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Matched-filter searches for gravitational waves from coalescing compact binaries by the LIGO

Scientific Collaboration use the FINDCHIRP algorithm: an implementation of the optimal filter with

innovations to account for unknown signal parameters and to improve performance on detector data

that has nonstationary and non-Gaussian artifacts. We provide details on the FINDCHIRP algorithm as used

in the search for subsolar mass binaries, binary neutron stars, neutron starblack hole binaries, and binary

black holes.
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I. INTRODUCTION

For the detection of a known signal it is well-known that,
in the presence of stationary and Gaussian noise, the use of
a matched filter is the optimal detection strategy [1]. Such
signals are the anticipated gravitational waveforms from
the inspiral of binary systems containing compact objects,
i.e., binaries whose components are neutron stars and/or black
holes [2,3]. These gravitational-wave sources are among the
most promising targets for ground-based gravitational-wave
detectors, such as the Laser Interferometer Gravitational-
wave Observatory (LIGO) [4] and Virgo [5].

Some practical complications arise for the gravitational-
wave detection problem, however, because: (i) the signal is
not precisely known—it is parametrized by the binary
companions’ masses, an initial phase, the time of arrival,
and various parameters describing the distance and orien-
tation of the system relative to the detector that can be
combined into a single parameter we call the ‘‘effective
distance,’’ and (ii) the detector noise is not perfectly
described as a stationary Gaussian process. Standard tech-
niques for extending the simple matched filter to search
over the unknown parameters involve using a quadrature
sum of matched-filter outputs for orthogonal-phase wave-
forms (thereby eliminating the unknown phase), use
of Fourier transform to efficiently apply the matched
filters for different times of arrival, and use of a bank of
templates to cover the parameter space of binary compan-
ion masses [6–12]. Methods for making the matched filter
more robust against non-Gaussian noise artifacts, e.g., by
examining the relative contributions of frequency-band-
limited matched-filter outputs (vetoing those transients
that produce large matched-filter outputs but have a time-
frequency decomposition that is inconsistent with the
expected waveform), have also been explored [13] and
found to be effective.

The FINDCHIRP algorithm is the implementation of
matched filtering used by the LIGO Scientific
Collaboration (LSC) and Virgo’s offline searches for gravi-
tational waves from low-mass (2M! <M ¼ m1 þm2 <
35M!), high-mass (25M! <M< 100M!), and primordial
black hole (0:2M! <M< 2M!) coalescing compact bi-
naries [14–25]. FINDCHIRP has also been used to search for
supermassive black holes in data from the LISA Mock
Data Challenge [26–28] and for comparisons with numeri-
cal relativity waveforms for both high-mass and low-mass
binaries [29]. Several aspects of the algorithm have been
described in passing in the above references, but here we
provide a detailed and comprehensive description of our
algorithm as used in the LSC and Virgo’s search for
coalescing compact binaries.
The FINDCHIRP algorithm is the part of the search that

(i) computes the matched-filter response to the interfer-
ometer data for each template in a bank of templates,
(ii) computes a chi-squared discriminant [13] (if needed)
to reject instrumental artifacts that produce large spurious
responses of the matched filter but otherwise do not re-
semble an expected signal, and (iii) selects candidate
events or triggers based on the matched-filter and chi-
squared outputs. This is a fundamental part of the search
for coalescing compact binaries, but the search also con-
sists of several other important steps such as data selection
and conditioning, template bank generation, rejection of
candidate events by vetoes based on auxiliary instrumental
channels and multidetector coincidence, and computation
of the false alarm rate of candidate triggers.
The entire search pipeline, which is a transformation of

raw interferometer data into candidate events, contains all
these aspects. The specific details of the pipeline used to
search for gravitational waves depends on the target popu-
lation (e.g., a triggered search for gamma-ray bursts or an
all-sky search for low-mass compact binaries) and the
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particular ‘‘science run’’ of the LIGO and/or Virgo detec-
tors. We refer to Refs. [14–16,18,19,21–25,30–32] for
descriptions of the pipelines that have used the algorithms
described here. This paper is not intended to provide
documentation for our implementation of the FINDCHIRP

algorithm. (This can be found in Refs. [33,34].) Rather, this
paper is intended to describe the algorithm itself.

II. NOTATION

Our conventions for the Fourier transform are as follows.
For continuous quantities, the forward and inverse Fourier
transforms are given by

~xðfÞ ¼
Z 1

&1
xðtÞe&2!iftdt; (2.1a)

and

xðtÞ ¼
Z 1

&1
~xðfÞe2!iftdf; (2.1b)

respectively, so ~xðfÞ is the Fourier transform of xðtÞ.
If these continuous quantities are discretized so that
x½j( ¼ xðj!tÞ where 1=!t is the sampling rate and
j ¼ 0; . . . ; N & 1 are N sample points, then the discrete
approximation to the forward and inverse Fourier trans-
forms are

~x½k( ¼ !t
XN&1

j¼0

x½j(e&2!ijk=N; (2.2a)

x½j( ¼ !f
XN&1

k¼0

~x½k(e2!ijk=N; (2.2b)

where !f ¼ 1=ðN!tÞ and ~x½k( is an approximation to
the value of the continuous Fourier transform at fre-
quency k!f: ~x½k( ) ~xðk!fÞ for 0*k* bN=2c and ~x½k( )
~xððk& NÞ!fÞ for bN=2c< k<N (negative frequencies).
Here bac means the greatest integer less than or equal to a.
The DC component is k ¼ 0 and, whenN is even, k ¼ N=2
corresponds to the Nyquist-frequency.

Notice that our convention is to have the Fourier com-
ponents ~x½k( normalized so as to have the same units as the
continuous Fourier transform ~xðfÞ, i.e., the discretized
versions of the continuous forward and inverse Fourier
transforms carry the normalization constants !t and !f
respectively. Numerical packages instead compute the dis-
crete Fourier transform (DFT)

y½k( ¼
XN&1

j¼0

x½j(e+2!ijk=N (2.3)

where the minus sign in the exponential refers to the
forward DFT and the positive sign refers to the reverse1

DFT. The DFT is efficiently implemented via the fast

Fourier transform (FFT) algorithm. Thus, it is important
to write the most computationally demanding terms in the
form of Eq. (2.3) so that this computation can be done most
efficiently.
Throughout this paper we will reserve the indices j to be

a time index (which labels a particular time sample), k to
be a frequency index (which labels a particular frequency
bin),m to be an index over a bank of templates, and n to be
an index over analysis segments. Thus, for example, the
quantity zm;n½j( will be the jth sample of analysis segment
n of the matched-filter output for the mth template, and
~zm;n½k( will be the kth frequency bin of the Fourier trans-
form of the matched-filter output for the same template and
analysis segment.

III. WAVEFORM

For first-generation gravitational-wave detectors (such
as Initial LIGO), the gravitational-wave signal from a
compact binary inspiral waveform can be accurately
modeled by the restricted post-Newtonian waveform [35]
below approximately M, 12M! [36] for nonspinning
bodies. At higher masses, resummation techniques such
as the effective one body (EOB) waveforms better repro-
duce the waveforms computed by numerically solving the
full nonlinear Einstein equations [37,38]. In either case, the
two polarizations of the gravitational-wave produced by
such a system exhibit a monotonically-increasing fre-
quency and amplitude as the orbital motion radiates away
energy and decays. The waveform, often called a chirp
waveform, is given for t < tc by

hþðtÞ ¼ & 1þ cos2"

2

!
GM
c2D

"!
tc & t

5GM=c3

"&1=4

- cos½2#c þ 2#ðt& tc;M;$Þ(; (3.1a)

h-ðtÞ ¼ & cos"
!
GM
c2D

"!
tc & t

5GM=c3

"&1=4

- sin½2#c þ 2#ðt& tc;M;$Þ(; (3.1b)

where D is the distance from the source, " is the angle be-
tween the direction to the observer and the orbital angular
momentum axis of the binary system, M¼$3=5M2=5¼
%3=5M (where M ¼ m1 þm2 is the total mass of the
two companions, the reduced mass is $ ¼ m1m2=M, and
% ¼ $=M) is the chirp mass, and #ðt& tc;M;$Þ is the
orbital phase of the binary (whose evolution also depends
on the individual masses of the binary companions)
[39,40]. Here, tc and #c are the time and phase of the
binary coalescence when the waveform is terminated,
known as the coalescence time and coalescence phase
#ð0;M;$Þ ¼ 0. Note that in Ref. [39] the integration
constant tc and #c are implicitly contained in the orbital
phase #ðtÞ. We have chosen to express them explicitly.
The coalescence phase and time may lack a formal

definition (as in the case of numerical waveforms),

1We use the term reverse rather than inverse since the inverse
would include an overall normalization factor of 1=N.
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however for a detection algorithm, the formal definition of
the coalescence time is not critical, as long as any offset
caused by the choice of coalescence time is constant
between the detectors in the network. For restricted post-
Newtonian waveforms, we define tc to be the time at which
the gravitational-wave frequency becomes infinite within
the post-Newtonian formalism. The Initial LIGO science
runs (S1–S5) used the second-post-Newtonian waveform,
whereas the Enhanced LIGO (S6) analysis uses post-
Newtonian waveforms computed to 3.5th order. In this
paper we illustrate the FINDCHIRP algorithm using
second-order post-Newtonian waveforms. The extension
of the algorithm to EOB waveforms (and other waveforms
computed in the time-domain) is described in Appendix A
and the extension to higher post-Newtonian orders is de-
scribed in Appendix E. We assume that the binary system’s
center-of-mass is at rest with respect to the detector frame
(otherwise this motion ‘‘redshifts’’ the binary’s masses).
We also assume that the time that the signal is in the
detector’s sensitive bandwidth is short compared to 24h,
so that the detector does not change orientation signifi-
cantly as the earth rotates.

