1 

 

The next section provides a summary of the finances of the process: 

 VD (Value of Deliveries) 

Total revenue from all the deliveries: 

hstDst

st

!  

TCM (Total Corrective Maintenance)  

Total cost of repairs (corrective maintenance): 

C jt
c (H - U jt - D j

pX jt) /D j
p

jt

!  

 TPM (Total Preventive Maintenance)  

Total cost of preventive maintenance: 

C jt
p X jt

jt

!  

 Design (Total Cost of Design) 

 Total fixed, variable and reliability design costs: 

(K j
0Ej

j

! + K j
1 V jkE j + K jl

2 E jl

l ! g j

! )
k ! W j

!  

  

Reliability (Total Cost of Reliability)  

The cost of Reliability 

     K jl
2 E jl

l ! g j

!
j

!  

 Objective (Solution)  

The solution to the Profit (objective) function 

 
Production and Maintenance Planning Model 
 
 
 
 

max U = h stDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
p X jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

!
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Design Model  
 
 
 
 
 
 
 
Reliability Models   
 
 
 
 
 
 
 
The existence of some of these values depends on which model is being 

analyzed. 

4.2 Multiperiod Production and Maintenance Planning Model (PMP 

Model)  

The first model that was analyzed was the Multiperiod Production 

Planning and Maintenance Planning Model proposed by E.N. Pistikopolous et. 

al3.  The mathematics of this model was discussed in Section 3.1: the 

production and maintenance scheduling are the only two components 

considered here.  The model that was optimized was simply a reproduction of 

the model used in the published paper as the same parameters were used.  

Therefore, the results of this model were expected to be the same as the results 

in the published paper.  A summary of the parameter values is shown by Table 

3.  The time per period H will always be equal to 720 hours.  The demand 

constraints on this first problem set bounds at 5000 and 20000 for states B and 

C for every time period.  The processing times for each task are presented with 

the STN and remain constant for all models researched in this paper.  The 

capacities are fixed for this model at 200, 50, 40 for Unit 1, Unit 2, and Unit 3 

respectively. 
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 Since the effects of the utility constraints are not considered in these 

process models the parameters associated with them are assumed to be equal 

to zero.  Therefore, only the parameters listed in the table and in the previous 

paragraph have any effect on the models results.  

The value of xj for all three units is equal to 9.  All three different 

uptime definitions were analyzed as separate cases.  The number of each case 

listed in the results corresponds to the same case that was defined earlier.  A 

summary of the results for each case is reported in Table 4.  

Table 4 - Summary of Multiperiod Production and Maintenance Planning Results 

Case 1   Case 2   Case 3   

APPmodelP1C1(pist).gms  APPmodelP1C2(pist).gms  APPmodelP1C3(pist).gms 

Solver Xpress  Solver  Xpress  Solver Xpress 

          

Statistics   Statistics   Statistics   
Binary 
Variables 612  

Binary 
Variables 612  

Binary 
Variables 612 

Continuous 
Variables 457  

Continuous 
Variables 997  

Continuous 
Variables 997 

Constraints 925  Constraints 1537  Constraints 1537 

Relative Gap 0  Relative Gap 0  Relative Gap 0 

CPU time 0.07  CPU time 0.12  CPU time 0.12 

Iterations 493  Iterations 734  Iterations 655 

          

Values   Values   Values   

VD 334326.24  VD 335179.104  VD 334631.1 

TCM 14000  TCM 10130.1  TCM 9643.28 

TPM 10368  TPM 15000  TPM 12000 

Objective 309958.24   Objective 310049.004   Objective 312987.8 

 

The results of each case match exactly the results reported in the 

published paper3.  The notable exceptions to this are the values of the 

variables.  However, this can be explained.  The Feed state in the model has 

the option of being included in the mathematical formulation.  Since the feed 

is infinite it does not necessarily need to be included in the mathematical 

Table 3 
Parameters for Multiperiod Production and Planning Model  

xj 9 periods 

c j1 0.002 h-1 

c ji c ji - 1 + 0.001 h
-1 

D j
c  24 h 

D j
p  6 h 

C j
c 50 

C j
p  1000 

hst (B and C only) 0.5 
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formulation.  However, in this particular part of the research project the feed is 

considered.  This resulted in two changes made to the model.  First, an initial 

Ss1 parameter must be added to the right hand side of the material balance 

equation to account for the initial amount of feed material.  The result is: 

Sst = Ss1 + Ss, t - 1 + t
is
Bijt

j ! K j

! -
i ! Ts

! t isBijt

j ! K j

! -
i ! Ts

! Dst  

Second, the additional parameter needs to be defined in the problem statement.  

For this particular case a very large number was given for the Feed state while 

for the other three states Ss1 was equal to zero.  Since the feed state is 

considered there is an extra value for the s index and therefore, more variables.  

The changes made to the material balance equation and the inclusion of the 

Feed state had no effect on the other reported values and therefore, was 

considered to be inconsequential.  However, the Feed state could be 

disregarded, as it will be in future models, in order to simplify the model. 

 Figures 8-10 represent the failure rate profiles for the different units of 

each case.  These values match the reported values in E.N. Pistikopoulos, et. 

al.3  
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Fig. 8-1 Case 1 Unit 1 Failure Rate Profile 

Fig. 8-2 Case 1 Unit 2 Failure Rate Profile Fig. 8-3 Case 1 Unit 3 Failure Rate Profile 
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Fig. 9-1 Case 2 Unit 1 Failure Rate Profile 

Fig. 9-2 Case 2 Unit 2 Failure Rate Profile Fig. 9-3 Case 2 Unit 3 Failure Rate Profile 

Fig. 10-1 Case 3 Unit 1 Failure Rate Profile 

Fig. 10-2 Case 3 Unit 2 Failure Rate Profile 
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4.3 Simultaneous Design, Production, and Maintenance Planning 

Model 

This model was an extension of the previous model made in the same 

published paper.3  

As mentioned previously, this model introduces the ability for the 

optimization of its own design.  The result of this, however, is that the costs 

related to design are not factored into the profit equation (see above profit 

equations).  There are six cases for this part of the research project; the feed 

was either included or it was not and then all three different uptime definitions 

tested.  Again the same parameters were used with the intention of achieving 

the same results.  The CPLEX 10.1.0 solver was used for all cases.  A 

summary of the parameter values is shown by Table 5.  The failure rate now 

uses the following equation: 

c ji = c ji- 1 + a j 

 

Table 5    Design, Failure Rate, and Maintenance Data  

 K j
0 K j

1 c j1 a j D j
c  D j

p  C jt
c  C jt

p  

Unit 1 5000 100 0.002 0.001 24 6 50 1000 
Unit 2 20000 300 0.004 0.001 40 9 100 2000 
Unit 3 20000 350 0.002 0.001 30 7 75 2000 

 

Table 6    Design Alternatives 

 Available Unit Sizes 

Unit 1 150 175 200 250 

Unit 2 50 80 150 200 

Unit 3 60 100 125 200 

Fig. 10-3 Case 3 Unit 3 Failure Rate Profile 
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The value of xj for all three units is now equal to 6.  This will be the case for 

the rest of the research.  Table 6 provides a list of all the different design 

alternatives.  A summary of the results for each case is reported in Table 7A 

for the FEED variation; 7B contains the results for the non-FEED.   

