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Abstract

In distributed detection, there does not exist an automatic way of gen-

erating optimal decision strategies for non-affine decision functions.

Consequently, in a detection problem based on a non-affine decision

function, establishing optimality of a given decision strategy, such as a

generalized likelihood ratio test, is often difficult or even impossible.

In this thesis we develop a novel detection network optimization tech-

nique that can be used to determine necessary and sufficient condi-

tions for optimality in distributed detection for which the underlying

objective function is monotonic and convex in probabilistic decision

strategies. Our developed approach leverages on basic concepts of op-

timization and statistical inference which are provided in appendices in

sufficient detail. These basic concepts are combined to form the basis

of an optimal inference technique for signal detection.

We prove a central theorem that characterizes optimality in a variety

of distributed detection architectures. We discuss three applications of

this result in distributed signal detection. These applications include

interactive distributed detection, optimal tandem fusion architecture,

and distributed detection by acyclic graph networks. In the conclusion

we indicate several future research directions, which include possible

generalizations of our optimization method and new research problems

arising from each of the three applications considered.

Keywords: Function optimization, Statistical inference, Optimal hypothesis testing, Dis-

tributed detection
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Chapter 1

Introduction

1.1 Problem description and relevance

The problem

In complex statistical decision problems such as in distributed, sequential, or dy-

namic settings, the decisions from earlier stages serve as part of the data for deci-

sions in the later stages. Therefore, even if the decision function for the decision

at the first stage is an affine function of the initial decision probabilities, the deci-

sion functions at later stages are in general nonlinear in the probabilities of earlier

decisions.

For distributed detection in particular, various types of decision functions ap-

pear in the literature, along with a variety of numerical algorithms for optimizing

seemingly different classes of decision functions. However, there does not seem to

exist any attempt to provide an efficient optimization procedure capable of stat-

ing explicit model-independent decision rules applicable to all monotonic convex

decision functions (i.e., decision functions which are monotonic and convex in de-

1



CHAPTER 1. INTRODUCTION 2

cision probabilities) without resorting to suboptimal techniques (e.g., numerical

programming and simulation) even for the simplest types of problems.

We intend to provide such a decision optimization framework and, hopefully,

generalize the discussion to include monotonic subharmonic decision functions. We

will show, in particular, that given any convex decision function to be optimized,

it is always possible to decrease the space of optimization variables (no matter how

large) to a set whose cardinality is no larger than the product of the cardinalities

of the sets of decisions, hypotheses, and network components such as sensors. This

reduction is completely independent of any network model of distributed detection.

The key observation that makes the reduction noted above possible is the fact

that every extremum, i.e., maximum or minimum, of a differentiable convex func-

tion is either a boundary point of its domain or a point where its derivative equals

zero.

Importance

It is not too difficult to observe that the optimization of two different decision

functions F1 and F2 can yield two decision rules R1 and R2 that are identical or

equivalent in the sense that they have decision regions of the same analytical form

and there is a one-to-one correspondence between the set of threshold parameters

T1 that determines R1 and the set of threshold parameters T2 that determines R2.

Therefore it is clearly inefficient to directly compute R2 when R1 has already been

computed.

We aim to show that there is only one type of decision rule or strategy (up

to the equivalence stated above) that optimizes every monotonic convex decision

function, even in the distributed setting. This should significantly reduce the ef-
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fort involved in computing decision rules for decision functions in the monotonic

convex class. Moreover, this analysis reveals that if sensor observations are con-

ditionally independent and follow certain simple distributions (e.g., exponential

family), then the decision problem becomes analytically tractable even for certain

complex situations, such as that of distributed detection over acyclic graphs, as

long as the decision functions are monotonic and convex.

In distributed detection literature, apparently different algorithms exist for

computing decision rules for objective functions in the monotonic convex class.

However, with our analysis, only one such algorithm may be necessary.

1.2 Related work and contributions

Almost every research paper on distributed detection first specifies a decision func-

tion, and then proceeds to obtain decision rules serving as necessary (and some-

times sufficient) conditions for optimality. To provide these rules, the authors tend

to rely on the following.

(a) Susceptibility of the optimization problem to person-by-person optimization

(PBPO) methods, especially when the underlying objective function is affine

in decision probabilities. Each local sensor rule is derived under the assump-

tion that optimal rules of all other sensors are given. For example, PBPO

methods have been employed in [1, 2, 3, 4, 5, 6, 7, 8, 9].

(b) Suboptimal methods (e.g., generalized likelihood ratio tests) based on well

known optimal solutions of simpler problems. At least one of the basic hy-

potheses is composite, and detection of a given composite hypothesis in-

volves optimization over its components. Generalized likelihood ratio tests
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have been used for example in [10, 11, 12, 13].

(c) Susceptibility of the optimization problem to dynamic programming tech-

niques, especially in the context of sequential distributed detection. Opti-

mization is performed repeatedly in several consecutive steps, where opti-

mization at any given step utilizes suboptimal input from previous steps.

For example, dynamic programming methods are found in [14, 15, 16, 9, 17].

Any success with the first two (and possibly the third) methods above is mostly

a consequence of the monotonic and convex nature of the underlying decision

function. The third method, i.e., dynamic programming, attempts to avoid the

problem of a large space of optimization variables by sequentially incrementing the

number of active optimization variables until a desired level of accuracy is reached.

All of these methods fail to recognize, and to properly utilize, the automatic

reduction in the space of optimization variables associated with convex decision

functions in general, as well as automatic optimality conditions which hold for

monotonic convex decision functions in particular. Consequently, much greater

effort than necessary is often required in establishing sufficiency (and hence opti-

mality) of necessary conditions given in the form of local sensor decision strategies.

This is a problem we intend to address in some detail.

The main contributions of this thesis are the following.

1. Optimal hypothesis testing (Chapter 3): We extend work on optimal detec-

tion initiated in [18, 19]. Specifically, we prove that every monotonic convex

decision function has a unique optimum. We derive the general structure of

optimal decision rules that represent the necessary and sufficient conditions

for this optimum.
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2. Interactive distributed detection (Chapter 4): Based on the optimality cri-

terion obtained in Chapter 3, we present work done in [19] on interactive

distributed detection, which is related work done in [18, 20]. We consider a

decision fusion setup in which two sensors in tandem interact once in a mem-

oryless fashion, by exchanging 1-bit decisions in a two-way communication

process. It is shown that this interactive fusion can improve fixed sample

performance of the Neyman-Pearson (NP) test but not large sample asymp-

totic performance of the test. This result is then extended to more realistic

situations involving multiple rounds of memoryless interaction, multiple pe-

ripheral sensors, and the exchange of multibit decisions.

3. Optimal fusion architecture (Chapter 5): Again, based on the optimality

criterion in Chapter 3, we present work done in [21] on the problem of de-

termining the preferred two-sensor tandem fusion architecture in distributed

detection of a deterministic, or Gaussian-distributed random, signal in Gaus-

sian noises. Using an optimal version of a suboptimal decision strategy em-

ployed in [12, 13], as well as some techniques used therein, we determine

that for low signal-to-noise ratio (SNR), the better sensor, i.e., the one with

a larger SNR, should serve as the fusion center.