The gravitational-wave strain induced in a particular
detector depends on the detector’s antenna response to
the two polarizations of the gravitational waveform. The
induced strain on the detector is given by

hðtÞ ¼ Fþð&;'; c ; tÞhþðtþ tc & t0Þ
þ F-ð&;'; c ; tÞh-ðtþ tc & t0Þ (3.2)

where t0 is the termination time (the time at the detector at
which the coalescence occurs, i.e., the detector time when
the gravitational-wave frequency, according to restricted
post-Newtonian approximation, becomes infinite), t0 & tc
is the propogation time from the source to the detector, and
Fþ and F- are the antenna response functions for the
incident signal; these functions depend on the location
of the source with respect to the reference frame of the
detector, which is described by the right ascension and
declination of the source, (&, '), the arrival time at the

detector, t0, and on the polarization angle c [41]. The
antenna response functions are very nearly constant in
time over the duration of the short inspiral signal. Thus
the strain on a particular detector can be written as

hðtÞ ¼ &
!
GM
c2Deff

"!
t0 & t

5GM=c3

"&1=4

- cos½2#0 þ 2#ðt& t0;M;$Þ(; (3.3a)

where #0 is the termination phase which is related to the
coalescence phase by

2#0 ¼ 2#c & arctan
!
F-
Fþ

2 cos"

1þ cos2"

"
(3.3b)

and

Deff ¼ D
#
F2
þ

!
1þ cos2"

2

"
2
þ F2

-cos
2"
$&1=2

(3.3c)

is the effective distance of the source. The effective dis-
tance of the source is related to the true distance of the
source by several geometrical factors that relate the source
orientation to the detector orientation. Because the location
and orientation of the source are not likely to be known
when filtering data from a single detector, it is convenient
to combine the geometric factors with the true distance to
give a single observable, the effective distance. For an opti-
mally oriented source (one that is directly overhead and is
orbiting in the plane of the sky) the effective distance
is equal to the true distance; for sub-optimally-oriented
sources the effective distance is greater than the true dis-
tance. (The location and distance can be estimated using
three or more detectors, but we do not consider this here.)
Equation (3.3a) gives a waveform that is used as a

template for a matched filter. Since FINDCHIRP implements
the matched filter via a FFT correlation, it is beneficial to
write the Fourier transform of the template and implement
it directly rather than taking the FFT of the time-domain
waveform of Eq. (3.3a). A frequency-domain version of the
waveform can be obtained via the stationary phase
approximation [6,42,66]. For f > 0 one has

~hðfÞ ¼ &
!
5!

24

"
1=2

!
GM
c3

"!
GM
c2Deff

"!
GM
c3

!f
"&7=6

e&i"ðf;M;$Þ ¼
!
1 Mpc

Deff

"
A1 MpcðM;$Þf&7=6e&i"ðf;M;$Þ; (3.4a)

where

A1 MpcðM;$Þ ¼ &
!

5

24!

"
1=2

!
GM!=c

2

1 Mpc

"!
!GM!
c3

"&1=6
!M
M!

"
5=6

; (3.4b)

"ðf;M;$Þ ¼ 2!ft0 & 2#0 & !=4þ 3

128%

#
v&5 þ

!
3715

756
þ 55

9
%
"
v&3

& 16!v&2 þ
!
15 293 365

508 032
þ 27 145

504
%þ 3085

72
%2

"
v&1

$
; (3.4c)

v ¼
!
GM

c3
!f

"
1=3

(3.4d)
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and " has been written to second post-Newtonian order.
For f < 0 one has ~hðfÞ ¼ ~h.ð&fÞ. This template wave-
form has been expressed in terms of several factors: (1) An
overall distance factor involving the effective distance,
Deff . For a template waveform, we are free to choose this
effective distance as convenient, and in the FINDCHIRP code
it is chosen to be 1 Mpc. (2) A constant (in frequency)
factorA1 MpcðM;$Þ, which has dimensions of ðtimeÞ&1=6,
that depends only on the total and reduced masses, M and
$, of the particular system. (3) The factor f&7=6 which
does not depend on the system parameters. And (4) a
phasing factor involving the phase "ðf;M;$Þ which is
both frequency-dependent and dependent on the system’s
total and reduced masses. We will see below that an
efficient implementation of the matched filter will make
use of this factorization of the stationary phase template.

In order to construct a waveform template we need to
know how long the binary system will radiate gravitation
waves in the sensitivity band of LIGO. A true inspiral chirp
waveform would last tens of Myr, but the amount of time
that the binary system spends radiating gravitational waves
with a frequency above some low-frequency cutoff flow is
short: the duration of the chirp or chirp time from a given
frequency flow is given to second post-Newtonian order by
Eq. (3.3) of Ref. [43] as

Tchirp ¼
5

256%

GM

c3

#
v&8
low þ

!
743

252
þ 11

3
%
"
v&6
low & 32!

5
v&5
low

þ
!
3 058 673

508 032
þ 5429

504
%þ 617

72
%2

"
v&4
low

$
(3.5a)

where

vlow ¼
!
GM

c3
!flow

"
1=3

: (3.5b)

For the Initial and Enhanced LIGO detectors, FINDCHIRP
uses flow¼40Hz. Higher-mass systems coalesce much
more quickly (from a given flow) than lower mass systems.
A search for low-mass systems, such as primordial black
holes of mass 0:1M!, can require very long waveform
templates (of the order of tens of minutes) which can result
in a significant computational burden.

There is also a high-frequency cutoff for the inspiral
waveform. Physically, at some high frequency a binary
system will terminate its secular inspiral and the orbit
will decay on a dynamical time scale, though identifying
the precise frequency is difficult except in the extreme
mass ratio limit % ! 0. In this limit, that of a test mass
orbiting a Schwarzschild black hole, the frequency is
known as the innermost stable circular orbit or ISCO.
The ISCO gravitational-wave frequency is

fisco ¼
c3

6
ffiffiffi
6

p
!GM

: (3.6)

However, before reaching this frequency, the binary
components will be orbiting with sufficiently high orbital

velocities that the higher-order corrections to the post-
Newtonian waveform will become significant. We regard
Eq. (3.6) as an upper limit on the frequency that can be
regarded as representing an ‘‘inspiral’’ waveform—not as
the frequency to which we can trust our inspiral waveform
templates. With this caveat, we nevertheless use this as a
high-frequency cutoff for the inspiral template waveforms
(should this frequency be less than the Nyquist frequency
fNyquist ¼ 1=2!t of the data, where !t is the sample rate).
For the lowest mass binary systems (binary neutron stars or
subsolar mass black holes) the post-Newtonian template
waveforms are reliable within the sensitive band of Initial
LIGO so the precise choice of the high-frequency cutoff is
not important [36]. For higher-mass systems (containing
black holes) the effects of higher-order corrections to
the post-Newtonian waveform can be significant. For
frequency-domain templates, this can be addressed by the
use of ‘‘pseudo post-Newtonian’’ terms in the waveform
phasing and/or different choices of the high-frequency
cutoff [44,45]. When using time-domain EOB waveforms
tuned to numerical relativity simulations, the upper-
frequency cutoff is set by the frequency of the fundamental
l ¼ 2, m ¼ 2 quasinormal ringdown mode [46]. In this
case the FINDCHIRP algorithm uses the minimum of this
or the Nyquist frequency.

IV. MATCHED FILTER

The matched filter is the optimal filter for detecting a
known waveform in stationary Gaussian noise. Suppose
that nðtÞ is a stationary Gaussian noise process with
one-sided power spectral density SnðfÞ defined by
h~nðfÞ~n.ðf0Þi¼ 1

2SnðjfjÞ'ðf&f0Þ. Then the matched-filter
output of a data stream sðtÞ—which now may contain
detector noise alone, sðtÞ ¼ nðtÞ, or a signal in addition
to the noise, sðtÞ ¼ nðtÞ þ hðtÞ—with a filter template
htemplateðtÞ is

xðt0Þ ¼ 2
Z 1

&1

~sðfÞ~h.templateðfÞ
SnðfÞ

df

¼ 4<
Z 1

0

~sðfÞ½~h.templateðfÞ(t0¼0

SnðfÞ
e2!ift0df; (4.1)

where the signal htemplateðtÞ is implicitly taken to depend on
a termination time t0 as in (3.3a). Notice that the use of a
FFT will allow one to search for all possible termination
times t0 efficiently. However, the waveforms described
above have additional unknown parameters. These are
(i) the amplitude (or effective distance to the source),
(ii) the coalescence phase, and (iii) the binary companion
masses. The amplitude simply sets a scale for the matched-
filter output, and is unimportant for matched-filter tem-
plates (these can be normalized).
The ‘‘best match’’ unknown phase #0 can be found

by maximizing xðt0Þ over #0. xðt0Þ can be written as
xðt0Þ ¼ xreðt0Þ cos2#0 þ ximðt0Þ sin2#0 where xre;imðt0Þ
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are (respectively) the values of (4.1) with#0 ¼ 0, and with
#0 ¼ 0 and Re ! Im. Setting the derivative with regard to
#0 to vanish, one finds that at the maximum x2ðt0Þj#̂0

¼
x2reðt0Þ þ x2imðt0Þ at 2#̂0 ¼ argðxre þ iximÞ. Hence this
maximum value is given by the (more computationally
efficient) modulus of the complex filter output

zðt0Þ ¼ xreðt0Þ þ iximðt0Þ

¼ 4
Z 1

0

~sðfÞ½~h.templateðfÞ(0
SnðfÞ

e2!ift0df (4.2)

where ½~h.templateðfÞ(0 ¼ ½~h.templateðfÞ(t0¼0;#0¼0. This tem-

plate is obtained from Eq. (3.4) by deleting the first two
terms on the right-hand side of (3.4c).

To search over all the possible binary companion masses
it is necessary to construct a bank of matched-filter tem-
plates laid out on the ðm1; m2Þ plane sufficiently finely that
any true system masses will produce a waveform that
is close enough to the nearest template. There are well-
known strategies for constructing such a bank [8–11].
For our purposes, we shall simply introduce an index
m ¼ 0; . . . ; NT & 1 labeling the particular waveform
template hmðtÞ in the bank of NT waveform templates.