Table 7A  Simultaneous Design, Production, and Maintenance Planning Model - Research Results 

Case 1   Case 2   Case 3   

APPDmodelP2C1(pist).gms  APPDmodelP2C2(pist).gms  APPDmodelP2C3(pist).gms 

Solver CPLEX 10.1.0  Solver CPLEX10.1.0  Solver CPLEX10.1.0 

OPTCR 0.03  OPTCR 0.03  OPTCR 0.03 

          

Statistics   Statistics   Statistics   

Binary Variables 474  Binary Variables 474  Binary Variables 474 
Continuous 
Variables 1060  

Continuous 
Variables 1447  

Continuous 
Variables 1447 

Constraints 1569  Constraints  2028  Constraints 2028 

Relative Gap 0.02657  Relative Gap 0.013265  Relative Gap 0.029187 

CPU time 9.17  CPU time 8.77  CPU time 9.81 

Iterations 7799  Iterations 5424  Iterations 7679 

          

Values   Values   Values   

VD 674050  VD 674254  VD 673440.425 

TCM 16632  TCM 17419.125  TCM 17775.225 

TPM 31000  TPM 27000  TPM 27000 

Design 136000  Design 137750  Design 137750 

Objective 490418   Objective 492084.875   Objective 490915.2 

Table 7B Simultaneous Design, Production, and Maintenance Planning Model - Research Results 

Case 1   Case 2   Case 3   

APPDmodelP2C1(pist)nofeed.gms  APPDmodelP2C2(pist)nofeed.gms  APPDmodelP2C3(pist)nofeed.gms 

Solver CPLEX 10.1.0  Solver CPLEX 10.1.0  Solver CPLEX10.1.0 

OPTCR 0.03  OPTCR 0.03  OPTCR 0.03 

          

Statistics   Statistics   Statistics   

Binary Variables 474  BinaryVariables 474  Binary Variables 474 
Continuous 
Variables 1012  

Continuous 
Variables 1398  

Continuous 
Variables 1398 

Constraints 1546  Constraints 2005  Constraints 2005 

Relative Gap 0.02657  Relative Gap 0.005311  Relative Gap 0.027258 

CPU time 8.92  CPU time 11.06  CPU time 21.56 

Iterations 7799  Iterations 6135  Iterations 6894 

          

Values   Values   Values   

VD 674050  VD 674080.8  VD 673741 

TCM 16632  TCM 17554.5  TCM 17007.975 

TPM 31000  TPM 27000  TPM 29000 

Design 136000  Design 137750  Design 136000 

Objective 490418   Objective 491776.3   Objective 491733.025 

 

The optimal sizes for each case are reported in Table 8.   
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Table 8A Optimal Unit Sizes for Simultaneous Design, Production, and 
Maintenance Planning Model - Published Results (w/ FEED) 

 case 1 case 2 case 3 

Unit 1 250 250 250 

Unit 2 150 80 80 

Unit 3 60 125 125 
 
 
 

. 
Table 8B Optimal Unit Sizes for Simultaneous Design, Production, and 

Maintenance Planning Model - Published Results (NO FEED) 

 case 1 case 2 case 3 

Unit 1 250 250 250 

Unit 2 150 80 150 

Unit 3 60 125 60 

 

The figures depicting the optimal maintenance schedule are located in Figure 

11.   

 

  

 

 

 

The results of this model for all the cases differ from the results 

provided in the published work.  The reason for this inconsistency could not 

be explained.  However, the number of variables for each case corresponds 

directly to the statistics provided in the model or there are more variables 

because of the inclusion of the Feed state.  This means there is most likely no 

problem with the mathematical structure of the model and potentially 

something wrong with the parameters.  However, upon inspection, the 

parameters in the models equal those that are reported in the paper.  The 

Fig. 11-1 Preventive Maintenance Schedule for 
Researched Design Model 

Fig. 11-2 Preventive Maintenance Schedule for 
Researched Design Model 

Fig. 11-3 Preventive Maintenance Schedule for 

Researched Design Model 
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inconsistency in the results becomes difficult to explain.  Even the optimal 

sizes found by the models in this research do not match the published results.  

Table 9
3
 demonstrates the optimal sizes found in the published work.   

Table 9 Optimal Unit Sizes for Simultaneous Design, Production, and 
Maintenance Planning Model - Published Results 

 case 1 case 2 case 3 

Unit 1 250 250 250 

Unit 2 80 200 60 

Unit 3 125 50 200 

 

It is apparent that the value of the deliveries is accurate for some of the 

cases but the design and the maintenance costs are not equal to the reported 

values.  For example, in the feed and non-feed Case 1 models the value of the 

deliveries is accurate but the costs and thus the objective function are 

inconsistent. 

Table 10 Simultaneous Design, Production, and Maintenance Planning Model - Published Results 

Case 1   Case 2   Case 3   

OPTCR 0.03  OPTCR 0.03  OPTCR 0.04 

          

Statistics   Statistics   Statistics   

Binary Variables 474  Binary Variables 474  Binary Variables 474 

Continuous Variables 1012  Continuous Variables 1398  Continuous Variables 1398 

Constraints 1545  Constraints 2004  Constraints 2004 

CPU time 71  CPU time 162.6  CPU time 138.7 

          

Values   Values   Values   

VD 674050  VD 674253  VD 678229 

TCM 17208  TCM 19114  TCM 15662 

TPM 24000  TPM 20000  TPM 25000 

Design 137750  Design 151000  Design 155000 

Objective 495092   Objective 484139   Objective 482567 

 

 

 

 

Fig. 12-1 Preventive Maintenance Schedule for 

Design Model Published Results 
Fig. 12-2 Preventive Maintenance Schedule for 
Design Model Published Results 
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Table 10 lists the reported results from the published paper3 and Figure 

12 represents the reported preventive maintenance schedule for all three cases.  

In the table the total preventive maintenance for case 1 is equal to 24000.  The 

value retrieved by this research project is 31000.  However, by counting the 

number of maintenance actions Figure 12, the published results, it becomes 

apparent that there is an inconsistency in the published paper.  There are 11 

maintenance actions performed on Unit 1, five performed on Unit 2 and five 

performed on Unit 3.  The Unit 1 maintenance actions cost 1000 units a piece 

while the others cost 2000 a piece for a grand total of 31000 not 24000 as is 

reported in the table.  Furthermore, this is the same as the value found in this 

research project.  As a result, only part of the published work agrees with the 

researched results.  Unfortunately, the actual schedule for preventive 

maintenance presented by the published work still disagrees with the 

researched work as can be seen upon comparison between Figure 11 and 

Figure 12.  In the other cases similar inconsistencies exist.   

Due to the inconsistency within the published work it becomes difficult 

to attest to the accuracy of the model created for this research report.  Various 

attempts were made to try to determine if there was anything incorrect with 

the model constructed for this research.  However, despite fixing variables and 

fixing the maintenance schedule the published results were never matched. 

4.4 Design, Reliability, Production and Maintenance Planning Model 

The analysis and experimentation of the next model is the focus of this 

research report.  This model was proposed by H.D. Goel et. al. as a revision 

and expansion of the previous Simultaneous Design, Production, and 

Maintenance Planning Model.   

As mentioned previously, it includes the ability to optimize the initial 

reliability allocation.  This model serves as the focus of this research report 

Fig. 12-3 Preventive Maintenance Schedule for 
Design Model Published Results 
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because it does not appear to efficiently introduce initial reliability allocation.  

As a result, an alternative is proposed in the next section.  It appears that the 

model proposed by H.D. Goel et. al. unnecessarily increases the size of the 

model through complicated mathematics.  The next section presents a simpler 

alternative that reduces the size of the model.   

The analysis of the H.D. Goel et. al. model uses the same process and 

the same parameters established in the previous model.  This is done so that 

there is a basis of comparability.  Table 11 summarizes new initial failure rate 

cost factor and the initial reliabilities that is introduced in this model; the rest 

of the parameters equal the values given in Table 5 and 6.   

 

Table 12 represents the results from the FEED/no-FEED state variations.     

Note: The following results are those from the published paper. 

Table 11 – New Parameters for H.D. Goel et. al.  

 Available Initial Failure Rates m jl  
Failure Rate Cost Factor K jl

2  

L 1 2 3 1 2 3 

Unit 1 0.002 0.0015 0.001 0 2200 6000 

Unit 2 0.004 0.003 0.002 0 2200 6000 

Unit 3 0.002 0.0015 0.001 0 2200 6000 

Table 12 Design, Production, Reliability and Maintenance Planning Model - Research Results 

Feed  No Feed  

goelmodel.gms goelmodelnofeed.gms 

Solver        CPLEX 10.1.0  Solver           CPLEX 10.1.0 

OPTCR 0.03  OPTCR 0.03 

      

Statistics   Statistics  

Binary Variables 483  Binary Variables 483 

Continuous 1465  Continuous 1417 

Constraints 3258  Constraints 3114 

Relative Gap 0.029585  Relative Gap 0.029409 

CPU time 262.35  CPU time 122.86 

Iterations 242388  Iterations 91763 

      

Values   Values  

VD 690565.2  VD 690565.2 

TCM 15048  TCM 15048 

TPM 27000  TPM 27000 

Design 145950  Design 145950 

Reliability 8200  Reliability 8200 

Objective 502567.2  Objective 502567.2 

        
FEED Optimal Reliability and Unit Size  NO FEED Optimal Reliability and Unit Size 

 Size Initial Failure Rate Size Initial Failure Rate 

Unit 1 250 0.001 250 0.001 

Unit 2 80 0.003 80 0.003 

Unit 3 125 0.002 125 0.002 
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Failure Rate Profile Unit 3
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Table 13 summarizes the results published in the paper and it can be 

clearly seen that the researched results do not match the published results. 