4. Detection over acyclic graphs (Chapter 6): We present some preliminary

work on Bayesian distributed detection with sensor networks in the form

of acyclic directed graphs. Specifically, we prove that if the communicated

messages among sensors are such that each sensor passes the same message to

every sensor receiving from it, then the optimal local decision rules for such

a network are not more complicated than those of the simple tandem and

parallel networks. Similar work was done in [3, 4] under assumption of binary
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hypotheses, binary decisions, and at most a single connecting path between

any two sensors. Our conclusions above do not require these assumptions.

We would like to remark that the results of Chapter 6 in particular may, or may

not, be known. However, what is important for us in that chapter is not novelty

but the relative ease with which the results therein can be obtained with the help

of Proposition 3.1. In other words, Chapter 6 is mainly illustrating applicability

of optimal hypothesis testing as described in Section 3.3.

1.3 Organization and prerequisite

The material in this thesis can be subdivided into three parts as follows.

For convenience, we have presented a review of essential preliminary material

(Part III) as appendices. This part contains a brief review of basic concepts of

optimal inference. These concepts include those of optimization of convex functions

(Appendix A) and of statistical information inference (Appendix B). The latter

includes a discussion of probability, statistics, point estimation, and hypothesis

testing. Part III does not only make our work more self contained but also contains

important results upon which the results of part I are based.

Part I considers statistical inference for signal detection, and contains the for-

mulation of an optimal inference procedure for signal detection based on the main

results of Part III. We begin with a brief nontechnical discussion of statistical

decision theory in Chapter 2. This is then followed by a detailed discussion of op-

timal hypothesis testing in the context of signal detection in Chapter 3. Here, we

first formulate the optimization problem for convex decision functions and prove

a central theorem that can be applied in a variety of distributed detection archi-
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tectures. Then, for illustration of application of the results, we derive centralized

and distributed sensor network decision rules for Bayesian detection.

Part II deals with some applications of the optimal inference procedure of Part

I in distributed detection. We summarize the main points of research work on

distributed detection based on the methods we have developed in the previous

chapters. In some cases, detailed proofs of theorems are not included since they

can be found in the references. Each section is an overview of particular research

papers. When possible, we indicate the papers that are being summarized, along

with the references listed in those papers.

The applications considered in Part II include interactive distributed detec-

tion (Chapter 4), optimal two-sensor tandem fusion architecture (Chapter 5), and

detection over acyclic graph networks (Chapter 6). In the presentation of each ap-

plication, we often begin with theoretical results which are essentially corollaries

of the main results of Chapter 3. This is then followed by performance analysis. In

our case, performance analysis is done simply by plotting the optimal value of the

decision function against different observational constraints (i.e., various possible

types and qualities of data taken by the sensors), against different network patterns

(i.e., the number and distribution of sensing nodes and links), or against different

communication constraints (i.e., quality and capacity of the communication links).

We conclude the thesis in Chapter 7, where we summarize our main results and

applications, identify possible future directions of research, and briefly comment

on why our central results from Chapter 3 can be applied in sequential detection

in particular.

Throughout the discussion, we take for granted that the reader is familiar with

basic concepts of linear algebra such as spanning, independence, bases, dimension,

and matrix representation of linear transformations. We also assume acquaintance
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with basic notions of vector calculus in Rn, which include the volume integral, (to-

tal) derivative, partial derivative, gradient, and directional derivative of a function

from Rn to R. Some knowledge of basic probability and statistics would be helpful

as well.

1.4 Distributed detection

Since this thesis is mainly concerned with distributed detection, we will now briefly

introduce distributed detection before proceeding. As we will see in Section 3.2,

detection is a means of data compression in which the resulting output directly

infers the state of a physical phenomenon (such as the presence or absence of a

signal). Detection uses methods of optimization theory, statistical inference, and

statistical decision theory. In the distributed detection setting, several detection

devices called sensors perform detection separately to achieve a common goal. The

main reason for studying distributed detection is contained in the following.

In practice, a distributed sensor network (i.e., a data processing system con-

sisting of several sensors located far apart, in some precise sense) often has limited

communication capabilities/resources. This makes distributed processing unavoid-

able. For example, two or more persons making a single decision together cannot

function as a centralized system since they are only capable of exchanging sum-

maries of their thoughts. Distributed detection provides a framework that can

enhance data processing by such a system.
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Phenomenon

Sensor 1 Sensor 2

Sensor 3

Decision 2Decision 1

Decision 3

Phenomenon

Sensor 1 Sensor 2

Decision 2

Decision 1
FC

FC

Parallel Network Serial Network

Interaction

Observation 1 Observation 2Observation 1 Observation 2
Observation 3

Figure 1.1: Basic decision fusion networks

A distributed sensor network is often specified in the form of a graph consisting

of a set of nodes and a set of arrows. Each node represents a sensor making an

observation. Each arrow represents a communication link between two sensors

and points in the direction in which information must flow. As shown in Fig

1.1, which is based on diagrams found in [22], the simplest nontrivial distributed

detection network contains about six basic elements - namely - at least two sensors,

a phenomenon accessible to all sensors, sensor observations of the phenomenon as

main input, communication links between sensors, sensor decision outputs, and

sometimes a fusion center, i.e., a sensor whose output is considered to be “the final

decision”.

The following are some major benefits and advantages of distributed detection

over centralized detection.

1. Amendable performance: Detection performance can be improved by increas-

ing inter-sensor connectivity or through interactive processing and feedback.

2. Robustness or fault tolerance: If a few sensors fail, the distributed detection
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system can still function.

3. Reduced overload risk : By distributing responsibility, the risk of over tasking

(or overloading) one sensor is reduced.

4. Reduced communication cost : Less communication resources/capabilities are

required by a distributed detection network, since sensors exchange only

summaries of their observations.

The most significant disadvantage of distributed detection is delay in process-

ing, i.e., a distributed system requires a longer processing time. Also, both the

design and the performance analysis of a distributed detection system are more

complex/challenging when compared with those of its centralized counterpart.



Part I

Detection
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Chapter 2

Statistical Decision Theory

2.1 Introduction

This chapter is intended to provide motivation for, as well as improve our under-

standing of the practical significance of, the analysis to be presented in the next

chapter. Since it is a special introduction to Chapter 3, we will be brief and con-

cerned mainly with nontechnical aspects of the basic structure of a simple decision

process. The question of how we can actually make certain types of decisions

in practice is the subject of Chapter 3. The discussion here will illustrate the

usefulness of statistical hypothesis testing in general.

A concise introduction to statistical decision theory is found in [23], and non-

technical introductions to the same are found in [24, 25]. Other useful references

include [26, 27, 28].

The main motivation for, as well as the general definition of, decision theory

are contained in the following. Making decision under uncertainty is a task that

increases in difficulty as society grows and increases in complexity. Decision theory

12
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provides a general structure or framework aimed at simplifying the decision making

task.

Statistical decision theory is a method that uses observational data to enhance

the decision making process when uncertainty is involved. It is a very interdisci-

plinary subject with varying perspectives, approaches, and applications. Never-

theless, the basic decision structure is the same in all cases.