By convention, the waveform templates are constructed
for systems with an effective distance ofDeff ¼ 1 Mpc. To
construct a signal-to-noise ratio, a normalization constant
for each template is computed

(2
m ¼ 4

Z 1

0

j~h1 Mpc;mðfÞj2
SnðfÞ

df: (4.3)

The quantity (m is a measure of the sensitivity of the
instrument. For sðtÞ that is purely stationary and
Gaussian noise, h<zmðtÞi ¼ h=zmðtÞi ¼ 0 and one finds
that hz2mðtÞi¼hz2mðtÞi¼(2

m, while for a detector output
that includes a signal at distance Deff ; sðtÞ ¼ nðtÞ þ
ðDeff=1 MpcÞ&1h1 Mpc;mðtÞ, hzmðt0Þi¼1Mpc(2

m=Deff . Thus
the quantity

)mðtÞ ¼
jzmðtÞj
(m

(4.4)

is the amplitude signal-to-noise ratio of the (quadrature)
matched filter. Note that while this is called a signal-to-noise
ratio, in the absence of a signal the expectation value is not
unity: h)2

mi ¼ 2. It is highly unlikely to obtain )m / 1 for
purely stationary and Gaussian noise so a detection strategy
usually involves setting a lower threshold on )m to identify
event candidates. For such candidates, a biased estimate of the
effective distance to the candidate system is D̂eff ¼
ð(m=)mÞMpc.

The goal of the FINDCHIRP algorithm is largely to con-
struct the quantity )mðtÞ and to identify the values of the
parameters t0, #0, and m that maximize it.

V. DETECTOR OUTPUTAND CALIBRATION

LIGO records several interferometer channels. The
gravitational-wave channel (the primary channel for
searching for gravitational waves) is formed from the out-
put of a photo-diode at the antisymmetric (or ‘‘dark’’) port
of the interferometer [47]. This output is used as an error
signal for a feedback loop that is needed to keep various
optical cavities in the interferometer in resonance or
‘‘in-lock.’’ Hence it is often called the error signal eðtÞ.
The error signal is not an exact measure of the differential
arm displacements of the interferometer so it does not
correspond to the gravitational-wave strain. Rather it is
part of a linear feedback loop that controls the position
of the interferometer mirrors. A gravitational-wave
strain-equivalent output, called sðtÞ above, can be obtained
from the error signal eðtÞ via a linear filter. This is
called calibration. Details on the calibration of the LIGO
interferometers can be found in [48,49]. In the frequency-
domain, the process of calibration can be thought of as
multiplying the error signal by a complex response func-
tion, RðfÞ

~sðfÞ ¼ RðfÞ~eðfÞ: (5.1)

The FINDCHIRP algorithm can analyze either calibrated data
sðtÞ or it can calibrate the error signal eðtÞ in the frequency-
domain. With time-domain calibrated data now available,
it is more convenient to use sðtÞ so in this paper we will
present the algorithm in terms of strain data rather than the
error signal.
The detector output is not a continuous signal but rather

a time series of samples of sðtÞ taken with a sample rate of
1=!t ¼ 16384 Hz where !t is the sampling interval.
Thus, rather than sðtÞ, the input to FINDCHIRP is a discretely
sampled set of values s½j( ¼ sðtstart þ j!tÞ for some large
number of points. The start of the data sample is at time
tstart. Data from the detector is divided into science
segments which are time epochs when the instrument was
in-lock and exhibiting normal behavior. However, for prac-
tical computational reasons, these science segments are not
normally processed as a whole, but are divided into smaller
amounts. In this paper we shall call the amount of data
processed a data block of duration Tblock. The data block
must be long enough to form a reliable noise power spec-
tral estimate (see below), but not so long as to exhaust a
computer’s memory or to encompass significant nonsta-
tionary changes in the detector noise.
The number of points in a data block is further subdi-

vided into NS overlapping data segments or just segments
(not to be confused with the science segments described
above) of duration T. The duration of the segment is al-
ways an integer multiple of the sample rate !t, so the
number of points in a segment N ¼ T=!t is an integer.
These segments are used to construct an average noise
power spectrum and to perform the matched filtering.
The segments are overlapped so that the first segment
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consists of the points s½j( for j ¼ 0; . . . ; N & 1, the second
consists of the points j ¼ !; . . . ;!þ N & 1 where ! is
known as the stride, and so on until the last segment which
consists of the points j ¼ ðNS & 1Þ!; . . . ; ðNS & 1Þ!þ
N & 1. Note that

Tblock ¼ ½ðNS & 1Þ!þ N(!t: (5.2)

All of the LSC’s searches choose to overlap the segments
by 50% so that the stride is ! ¼ N=2 (and N is always
even) and hence there are NS ¼ 2ðTblock=TÞ & 1 segments.
The values of Tblock, T, !, and NS must be commensurate
so that these relations hold. Values typically used in the
LIGO and/or Virgo analyses for low-mass binaries
are Tblock ¼ 2048 s, N ¼ 256 s=!t, NS ¼ 15, and ! ¼
128 s=!t.

The FINDCHIRP algorithm (4.2) implements the matched
filter by an FFT correlation. Thus the discrete Fourier
transforms of the individual data segments, n,

~s n½k( ¼ !t
XN&1

j¼0

s½jþ n!(e&2!ijk=N (5.3)

for n ¼ 0; . . . ; NS & 1 are constructed via an FFT. Here
k is a frequency index that runs from 0 toN & 1. The k ¼ 0
component represents the DC component (f ¼ 0) which
is purely real, the components 0< k * bðN & 1Þ=2c are
all positive-frequency components corresponding to fre-
quencies k!f where !f¼1=ðN!tÞ, and the components
bN=2c<k<N are all negative-frequency components
corresponding to frequencies ðk& NÞ!f. If N is even
(as it always is for the FINDCHIRP algorithm) then there
is also a purely real Nyquist-frequency component in
bin k ¼ N=2 corresponding to the Nyquist frequency
0N!f=2 ¼ 01=ð2!tÞ. Recall bac is the greatest integer
less than or equal to a. Note that because the data is real,
the discrete Fourier transform of it satisfies ~s.n½k( ¼
~sn½N & k(. Thus, the FINDCHIRP algorithm only stores the
frequency components k ¼ 0; . . . ; bN=2c. These can be
efficiently computed using a real-to-half-complex forward
FFT [50].

If the error signal rather than detector strain is analyzed,
we simply replace s with e in Eq. (5.3). Then the detector
strain for segment n can be computed by calibrating the
error signal

~sn½k( ¼ R½k(~en½k( for k ¼ 0; . . . ; bN=2c; (5.4)

where R½k( ¼ Rðk!fÞ is the complex response function.
As before, since ~sn½k( must be the Fourier transform of
some real time series, only the frequency components k ¼
0; . . . ; bN=2c need to be computed.

LIGO is sensitive to strains that are smaller than,10&20,
while the error signal is designed to have typical values
much closer to unity. Often the FINDCHIRP algorithm will
require quantities that are essentially squares of the mea-
sured strain (e.g., the power spectrum described in the next
section). To avoid floating-point over- or under-flow

problems, the strain can simply be rescaled by a
dynamic-range factor *. If strain data is input, it is imme-
diately scaled by the factor *, so *s½j( is used rather than
s½j(. If the error signal is input, the dynamic-range factor is
applied to the response function instead, so that *R is used
rather than R. Choosing a value of *, 1020 will keep all
quantities within representable single-precision IEEE 781
floating-point numbers. It is important to keep track of the
factor * to make sure it cancels out in all of the results.
Essentially this is achieved by multiplying all quantities
with ‘‘units’’ of strain by the factor *within the implemen-
tation of the FINDCHIRP algorithm. Thus, in addition to the
strain data or response function, the signal template must
also be scaled by *. On conventional CPUs, storing quan-
tities in single-precision reduces the performance cost of
moving quantities to and from memory (which can be
dominant). In addition, some CPUs and most graphics
processing units (GPUs) perform single-precision arith-
metic at least twice as fast as double-precision arithmetic.
Therefore it is advantageous to use floating-point (single-
precision) operations for the FINDCHIRP algorithm.
If frequency-domain calibration of the error signal is

desired (e.g., if the effects of calibration error are being
investigated), the following replacements need to be made
in the formulas in this paper: ~s½k( ! R½k(~e½k(, S½k( !
jR½k(j2Se½k(, and Q ! jR½k(j&2Qe½k( where Se½k( and
Qe½k( are the power spectral density and inverse truncated
power spectral density computed from the error signal
rather than the calibrated strain data (see Secs. VI and VII).

VI. AVERAGE POWER SPECTRUM

Part of the matched filter involves weighting the data by
the inverse of the detector’s power spectral density. The
detector’s power spectrum must be obtained from the
detector output. The most common method of power spec-
tral estimation is Welch’s method. Welch’s method [51] for
obtaining the average power spectrum S of the data is

*2S½k( ¼ 1

NS

XNS&1

n¼0

*2Pn½k(: (6.1)

Here

*2Pn½k( ¼
2!f

W

&&&&&&&&!t
XN&1

j¼0

*sn½j(w½j(e&2!ijk=N

&&&&&&&&
2

(6.2a)

is a normalized periodogram for a single segment n which
is the modulus-squared of the discrete Fourier transform of
windowed data. The data window is given byw½j( andW is
a normalization constant

W ¼ 1

N

XN&1

j¼0

w2½j(: (6.2b)

FINDCHIRP allows a variety of possible windows, but a
Hann window (see, e.g., [52]) is the default choice used
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by FINDCHIRP. We call this average power spectrum
the mean average power spectrum. If uncalibrated data
en½j( is being used rather than sn½j(, then the power spec-
trum of the detector strain-equivalent noise is related to
the power spectrum of the uncalibrated data by S½k( ¼
jR½k(j2Se½k(.