 

 

 

 

 

 

 

 

 

   

Fig. 13A Preventive Maintenance Schedule 
Published Results and Failure Rate Profiles  

Fig. 13B  Preventive Maintenance Schedule 
Published Results and Failure Rate Profiles  
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Table 13 Design, Production, Reliability and Maintenance 
Planning Model - Published Results 

OPTCR 0.035 

   

Statistics  

Binary Variables 480 

Continuous 2042 

Constraints 3247 

CPU time 0.33 
   

Values  

VD 690905 

TCM 13536 

TPM 28000 

Design 148000 

Objective 501370 
 cont'd from previous page 

Optimal Reliability and Unit Size 

 Size Initial Failure Rate 
Unit 1 250 0.001 
Unit 2 150 0.002 
Unit 3 60 0.002 

 

As in the published results of the previous model there is another 

inconsistency in the results of the H.D. Goel et. al. paper.  Figure 13A/B 

depicts a graphical copy of the maintenance scheduling reported in the 

published work as well as the failure rate profiles.  In these diagrams if the 

failure rate profile and the preventive maintenance block diagram are 

compared then it becomes apparent that for Unit 1 the two graphs do not 

correlate.  The failure rate profile shows that there is no change in the failure 

rate for period 6 which suggests a maintenance action for period 5.  However, 

this is not shown in the block diagram.  Furthermore, the block diagram 

depicts a failure rate action takes place in period 7 and yet there is no change 

in the failure rate according to the profile.  Realistically, the profile should 

have returned to the AGAN failure rate.  Unfortunately, this is not enough to 

account for the discrepancy between the published and researched results.   

Table 14: Breakdown of Binary Variables 

E j  - 3 units     3 variables 

E jl- 3 units 3 reliabilities  9 variables 

E jk- 3 units 4 sizes   12 variables 

X jt - 3 units 24 periods 72 variables 

Z jti -    387 variables 

483 variables 
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However, the model statistics reported by H.D. Goel et. al. are a little 

suspicious.  The number of binary variables that H.D. Goel et. al. reports is 

480.  However, a breakdown of the number of binary variables represented in 

Table 14 demonstrates the existence of 483 binary variables.  The researched 

models uniformly have 483 binary variables.  How is H.D. Goel et. al. able to 

have only 480?  It is possible that their model did away with the Ej variable, 

but this would be very difficult due to the number of uses it has in the model.  

Furthermore, H.D. Goel et. al. reports using 2042 continuous variables and 

3247 constraints.  The researched models have only 1417 or 1465 continuous 

variables and 3258 or 3114 constraints.  The numbers of constraining 

equations are very close to the published work, but the number of continuous 

variables is wildly different.  However, this could be due to confusion over 

how GAMS reports the number of continuous variables.  Instead of separating 

reporting the number of continuous variables a report called “Single 

Variables” is provided in the Solve Summary.  Therefore, the number of 

binary variables must be subtracted away from the number of “Single 

Variables” in order to find the number of continuous variables.  This could 

account for the extra continuous variables.  Regardless, the main concern with 

the inconsistency in the number of variables is that it represents structural 

inconsistencies between the researched models and the published work.  The 

most troubling statistic reported in the H.D. Goel et. al. paper is the CPU time.  

It reports that the model was solved in 0.33 seconds.  This is less than half a 

second!  The reproductions of the H.D. Goel et. al. model do not come near to 

this value.  Furthermore, the H.D. Goel et al. research reports that the 

calculations were run on a simple AMD athlon processor4 while the 

reproductions were computed on the sophisticated NEOS Solvers Servers2.  

The fastest reproduction of the Simultaneous Design, Production, and 

Maintenance Planning model of the E.N. Pistikopoulos paper was solved in 

9.17 seconds and that model does not have nearly as many variables or 

equations.  This must mean that there is either something very wrong with the 

H.D. Goel et. al. model or that the published CPU time is simply incorrect.  

These types of inconsistencies within the H.D. Goel et. al. paper make it very 

difficult to draw conclusions about the accuracy of the reproductions. 
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Note: The rest of the results from this section are from the H.D. Goel et. al. model reproduction (research 

results). 

 

 

 

Therefore, the reproductions of the H.D. Goel et. al. model were 

analyzed in depth by using different combinations of solvers and OPTCR 

values.  Furthermore, the binary variables of the model were either fixed to 

duplicate the H.D. Goel et. al. model’s maintenance schedule, design and 

initial reliability or the binary variables were left to be optimized.  Figure 14 

depicts the results found for the H.D. Goel et. al. Maintenance Schedule by 

this research report (these are the results found when the H.D. Goel et. al. was 

reproduced and then solved).  Table 15 is a summary of these results.  The 

most important result is that from the cases where the OPTCR is set to 0.01 

and the binary variables are fixed.  In these cases, the model actually equals 

the results reported in the published paper.  It should also be noted in that in 

these cases the CPU time is very small, but this is because the binary variables 

are all fixed.  It is a simple LP model. Nevertheless, the fact that the profit 

values of these models match the published value suggests that the model may 

not be as inaccurate as previously thought.  Unfortunately, this only occurs for 

a very low OPTCR and when all the binary variables are fixed.  An unfixed 

solution with the same OPTCR of 0.01 actually finds a better objective value.   

 

 

 

 

 

 

 

 

Fig. 14 Preventive Maintenance Schedule 
Reproduction (Researched) Results 
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Table 15 – Detailed Analysis of H.D. Goel, et. al. Model Reproduction 

  Fixed Binary Variables 

Solver XPRESS CPLEX 

OPTCR 0.035* 0.035 0.01 0.035* 0.035 0.01 

Statistics       

Resource Usage 0.11 4.71 5.3 0.10 3.16 4.680 

Iteration Count 212 6065 6065 680 4019 4642 

Best Solution 501369.6 501754.81 505391.78 503637.6 512701.92 503788.01 

Relative Gap 0.00 0.008640     0.00 0.012155 0.033651 0.004824 

Single Equations 3259 3259 3259 3259 3259 3259 

Single Variables 1948 1948 1948 1948 1948 1948 

Binary Variables 387 411 411 387 411 411 

Values       

Objective Value 501369.6 497419.7 497419.7 497589.6 504480.50 501369.6 

Deliveries Value 690905.6 686435.70 691011.60 687305.6 690656.50 690905.60 

Preventive Main. 28000.00 28000.00 28000.00 28000.00 27000.00 28000.00 

Corrective Main. 13536.00 14616.00 14616.00 13716.00 14976.00 13536.00 

Reliability Cost 12000.00 10400.00 10400.00 12000.00 8200.00 12000.00 

Design Cost 148000.00 146400.00 146400.00 148000.00 144200.00 148000.00 

  Free Binary Variables 

Solver XPRESS CPLEX 

OPTCR 0.035 0.01 0.035 0.01 

Statistics     

Resource Usage 82.62 721.40 282.51 1000.14 

Iteration Count 54860.00 1000000.00 231899.00 522218.00 

Best Solution 517113.94 514100.53 520131.09 512374.13 

Relative Gap 0.03 0.021576     0.03 0.02 

Single Equations 3259 3259 3259 3259 

Single Variables 1948 1948 1948 1948 

Binary Variables 483 483 483 483 

Values     

Objective Value 499689.00 503008.10 502567.20 502645.30 

Deliveries Value 691423.00 691228.00 690565.00 691281.30 

Preventive Main. 30000.00 26000.00 27000.00 30000.00 

Corrective Main. 13734.00 14220.00 15048.00 14436.00 

Reliability Cost 12000.00 12000.00 8200.00 8200.00 

Design Cost 148000.00 148000.00 145950.00 144200.00 

* all decision variables apart from the Z jti is fixed 

Regardless, the values of the objective function (the profit) for all 

reproductions are well within 7000 units of the value reported by the published 

paper.  For this reason, the researched reproductions can be considered to be 

fairly accurate despite the absence of an exact match.  As a result they are used 

as a basis for comparison in the following section.     