The items we will discuss include “basic elements of a simple decision process”,

“classification of simple decision processes”, “extensions to more complex decision

processes”, and “some applications of statistical decision theory”.

2.2 Basic elements of a simple decision process

In a simple decision process, there are three basic elements, the decision, the (often

unknown) circumstance, and the consequence.

For concreteness, we will work directly with an example. An example that

easily illustrates the statistical aspect of a simple decision process is that of deciding

whether an accused person is guilty, partly guilty, or not guilty of a crime.

When given this decision task, we have the following three basic components

(See Figure 2.1).

1. The decision: This is one of a number of alternative actions to choose from.

For our example, these actions or decision values are “The accused is guilty”,

“The accused is partly guilty”, “The accused is not guilty”.

2. The circumstance: This is the existing one among a number of possible

natural conditions/states on which the objective or appropriate decision value

depends. The circumstance is often uncertain, i.e., not completely known to



CHAPTER 2. STATISTICAL DECISION THEORY 14

Criminal Innocent
Decision

Not Gulity

Guilty

Circumstance

Punish InnocentPunish Criminal

Free InnocentFree Criminal

Partly Guilty

Warn Criminal Warn Innocent

Figure 2.1: Table of consequences and associated costs

the decision maker. For our example, these conditions are “The accused

committed the crime”, “The accused did not commit the crime”.

3. The consequence: This is one of a number of (anticipated) decision-circumstance

outcomes, to each of which a cost of some sort is assigned. For our example,

these outcomes are “Punish a guilty person”, “Punish an innocent person”,

”Warn a guilty person”, “Warn an innocent person”, “Free a guilty person”,

“Free an innocent person”.

We will refer to the above three elements as internal elements of the simple

decision process. In order to classify simple decision types, a few more conceptual

elements of the simple decision process are necessary.

2.3 Classification of simple decision processes

Our classification of simple decision processes is based on a number of external

elements – namely – preference, prior information, and data.

1. Preference: The decision process is objective if it is based on a function of
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the internal elements (i.e., the decision, circumstance, and consequence) that

the decision seeks to optimize, otherwise, the decision process is subjective.

2. Prior information: The decision process is Bayesian if it uses prior knowledge

(i.e., past experience with the circumstances), and it is frequentist or classical

otherwise.

3. Data: The decision process is statistical if it uses data, which consists of

observations from experiment on any systems that are directly or indirectly

affected by the existing circumstance. Otherwise, the decision process is

non-statistical.

In a statistical decision process, data can reduce uncertainty of the circum-

stance, i.e., it can partly reveal the circumstance. Consequently, data can improve

decision quality. This is the main motivation for considering a statistical decision

process.

We will mainly be concerned with objective statistical decision processes, which

involve the following. In order to reduce uncertainty in the circumstance, we

carry out a statistical investigation or experiment by collecting data from systems

whose behaviors depend on the circumstance. The data is then used to improve

decision making. The decision as a function of data is called a decision strategy.

Our decision preference is represented by a function that depends on the decision

strategy, the circumstances, and any costs associated with the consequences. Such

a function is called a decision function, [28]. The decision objective is to select

an optimal decision strategy, which is any decision strategy that minimizes the

decision function.

Based on the above discussion, a convenient mathematical tool for handling

statistical decision problems is hypothesis testing, which is introduced in Section
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B.5. Based on the discussion above and that in Section B.5, a statistical decision

process is, equivalently, a hypothesis test. We will see in Chapter 3 that the

problem of detecting a signal embedded in corrupted measurements is a statistical

decision problem, which can therefore be equivalently expressed as a hypothesis

testing problem.

2.4 Extensions to decision processes in practice

In practice a typical decision process can contain several simple decisions, and may

also involve several decision makers. For our purpose, these more complex decision

processes can take one of the following labels.

1. Sequential : A decision process is sequential if it consists of several consecutive

simple decisions.

2. Distributed : A decision process is distributed (or decentralized) if it involves

several decision makers.

3. Hybrid : A decision process is hybrid if it is both sequential and distributed.

In Chapters 3, 4, 5, 6, we will encounter applications involving decision pro-

cesses of the above types. This will be in the context of signal detection.

2.5 Some applications of statistical decision the-

ory

In each of the cases below, the role of statistical decision theory becomes apparent

when one attempts to answer the posed questions.
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1. Signal detection: Is there a signal or no signal? How do we statistically

extract it from noisy observations?

2. Marketing : Is there demand for a given product? How do we statistically

determine it?

3. Management : Which task or who needs a resource? How can we be statisti-

cally sure?

4. Forecasting/Prediction: What is going to happen? How can we find out

statistically?

Discussions on various applications of statistical decision theory can be found with

the help of [23, 24, 25, 26, 27].



Chapter 3

Optimal Signal Detection

3.1 Introduction

In this chapter, which is a synthesis of preliminary results discussed in some detail

in Appendices A, B, we study optimization of convex functions of decision rules

or of decision probability functions for the purpose of distributed signal detection.

Here, we should be mindful of the fact that the objective functions we shall deal

with in real applications are not merely functions on Rn as discussed in Appendix

A, but functions on function spaces, i.e., functions whose arguments are themselves

functions. Such functions are also called functionals.

Routine problems considered in convex optimization mostly involve either the

minimization of a convex function or the maximization of a concave function. How-

ever, problems that require maximization of a convex function, or minimization

of a concave function, also arise. For example, in certain distributed detection

problems the Kullback-Leibler distance is a performance metric that is convex in

the variables Pr(decision|data), which are the pmf’s of local sensor decisions condi-

18
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tioned on data. The optimal decision rules are those that maximize this function.

The goal is to first provide differential relations that serve as necessary and

sufficient conditions for the maximum of any detection performance metric that

is a differentiable monotonic convex function of Pr(decision|data). Next, we then

express optimal local sensor decision rules in terms of these differential relations.

Our approach is based on the following. Consider a real-valued differentiable

convex function, defined on the n-dimensional real space, which we wish to max-

imize over a convex subset of the space (See Appendix A). By carefully studying

the geometry of the graph of the function, we can derive optimality conditions

(i.e., necessary and sufficient conditions for optimality) in the form of differential

inequalities involving the derivative of the function at an optimal point (See Theo-

rem A.6). Once this has been done, the problem can then be solved with the help

of standard algorithms for solving differential inequalities.

In order to present local sensor decision rules in terms of the optimality condi-

tions, we will first restate the detection problem as a general optimization problem

in which the optimization variables in the objective function are Pr(decision|data),

i.e., the pdf’s of local decision rules conditioned on data. Optimal decision regions

will then consist of those data points that satisfy the optimality conditions. The

above procedure is presented in Section 3.3.