The problem with using Welch’s method for power
spectral estimation is that for detector noise containing
significant excursions from ‘‘normal’’ behavior (due to
instrumental glitches or unexpectedly strong gravitational-
wave signals), the mean used in Eq. (6.1) can be signifi-
cantly biased by the excursion. An alternative that is
pursued in the FINDCHIRP algorithm is to replace the
mean in Eq. (6.1) by a median, which is a more robust
estimator of the average power spectrum

*2S½k( ¼ &&1 median f*2P0½k(;*2P1½k(; . . . ;*2PNS&1½k(g;
(6.3a)

where & is a required correction factor. When & ¼ 1, the
expectation value of the median is not equal to the expec-
tation value of the mean in the case of Gaussian noise;
hence the factor & is introduced to ensure that the same
power spectrum results for Gaussian noise. In Ref. [53]
and in Appendix B it is shown that if the set fP0½k(;
P1½k(; . . . ; PNS&1½k(g are independent exponentially-
distributed random variables (as expected for Gaussian
noise) then

& ¼
XNS

n¼1

ð&1Þnþ1

n
ðodd NSÞ (6.3b)

is the correction factor. We call this median estimate of the
average power spectrum, corrected by the factor &, the
median average spectrum.

Unfortunately this result is not exactly correct either.
Because the segments used to form the individual sample
values Pn½k( of the power at a given frequency are some-
what overlapping (unless ! 1 N), they are not indepen-
dent random variables, as was assumed in Appendix B.
(This is somewhat mitigated by the windowing of the
segments of data.) Although the effect is not large, and
simply amounts to a slight scaling of what is meant by
signal-to-noise ratio, we are led to propose a variant of the
median method in which the n ¼ 0; . . . ; NS & 1 overlap-
ping segments are divided into even segments (for which n
is even) and the odd segments (for which n is odd). If the
stride is ! 1 N=2 then no two even segments will depend
on the same data so the even segments will be independent;
similarly the odd segments will be independent. The aver-
age power spectrum can be estimated by taking the
weighted mean of the median power spectrum of the ðNS þ
1Þ=2 even segments and the median power spectrum of the
ðNS & 1Þ=2 odd segments, each of which are corrected by a
factor & appropriate for the sample median with, respec-
tively, ðNS 0 1Þ=2 samples. We call this the median-mean
average spectrum. Like the median spectrum it is not

overly sensitive to a single glitch (or strong gravitational-
wave signal).
The FINDCHIRP algorithm can compute the mean average

spectrum, the median average spectrum, or the median-
mean average spectrum. Traditionally the median average
spectrum has been used though we expect that the median-
mean average spectrum will be adopted in the future.

VII. DISCRETE MATCHED FILTER

The discretized version of Eq. (4.2) is simply

zn;m½j( ¼ 4!f
XbðN&1Þ=2c

k¼1

*~sn½k(*~h.1 Mpc;m½k(
*2S½k( e2!ijk=N; (7.1)

where in ~h both t0 and #0 are set to zero. Element j of
zn;m½j( corresponds to the matched-filter output (4.2) for
time t0 ¼ tstart þ ðn!þ jÞ!twhere tstart is the start time of
the block of data analyzed and ! is the stride. Note that the
sum is over the positive frequencies only, and DC and
Nyquist frequencies are excluded. (The interferometer is
AC-coupled so it has no sensitivity at the DC component;
similarly, the instrument has very little sensitivity at the
Nyquist-frequency so rejecting this frequency bin has very
little effect.) This inverse Fourier transform can be
performed by the complex reverse DFT (as opposed to a
half-complex-to-real reverse DFT) of the quantity

~zn;m½k(!f

¼

8
>>>><
>>>>:

0 k < klow

4!f
*~sn½k(*~h.1 Mpc;m½k(

*2S½k( klow * k * bðN & 1Þ=2c

0 bðN & 1Þ=2c< k< N:

(7.2)

That is to say, the DC, Nyquist, and negative frequency
components are all set to zero, as are all frequencies below
some low-frequency cutoff flow ¼ klow!f (set to some
frequency lower than the detector’s sensitive band). The
low-frequency cutoff limits the time duration of the inspi-
ral template as described below.
Our task is to obtain an efficient computation of the

factors making up ~zn;m½k(. Note that there needs to be one
reverse FFT performed per segment per template. It is
desirable that this (unavoidable) computational cost domi-
nates the evaluation of thematched filter, sowewish tomake
the computation cost of the calculation of ~zn;m½k( for all k
and fixed n;m to be less than the computation cost of a FFT.
We will consider this in the next section.
One subtlety in the construction of the matched filter is

the issue of filter wraparound. The matched filter of
Eq. (7.1) can be thought of as digital correlation of a filter
h1 Mpc;m½j( with some suitably over-whitened data stream
(the data divided by the noise power spectrum). To sim-
plify the discussion, first assume S½k( ¼ 1. Although
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~h1 Mpc;m½k( is generated in the frequency domain via the

stationary phase approximation, we can imagine that it
came from a time-domain signal h1 Mpc;m½j( of duration
Tchirp;m that is given by Eq. (3.5a) for the low-frequency
cutoff flow. By convention of template generation, the time
of coalescence corresponds to j ¼ 0. Thus, the entire chirp
waveform is nonzero only from t ¼ t0 & Tchirp;m to t ¼ t0.
Because the discrete Fourier transform presumes that the
data is periodic, this is represented by having the chirp
begin at point j ¼ N & Tchirp;m=!t and end at point j ¼
N & 1. Thus h1 Mpc;m½j( ¼ 0 for j ¼ 0; . . . ; N & 1&
Tchirp;m=!t. The correlation of h1 Mpc;m½j( with the inter-
ferometer data will involve multiplying the Tchirp;m=!t
points of data before a given time with the Tchirp;m=!t
points of the chirp. When this is performed by the FFT
correlation, this means that the first Tchirp;m=!t points of
the matched-filter output involve data at times before the
start of the segment, which are interpreted as the data
values at the end of the segment (since the FFT assumes
that the data is periodic). Hence the first Tchirp;m=!t points
are of the correlation are invalid and must be discarded.
That is, of theN points of zn;m½j( in Equation (7.1), only the
points j ¼ Tchirp;m=!t; . . . ; N & 1 are valid. Recall that the
analysis segments of data are overlapped by an amount
N &!: this is to ensure that the matched-filter output is
continuous (except at the very beginning of a data block).
That is, only points j ¼ Tchirp;m=!t; . . . ; N & 1 of z0;m are
valid and only points j ¼ Tchirp;m=!t; . . . ; N & 1 of z1;m are
valid, but points j ¼ !; . . . ; N & 1 of z0;m½j( correspond to
points j ¼ 0; . . . ; N &!& 1 of z1;m½j(, and these can be
used instead. Therefore FINDCHIRP must ensure that the
amount that the data segments overlap, N & ! points, is
greater than or equal to the duration, Tchirp;m=!t points, of
the filter: Tchirp;m=!t * N &!.

The quantity that needs to be computed in Eq. (7.1) is
more than just a correlation of the data sn½j( with the filter
h1 Mpc;m½j(: it also involves a convolution of the data with
the response function (if we are performing frequency-
domain calibration) and the inverse of the power spectrum.
The interferometer has a relatively short impulse response,
so this convolution will only corrupt a short amount of data
(though now at the end as well as at the beginning of a
analysis segment). However, the inverse of the power
spectrum has many very narrow line features that act as
sharp notch filters when applied to the data. These filters
have an impulse response that is as long as the reciprocal of
the resolution of the frequency series, which is set by the
amount of data used to compute the periodograms that are
used to obtain the average spectrum. Since this is the same
duration as the analysis segment duration, the convolution
of the data with the inverse power spectrum corrupts the
entire matched-filter output.

To resolve this problem we apply a procedure to coarse-
grain the inverse power spectrum called inverse spectrum

truncation. Our goal is to limit the amount of the matched
filter that is corrupted due to the convolution of the data
with the inverse power spectrum. To do this we will begin
with the time-domain version of the frequency-domain
quantity S&1½k(, truncate it so that it has finite duration,
and then find the frequency-domain quantity Q½k( corre-
sponding to this truncated time-domain filter. Note that
S&1½k( is real and non-negative, and we want Q½k( to share
these properties. First, construct the time-domain quantity

*&1q½j( ¼ !f
XN&1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð*2S½k(Þ

q
e2!ijk=N; (7.3a)

which can be done via a half-complex-to-real reverse FFT.
Since S½k( is real and symmetric (S½k( ¼ S½N & k(), q½j(
will be real and symmetric (so that q½j( ¼ q½N & j(). This
quantity will be nonzero for all N points, though strongly-
peaked near j ¼ 0 and j ¼ N & 1. Now create a truncated
quantity qT½j( with a total duration of Tspec (Tspec=2 at the
beginning and Tspec=2 at the end)

*&1qT½j(¼

8
>>><
>>>:

*&1q½j( 0* j<Tspec=2!t

0 Tspec=2!t* j<N&Tspec=2!t

*&1q½j( N&Tspec=2!t* j<N:

(7.3b)

Since qT is real and symmetric, the discrete Fourier trans-
form of qT will also be real and symmetric, though not
necessarily positive. Therefore we construct

*&2Q½k( ¼
&&&&&&&&!t

XN&1

j¼0

*&1qT½j(e&2!ijk=N

&&&&&&&&
2

(7.3c)

This quantity is real, positive, and symmetric, as desired.
Multiplying the data by Q½k( in the frequency-domain is
equivalent to convolving the data with qT½j( in the time-
domain twice, which will have the effect of corrupting a
duration of Tspec of the matched filter zn;m½j( at the begin-
ning and a duration of Tspec at the end of the data segment.
This is in addition to the duration Tchirp;m that is corrupted
at the beginning of the data segment due to the correlation
with the filter h1 Mpc;m½j(. Thus the total duration that is
corrupted is 2Tspec þ Tchirp;m, and this must be less than the
time that adjacent segments overlap. The net effect of the
inverse spectrum truncation is to smear out sharp spectral
features and to decrease the resolution of the inverse power
spectrum weighting.
For simplicity, we normally choose a 50% overlap (so

that ! ¼ N=2). Of each data segment the middle half with
j ¼ N=4; . . . ; 3N=4& 1 is assumed to be valid matched-
filter output. Therefore, the inverse truncation duration
Tspec and the maximum filter duration Tchirp;m must satisfy
Tspec þ Tchirp;m * T=4 since a time Tspec þ Tchirp;m is cor-
rupted at the beginning of the data segment.
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VIII. WAVEFORM DECOMPOSITION