Finally, although there are clearly problems with the published results 

the H.D. Goel et. al. model is not a complete failure.  The initial reliability 

allocation feature is demonstrated to be successful.  Table 16 presents a 
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comparison of initial failure rates between the two published papers:  H.D. 

Goel et. al. and E.N. Pistikopoulos et. al.   

Table 16 – Initial Failure Rates for the Design Model and the Reliability Model 

 H.D. Goel et. al. E.N. Pistikopoulos et. al.   

Unit 1 0.001 0.002 

Unit 2 0.002 0.004 

Unit 3 0.002 0.002 

 

The H.D. Goel et. al. initial failure rates differ from the original Design Model 

from E.N. Pistikopoulos et. al. and therefore, the optimization of initial 

reliability is a worthwhile addition to these models.  Note that the initial 

reliability allocation and the design choices for the research version of the 

H.D. Goel et. al. model is presented at the bottom of Table 12.   

4.5 Revision of the Design, Reliability, Production and Maintenance 

Planning Model 

The mathematical model that is proposed in the H.D. Goel et. al. paper 

includes very complex math, which leads to difficulties when the model is 

solved.  As a result of the extra linearization equations the model takes a very 

long time to be solved.  Therefore, a revision of this model is proposed and 

compared to the original.  The changes in the mathematics are explained in 

Section 3.4.1, but it would be sufficient to note that the revised model 

introduces an initial failure rate differential, chosen by a decision variable, that 

becomes a constant subtracted from the failure rate equation.  Thus, an initial 

failure rate is never chosen outright as it is in the H.D. Goel et. al. model, but 

the same values of an initial failure rate can be attained if the appropriate 

differential is selected.  The method results in the model retaining its linearity 

and therefore, it by-passes the need for extra constraints and variables.  This 

reduces the model solution time.  The parameters for this model remain the 

same as the parameters for the previous model except for the new parameters 

describing the initial failure rate differential; these are described in Table 17. 

Table 17 – New Parameters for Revised Reliability Model  

 Initial Failure Rates Differentials 

dc jl  
Failure Rate Cost Factor K jl

2  

L 1 2 3 1 2 3 

Unit 1 0 0.0005 0.001 0 2200 6000 

Unit 2 0 0.001 0.002 0 2200 6000 

Unit 3 0 0.0005 0.001 0 2200 6000 
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Figure 15 represents the preventive maintenance scheduling.   

 

 

The revised model is analyzed on a number of levels.  Table 18 

represents the two solutions based on the existence of the Feed state.  

Table 18 - Revised Design, Production, Reliability and Maintenance Planning Model - 
Research Results 

Feed   No Feed  

newmodel.gms newmodelnofeed.gms 

Solver 
                    
CPLEX 10.1.0  Solver CPLEX 10.1.0 

OPTCR 0.03  OPTCR 0.03 

      

Statistics   Statistics  

Binary Variables 483  Binary Variables 483 

Continuous 1060  Continuous 1012 

Constraints 1572  Constraints 1548 

Relative Gap 0.028817  Relative Gap 0.028817 

CPU time 19  CPU time 18.5 

Iterations 23039  Iterations 23039 

      

Values   Values  

VD 691012.2  VD 691012.2 

TCM 14976  TCM 14976 

TPM 27000  TPM 27000 

Design 145950  Design 145950 

Reliability 8200  Reliability 8200 

Objective 503086.2   Objective 503086.2 

 

 It is quite clear from this table that the existence of a Feed state does 

not affect the solution.  From these results it is quite clear that the model is 

solved faster than their equivalents represented by Table 12.  The number of 

iterations is lower and the CPU time is shorter.  Furthermore, the objective 

functions provide higher values.   Right away it is quite clear that the revised 

model is substantially better.  Table 19s goes into a more detailed comparison 

of the two models.   

 

 

Fig. 15  Revision Model Preventive Maintenance 
Schedule Results 
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Table 19 - Comparison of Methods: Revised Model vs. H.D. Goel, et. al. Model 

  Revised Model 

Solver XPRESS CPLEX 

OPTCR 0.05 0.035 0.01 0.05 0.035 0.01 

Statistics       

Resource Usage 10.81 11.31 12.00 15.86 16.02 14.99 

Iteration Count 31978.00 31978.00 35256.00 9487.00 9674.00 12927.00 

Best Solution 505418.31 505418.31 505391.78 505796.29 505796.29 505320.51 

Relative Gap 0.00 0.00 0.00 0.00 0.00 0.00 

Single Equations 1573 1573 1573 1573 1573 1573 

Single Variables 1543 1543 1543 1543 1543 1543 

Binary Variables 483 483 483 483 483 483 

Values       

Objective Value 504907.60 504907.60 504907.60 503512.00 504480.50 504907.60 

Deliveries Value 691011.60 691011.60 691011.60 691330.00 690656.50 691011.60 

Preventive Main. 27000.00 27000.00 27000.00 27000.00 27000.00 27000.00 

Corrective Main. 14904.00 14904.00 14904.00 14868.00 14976.00 14904.00 

Reliability Cost 8200.00 8200.00 8200.00 8200.00 8200.00 8200.00 

Design Cost 144200.00 144200.00 144200.00 145950.00 144200.00 144200.00 

  H.D. Goel, et. al. Model 

Solver XPRESS CPLEX 

OPTCR 0.05 0.035 0.01 0.05 0.035 0.01 

Statistics       

Resource Usage 65.65 82.62 721.40 133.95 282.51 1000.14 

Iteration Count 54572.00 54860.00 1000000.00 108848.00 231899.00 522218.00 

Best Solution 517113.94 517113.94 514100.53 527545.46 520131.09 512374.13 

Relative Gap 0.04 0.03 0.02 0.05 0.03 0.02 

Single Equations 3259 3259 3259 3259 3259 3259 

Single Variables 1948 1948 1948 1948 1948 1948 

Binary Variables 483 483 483 483 483 483 

Values       

Objective Value 497767.00 499689.00 503008.10 502567.20 502567.20 502645.30 

Deliveries Value 688709.00 691423.00 691228.00 690565.00 690565.00 691281.30 

Preventive Main. 32000.00 30000.00 26000.00 27000.00 27000.00 30000.00 

Corrective Main. 14742.00 13734.00 14220.00 15048.00 15048.00 14436.00 

Reliability Cost 8200.00 12000.00 12000.00 8200.00 8200.00 8200.00 

Design Cost 144200.00 148000.00 148000.00 145950.00 145950.00 144200.00 

 

In this analysis the revised model and the H.D. Goel et. al. model are 

solved under 6 different conditions.  Each model is solved for both the CPLEX 

solver and the XPRESS solver for 3 different OPTCRs.  From this analysis, it 

becomes quite clear on several levels that the revised model is more robust.  

Again the iteration counts and CPU time are lower while the profits are 

greater.  However, another important observation is that the OPTCR for the 

revised model is very easily attained as represented by the value of the 

Relative Gap, but the H.D. Goel et. al. model struggles to reach the required 
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OPTCR.   In summary, the revised model appears to do a better job of initial 

reliability allocation than the model proposed in H.D. Goel et. al. paper.   

5 Conclusion 

5.1 Research 

Overall the results of this project demonstrate that it was reasonably 

successful research.  There were a lot of difficulties regarding the correlation 

of researched results with the published results.  However, the reproductions 

of the first model, the Multiperiod Production and Maitenance Planning model 

provided results that perfectly matched the results provided in the published 

paper.  The real difficulty with finding results that correlated was with the next 

two models.  The Simulatenous Design, Production and Maintenance planning 

model and the Design, Production, Reliability and Maintenance planning 

model proved to be very difficult to duplicate.  The only time that one of the 

models’ published results were matched exactly was when one of the Design, 

Production, Reliability and Maintenance planning models reproductions was 

fixed so that all the decision variables chose the published results.  Only in this 

particular case was the objective function found to be equal to the published 

value of the objective function.  However, in both cases there is some question 

as to the published results.  First, in the Simultaneous Design, Production and 

Maintenance Planning model there were inconsistencies with in the published 

paper.  These inconsistencies resulted in two different answers to the same 

problem existing in the same published document.  As a result, it was difficult 

to draw conclusions.  The Design, Production, Reliability and Maintenance 

planning model also had some interestingly and unexplainable results.  For 

instance, the solution time was a fraction of the normal solution time for 

solving most of these models.  Also, there was an inconsistency in the number 

of binary variables.  There ought to have been 483, but the published work 

reported three less.  If this is true than somehow H.D. Goel et. al. managed to 

reduce the number of binary variables, but does not explain how.  