Notation

For convenience, we will adopt the following conventions from now on. Lower

case letters such as x, y, ... denote both random variables and their values. The

symbol
∑
x

denotes summation when x is a discrete variable, or integration when

x is a continuous variable. The expression δxx′ denotes the Kronecker delta when
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x and x′ are discrete, or the Dirac delta when x and x′ are continuous. Therefore,

wherever the identity

∂f(x)/∂f(x′) = δxx′

appears, the variables x, x′ can be tuples (x1, ..., xN), (x
′
1, ..., x

′
N) of several discrete

or continuous variables, for which we naturally define δxx′ = δ(x1,...,xN )(x′
1,...,x

′
N ) by

δ(x1,x2,··· ,xN )(x′
1,x

′
2,··· ,x′

N ) = δx1x′
1
δx2x′

2
· · · δxNx′

N
.

In addition to the above conventions, we will denote sensors by upper case letters

and their observations by the corresponding lower case letters. For example, x will

denote the observation of sensor X, y the observation of sensor Y , and so on.

3.2 The detection problem

According to the preliminary discussion in Appendix B, the estimation problem

refers to any situation in which one is faced with the task of determining the state

of a system based on a given data sample, i.e., a set of experimental observations

on the system.

(Transmitter)
Channel

(Receiver)

message

signal observation

decision

Phenomenon Sensor

s x = g(s)

u = γ(x)

Figure 3.1: Communication system
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In the detection problem in particular, we are faced with the task of extracting

the value of a discrete signal

s ∈ S = {µ0, µ1, · · · , µM−1},

(representing the unknown state of some system) from a given data sample xn =

{xi ∈ X : i = 1, 2, · · · , n}. The system here refers to one or more components, such

as the encoder, the channel, or the decoder, of a typical transmitting system. Each

observation x in the sample xn is typically viewed as a (known) random function

of the signal. That is, the observation can be expressed as

x = g(s), (3.1)

where the random function g : s ∈ S 7→ x ∈ X represents possible effects of known

system properties on the signal. Such a function g is often called a filter, owing to

its role in the signal extraction process.

We will not be dealing with the details of the encoding, channeling, and decod-

ing rules whose composition determines g in general. Instead, for the most part in

applications, we will consider the simplest case in which we assume that

x = s+ b, (3.2)

where b is white noise, i.e., a Gaussian-distributed random variable, and the signal

s may be random as well. This will be sufficient for our main application interests.

Given the observation x as in (3.2), we wish to know how much noise b there is

in x so that we can remove it and be left with s, i.e., we wish to know the value of

b = x− s. However, we do not know the actual value of s. Since the value of b is

known whenever that of s is given, we are therefore faced mainly with the problem
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of statistically deciding the true value of s from the given observation x. This is

precisely a hypothesis testing problem involving simple hypotheses

Hi : s = µi, i = 0, 1, · · · ,M − 1,

or equivalently,

Hi : x ∼ pi(x) = p(x|s = µi), i = 0, 1, · · · ,M − 1. (3.3)

Note that the distribution pi(x) is known since we have already assumed that the

distribution of b in (3.2), or of g(·) in (3.1), is known. With a slight abuse of

notation, p(x|s = µi) will also be written as p(x|Hi). Therefore the expressions

pi(x), p(x|Hi), p(x|s = µi) will all mean the same thing. Also, for notational

convenience, we will not distinguish between a single observation x ∈ xn and the

whole sample xn, i.e., x will stand for a single sample x ∈ xn as well as for whole

sample xn sometimes.

In the detection problem as described above, it is sufficient to consider decision

rules γ(x) that take the same number of values as the number of hypotheses, so

that γ(x) = i ∈ {0, 1, · · · ,M − 1} stands for acceptance of the jth hypothesis.

However, in the more general context of statistical decision theory, discussed in

Chapter 2, the number of decision values can be different from the number of

circumstance (or hypothesis) values. Moreover, in applications that require data

quantization or compression in general, we may sometimes wish to first convert

a relatively large set of observations into a smaller data set that represents the

original set of observations as best as possible for the purpose at hand.

The above comment is especially true in distributed detection with fusion,

where peripheral sensors generally compress their observations and pass them onto

a fusing sensor that makes a decision based on the compressed data. In such a
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setting, even when all sensors are using the same set of hypotheses, the output of

a peripheral sensor may, or may not, be of the same alphabet type as the output

of the fusing sensor.

We will therefore take into account the above situations in our analysis of

optimal hypothesis testing. In particular, the set of decision values will have a

cardinality which is different from that of the set of hypothesis values.

3.3 Optimal hypothesis testing

This section contains an extension of preliminary work found in [18, 19].

Recall that hypothesis testing was introduced in Section B.5, where optimal

hypothesis testing was identified as a generalization of the notion of a sufficient

statistic. We will now discuss optimal hypothesis testing and derive optimality

conditions that are valid for all convex decision functions.

Consider a test of the M simple hypotheses in (3.3). Under Hi, we will denote

the probability of a data set A ⊂ X by

Pi(A) =
∑
x∈A

pi(x).

The observation space X may be of arbitrary dimension. As in Definition B.20, a

decision rule is a mapping defined as

γ : x 7→ j ∈ {0, 1, ..., N − 1},

where γ is a deterministic function. We refer to the assignment γ(x) = j as a

decision based on the observation x. In problems where the decision output has

the same alphabet as the underlying hypothesis, i.e., N = M , the decision γ(x) = j

may be interpreted as acceptance of the jth hypothesis Hj.
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The desired decision rule γ so defined is deterministic in the sense that p(γ(x) =

j|x) = δj,γ(x), where δa,b , 1 if a = b and 0 otherwise. Therefore, once x is given

γ(x) is precisely known. As the optimum decision rule is not necessarily determin-

istic, we consider the larger set containing all deterministic and nondeterministic

decision rules. Let us write the generic decision rule as

Γ : x 7→ j ∈ {0, 1, ..., N − 1}, (3.4)

and let u = Γ(x). Then Γ = γ denotes a deterministic choice of the decision rule.

Recall as in [29] that the set of Γ is the convex hull of the set of γ. Therefore

p(Γ(x) = j) =
∑
g

p(g) p
(
γg(x) = j

)
(3.5)

where g is a random variable with probability mass, or density, function p(g) and is

independent of x. The decision optimization process simply picks the appropriate

p(g), and hence the desired p(Γ(x) = j).

As u is a random variable, making an optimal guess u = j is equivalent to

choosing p(u = j|x) such that some objective function, which we denote by S, is

optimized. Here S is a function of p(u = j|x) for all j = 0, 1, ..., N − 1 and for

all data points x ∈ X . Note that we also refer to S as the decision function (See

Definition B.20).

In general, 0 ≤ p(u = j|x) ≤ 1, for each j ∈ {0, 1, ..., N − 1}. A deterministic

decision rule is one for which p(u = j|x) takes on only the boundary values 0

and 1. For such cases, we will see in Proposition 3.1 that the decision rule can be

expressed as a partition of the data space into disjoint decision regions, i.e.,

p(u = j|x) , p(γ(x) = j|x) = IRu=j
(x), (3.6)
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where IRu=j
(x) = δj,γ(x) is the indicator function of the set Ru=j = {x : γ(x) = j},

which we call the decision region for the jth decision, and

Ru=j ∩Ru=j′ = ∅, if j ̸= j′.

When the number of decision values N equals the number of hypothesis values M ,

we may also refer to Ru=j as the acceptance region for the jth hypothesis.