Our goal is now to construct the quantity

~zn;m½k( ¼ 4*&2Q½k(*~sn½k(*~h.1 Mpc;m½k( (8.1)

as efficiently as possible. This quantity must be computed
for every segment n, every template m, and every fre-
quency bin in the range k ¼ klow; . . . ; khigh;m & 1 where
klow ¼ bflow=!fc and khigh;m is the high-frequency cutoff
of the waveform template, which is given by the minimum
of the ISCO frequency of Eq. (3.6) and the Nyquist-
frequency

khigh;m ¼ minfbfisco=!fc; bðN þ 1Þ=2cg (8.2)

(recall that the ISCO frequency depends on the binary
system’s total mass so it is template-dependent). We can
factorize ~zn;m½k( as follows:

~zn;m½k( ¼ ð!fÞ&1A1 Mpc;mFn½k(Gm½k( (8.3)

where A1 Mpc;m is a template normalization (it needs to be

computed once per template but does not depend on k),
Gm½k( ¼ expði"m½k(Þ with "m½k( is a template phase
which must be computed at all values of k for every
template (but does not depend on the data segment), and
Fn½k( is the FINDCHIRP data segment that must be com-
puted for all values of k for each data segment (but does not
depend on the template). As before, both t0 and #0 are set
to zero in ". FINDCHIRP first computes and stores the
quantities Fn½k( for all data segments. Then, for each
template m in the bank, the phasing "m½k( is computed
once and then applied to all of the data segments (thereby
marginalizing the cost of the template generation).
To facilitate the factorization, we rewrite Eq. (3.4a) with

t0 ¼ #0 ¼ 0 in the discrete form

*~h1 Mpc;m½k( ¼ ð!fÞ&1A1 Mpc;mk
&7=6 expð&i"m½k(Þ

(8.4)

with

A1 Mpc;m ¼ &*
!

5

24!

"
1=2

!
GM!=c

2

1 Mpc

"!
GM!
c3

!!f
"&1=6

!M
M!

"
5=6

; (8.5a)

"m½k( ¼ &!=4þ 3

128%

#
v&5
m ½k( þ

!
3715

756
þ 55

9
%
"
v&3
m ½k( & 16!v&2

m ½k(

þ
!
15 293 365

508 032
þ 27 145

504
%þ 3085

72
%2

"
v&1
m ½k(

$
; (8.5b)

vm½k( ¼
!
GM!
c3

!!f
"
1=3

!
M

M!

"
1=3

k1=3: (8.5c)

The dependence on the data segment is wholly contained in
the template-independent quantity Fn½k( which is

Fn½k( ¼ 4*&2Q½k(*~sn½k(k&7=6: (8.6)

As mentioned earlier, FINDCHIRP computes and stores
Fn½k( for all segments only once, and then reuses these
precomputed spectra in forming ~zn;m½k( according to
Eq. (8.3). The k-dependence on the template is wholly
contained in the data-segment-independent quantity
Gm½k( which is

Gm½k( ¼
' expði"m½k(Þ klow * k < khigh;m

0 otherwise
: (8.7)

This quantity is known as the FINDCHIRP template.
The value of (m is also needed in order to normalize

zn;m½j( to compute signal-to-noise ). It is

(2
m ¼ 4!f

Xkhigh;m&1

k¼klow

*&2Q½k(j*~h1 Mpc;m½k(j2

¼ A2
1 Mpc;m&

2½khigh;m(; (8.8)

where

&2½khigh;m( ¼
4

!f

Xkhigh;m&1

k¼klow

*&2Q½k(k&7=3 (8.9)

needs to be computed only once per data block (i.e., only
once per power spectrum)—it does not depend on the
particular segment within a block or on the particular
template in the bank, except in the high-frequency cutoff
of the template (if it is less than the Nyquist-frequency). To
account for this minimal dependence on the template, the
quantity &½khigh( is precomputed for all values of khigh.
The division of the matched filter into the data-segment-

only quantity Fn½k( and the template-only quantity Gm½k(
means that FINDCHIRP can efficiently compute the matched
filter, or, rather, a quantity that is proportional to it

+m;n½j( ¼
XN&1

k¼0

Fn½k(Gm½k(e2!ijk=N: (8.10)

Notice that +m;n½j(, which is a complex quantity, can be
computed using a simple unnormalized reverse FFT of the
quantity Fn½k(Gm½k(. FINDCHIRP computes and stores
Fn½k( for each of the NS segments in the data block and
then, for each template m in the bank, Gm½k( is computed
and used to filter each of the NS segments. This means that
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for each data segment and template the computational cost
is essentially limited to ,N complex multiplications plus
one complex reverse FFT.

The quantities +m;n½j( and zm;n½j( are simply related by a
normalization factor

zm;n½j( ¼ A1 Mpc;m+m;n½j(: (8.11)

Furthermore, the signal-to-noise ratio is related to
+m;n½j( via

)2
m;n½j( ¼ j+m;n½j(j2=&2½khigh;m(: (8.12)

Rather than applying this normalization to construct the
signal-to-noise ratio, FINDCHIRP instead scales the desired
signal-to-noise ratio threshold )? to obtain a normalized
threshold

+2? ¼ &2½khigh;m()2
? (8.13)

which can be directly compared to the values j+m;n½j(j2
to determine if there is a candidate event (when
j+m;n½j(j2 > +2?). When an event candidate is located, the
value of the signal-to-noise ratio can then be recovered for
that event along with an estimate of the termination time,

t̂ 0 ¼ tstart þ ðn!þ jpeakÞ!t; (8.14a)

where jpeak is the point at which j+m;n½j(j is peaked; the
effective distance of the candidate,

D̂ eff ¼
jA1 Mpc;mj&2½khigh;m(

j+m;n½jpeak(j
Mpc; (8.14b)

and the termination phase of the candidate,

2#̂0 ¼ argðzmn½jpeak(Þ ¼ argð&+m;n½jpeak(Þ: (8.14c)

The relative sign in the argument arises because zm;n and
+m;n have opposite sign; this is because A1Mpc;m, which
appears in Eq. (8.11) is negative.

IX. THE CHI-SQUARED VETO

The FINDCHIRP algorithm employs the chi-squared dis-
criminator of Ref. [13] to distinguish between plausible
signal candidates and common types of noise artifacts.
This method is a type of time-frequency decomposition
that ensures that the matched-filter output has the expected
accumulation in various frequency bands. (Noise artifacts
tend to excite the matched filter at the high-frequency or
the low-frequency, but seldom produce the same spectrum
as an inspiral.)

For data consisting of pure Gaussian noise, the real
and imaginary parts of +m;n½j( (for a given value of j) are
independent Gaussian random variables with zero
mean and variance &2½khigh;m(. If there is a signal
present at an effective distance Deff then hRe+m;n½j(i¼
&A1Mpc;m&

2½khigh;m(ð1Mpc=DeffÞcos2#0 and hIm+m;n½j(i ¼
&A1 Mpc;m&

2½khigh;m(ð1 Mpc=DeffÞ sin2#0 (at the termina-
tion time, where #0 is the termination phase).

Now consider the contribution to +m;n½j( coming from
various frequency sub-bands

+‘;m;n½j( ¼
Xðk‘&1Þ

k¼kð‘&1Þ

Fn½k(Gm½k(e2!ijk=N (9.1)

for ‘ ¼ 1; . . . ; p. The p sub-bands are defined by the
frequency boundaries fk0 ¼ klow; k1; . . . ; kp ¼ khigh;mg,
which are chosen so that a true signal will contribute an
equal amount to the total matched filter from each fre-
quency band. This means that the values of k‘ must be
chosen so that

4

!f

Xðk‘&1Þ

k¼kð‘&1Þ

*&2Q½k(k&7=3 ¼ 1

p
&2½khigh;m(: (9.2)

With this choice of bands and for pure Gaussian noise, the
real and imaginary parts of +‘;m;n½j( will be independent
Gaussian random variables with zero mean and variance
&2½khigh;m(=p. Furthermore, the real and imaginary parts of
+‘;m;n½j( and +‘0;m;n½j( with ‘ ! ‘0 will be independent
since +‘;m;n½j( and +‘0;m;n½j( are constructed from disjoint
bands. Also note that

+m;n½j( ¼
Xp

‘¼1

+‘;m;n½j(: (9.3)

The chi-squared statistic is now constructed from
+‘;m;n½j( as follows:

,2
m;n½j( ¼

Xp

‘¼1

j+‘;m;n½j( & +m;n½j(=pj2
&2½khigh;m(=p

; (9.4)

For pure Gaussian noise, ,2 is chi-squared distributed with
- ¼ 2p& 2 degrees of freedom. That - ¼ 2p& 2 rather
than - ¼ 2p results from the fact that the sample mean
+m;n½j(=p is subtracted from each of values of +‘;m;n½j( in
the sum. However, this subtraction guarantees that, in the
presence of a signal that exactly matches the template
h1 Mpc;m (up to an arbitrary amplitude factor and a coales-
cence phase), the value of ,2 is unchanged. Thus, ,2 is chi-
squared distributed with - ¼ 2p& 2 degrees of freedom in
Gaussian noise with or without the presence of an exactly
matched signal.
If there is a small mismatch between a signal present in

the data and the template, which would be expected since
the templates are spaced on a grid and are expected to
provide a close match but not a perfect match to a true
signal, then ,2 will acquire a small noncentral parameter.
This is because the mismatched signal may not shift the
mean value of the real parts of f+‘;m;ng by the same amount
(for each ‘), and similarly the mean values of the imagi-
nary parts of f+‘;m;ng may not be shifted by the same
amounts. The effect on the chi-squared distribution is to
introduce a noncentral parameter that is no larger than
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.max ¼ 2'(2
m=D

2
eff where Deff is the effective distance of

the true signal and ' is the mismatch between the
true signal and the template h1 Mpc;m, which could be as
large as the maximum mismatch of the template bank that is
used [8].