Nevertheless, all the results from the reproductions were very close to the 

published values and based on this it can be assumed that the models were 

indeed accurate.  The reproduction of the Design, Production, Reliability and 

Maintenance planning model was close enough that it was assumed 

comparable to the Revision model that was introduced in this paper.  The 
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Revision model proved to be tremendously effective in lowering the number 

of variables used in a model that optimizes design, production, maintenance 

and reliability.  Compared to the H.D. Goel et. al. model reproductions the 

revision model was solved faster, easier and provided better solutions.  The 

short solution times and the lower number of interactions for the revision 

model provide the evidence for its superiority. 

In this research report, the first model created was a basic one that 

considered the production and maintenance planning of a process.  Subsequent 

models added new components to the process and new complexities to the 

mathematics.  This building up of the complexity was important to the 

methodology of the research because it provided a systematic and logical path 

to replicating the models purposed in the literature.  Furthermore, each new 

model that was introduced provided additional realism to the model.  In a real 

chemical process, an engineer has the ability to vary many different process 

variables; however, in mathematical programming there is a limitation on the 

number of variables due to model size constraints. The more variables a model 

contains, the “larger” the model; larger models are harder for the computer to 

solve.  Therefore, the best models are those that closely approximate reality 

while remaining relatively small and easy to solve.  This is another reason as 

to why the revisionist model proposed in this research is an improvement on 

the original model proposed by H.D. Goel et. al.  The numbers of binary 

variables in each model are equal, but there are far more continuous variables 

in the H.D. Goel et. al. model compared to the revisionist model. The 

cumbersome mathematical formulation in the H.D. Goel et. al. model is the 

cause for these extra variables. On the other hand, the revisionist model, with 

its simpler mathematical formulation, is just as powerful (it accomplishes the 

same task) but it does it quicker and with greater accuracy.    

5.2 Future Directions  

 If the investigation into initial reliability allocation was to be 

continued, one direction that could be taken would be into using one decision 

variable to choose both the initial failure rate and the unit size.  The logic 

behind this idea is that when a process unit size is chosen a specific type of 

unit with a given reliability would be chosen as well.  This may be a little bit 

closer to reality when only a given number of possible process units are 
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available.  In other words, if there are only a few units that may be available to 

accomplish a specific task, one may not have the ability to pick a particular 

size and then separately choose reliability.  The two variables may be 

combined into a single unit with a given size and reliability.  The benefit to 

this approach is that there would be a lower number of binary variables.  As 

demonstrated in Section 2.2, it is the branching and bounding of these 

variables that dramatically increase the solution time and the complexity of the 

model.  However, this approach would have its limitations.  For example, 

consider the case were the market contains a huge variety of process units 

where one could choose size and reliability separately.  In this case, it would 

make more sense to use the models presented in this paper. 

 However, the most important direction one could take this research is 

into an investigation of the  N ij
max parameter.  This parameter plays a very 

important role in the amount of production accomplished by a given process.  

It appears to be more than a simple upper bound for the capacity constraints.  

Often, the value of N ij
max is what is used for the number of batches for a given 

process and therefore, it plays an immediate role in the production.  However, 

very little attention is paid to the parameter; it ought to have an investigation 

into how it is defined, the values the definition produces and how those values 

affect the rest of the process.  
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Appendix A – Mathematics 
 
Indices 
i   process tasks 

j   equipment units 

s   states of material 

t   time periods 

u   utilities 

l   unit initial failure rate 

k   unit sizes 

i   number of periods elapsed since unit j was last maintained 

 

Sets 

Si /Si    sets of states consumed/produced by task i 

Ts /Ts   sets of tasks receiving/producing materials in state s 

I j    set of tasks for which unit j is suitable 

} j    set of unit sizes available for unit j 

Ki    set of units suitable for task i 

g j   set of possible initial failure rates for unit j 

 

Parameters 
Vj   capacity of unit j 

V jk   size k for unit j 

m jl
  initial failure rate l for unit j 

t is /t
is
   is proportion of input/output of task i from state s ! Si /Si   

pi    set-up and processing time of task i 

buij~ /duij~   fixed/variable demand factor for utility u by task i in unit j at the time 

~  relative to the start of the task 

z ij
min/z ij

max  minimum/maximum utilization factor 

Aut
max   maximum availability level of utility u during time period t 

Nujt
max  maximum number of batches when task i is performed in unit j during 

time period t duration of each period 

D j
c    corrective maintenance (repair) duration of unit j 

D j
p    preventive maintenance duration of unit j 

x j   maximum number of consecutive elapsed time periods without  

maintenance of unit j 

c ji    failure rate value for unit j when the last maintenance action took 

place u  
periods ago 

K j
0   fixed cost for unit j over considered time horizon of planning 

K j
1   variable size factor for unit j over considered time horizon of planning 

K jl
2    cost factor for unit j with failure rate l over considered time horizon of  

planning 

hst    unit price of state s during period t 

Cut    unit cost of utility u during period t 

C jt
p    preventive maintenance cost of unit j during period t 

C jt
c   corrective maintenance cost of unit j during period t 

a j   constant increment in failure rate 

dc jl   initial failure rate differential 



54 
 

c ji
max/c ji

min (defined below) 

 

Variables 
Binary Variables 
E j    1 if unit j is chosen; 0 otherwise 

E jk   1 if size k is chosen for unit j ; 0 otherwise 

E jl    1 if failure rate l is chosen for unit j; 0 otherwise 

X jt  1 if preventive maintenance is performed on unit j during period t ; 0 

otherwise 

Z jti  1 during period t if unit j was maintained for the last time u periods 

ago; 0 otherwise 
 

Continuous Variables 
Nijt   number of batches of task i processed in unit j over time period t 

Sst   amount of material in state s in storage at the end of period t 

Dst   amount of material delivered to external customers from state s over 

period t 

Vj   size of unit j 

Bijt   amount of material undergoing task i in unit j during period t 

U jt  expected uptime of unit j during period t 

m jt   failure rate of unit j during period t 

c ji   failure rate value for unit j when the last maintenance action took 

place u periods ago 

EN ijkt  linearization variable used for Capacity Constratins (not needed in 

Multiperiod Production and Maintenance Planning Model) 

h jti  linearization variable for failure rate (used in H.D. Goel et. al. Model 

only) 

 
 
Resource Utilization 
 

piNijt

i ! I j

! # U jt 6j, t  

 
Capacity Constraints 
 
for multiperiod production and maintenance planning model only: 

z ij
min

Vj Nijt # Bijt # z ij
max

VjNijt 6i, j ! Ki, t  

 
for all other models: 

z ijt
min V jkENijkt # Bijt #

k ! } j

! z ijt
max V jkENijkt

k ! } j

! 6i, j ! Ki, t   

 
Linearization: 

ENijkt # N ij
maxE jk 6i, j ! Ki,k ! } j, t

Nijt = ENijkt 6i,
k ! } j

! j ! Ki, t
 

 
E.N. Pistikopoulos et. al. Design Model 
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N ijt
max =

pi

U j
max

6i, j ! Ki K j
1 Vj Ejk

U j
max =

(1 + D j
cm j1)

H
6j or U j

max = H (1 - D j
cm j1) 6j

 

 
H.D. Goel et. al Model 

N ij
max =

pi

H (1 - D j
cmin
l ! gl

(m jl))
6i, j ! Ki 

 
Revised Model 

N ij
max =

pi

H (1 - D j
c(c j1 - max

l ! gl

(dl jl)))
6i, j ! Ki 

 
Material Balance Constraints 
Sst = Ss,t-1+ t

is
Bijt

j ! Kj
! -

i ! Ts
! tisBijt

j ! Kj
! -

i ! Ts
! Dst 6s, t  

or 

 
Sst = Ss1 + Ss, t - 1 + t

is
Bijt

j ! K j

! -
i ! Ts

! t isBijt

j ! K j

! -
i ! Ts

! Dst  

 
Demand Constraints 

Dst
min

# Dst # Dst
max

6s, t  

 
Utility Constraints (not used) 

buij~Nijt + duij~Bijt # A ut
maxH 6u, t

~ = 0

pi = 1

!
j ! Ki

!
i

!  