In the following proposition, we establish the general structure of the opti-

mal decision rule for an important class of decision problems namely, those with

monotonic convex objective functions. In other words, this proposition solves all

monotonic convex versions of the optimization problem

maximize S
(
p(u|x)

)
subject to p(u|x) ∈ Cs

(3.7)

Proposition 3.1. Let x be a random variable or vector, and suppose the objec-

tive function S and constraint set Cs in the problem (3.7) satisfy the following

conditions.

1. Cs is a convex set.

2. S is nonconstant, differentiable, and convex on Cs in the multi-variable

{p(u|x) : u = 0, 1, ..., N − 1, x ∈ X}.

3. S is monotonic with respect to a point of the boundary ∂Cs, i.e., there is a

point p ∈ ∂Cs such that S is monotonic along every line segment through p

in the closure Cs = Cs ∪ ∂Cs. (In other words, S has the property given in

Remark 1. immediately after Theorem A.6).

4. For each j, the set of data points

Cu=j =
∪
j′ ̸=j

{
x : ∂S/∂p(u = j|x) = ∂S/∂p(u = j′|x) ̸= 0

}
(3.8)
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has zero probability.

Then every optimal decision rule is deterministic, and is uniquely (i.e., neces-

sarily and sufficiently) given by

popt(u = j|x) = IRu=j
(x), j = 0, 1, ..., N − 1, (3.9)

where the jth decision region Ru=j is specified as

Ru=j =
∩
j′ ̸=j

{
x : ∂S/∂popt(u = j|x) > ∂S/∂popt(u = j′|x)

}
. (3.10)

Note that in (3.10), the expression ∂S/∂popt(u = j|x) denotes the derivative of

S evaluated at the optimal point, i.e.,

∂S/∂popt(u = j|x) = ∂S/∂p(u = j|x)|p(u=j|x)=popt(u=j|x).

Proof. Since Cs can be simplified to a polygonal (or simplicial) set by replacing

S with a convex Lagrangian, we will assume without loss of generality that Cs is

simplicial, i.e., we will choose the constraint set to be the free (or extended Carte-

sian) product Cs =
∏

x∈X ∆N(x), where ∆N(x) is the N -dimensional probability

simplex given by

∆N (x)=

{
r⃗(x)=

(
p(u=0|x), ...,p(u=N − 1|x)

)
: p(u = i|x) ≥ 0,

N−1∑
i=0

p(u= i|x) = 1

}
⊂ [0, 1]N .

Moreover, because S is convex in each variable, it is clear that we can proceed by

optimizing S over one variable at a time while the others are held constant. Thus, it

suffices to optimize S over ∆N(x) for an arbitrary x ∈ X . In other words, we want

to maximize S with respect to r⃗(x) =
(
p(u = 0|x), ..., p(u = N − 1|x)

)
∈ [0, 1]N ,

with
∑N−1

i=0 p(u = j|x) = 1 and p(u = j|x) ≥ 0 for j = 0, · · · , N − 1.



CHAPTER 3. OPTIMAL SIGNAL DETECTION 27

If S is convex in r⃗(x), then by Remark 4. after Theorem A.6, its maximum

value occurs at one or more corner points of ∆N(x), i.e.,

r⃗opt(x) = e⃗j = (0, ..., 0, 1︸︷︷︸
jth spot

, 0, ..., 0), for some j ∈ {0, ..., N − 1}.

For each x ∈ X and each j ∈ {0, 1, ..., N−1}, condition (a) of Theorem A.6 implies

r⃗opt(x) = e⃗j ⇐⇒ popt(u = j|x) = 1

⇐⇒ for all r⃗(x) ∈ ∆N (x)\{e⃗j},
(
e⃗j − r⃗(x)

)
· ∂S/∂r⃗opt(x) > 0,

(3.11)

and,

r⃗opt(x) ̸= e⃗j ⇐⇒ popt(u = j|x) = 0

⇐⇒ for some r⃗(x) ∈ ∆N (x)\{e⃗j},
(
e⃗j − r⃗(x)

)
· ∂S/∂r⃗opt(x) < 0,

(3.12)

where ∂S/∂r⃗opt = ∂S/∂r⃗
∣∣
r⃗=r⃗opt

,
(
e⃗j − r⃗(x)

)
· ∂S/∂r⃗opt(x) is the dot-product of

the vectors e⃗j − r⃗(x) and ∂S/∂r⃗opt(x), and A\B denotes the set difference, i.e.,

A\B = {a : a ∈ A and a /∈ B}.
The region defined by x satisfying popt(u = j|x) = 1 is

Ru=j =
{
x :

(
e⃗j − r⃗(x)

)
· ∂S/∂r⃗opt(x) > 0 for all r⃗(x) ∈ ∆N (x)\{e⃗j}

}
(a)
= {x : ∂S/∂popt(u = j|x) > ∂S/∂popt(u = j′|x) for all j′ ̸= j}

=
∩
j′ ̸=j

{x : ∂S/∂popt(u = j|x) > ∂S/∂popt(u = j′|x)} ,

(3.13)

which by (3.8) is probability-wise complementary to the region defined by x satis-

fying popt(u = j|x) = 0. Therefore, (3.11) covers both cases, and is equivalent to

the deterministic rule (3.9). Note that step (a) in (3.13) is due to the following.

For fixed j, let ∆
(j)
N−1(x) be the convex hull of {e⃗j′ : for all j′ ̸= j}, which is the

face of ∆N(x) opposite to e⃗j. Then every point s⃗(x) ∈ ∆
(j)
N−1(x) can be expressed

as

s⃗(x) =
∑
j′ ̸=j

αj′ e⃗j′ , (3.14)
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max
max

p(u = 1|x)

p(u = 0|x) p(u = 0|x)

p(u = 1|x)

e⃗1 = (0, 1)

e⃗0 = (1, 0)
e⃗0 = (1, 0)

e⃗1 = (0, 1)

(a) (b)

S S

Figure 3.2: Visualization of the decision function S for N = 2: In case (a),

x ∈ Ru=1, and in case (b), x ∈ Ru=0.

for some nonnegative numbers αj′ = αj′(x) ≥ 0 such that
∑

j′ ̸=j αj′ = 1. Now,

observe that for any point r⃗(x) ∈ ∆N(x), we can write

e⃗j − r⃗(x) = e⃗j −
(
λs⃗(x) + (1− λ)e⃗j

)
= λ

(
e⃗j − s⃗(x)

) (3.14)
=

∑
j′ ̸=j

λαj′
(
e⃗j − e⃗j′

)
, (3.15)

for some λ = λ(x) ∈ [0, 1] and some s⃗(x) ∈ ∆
(j)
N−1(x).

The following is a series of important remarks regarding applicability and pos-

sible extensions of Proposition 3.1.

Remarks.