Even for small values of ' (3% is a canonical value), a
large value of ,2 can be obtained for gravitational waves
from nearby binaries. Therefore, one should not adopt a
fixed threshold on ,2 lest very loud binary inspirals be
rejected by the veto. For a noncentral chi-squared distribu-
tion with - degrees of freedom and a noncentral parameter
of ., the mean of the distribution is -þ . while the
variance is between 1 and 2 times the mean (the variance
equals twice the mean when . ¼ 0 and the variance equals
the mean for . / -). Thus it is useful to adopt a threshold
on the quantity ,2=ð-þ .Þ, which would be expected to
be on the order of unity even for very large signals. The
FINDCHIRP algorithm adopts a threshold on the related
quantity

#m;n½j( ¼
,2
m;n½j(

pþ ')2
m;n½j(

: (9.5)

Sometimes the quantity r2 ¼ ,2=p is referred to, rather
than #, but this quantity does not include the effect of the
noncentral parameter.

X. TRIGGER SELECTION

The signal-to-noise ratio threshold is the primary
parameter in identifying candidate events or triggers. As
we have said, the FINDCHIRP algorithm does not directly
compute the signal-to-noise ratio, but rather the quantity
+m;n½j( given in Eq. (8.10), whose square modulus is
then compared to a normalized threshold given by
Eq. (8.13). The computational cost of the search is
essentially the cost of OðNÞ complex multiplications
plus OðN logNÞ operations to perform the reverse FFT
of Eq. (8.10), and an additional OðNÞ operations to form
the square modulus of +m;n½j( for all j. In practice, the
computational cost is dominated by the reverse complex
FFT.

Triggers that exceed the signal-to-noise ratio threshold
are then subjected to a chi-squared test. However, the
construction of ,2

m;n½j( is much more costly than the con-
struction of +m;n½j( simply because p reverse complex
FFTs of the form given by Eq. (9.1) must be performed.2

The cost of performing a chi-squared test is essentially
p times as great as the cost of performing the matched

filter. FINDCHIRP will only perform the chi-squared test
if a threshold-crossing trigger is found. Therefore, if
threshold-crossing triggers are rare then the cost of the
chi-squared test is small compared to the cost of the filter-
ing. Early LIGO science runs (S1 and S2) used a ‘‘single-
stage’’ pipeline, in which the chi-squared veto is computed
as described here. For reasons of computational cost, later
LIGO and/or Virgo analyses used a ‘‘two-stage’’ pipeline
in which triggers are required to be coincident between at
least two different detectors before the chi-squared is
computed. This is achieved by disabling the chi-squared
test on the first pass of trigger generation on individual
detectors and then only applying it on the triggers that
survive the coincidence criteria. The chi-squared compu-
tation is easily parallelizable and a GPU can be used to
perform the calculation. Simple GPU implementations of
the chi-squared veto have been shown to reduce the cost of
performing the chi-squared by a factor of ,20 [54,55].
Given this reduced cost, future LSC analyses are likely
to again use the single-stage pipeline for simplicity. Addi-
tional speed gains can be realized by moving the entire
FINDCHIRP computation onto the GPU.
A true signal in the data is expected to produce a sharp

peak in the matched-filter output at almost exactly the
correct termination time t0 (usually within one sample
point of the correct time in simulations). For sufficiently
loud signals, however, a signal-to-noise threshold may be
crossed for several samples even though the correct ter-
mination time will have a much greater signal-to-noise
ratio than nearby times. Non-Gaussian noise artifacts may
produce many threshold-crossing triggers, often for a
duration similar to the duration of the inspiral template
that is used. In principle, a large impulse in the detector
output at sample j0 can cause triggers for samples j0 &
Tspec=!t * j * j0 þ ðTspec þ Tchirp;mÞ=!t. Rather than re-
cord triggers for all samples in which the signal-to-noise
threshold is exceeded while the chi-squared test is satis-
fied, FINDCHIRP has the option of maximizing over a
chirp: essentially clustering together triggers that lie
within a time Tchirp;m. Algorithmically, whenever
j+m;n½j(j2 > +2? and #m;n½j(<#?, a trigger is created
with a value of ) and ,2. If this trigger is within a time
Tchirp;m after an earlier trigger with a larger value of the
signal-to-noise ratio ), discard the current trigger (it is
clustered with the previous trigger). If this trigger
is within a time Tchirp;m after an earlier trigger with a
smaller signal-to-noise ratio ), discard the earlier trigger
(the previous trigger is clustered with the current
trigger). The result is a set of remaining triggers that
are separated by a time of at least Tchirp;m. Note that
this algorithm depends on the order in which the triggers
are selected, i.e., a different set of triggers may arise if the
triggers are examined in inverse order of j rather than in
order of j. FINDCHIRP applies the conditions as j is
advanced from j ¼ N=4 to j ¼ 3N=4& 1 (i.e., forward

2If ,2
m;n½j( is only required for one particular j then there is a

more efficient way to compute it. However, the FINDCHIRP

algorithm does not employ the chi-squared test so much as a
veto as a part of a constrained maximization of signal-to-noise
for times in which the chi-squared condition is satisfied. Thus,
,2
m;n½j( needs to be computed for all j if it is computed at all.
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in time).3 The effect of the maximizing over a chirp is to
retain any true signal without introducing any significant
bias in parameters, e.g., time of arrival (which can be
demonstrated by simulations), while reducing the number
of triggers that are produced by noise artifacts.

XI. EXECUTION OF THE FINDCHIRP ALGORITHM

In this section, we describe the sequence of operations
that comprise the FINDCHIRP algorithm and highlight the
tunable parameters of each operation. The algorithm is also
illustrated in Fig. 1.
Since we are only describing the FINDCHIRP algorithm

itself, we assume that a bank of templates ðM;$Þm has
already been constructed for a given minimal match ',

FIG. 1. FINDCHIRP flow chart. The main computation takes place in two loops: the outer loop (in light grey) is over templates while
the inner loop (in dark grey) is over data segments. The chi-squared branch, shown with a checkerboard pattern, is within the inner loop
and is computationally costly. However, this branch is only executed if a candidate event is identified. Therefore, the computational
cost is dominated by the procedure shown with a thick border: the calculation of the matched filter given by Eq. (8.10).

3Other methods can also be employed, for example, max-
imizing all triggers that are separated in time by less than Tchirp;m.
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according to the methods described in [8–10] and we are
provided with either calibrated strain data s½j( or the output
error signal of the interferometer e½j( and instrument cali-
bration R½k( as described in [48].

The initial operation is to scale the strain data by the
dynamic-range factor *, and divide it into data segments
*sn½j( suitable for analysis. The data segment duration T,
stride length!, and number of data segmentsNS in a block
are selected. These quantities then define a data block
length according to Eq. (5.2). A sample rate 1=!t must
be chosen (which must be less than or equal to the sample
rate of the detector data acquisition system); the sample
rate and data segment length define the number of points in
a data segment N ¼ T=!t. As mentioned previously, the
lengths and sample rate are chosen so that N is an integer
power of 2.

The next operation is construction of an average power
spectrum *2S½k( using a specified data window w½j( and
power spectrum estimation method (Welch’s method, the
median method, or the median-mean method). The number
of periodograms used in the average power spectrum esti-
mate is typically chosen to be equal to the number of data
segments, although different numbers of periodograms
could be chosen. An inverse spectrum duration Tspec is

then given in order to construct the truncated inverse power
spectrum *&2Q½k(, according to Eq. (7.3).

Each input data segment is Fourier transformed to obtain
*~sn½k(. The quantity Fn½k( described in Eq. (8.6) can then
be constructed. All frequency components of Fn½k( below
a specified low-frequency cutoff flow are set to zero, as are
the DC and Nyquist components. The template-
independent normalization constants &½khigh( described in

Eq. (8.9) are also computed at this point.
The algorithm now commences a loop over the NT

templates in the bank, using the specified signal-to-noise-
ratio and modified chi-squared thresholds, )? and#?, and
the method of maximizing over triggers. For each template
ðM;$Þm, the FINDCHIRP template Gm½k( is computed, ac-
cording to Eq. (8.7). The high-frequency cutoff khigh;m for

the template is obtained using Eq. (3.6) and used to select
the correct value of &2½khigh;m( for the template. The nor-

malized signal-to-noise threshold +? is then computed for
this template according to Eq. (8.13).

An inner loop over the FINDCHIRP data segments is
then entered. For each FINDCHIRP segment Fn½k( and
FINDCHIRP template Gm½k( the filter output +m;n is
computed according to Eq. (8.10). The trigger selection
algorithm described in Sec. X is now used to determine
if any triggers should be generated for this data seg-
ment and template, given the supplied thresholds and
trigger maximization method. If necessary, the chi-
squared veto is computed at this stage, according to
Eq. (9.4) and the threshold given in Eq. (9.5). If
any triggers are generated, the template parameters
ðM;$Þm are stored, along with the termination time

t̂0, signal-to-noise ratio, effective distance D̂eff , termi-

nation phase #̂0, chi-squared veto parameters, and the
normalization constant (2

m of the trigger. The triggers
are generated and stored to disk for later stages of the
analysis pipeline.
The segment index n is then incremented and the loop

over the data segments continues. Once all NS data seg-
ments have been filtered against the template, the template
index m is incremented and the loop over templates con-
tinues until all NT templates have been filtered against all
NS data segments.