 
Failure Rate Constraints 
E.N. Pistikopoulos et. al. Models 

m jt = c jiZ jti

i = 1

x j

! 6j, t  

Zjti # Xj, t - i 6j, t,i = 1,f,x j 

Z jti

i = 1

xj

! = E j 6j, t   (for Multiperiod Production and Maintenance Model  Z jti = 1
i = 1

x j

! 6j, t    

) 
 

Xjt # E j 6j, t  (not needed for Multiperiod Production and Maintenance Model) 
 

c ji = c j,i- 1 + a j 6j, 2 # i # x j  

 
Linearizations for Case 2 and 3 Uptime Definitions: 

XZ jti # Z jti 6j, t,i = 1, ...,x j 

X jt = XZ jti
i = 1

x j

! 6j, t  

 
 
H.D. Goel et. al. Model 

m jt = h jti

i = 1

x j

! 6j, t  
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Zjti # Xj, t - i 6j, t,i = 1,f,x j 

Z jti

i = 1

xj

! = E j 6j, t  

Xjt # E j 6j, t  

 
Linearization 

c ji - c ji
max(1 - Zjti) # hjti # cji - c ji

min(1 - Zjti) 6j, t,i= 1fx j 

c ji
minZjti # hjti # c ji

maxZjti 6j, t,i= 1fx j 

c ji
max = max

l ! gl

(m jl) + x ja j 6j  and            c ji
min = min

l ! gl

(m jl) 6j 

 
Revised Model 

m jt = c jiZ jti

i = 1

x j

! - dc jlE jl

l = 1

gl

! 6j, t  

Zjti # Xj, t - i 6j, t,i = 1,f,x j 

Z jti

i = 1

xj

! = E j 6j, t  

Xjt # E j 6j, t  

 
Design Constraints 
H.D. Goel et. al. Model and Revised Model Only 

E j = E jk

k ! } j

! 6j 

Vj = V jkEjk

k ! } j

! 6j 

 

Reliability Allocation Constraints 
H.D. Goel et. al. Model Only 

c j1 = m jlE jl

i = 1

gl

! 6j  

E j = E jl

l ! gl

! 6j  

c ji = c j,i- 1 + a j 6j, 2 # i # x j 

 
Objective Function 
E.N. Pistikopoulos et. al. Multiperiod Production and Maintenance Planning  

max U = hstDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
p X jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

!
 

 
E.N. Pistikopoulos et. al. Simultaneous Design, Production and Maintenance 
Planning  

max U = hstDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
pX jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

! - (K j
0E j

j

!

+ K j
1 V jkE j)
k ! W j

!
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H.D. Goel et. al., Design, Reliability, Production and Maintenance Planning Model 
and Revised Model 

max U = hstDst - Cut (buij~Nijt + duij~Bijt) -
~ = 0

pi = 1

!
j ! Ki

!
i

!
ut

!
st

!

C jt
pX jt -

jt

! C jt
c (H - U jt - D j

pX jt) /D j
p

jt

! - (K j
0E j

j

!

+ K j
1 V jkE j + K jl

2 E jl

l ! g j

! )
k ! W j

!
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Appendix B – Example of GAMS File - Revised Design, Reliability, 

Production and Maintenance Planning Model 
only one case is shown – no-FEED 
 
*Model based of Problem 2 (P2) of Pistikopoulos 
*Simultaneous Design, Production, and Maintenance Planning 
*CASE 1 Uptime Constraint - Equipment can fail during both minimal repair and preventive maintenance. 
*No Utility Constraints 
 
*AGGREGATE MULTIPERIOD PRODUCTION 
Sets 
i        processing tasks                                /MAKEA, MAKEB, MAKEC/ 
j        equipment units                                 /UNIT1, UNIT2, UNIT3/ 
t        time periods (months)                           /1*24/ 
s        states of material                              /A, B, C/ 
Ts(i,s)  set of tasks receiving material from state s    /MAKEB.A, MAKEC.A/ 
Tbs(i,s) set of tasks producing material in state s      /MAKEA.A, MAKEB.B, MAKEC.C/ 
Ij(i,j)  set of tasks for which unit j is suitable       /MAKEA.UNIT1, (MAKEB, MAKEC).(UNIT2, UNIT3)/ 
Ki(j,i)  set of units for which task i is suitable       /UNIT1.MAKEA, (UNIT2, UNIT3).(MAKEB, MAKEC)/; 
 
*MAINTENANCE MODEL 
Sets 
THT      number of periods elasped last maintenance      /1*6/; 
 
 
*DESIGN MODEL 
Set 
k       unit size                                       /1*4/ 
l       initial failure rate                            /1*3/ 
PSIj(j,k) set of unit sizes available for unit j        /UNIT1.(1*4), UNIT2.(1*4), UNIT3.(1*4)/ 
IjPSIj(i,j,k) set of unit sizes                         /MAKEA.UNIT1.(1*4), (MAKEB, MAKEC).(UNIT2.(1*4), 
UNIT3.(1*4))/ 
ZETA(j,l) set of possible initial failure rates for unit j/UNIT1.(1*3), UNIT2.(1*3), UNIT3.(1*3)/; 
 
 
*AGGREGATE MULTIPERIOD PRODUCTION 
 
Parameter p(i) setup and processing time (hours) 
          /MAKEA       3 
           MAKEB       2 
           MAKEC       2.5/; 
 
Scalar    H    duration of period  /720/; 
Scalar  ALPHA  increase f. rate per period /0.001/; 
 
Parameter ETA(s) unit price of s 
         /A      -100 
          B      0.5 
          C      0.5/; 
 
TABLE c(i,j)            capacity utilisation factors 
 
                        UNIT1   UNIT2   UNIT3 
 
        MAKEA             1 
        MAKEB                     1       1 
        MAKEC                     1       1; 
 
*MAINTENANCE MODEL 
Parameter DTAc(j) corrective maintenance (repair) duration of unit j 
         /UNIT1       24 
          UNIT2       40 
          UNIT3       30/; 
 
Parameter DTAp(j) preventative maintenance duration of unit j 
         /UNIT1       6 
          UNIT2       9 
          UNIT3       7/; 
 
Parameter TAU(j) maximum number of consecutive elaspsed time periods w\o maintenance of unit j 
         /UNIT1       6 
          UNIT2       6 
          UNIT3       6/; 
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Parameter dL(j,l) initial failure rate options 
        /UNIT1.1    0 
         UNIT1.2    0.0005 
         UNIT1.3    0.001 
         UNIT2.1    0 
         UNIT2.2    0.001 
         UNIT2.3    0.002 
         UNIT3.1    0 
         UNIT3.2    0.0005 
         UNIT3.3    0.001/; 
 
Parameter GAM(j,THT) 
       /  UNIT1.1        0.002 
          UNIT1.2        0.003 
          UNIT1.3        0.004 
          UNIT1.4        0.005 
          UNIT1.5        0.006 
          UNIT1.6        0.007 
          UNIT2.1        0.004 
          UNIT2.2        0.005 
          UNIT2.3        0.006 
          UNIT2.4        0.007 
          UNIT2.5        0.008 
          UNIT2.6        0.009 
          UNIT3.1        0.002 
          UNIT3.2        0.003 
          UNIT3.3        0.004 
          UNIT3.4        0.005 
          UNIT3.5        0.006 
          UNIT3.6        0.007/; 
 
Parameter Cp(j)    preventive maintenance cost of unit j during all periods 
         /UNIT1          1000 
          UNIT2          2000 
          UNIT3          2000/; 
 
Parameter Cc(j)    corrective maintenance cost of unit j during all periods 
         /UNIT1          50 
          UNIT2          100 
          UNIT3          75/; 
 
*DESIGN MODEL 
Table Vcap(j,k) size k for unit j 
                1        2       3       4 
          UNIT1 150      175     200     250 
          UNIT2 50       80      150     200 
          UNIT3 60       100     125     200             ; 
 
Parameter Nmax(i,j) maximum number of batches when task i is performed on unit j during period t 
 
Parameter K0(j) fixed cost for unit j 
        /UNIT1      5000 
         UNIT2      20000 
         UNIT3      20000/; 
 
Parameter K1(j)  variable size factor 
        /UNIT1      100 
         UNIT2      300 
         UNIT3      350/; 
 