1. The binary decision rule can be simplified further. In this case, the probability

simplex ∆2(x) is the single line with equation p(u = 0|x) + p(u = 1|x) =

1. Thus, by the chain rule of differentiation, the differential operator
(
e⃗j −
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r⃗(x)
)
· ∂/∂r⃗opt(x) along ∆2(x) is equivalent to a derivative, which we denote by

∂B/∂popt(u = j|x), with the property

∂Bp(u|x)/∂p(u′|x′) = (−1)u−u′
δxx′ (3.16)

in addition to linearity and the Leibnitz rule. Hence, the binary decision regions

take the compact form

Ru=j =
{
x : ∂BS/∂popt(u = j|x) > 0

}
, (3.17)

where the superscript B in ∂B serves as a reminder to the reader of the property

(3.16) which ensures that the derivative is restricted to the probability simplex

∆2(x). The compact form of the binary decision rule as implemented by (3.16)

and (3.17) will greatly simplify calculations later on.

2. Notice that (3.9) is an implicit equation in popt(u = j|x) since the region Ru=j

also depends on popt(u = j|x). Therefore we must proceed to substitute the

equations {
popt(u = j|x) = IRu=j

(x) : j = 0, 1, ..., N − 1
}

into the objective function S, and then compute the optimal threshold values

that explicitly determine the decision regions. In the case of distributed net-

works of sensors where more than one set of local decision rules are involved,

the resulting system of equations is often analytically intractable and one has to

resort to numerical computation. This is especially the case when sensor obser-

vations are conditionally dependent, i.e., they remain dependent or correlated

under at least one of the hypotheses.

In sufficiently simple problems for which the decision regions in (3.10) can be

specified in terms of a number of threshold parameters, the optimization prob-

lem can be explicitly solved in a natural way simply by optimizing S over the
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threshold variables. This, we will refer to as the second stage of the optimization

problem, the first stage being the implicit solution as stated in the proposition.

3. Recall that for the optimal decision rule to be deterministic, as given in

(3.9), the data sets (3.8) must be null with respect to the probability measure.

Otherwise, the deterministic rule (3.9) is replaced by a randomized version

popt(u = j|x) = IRu=j
(x) +

∑
k

ρjkICk
(x), (3.18)

where {Ck} is a partition of the set

∪
j

Cu=j , Cu=j =
∪
j′ ̸=j

{
x : ∂S/∂popt(u = j|x) = ∂S/∂popt(u = j′|x) ̸= 0

}
,

and ρjk ∈ [0, 1],
∑

j ρjk = 1, are arbitrary (i.e., free) coefficients but which

must be consistent with every constraint of the optimization problem. It is

worthwhile to remark that the deterministic rule (3.9) is more easily realized

when x is continuous than when x is discrete. Thus, the randomized rule (3.18)

is often required when x is a discrete random variable.

The fact that randomization depends on nullness of the sets Cu=j generalizes a

similar observation that was made in [30, 31, 41] under the Neymann-Pearson

framework.

4. Since the Bayes risk is an affine (hence a convex) function of p(u|x), Proposition
3.1 is a direct generalization of the familiar procedure whereby the unconditional

Bayes risk

R(γ) =
∑
i,j

Cijp(γ(x) = i,Hj) =
∑
i,x

p(γ(x) = i|x)Ri(x), (3.19)

is minimized over γ simply by separately minimizing the associated conditional
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Bayes risks Ri(x) =
∑

j Cijp(x|Hj)p(Hj) over i by means of the choice

p(γ(x) = i|x) =

 1, Ri(x) < Rj(x) for all j ̸= i,

0, otherwise,

where we have assumed for simplicity that P
(
Ri(x) = Rj(x)

)
= 0 for all i and

j ̸= i.

5. If condition 3 of the proposition (i.e., the monotonicity condition) fails, then

exactly the same conclusions hold, except for the sufficiency of the decision rule

for optimality. That is, if conditions 1, 2, and 4 hold, then the optimal decision

rule is deterministic, and satisfies (3.9) and (3.10) as necessary conditions. In

that case, we must proceed, according to condition (b) of Theorem A.6, to select

a decision rule that maximizes S among all possible decision rules that satisfy

(3.9) and (3.10).

In sufficiently simple problems for which monotonicity fails, the second stage of

the optimization (as described in Remark 2. above) will in general suffer from

the local optimum problem in the sense that S, as a function of the thresholds,

possesses two or more local optima from which a global optimum must then be

picked by some other method.

6. If both conditions 3 and 4 of the proposition fail, then the randomized rule

(3.18) is necessary but not sufficient for optimality. Once again, we must pro-

ceed, according to condition (b) of Theorem A.6, to select a decision rule that

maximizes S among all possible decision rules that satisfy (3.18).

7. Using standard methods of convex optimization, Proposition 3.1 can be further

extended to include non-differentiable convex objective functions by replacing
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the derivative ∂S/∂p(u = j|x) with a subdifferential. The proposition can also

be refined to include the optimization of subharmonic objective functions.

We will now state a corollary of proposition for the minimization of a convex

function. Consider the problem

minimize S
(
p(u|x)

)
subject to p(u|x) ∈ Cs

(3.20)

Corollary 3.2. Let x be a random variable or vector, and suppose the objective

function S and constraint set Cs in the problem (3.20) satisfy the following con-

ditions.

1. Cs is a convex set.

2. S is nonconstant, differentiable, and convex on Cs in the multi-variable

{p(u|x) : u = 0, 1, ..., N − 1, x ∈ X}.

3. For each j, the set of data points

Cu=j =
∪
j′ ̸=j

{
x : ∂S/∂p(u = j|x) = ∂S/∂p(u = j′|x) ̸= 0

}
(3.21)

has zero probability.

Then every optimal decision rule is uniquely (i.e., necessarily and sufficiently)

given by

popt(u = j|x) = IRu=j
(x) + p0(u = j|x)IR0(x), j = 0, 1, ..., N − 1, (3.22)

where

Ru=j =
∩
j′ ̸=j

{
x : ∂S/∂popt(u = j|x) < ∂S/∂popt(u = j′|x)

}
, (3.23)
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and

R0 = {x ∈ X : ∂S/∂p(u = j|x) = 0 for all j = 0, 1, · · · , N − 1},

and for each j, x pair, p0(u = j|x) is the jth component of the solution of the system of

equations

{∂S/∂p(u = j|x) = 0, j = 0, 1, · · · , N − 1}.

Proof. With the help of Corollary A.7, the proof follows the same arguments as in

the proof of Theorem 3.1. We simply need to (1) reverse the inequalities that deter-

mine the decision regions, (2) account for the possibility of the minimum occurring

at the point where the derivative vanishes, and (3) recognize that monotonicity is

not necessary for uniqueness of the solution.

Remarks.

1. If the derivative of S with respect to p(u|x) is nonzero for all x ∈ X , then

the second term in (3.22) disappears.

2. If the derivative of S with respect to p(u|x) equals 0 for all x ∈ X , then the

first term in (3.22) disappears.