XII. CONCLUSION

Profiling of the inspiral search code based on the
FINDCHIRP algorithm was performed on a 3 GHz Pentium
4 CPU with seven data segments of length 256 seconds.
The data was read from disk, resampled from 16384 Hz to
4096 Hz and filtered against a bank containing 474 tem-
plates using the FFTW package [50] to perform the discrete
Fourier transforms; the resulting 1255 triggers were written
out to disk. Of the 2909 seconds of execution time,
1088 seconds were spent performing complex FFTs re-
quired by the matched filter, and 1600 seconds performing
the chi-squared veto. Of the time taken to perform the chi-
squared veto, 1244 seconds are spent executing inverse
FFTs. In total, 2300 seconds of the 2900 are spent doing
FFTs, which means that the execution of the FINDCHIRP

algorithm is FFT-dominated, as desired.
In practice, the FINDCHIRP algorithm is only a part of

the search for gravitational waves from binary inspiral.
An inspiral analysis pipeline typically includes data
selection, template bank generation, trigger generation
using FINDCHIRP, trigger coincidence tests between mul-
tiple detectors, vetoes based on instrumental behavior,
coherent combination of the optimal filter output from
multiple detectors, and finally manual candidate follow-
ups. Pipelines vary between specific analyses and the
topology of the analysis pipelines has evolved due to
the specific demands of particular observing runs
[14–16,18,19,21–25].
It is simple to modify the FINDCHIRP algorithm to use

restricted post-Newtonian templates higher than second-
order by adding addition terms to the construction of the
FINDCHIRP template phase in Eq. (8.5b). The phasing equa-
tions used in the LSC implementation of FINDCHIRP are
given in Appendix A for completeness. Appendix A de-
scribed the modification of FINDCHIRP used to search
for time-domain templates, e.g., those based on post-
Newtonian resummation techniques, such as the effective
one body formalism [37]. These modifications cannot
make use of the factorization used in the stationary phase
templates, but they allow efficient reuse of the search code
developed and tested for the frequency-domain post-
Newtonian templates.
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APPENDIX A: ALGORITHM FOR TEMPLATES
GENERATED IN THE TIME-DOMAIN

The optimization of the FINDCHIRP algorithm described
above is dependent on the use of frequency-domain-
restricted post-Newtonian waveforms as the template. It
is a simple matter, however, to modify the algorithm (and
hence the code used to implement the algorithm) so that an
arbitrary waveform generated in the time-domain hðtÞ may
be used as the matched-filter template. This allows use of
inspiral templates such as the effective one body (EOB)
[37] waveforms. These waveforms have been tuned to
numerical relativity simulations of coalescing black holes
and have a higher overlap with higher-mass signals in the
sensitive band of the LIGO detectors [38]. Other wave-
forms of interest are described in [56–60]. In this
Appendix, we describe the modifications necessary to use
time-domain templates in FINDCHIRP.

We assume that the desired template waveform is gen-
erated in the form

h1 Mpc;mðtÞ ¼ Amðt& t0Þ cos½2#0 þ 2#mðt& t0Þ(; (A1)

where t0 and #0 are the termination time and phase, as
described in Sec. III, and AmðtÞ and#mðtÞ are the particular
amplitude and phase evolution for the mth template in the
bank. The bank may include parameterization over binary
component spins as well as masses. The template wave-
form is generated from the low-frequency cutoff flow and
is normalized to the canonical distance of 1 Mpc. Recall
the factorization of the matched-filter output, given by
Eq. (8.3):

~z n;m½k( ¼ ð!fÞ&1A1 Mpc;mFn½k(Gm½k(: (A2)

Since we are now only provided with the numerical value
of the waveform as a function of time, we cannot perform
the same factorization of the waveform as for stationary
phase templates. Instead, to compute the FINDCHIRP data
segment Fn½k(, we remove the template-dependent ampli-
tude by making the replacement k&7=6 ! 1 in Eq. (8.6).
Similarly, the form of A1 Mpc;m is now much simpler, with
A1 Mpc;m ¼ 1.

To construct the FINDCHIRP template Gm½k(, we con-
struct a segment of length N sample points and populate
it with the discrete samples of the template waveform
h1 Mpc;m½j(. The waveform is sampled at the sampling
interval of the matched filter !t. When we place the
waveform in this segment, we must ensure that the termi-
nation of the waveform is placed at the sample point j ¼ 0,
i.e., t0 ¼ 0. For example, if the template is a post-
Newtonian waveform generated in the time-domain [40],
then it is typical to end the waveform generation at the time
which the frequency evolution of the waveform ceases to
be monotonically-increasing and not the time at which the
gravitational-wave frequency goes to infinity. Thus the last
nonzero sample point of the generated template may not
correspond to the formal time of coalescence. If the algo-
rithm generating the waveform provides the FINDCHIRP

algorithm a formal coalescence time, the waveform is
placed so that the coalescence time is at the last sample
point in the segment. Any subsequent signal (such as
merger and ringdown, in the case of EOB) is wrapped
around to the start of the segment. If a formal coalescence
time is not provided, the waveform is placed so that the last
nonzero sample of the template is at the end of the seg-
ment. As discussed in Sec. III, this causes some ambiguity
in the meaning of the recorded arrival time, but as long as
this is consistent among all detectors in the network, this is
not a significant effect. After placing the waveform in the
segment, we construct the discrete forward Fourier trans-
form of the waveform, as described by Eq. (2.3) and
construct

Gm½k( ¼
'
!f*~h.1 Mpc;m½k( klow * k < khigh;m

0 otherwise:
(A3)

Finally, we construct the normalization constant

&2m ¼ 4!f
Xkhigh;m&1

k¼klow

*&2Q½k(j*~h1 Mpc;m½k(j2; (A4)

which is now dependent on the template parameters. Once
we have constructed these quantities we may proceed with
the FINDCHIRP algorithm described in Sec. VIII and IX to
obtain the signal-to-noise ratio and the value of the chi-
squared veto for the particular template we have chosen.
The computational operations required per template are
increased by OðN logNÞ for the additional real-to-half-
complex forward FFT to construct ~h1 Mpc;m, and OðNÞ
operations to construct &2m.

APPENDIX B: BIAS IN MEDIAN POWER
SPECTRUM ESTIMATION

Here we compute the bias & of the median of a set of
periodograms relative to the mean of a set of periodograms.
We assume that the periodograms are obtained from
Gaussian noise. In this Appendix, let us focus on one
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frequency bin of the periodogram, and for brevity we adopt
the symbol x for the power in the frequency bin, that is, we
define x‘ ¼ P‘½k( for ‘ ¼ 1; . . . ; n. (Here n is the number
of periodograms being averaged. It is either NS or NS=2
depending on the choice of method.) Let fðxÞ be the
probability distribution function for x. For Gaussian noise,
fðxÞ ¼ $&1e&x=$ where

$ ¼ hxi ¼
Z 1

0
xfðxÞdx (B1)

is the population mean of x. So $ ¼ hP½k(i. The popula-
tion median x1=2 is defined by

1

2
¼
Z x1=2

0
fðxÞdx (B2)

which yields

x1=2 ¼ $ ln 2: (B3)

Thus the bias of the population median is & ¼ ln2.
The sample mean is unbiased compared to the popula-

tion mean. The sample mean is

$x ¼ 1

n

Xn

‘¼1

x‘: (B4)

The expected value of $x is

h $xi ¼ 1

n

Xn

‘¼1

hx‘i ¼ $ (B5)

so $x is an unbiased estimator of $.
The sample median, however, does have a bias. The

sample median is:

xmed ¼ medianfx‘g: (B6)

To compute the bias, we first need to obtain the probability
distribution for the sample median.

For simplicity, assume now that n is odd. The probability
of the sample median having a value between xmed and
xmed þ dxmed is proportional to the probability of one of
the samples having a value between xmed and xmed þ dxmed

times the probability that half of the remaining samples are
larger than xmed and the other half are smaller than xmed.
Thus, the probability distribution for xmed is given by
gðxmedÞ where
gðxmedÞdxmed ¼ C½1&QðxmedÞ(mQmðxmedÞfðxmedÞdxmed

(B7)

where m ¼ ðn& 1Þ=2 is half the number of remaining
samples after one has been selected as the median. Here,
QðxÞ is the upper-tail probability of x, i.e., the probability
that a sample exceeds the value x

QðxÞ ¼
Z 1

x
fðxÞdx ¼ e&x=$; (B8)

where the second equality holds for the exponential distri-
bution function corresponding to the power in Gaussian

noise. The normalization factor C is a combinatoric factor
which arises from the number of ways of selecting a par-
ticular sample as the median and then choosing half of the
remaining points to be greater than this value. Thus it has
the value of n (number of ways to select the median
sample) times n& 1 ¼ 2m choose ðn& 1Þ=2 ¼ m (num-
ber of ways of choosing half the points to be larger)

C ¼ n-
2m

m

 !
¼ 1

Bðmþ 1; mþ 1Þ ; (B9)

where Bðx; yÞ ¼ R
1
0 t

x&1ð1& tÞy&1dt is the Euler beta func-
tion. This factor can also be obtained simply by normaliz-
ing the probability distribution gðxmedÞ. To do so it is useful
to make the substitution t ¼ QðxmedÞ so that dt ¼
&fðxmedÞdxmed and

1 ¼
Z

gðxÞdx ¼
Z 1

0
Ctmð1& tÞmdt

¼ CBðmþ 1; mþ 1Þ: (B10)

Now we can compute the expected value for the median.
Note that for the exponential probability distribution,
hxmedi ¼ &$ lnt. Thus xmed ¼ &C$

R
1
0 t

mð1& tÞm lntdt.
To evaluate the integral, start with the definition (above)
of the Euler beta function. Differentiate it with regard to
the first argument, and use the definition of the digamma
function c ðzÞ ¼ %0ðzÞ=%ðzÞ to obtain

hxmedi¼½c ð2mþ2Þ&c ðmþ1Þ($¼$
Xn

‘¼1

ð&1Þ‘þ1

‘

(B11)

where we have used Eqs. 8.365.6, 8.365.2, and 8.375.2 of
Ref. [66] to reduce c . The bias factor is therefore

& ¼
Xn

‘¼1

ð&1Þ‘þ1

‘
(B12)

for odd n. This result makes sense: As n ! 1 the series
approaches ln2which is the bias for the population median.
However, for n ¼ 1, & ¼ 1, so there is no bias (the median
is equal to the mean for one sample!).