Table K2(j,l) cost factor for unit j with failure rate l over considered time horizon of planning 
                     1       2       3 
           UNIT1     0      2200    6000 
           UNIT2     0      2200    6000 
           UNIT3     0      2200    6000 ; 
 
Nmax(i,j)$Ij(i,j)=(H*(1-(DTAc(j)*(GAM(j,'1')-smax(l,dL(j,l))))))/p(i); 
 
Variables 
    MU          objective function maximize 
*AGGERGATE MULTIPERIOD PRODUCTION 
    N(i,j,t)    number of batches of task i processed in unit j over time period t 
    STR(s,t)    amount of material in state s in storage at the end of period t 
    D(s,t)      amount of material delivered to external customers from state s over period t 
    B(i,j,t)    amount of material undergoing task i in unit j during period t 
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*MAINTENANCE MODEL 
    LAM(j,t)    actual failure rate of unit j during period t 
    Z(j,t,THT)  1 during period t if unit j was maintained for the last time THT periods ago 
    X(j,t)      1 if preventive maintenance is performed on j during period t 
    U(j,t)      expected uptime of unit j during period t 
*DESIGN MODEL 
    E(j)        1 if unit j is chosen 0 otherwise 
    Ecap(j,k)   1 if size k is chosen for unit j 0 otherwise 
    Ebar(j,l)   1 if initial failure rate is chosen 0 otherwise 
    V(j)        size of unit j 
    EN(i,j,k,t) linearization factor; 
 
Binary Variable   Z(j,t,THT); 
Binary Variable   X(j,t); 
Binary Variable   E(j); 
Binary Variable   Ecap(j,k); 
Binary Variable   Ebar(j,l); 
Positive Variable V(j); 
Positive Variable U(j,t); 
Positive Variable N(i,j,t); 
Positive Variable B(i,j,t); 
Positive Variable STR(s,t); 
Positive Variable D(s,t); 
Positive Variable EN(i,j,k,t); 
 
Equations 
    PROFIT         Objective Function 
*AGGERGATE MULTIIPERIOD PRODUCTION 
    CapC1(i,j,t)   Capacity Constraints (Upper Bound) 
*    CapC2(i,j,t)   Capactiy Constraints (Lower Bound) 
    MB(s,t)        Material Balances 
    RUC(j,t)       Resource Utilization Constraint 
*MAINTENANCE MODEL 
    FRA(j,t)       Actual Failure Rate Time Period t 
    CON1(j,t,THT)  Failure Rate Constraint 1 
    CON2(j,t)      Failure Rate Constraint 2 
    CON3(j,t)      Failure Rate Constraint 3 
    CON4(j)      Failure Rate Constraint 4 
    UPC(j,t)       Uptime Definition Constraint 
*DESIGN MODEL 
    SELU(j)        Select Unit Constraint 
    SELUS(j)       Select Unit Size Constraint 
    LIN1(i,j,k,t)  Linearization Constraint 1 
    LIN2(i,j,t)    Linearization Constraint 2; 
*OBJECTIVE FUNCTION 
 
PROFIT .. 
         MU =e= SUM((s,t), ETA(s)*D(s,t)) - SUM((j,t), Cp(j)*X(j,t)) - 
                SUM((j,t), Cc(j)*((H-U(j,t)-DTAp(j)*X(j,t))/DTAc(j))) - 
                SUM(j,(K0(j)*E(j) + K1(j)*SUM(k$PSIj(j,k), Vcap(j,k)*Ecap(j,k)) + SUM(ZETA(j,l), K2(j,l)*Ebar(j,l)))); 
 
*AGGERGATE MULTIIPERIOD PRODUCTION 
 
CapC1(i,j,t)$Ij(i,j) .. 
         B(i,j,t) =l= c(i,j)*SUM(k$IjPSIj(i,j,k), Vcap(j,k)*EN(i,j,k,t)); 
 
D.up("A",t)=0; 
D.up("B",t)=50000; 
D.lo("B",t)=20000; 
D.up("C",t)=50000; 
D.lo("C",t)=20000; 
 
RUC(j,t) .. 
         SUM(i$Ij(i,j), p(i)*N(i,j,t)) =l= U(j,t); 
 
MB(s,t) .. 
         STR(s,t) =e= STR(s,t-1) + sum((i,j)$(ord(s) eq ord(i) AND Ij(i,j)), B(i,j,t)) 
         - sum((i,j)$(ord(s) eq 1 AND ORD(i) gt 1 AND Ij(i,j)), B(i,j,t)) - D(s,t); 
 
STR.up("A",t)=0; 
 
 
*MAINTENANCE MODEL 
 
FRA(j,t) .. 
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         LAM(j,t) =e= SUM(THT$(ord(THT) le ord(t)), GAM(j,THT)*Z(j,t,THT)) - SUM(l, dL(j,l)*Ebar(j,l)); 
 
CON1(j,t,THT)$(ord(THT) le ord(t)).. 
          Z(j,t,THT) =l= 1 $ (ord(t) eq ord(THT)) + X(j,t-ord(THT))$(ord(t) gt ord(THT)); 
 
CON2(j,t).. 
         SUM(THT$(ord(THT) le ord(t)), Z(j,t,THT)) =e= E(j); 
 
CON3(j,t).. 
        X(j,t) =l= E(j); 
 
CON4(j).. 
        SUM(l, Ebar(j,l))=e= E(j); 
 
*Case 1 uptime constraint 
UPC(j,t).. 
         U(j,t) =e= H*(E(j)-DTAc(j)*LAM(j,t))-DTAp(j)*X(j,t); 
 
*DESIGN MODEL 
SELU(j).. 
        E(j) =e= SUM(k$PSIj(j,k), Ecap(j,k)); 
 
SELUS(j).. 
        V(j) =e= SUM(k$PSIj(j,k), Vcap(j,k)*Ecap(j,k)); 
 
LIN1(i,j,k,t)$IjPSIj(i,j,k).. 
        EN(i,j,k,t) =l= Nmax(i,j)*Ecap(j,k); 
 
LIN2(i,j,t)$Ij(i,j).. 
         N(i,j,t) =e= SUM(k$IjPSIj(i,j,k), EN(i,j,k,t)); 
 
Model P1 /all/; 
 
OPTION OPTCR = 0.03; 
OPTION ITERLIM = 1000000; 
OPTION MIP = CPLEX; 
 
Solve P1 using MIP maximizing MU; 
 
Parameter 
VDEL    value of deliveries 
TPM     total preventive maintenance  (maintenance costs) 
DES     design costs 
TCM     total corrective maintenance (repair costs) 
KCOST   COST OF K2; 
 
VDEL = SUM((s,t), ETA(s)*D.l(s,t)); 
DISPLAY VDEL; 
 
TPM = SUM((j,t), Cp(j)*X.l(j,t)); 
DISPLAY TPM; 
 
DES = SUM(j,(K0(j)*E.l(j) + K1(j)*SUM(k$PSIj(j,k), Vcap(j,k)*Ecap.l(j,k)) + SUM(ZETA(j,l), 
K2(j,l)*Ebar.l(j,l)))); 
DISPLAY DES; 
 
KCOST =  SUM(ZETA(j,l), K2(j,l)*Ebar.l(j,l)); 
DISPLAY KCOST; 
 
TCM = SUM((j,t), Cc(j)*((H-U.l(j,t)-DTAp(j)*X.l(j,t))/DTAc(j))); 
DISPLAY TCM; 
 
DISPLAY Nmax; 
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Summary of Capstone Project 

 
An effective chemical engineer strives to design and operate a 

chemical process that is efficient, safe, and environmentally-friendly.  A well 

designed chemical process is one that is cost-effective and profitable; 

minimizes unnecessary risks to operators; and limits negative environmental 

impact.  In order to maximize profitability a chemical engineer must maximize 

production of the desired product. This is accomplished by adjusting different 

aspects of a chemical process in order to find the best or optimal process.  An 

optimal process limits negative aspects that lead to waste while augmenting 

positive aspects that increase productivity.  These adjustable “aspects” are 

commonly referred to as process variables, due to the fact that their values can 

be changed.  A chemical process that has been optimized will have the best 

possible combination of values for the different process variables.  An 

example of a process variable could be the temperature or quantity of a 

reactant, or it could be the number of different reactors in the process.  Process 

variables are an important aspect of this research project and are explained in 

detail in the report. For this summary, it is enough to understand that when an 

engineer optimizes a chemical process he or she is adjusting the process 

variables to find the best possible combination of values.  An optimal 

chemical process will be highly efficient and will generate greater profits.  