3. If condition 3 of the corollary fails, then we must include a randomization

term in the rule (3.22), as in (3.18), to obtain the randomized version

popt(u = j|x) = IRu=j
(x) + p0(u = j|x)IR0(x) +

∑
k

ρjkICk
(x), (3.24)

where {Ck} is a partition of the set
∪

j Cu=j, and ρjk ∈ [0, 1],
∑

j ρjk = 1,

are arbitrary coefficients but which must be consistent with every constraint

of the optimization problem.
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Proposition 3.1 will be used in Chapters 4, 5, 6 to determine optimal decision

regions with various types of objective functions, including the probability of de-

tection, KL distance, and Bayesian probability of error. First, however, we would

like to illustrate how this result can be applied. We will use the Bayesian objective

function in this illustration, while noting that the results for more general objec-

tive functions are similar. The main purpose is to demonstrate how Proposition

3.1 can be used in practical distributed detection problems. For concreteness, we

begin with a discussion of centralized sensor rules in Section 3.4. The centralized

detection process is then upgraded to a discussion of distributed sensor rules in

Section 3.5.

3.4 Single sensor rules

From Section 3.2, suppose a discrete random signal s ∈ S is observed by an isolated

sensor X as

x = s+ b ∈ X , (3.25)

where b ∈ B is a continuous random parameter whose distribution is continuous

and known, and s, b are statistically independent of one another. Let the signal

alphabet be given by S = {µ0, µ1, ..., µM−1}. Then we have a set of M hypotheses

Hj : s = µj, i.e., x = µj + b, j = 0, 1, ...,M − 1,

each of which represents a possible value of the signal s. For the special case where

M = 2 and S = {0, 1}, the hypothesis H0 denoting “target absent” is called the

null hypothesis, while the hypothesis H1 denoting “target present” is called the

alternative hypothesis. As usual, we denote the conditional pdf, p(x|Hj) = p(x|s =
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µj) of x under Hj by pj(x). We emphasize here that pj(x) is known for each j

since the distribution of b in (3.25) is known.

A decision rule of the sensor X is a mapping

γ : x ∈ X 7−→ u = γ(x) ∈ U = {0, 1, ..., N − 1},

where we often denote the rule γ by its value u as a variable.

Our objective is to choose the rule γ such that some function S = S(γ(x)) of

u = γ(x) is optimized. Because u is a random variable, it is sufficient to treat

S as a function of the conditional distributions p(u|x), for all x ∈ X . For our

illustration, we consider the Bayesian objective

S =
∑
i,j

Cijp(u = i,Hj) =
∑
i,x,j

Cijp(u = i|x)pj(x)πj, (3.26)

where pj(x) = p(x|Hj), πj = p(Hj) = p(s = µj) is the probability that Hj is true,

and Cij is a nonnegative number denoting the cost of the decision u = i when Hj

is true. Note that if N = M (i.e., if the number decision values equals the number

of hypothesis values), the decision u = i may be viewed as acceptance of Hi, in

which case Cij is the cost of accepting Hi when Hj is true.

Since S is an affine function of the conditional probabilities p(u|x) and the

observation x is continuously distributed, by Proposition 3.1 the optimal decision

rule is deterministic and, for each i = 0, 1, ..., N − 1, is given by

popt(u = i|x) = IRu=i
(x) =

 1, if x ∈ Ru=i,

0, if x ̸∈ Ru=i,
(3.27)

where the decision region Ru=i is given by
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Ru=i =
∩
j ̸=i

{
x :

∂S

∂popt(u = i|x)
− ∂S

∂popt(u = j|x)
< 0

}

=
∩
j ̸=i

{
x :
∑
l

Cilpl(x)πl −
∑
l

Cjlpl(x)πl < 0

}
.

(3.28)

In terms of probabilities of the decision regions, the optimal value of S is

Sopt =
∑
i,j

Cij πj pj(Ru=i). (3.29)

It is clear in this case that the decision regions, and hence Sopt, are determined

by a fixed set of known thresholds. These thresholds are directly determined by

the costs {Cij} and the prior probabilities {πi}. As we will soon see, the situation

is no longer so simple in distributed sensor settings.

3.5 Sensor network rules

Now suppose we have a distributed network of n sensors {Xk, k = 1, ..., n}, each

sensor observing the same signal s ∈ {µ0, µ1, ..., µM−1}. Here, the main difference

with the preceding section is that each Xk must now make its decision uk based

not only on its own observation xk, but as well on the set of decisions ũk of all

sensors forwarding their decisions to Xk, i.e., uk = γk(xk, ũk) for some integer-

valued function γk. Thus, Xk makes an observation

xk = s+ bk ∈ Xk, bk ∈ Bk, (3.30)

considers a set of hypotheses

Hj : s = µj, i.e., xk = µj + bk, j = 0, 1, ...,M − 1,
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and applies a decision rule

γk : (xk, ũk) ∈ Xk × Ũk 7−→ uk = γk(xk, ũk) ∈ Uk,

where Uk = {0, 1, ..., Nk − 1}, and ũk ∈ Ũk denotes the set of decision variables of

all sensors transmitting their decisions to Xk. Here, for each k, we again assume

the parameters s, bk in (3.30) have the same properties as s, b in (3.25). Note that

if we fix Nk = N for all k = 0, 1, ..., n, then Ũk = {0, 1, ..., N − 1}Ik , where Ik is the

number of sensors transmitting their decisions to Xk.

Without loss of generality, we will let sensorX1 serve as the fusion center for the

network. Once again, our objective is to choose the decision strategy {γ1, γ2, ..., γn}

such that some function

S = S
(
γ1(x1, ũ1), γ1(x2, ũ2), ..., γk(xn, ũn)

)
of u1 = γ1(x1, ũ1), u2 = γ2(x2, ũ2), · · · , un = γn(xn, ũn) is optimized. For our

illustration, we consider S to be the Bayesian function at the fusion center X1, i.e.,

S =
∑
i,j

Cijp(u1 = i,Hj) =
∑
u1,i

Cu1ip(u1, Hi)

=
∑

un,xn,i

Cu1i

n∏
k=1

p(uk|xk, ũk) pi(x
n)πi,

(3.31)

where un = (u1, ..., un), x
n = (x1, ..., xn).

Since S is an affine function of the conditional probabilities p(uk|xk, ũk) and

the observations xk are continuously distributed, by Proposition 3.1 the optimal

decision rule for each sensor Xk is deterministic, and is given by

popt(uk|xk, ũk) = IRuk|ũk
(xk) =

 1, if xk ∈ Ruk|ũk
,

0, if xk ̸∈ Ruk|ũk
,

(3.32)
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where uk ∈ {0, 1, ..., Nk − 1}, and the decision region Ruk|ũk
is given by

Ruk|ũk
=
∩

u̸=uk

{
xk :

∂S

∂popt(uk|xk, ũk)
− ∂S

∂popt(u|xk, ũk)
< 0

}
. (3.33)

The derivative of S in (3.33) can be express as

∂S

∂popt(uk|xk, ũk)
=

∑
{un,xn}k, i

Cu1i

∏
k′ ̸=k

popt(uk′ |xk′ , ũk′) pi(x
n)πi

=
∑

{un,xn}k, i

Cu1i

∏
k′ ̸=k

IRu
k′ |ũk′

(xk′) pi(x
n)πi,

(3.34)

where {un, xn}k = {un, xn}\{uk, xk, ũk}. With conditionally independent obser-

vations, we have pi(x
n) =

∏n
k=1 pi(xk). If we further assume there are no closed

processing paths in the sensor network that can lead to overlaps among the decision

regions, then (3.34) can be written as

∂S

∂popt(uk|xk, ũk)
=

∑
{un,xn}k, i

Cu1i

∏
k′ ̸=k

pi
(
Ruk′ |ũk′

)
pi(xk)πi, (3.35)

in which case, the optimal value of S in terms of probabilities of the decision regions

is

Sopt =
∑
un,i

Cu1i πi

n∏
k=1

pi
(
Ruk|ũk

)
. (3.36)

We have thus proved the following result.