APPENDIX C: CHI-SQUARED STATISTIC
FOR A MISMATCHED SIGNAL

For simplicity we write the chi-squared statistic [13] in
the equivalent form [cf. Eq. (7.1)]

,2½j( ¼
Xp

‘¼1

jz‘½j( & z½j(=pj2
(2=p

; (C1)

where

z‘½j( ¼ 4!f
Xk‘&1

k¼k‘&1

~s½k(~h.1 Mpc½k(
S½k( e2!ijk=N; (C2)
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z½j( ¼
Xp

‘¼1

z‘½j(; (C3)

and

(2 ¼ 4!f
XbðN&1Þ=2c

k¼1

j~h1 Mpc½k(j2
S½k( : (C4)

For brevity we have dropped the indices n and m; the
explicit dependence on j will also be dropped hereafter.
In this Appendix we further simplify the notation by adopt-
ing normalized templates ~u½k( ¼ ~h1 Mpc½k(=(. In terms of
these templates we define the inner products as in [13]

ðs; uÞ‘ ¼ 4!f
Xðk‘&1Þ

k¼kð‘&1Þ

~s½k(~u.½k(
S½k( e2!ijk=N (C5)

for the p different bands, which are chosen so that
ðu; uÞ‘ ¼ 1=p, and the inner product

ðs; uÞ ¼
Xp

‘¼1

ðs; uÞ‘ ¼ 4!f
XbðN&1Þ=2c

k¼1

~s½k(~u.½k(
S½k( : (C6)

With this notation, the signal-to-noise ratio is given by
)2 ¼ jðs; uÞj2 and chi-squared statistic is

,2 ¼
Xp

‘¼1

jðs; uÞ‘ & ðs; uÞ=pj2
1=p

¼ &jðs; uÞj2 þ p
Xp

‘¼1

jðs; uÞ‘j2: (C7)

To see how the chi-squared statistic is affected by a
strong signal (considerably larger than the noise)4, suppose
that the detector output s½j( consists of the gravitational
waveform av½j( where a specifies the amplitude of the
gravitational-wave. Here v½j( is also a normalized [in
terms of the inner product of Eq. (C6)] gravitational wave-
form that is not exactly the same as u½j(. The discrepancy
between the two waveforms is given by the mismatch

' ¼ 1& jðv; uÞj: (C8)

The mismatch is the fraction of the signal-to-noise ratio
that is lost by filtering the true signal av½j( with the
template u½j( compared to if the template v½j( were
used. The chi-squared statistic is

,2 ¼ &a2jðv; uÞj2 þ pa2
Xp

‘¼1

jðv; uÞ‘j2

* &a2jðv; uÞj2 þ pa2
Xp

‘¼1

ðv; vÞ‘ðu; uÞ‘

¼ &)2 þ a2 * 2a2' ) 2)2' (C9)

where we have used the Schwarz inequality to obtain the
second line and the normalization condition ðu; uÞ‘ ¼ 1=p
to obtain the third. The final approximation assumes that
' 2 1. Thus, the chi-squared statistic is offset by an
amount that is bounded by twice the squared signal-to-
noise ratio observed times the mismatch factor. There is no
offset for a template that perfectly matched the signal
waveform.
It can be shown [13] that in the presence of a signal and

Gaussian noise that ,2 has a noncentral chi-squared dis-
tribution [62] with - ¼ 2p& 2 degrees of freedom and a
noncentral parameter . & 2)2' (where now . might
possibly be slightly greater than 2' times the measured
signal-to-noise ratio squared owing to the presence of the
noise). This distribution has a mean value of -þ . and a
variance of 2-þ 4.. We see then that the modified chi-
squared statistic # of Eq. (9.5) has a mean of & 2 and a
variance of& ð4 or 8Þ=ðpþ )2'Þ (4 when p / )2' and 8
when p 2 )2') for Gaussian noise. Thus wewould expect
to set a threshold on # of #? , a few.

APPENDIX D: DISTANCE CONVENTIONS

The effective distance, Deff , is a measure of the inverse
amplitude of a gravitational-wave signal produced in a
detector. For a binary that is optimally located (directly
above or below a two-arm interferometric detector) and
oriented (where the binary’s orbit is viewed face-on), the
effective distance is equal to the actual distance, D. For a
source that is not optimally located or oriented, the signal
is weaker than one from an optimally located and oriented
source at the same actual distance, and therefore the effec-
tive distance is greater than the actual distance.
If a signal from a system having a total mass M, a

reduced mass $, and an effective distance Deff is present
in a detector’s data stream, so that it induces a strain hðtÞ on
the detector, then the expected signal-to-noise ratio found
for a matched-filter search is

% ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
Z 1

0

j~hðfÞj2
SnðfÞ

df

s

¼
!
1 Mpc

Deff

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

1 MpcðM;$Þ
Z 1

0

f&7=3

SnðfÞ
df

s
(D1)

if the data is filtered with a template that has exactly the
same waveform parameters as the signal. A common
source of confusion is the use of the term ‘‘signal-to-noise
ratio’’ in reference to the matched-filter output for a par-
ticular template, )mðtÞ, as well as in reference to the
measure of the strength of a signal relative to a detector’s
noise, %. The latter should be called the expected signal-to-
noise ratio, while the actual observed signal-to-noise ratio
will differ owing to the presence of random noise as well as
the possible mismatch between the true signal and the
template used in filtering.

4The strong-signal assumption holds if p& 1 2 2a2'. This
can be seen from a full calculation, cf. Eq. (6.24) of Ref. [13].
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The effective distance is related to other distances that
have become widely used in gravitational-wave physics.
The horizon distance, Dhor, is the effective distance of a
particular source, a 1:4M!–1:4M! binary neutron star
system, that would produce an expected signal-to-noise
ratio % ¼ 8. That is, the horizon distance is defined by

Dhor ¼
1 Mpc

%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

1 MpcðM;$Þ
Z 1

0

f&7=3

SnðfÞ
df

s
; (D2)

where % ¼ 8, M ¼ 2:8M!, and $ ¼ 0:7M!. Horizon dis-
tance is therefore a measure of the sensitivity of a detector:
it depends on the integral of the inverse power spectral
density with a frequency weighting of f&7=3.

The sense-monitor range [63], R, is related to the
horizon distance by R ¼ FDhor where F&1 ’ 2:2648.5

It is called sense-monitor range after the data monitor
SENSEMONITOR [64] that is run in the LIGO control rooms.
The sense-monitor range represents not the farthest
distance to which a detector is sensitive, but, rather, the
radius of a sphere that would contain as many sources as
the number that would produce an expected signal-to-noise
ratio % ¼ 8 in a detector under the assumption of a homo-
geneous distribution of sources having random orienta-
tions. Specifically, suppose that there are Nhor sources
homogeneously distributed in a sphere of radius Dhor.
Each of these sources has an effective distance Deff (which
is always greater than or equal to its actual distance D).
The number Ndet of these sources that are detectable (i.e.,
which would produce an expected signal-to-noise ratio
% ¼ 8) is simply the number of the sources that have
Deff * Dhor; the quantity F 3 ¼ Ndet=Nhor is the fraction
of the universe within the horizon distance that is actually

probed by the detector. (Note that F is not equal to 5&1=2,
as it is often mistaken to be.)
While the actual distance,D, is a physical parameter of a

source, the effective distance Deff is related to the inverse
of the strain amplitude seen in a detector. The horizon
distance Dhor and sense-monitor range R, on the other
hand, are not related to an actual source but rather are
measures of the sensitivity of the detector. The horizon
distance is a representation of the maximum distance to
which a detector can see, while the sense-monitor range
describes the volume that may be surveyed by a detector.
Finally, Ref. [65] defines a distance quantity which is

useful in the computation of rate limits on coalescing
binaries [43]. If an inspiral signal observed in the detector
does not terminate in the sensitive band of the detector (as
is the case forM & 10M! binaries in Initial LIGO), then it
follows from Eq. (3.4b) that the amplitude of the waveform
is proportional to M&5=6Deff . For the purpose of comput-
ing the efficiency of a search, it is convenient to define the
chirp distance

Dc ¼
!MBNS

M

"&5=6
Deff ; (D3)

where MBNS is the chirp mass of a binary with m1 ¼
m2 ¼ 1:4M!.

APPENDIX E: EXTENSION TO HIGHER
POST-NEWTONIAN ORDERS

Extending to the FINDCHIRP algorithm to use higher
post-Newtonian orders is straighforward. At 3.5 post-
Newtonian order, the expression for the chirp time given
by Eq. (3.5a) becomes (see Eq. (3.8b) of Ref. [36])

Tchirp¼
5

256%

GM

c3

'
v&8
lowþ

!
743

252
þ11

3
%
"
v&6
low&

32

5
!v&5

lowþ
!
3058673

508032
þ5429

504
%þ617

72
%2

"
v&4
lowþ

!
13

3
%&7729

252

"
!v&3

low

þ
#
6848/E

105
&10052469856691

23471078400
þ128!2

3
þ
!
3147553127

3048192
&451!2

12

"
%&15211

1728
%2þ25565

1296
%3þ6848

105
lnð4vlowÞ

$
v&2
low

þ
!
14809

378
%2&75703

756
%&15419335

127008

"
!v&1

low

(
(E1)

and the stationary phase approximation to 3.5 post-Newtonian order is given by Eqs. (3.4a) and (3.4b) with the stationary
phase function extended to include higher post-Newtonian terms (see Eq. (3.18) of Ref. [36])

"ðf;M;$Þ¼2!ft0&2#0&
!

4
þ 3

128

1

%
v&5

'
1þ

!
3715

756
þ55

9
%
"
v2&16!v3þ

!
15293365

508032
þ27145

504
%þ3085

72
%2

"
v4

þ
!
38645

756
&65

9
%
"#

1þ3ln
!
v

v0

"$
!v5þ

#
11583231236531

4694215680
&640

3
!2&6848

21
/E&

6848

21
lnð4vÞ

þ
!
&15737765635

3048192
þ2255

12
!2

"
%þ76055

1728
%2&127825

1296
%3

$
v6þ

!
77096675

254016
þ378515

1512
%&74045

756
%2

"
!v7

(
;

(E2)

5The factor 2.2648 is equal to 4=ð3- 1:84Þ1=3 where 1.84 is the value in Eq. (5.3) of [63].
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where /E ) 0:577216 is the Euler constant, and v is the post-Newtonian parameter given by Eq. (3.4d). Here v0 is an
arbitrary reference value for the post-Newtonian parameter, which is normally taken to be v0 ¼ 1.
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