Therefore, process optimization is a major concern for chemical engineers at the 

design stage and as a result, a great deal of research in the chemical engineering 

field is devoted to developing methods to optimize plant processes.  This 

particular research project is concerned with creating an optimal chemical process 

based on different production schedules, maintenance schedules, unit reliabilities 

(how often a unit fails) and overall design considerations. 
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How does one go about optimizing a chemical process?  There are a 

variety of methods available to develop an optimal chemical process: simply 

weighing the pros and cons of a particular process would be one course of 

analysis.  However, qualitative analysis is relatively imprecise.  A quantitative 

analysis is a more appropriate method, and computers make it feasible.  In fact, 

computers are inherent to the research described in this paper, as well as to other 

complex optimization problems.  How does one conduct a quantitative analysis of 

a chemical process and how are computers involved?  A chemical process can be 

described algebraically through the use of a mathematical model: a set of 

interrelated equations, variables (process variables), parameters and constraints. 

For example, the material that flows through a particular process can be 

represented mathematically based on the law of the conservation of mass: 

INPUT – OUTPUT + GENERATION = ACCUMULATION. 
 
This is a simplified version of the equation used in this research project and it is 

just one of many equations that taken together can abstractly represent a complete 

chemical process. The abstract nature of a mathematical model is what defines it 

from other “normal” models.  A mathematical model is nothing tangible, but as 

will be demonstrated, it still retains the same testability that is normally associated 

with a model rocket or model airplane.   

In this research project, the mathematical model serves as input for a 

computer program that automatically adjusts the process variables of that model 

in order to maximize or minimize (optimize) an objective value.  The objective 

value is a variable that relates all other components of the model into a single 

overarching relationship.  This is done through the use of an objective function.  

The objective function is the equation that describes the relationship between all 

the different component parts of the model and the objective value.  A profit 



64 
 

equation is used in this research project.  This makes sense because an optimal 

chemical process will maximize profit.  A simplified equation is shown here: 

PROFIT = (PRICE # PRODUCT) – COSTS. 
 

It should be noted that the “COSTS” term is actually the sum of several different 

costs associated with the chemical process.  For the model used in this report, the 

“COSTS” term includes the cost of purchasing the reactants, the cost of 

performing maintenance, the cost of purchasing the different process units and the 

costs associated with the failure of the process units.  

By adjusting the values of the different process variables in the 

mathematical model the computer program will find a maximum value for the 

PROFIT equation.  Essentially, the computer program solves the objective 

function for different combinations of the values of the process variables and the 

optimal combination is the solution.  A model is fully optimized when the 

computer program finds the best values for the process variables so that the profit 

reaches a maximum value.   

The computer program that is used in this report is called General 

Algebraic Modeling System (GAMS).  The reason that GAMS is chosen as 

opposed to other computer programs is due to the relative ease of inputting the 

mathematical model.  The input for the model very closely replicates the way a 

mathematician would represent the mathematical model with pen and paper. 

 Mathematical programming is the branch of knowledge that deals with 

the optimization of mathematical models.  In mathematical programming, the 

model can take on a variety of different forms: linear, non-linear, mixed-

integer and mixed integer linear.  The focus of this research project is on 

mixed integer linear problems (MILP).  However, in order to understand the 

MILP form the others need to be discussed briefly.   
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A linear mathematical programming problem is one where there are no 

non-linear combinations of variables in the equations.  In other words, 

variables can only be added or subtracted from each other.  An example is 

provided below: 

f(x) = X + Y + Z. 
 

There is no multiplication or division of variables and there are no power 

functions (Ax); all of which are non-linear.  One should note however the 

constants or scalars a, b and c can multiply or divide the variables without the 

equation losing its linearity: 

f(x) = aX + bY + cZ. 
 
Therefore, a linear model, or LP model is a mathematical model where all the 

equations are like the ones above and therefore, a non linear or NLP model 

would contain a scenario where any one of the equations is of the following 

form 

f(x) = XY + Z. 
 

where XY are variables that form a non-linear combination.   

 A mixed integer programming problem or MIP is a special case type of 

programming problem where the variables can only take on integer values: -2, 

-1, 0, 1, etc.  The mixed integer linear programming problem or MILP is a 

combination of the MIP and LP problems; some variables are restricted to 

integer values while others can take on continuous values.  This research 

project uses MILP models.  Why does this research project use MILP models? 

Why not NLP or just LP models?  As it turns out, LP problems are much 

easier to solve then NLP.     
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The easiest way to grasp this concept is to think of a rubber bouncy 

ball and a toy block.  It is very hard to estimate an exact point on the bouncy 

ball because it’s curved while it is relatively easy to determine an exact point 

on the toy block because it has points.  The same goes for linear and non-

linear models: the LP models have points while the non-linear model is curved 

like the ball.  Optimization is similar to the act of finding an exact point on 

either the ball or the toy block.  A detailed explanation of this idea that 

includes figures is covered in the paper.   

The reason this research paper includes MIP components is a little 

complicated, but not beyond explanation.  If we limit the MIP variables 

(integer variables) so that that they can only be a 0 or 1 then we can use those 

variables to indicate “Yes” or “No” for a particular part of the chemical 

process.  For example, if during optimization the computer decides to include 

a process unit, such as a reactor, then the variable for that reactor would be set 

equal to 1 indicating “Yes” or “True.”  The computer program has 

automatically brought that reactor into existence; it has become part of the 

process.  The use of this “Yes” or “No” aspect of mathematical modeling is 

extremely important to this research project.  The use of MIP variables is 

expanded to other parts of the model including whether or not maintenance 

action is taken on a unit during a specific time period.     

Finally, the last important piece of background information is the type 

of chemical process modeled in this research.  This report analyzes 

multipurpose process plants and the distinguishing characteristic for this type 

of plant is that the individual process units can perform more than one task.   
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For example, a reactor may be able to produce two different types of product; 

though not necessarily at the same time.     

 As mentioned earlier, the focus on this research paper was on 

optimizing a chemical process by adjusting the production schedule, the 

maintenance schedule, the design of the process and the reliability of the 

design.   Specifically, the project attempted to find a mathematical model that 

could better optimize all of the above.  A model is “better” if it reduces the 

time it takes to solve the problem and if the accuracy of the model improves.  

 The methodology of the project was to first replicate the mathematical 

models presented in the literature.  This was easily accomplished as the 

models presented in the literature successively built on the prior models.  As 

such, the first model only included the production and maintenance schedule 

aspects.  The second added design aspects and the third incorporated all four.  

Each model was replicated one at a time and the third model was improved 

upon to create a fourth and revisionist version.   

 The revision of the third model was a mathematical adjustment based 

on how the model “chose” the reliability or initial failure rates for a given 

process unit.  The math used in the revised model was far simpler and 

therefore, the model was optimized quicker and with greater accuracy.  The 

results are summarized in the fourth section of this project, but the revised 

model provided higher profit values, with less “resource usage” (a measure of 

time spent solving) and with a lower relative gap (a measure of accuracy).  A 

quick note on the meaning of the “accuracy” of the optimized/solved model: 

as the models that are created are often incredibly complex the computer 

program estimates a “Best Solution” and then proceed to solve the model for 



68 
 

that value.  However, it is very difficult for the computer program to reach the 

estimate and therefore, the program will solve the model with an acceptable 

amount of error (or relative gap).  A better model will be solved for a lower 

value of error, which is exactly what the revised model accomplishes. 

 At the beginning of this summary the importance of this project was 

briefly discussed: optimal chemical processes are more efficient and therefore, 

generate higher profits and create less waste.  Indeed, these are very important 

results of optimization.  However, the ability to apply these techniques to real-

world scenarios is what gives the project material benefit.  The optimization of 

real chemical plants could introduce new efficiencies that not only increases 

profit, but also reduces waste.  The reduction of waste produced by chemical 

plants could have huge benefits for our environment.  Furthermore, the 

abstract nature of the mathematical modeling means that the same procedures 

and methods used in this report can be used for any process. In fact, 

mathematical modeling and optimization is used in a variety of different 

disciplines including economics and operations management.  Optimization is 

a very powerful tool: it allows for experimentation of abstract concepts while 

saving the time, money and labor required in other forms of analysis.  
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