Theorem 3.3. Suppose we are given a network of n sensors X1, X2, ..., Xn with

conditionally independent and continuously distributed observations x1, x2, ..., xn.

Suppose further that there are no cyclic communication paths in the sensor network.

Then the decision rules for detection, based on the Bayes function (3.31), by the

sensor network are given by (3.32), (3.33), and (3.35). Moreover, the optimal

value of the Bayes function is given by (3.36).
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In further applications in Chapters 4, 5, 6, we will mostly consider binary

hypothesis and binary decisions, i.e., we set M = Nk = 2. As already noted

in previous remarks, when the problem is sufficiently simple, the decision regions

(3.33) can be completely specified in terms of a number of threshold parameters

that do not depend on the observations. In that case, we only need to optimize S

as a function of the thresholds.



Part II

Applications

40



Chapter 4

Interactive Distributed Detection

4.1 Introduction

This chapter is based mainly on [18, 19], where detection is done in the Neyman-

Pearson (NP) framework, but [20] also contains similar results under the Bayesian

framework. We are going to study the impact of interactive fusion on detection

performance in tandem fusion networks with conditionally independent observa-

tions. Both the fixed sample size NP test and the large sample NP test will be

analyzed. There exist related work on fusion architecture in [12, 13, 32], on parallel

and noninteractive feedback settings in [34, 35, 36], on various forms of asymptotic

in [35, 36, 37, 38], and on parley in [39].

For the fixed sample test in Section 4.2, we will find that interactive distributed

detection may strictly outperform the one-way tandem fusion structure. For the

large sample test in Section 4.3, however, we will see that interactive fusion and

one-way tandem fusion achieve the same asymptotic detection performance. (Note

that this conclusion may no longer hold if certain communication constraints are

41
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imposed, [40]). Also, we will find in Section 4.4 that these results remain valid in

the following more general settings:

• The two sensors undergo multiple steps of memoryless interaction.

• The peripheral sensor is replaced by multiple peripheral sensors.

• Sensor outputs (before the final output) are multibit.

A simple tandem sensor network is a sequence of two or more sensors in which

each sensor makes a single decision using its own observation and the output of

its predecessor, and then passes its decision to the next sensor, i.e., its successor.

The last sensor serves as a fusion center, and its decision is considered the final

decision.

If the sensor outputs are single bit decisions, and sensor observations are inde-

pendent conditioned on any given hypothesis, the optimal decision rule is deter-

mined by a likelihood ratio test [8, 41]. Note that this result assumes that every

sensor makes only one decision.

x y

v = δ(y)

w = ρ(x, v)

X Y

p(x, y|Hi)

x y

v = δ(y, u)

w = ρ(x, v)

X Y

p(x, y|Hi)

u = γ(x)

(b)(a)

Figure 4.1: (a) One-way tandem fusion (YX process), (b) Interactive fusion (XYX

process).
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For a two-sensor tandem network, we will replace the above static message

passing with an interactive one: the fusion center (FC) sends an initial bit to the

peripheral sensor (PS) based on its observation. The PS then makes a decision

based on its own observation as well as the input from the FC and passes it back

to the FC as partial input for the final decision. Fig. 4.1 illustrates the difference

between the one-way tandem and interactive fusion networks.

In Fig 4.1(b), x is the observation of sensor X, y the observation of sensor Y, u

the initial decision of X, v the decision of Y based on x, u, and w the final decision

of X based on y, v. The random variables x and y are real-valued and assumed to be

conditionally independent with respect to the hypothesis, i.e., pi(x, y) = pi(x)pi(y),

meanwhile u = γ(x), v = δ(y, u), w = ρ(x, v) are binary, where γ, δ, ρ are integer-

valued mappings. For simplicity, we refer to the fusion architecture in Fig. 4.1(a)

as the YX process whereas to that in Fig. 4.1(b) as the XYX process.

Later in Section 4.4, we will also consider more general versions of the above

situation, which involve multiple rounds of interaction, multiple peripheral sensors,

and exchange of multi-bit decisions.

4.2 The fixed sample size Neyman-Pearson test

Our objective in the NP test is to maximize the probability of detection in such

a way that the probability of false alarm does not exceed a given value α, i.e., we

have the constrained optimization problem

maximize Pd = p1(w = 1)

subject to Pf = p0(w = 1) ≤ α
(4.1)
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The Lagrangian for the problem is

L = p1(w = 1) + λ
(
α− p0(w = 1)

)
, λ ≥ 0. (4.2)

For the YX process, L is a function of λ, p(v|y), and p(w|x, v), with

pi(w) =
∑
x,y,v

p(w|x, v)p(v|y) pi(x)pi(y), (4.3)

while for the XYX process, L is a function of λ, p(u|x), p(v|y, u), and p(w|x, v),

with

pi(w) =
∑

x,v,y,u

p(w|x, v)p(v|y, u)p(u|x) pi(x)pi(y). (4.4)

By applying Proposition 3.1, we obtain the following result, the proof of which

is given in [19].

Theorem 4.1. The optimal decision rules for the NP test with objective (4.2) are

as follows. For the YX process, we have

popt(v|y) = IRv(y), popt(w|x, v) = IRw|v(x),

with the decision regions given by

Rv=1 =

{
y :

p1(y)

p0(y)
> λ(2)

}
, Rw=1|v =

{
x :

p1(x)

p0(x)
> λ(3)

v

}
, (4.5)

where

λ(2) = λ
P0(Rw=1|v=1)− P0(Rw=1|v=0)

P1(Rw=1|v=1)− P1(Rw=1|v=0)
and λ(3)

v = λ
P0(Rv)

P1(Rv)
.

For the XYX process, we have

popt(u|x) = IRu(x), popt(v|y, u) = IRv|u(y), popt(w|x, v) = IRw|v(x),
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with the decision regions given by

Ru=1 =

{
x :

p1(x)

p0(x)
Q(x) > λ(1)Q(x)

}
, Rv=1|u =

{
y :

p1(y)

p0(y)
> λ(2)

u

}
,

Rw=1|v =

{
x :

p1(x)

p0(x)
>
∑
u

λ(3)
vu IRu(x)

}
,

(4.6)

where

λ(1) = λ
P0(Rv=1|u=1)− P0(Rv=1|u=0)

P1(Rv=1|u=1)− P1(Rv=1|u=0)
, Q(x) = IRw=1|v=1

(x)− IRw=1|v=0
(x),

λ(2)
u = λ

P0(Rw=1|v=1 ∩Ru)− P0(Rw=1|v=0 ∩Ru)

P1(Rw=1|v=1 ∩Ru)− P1(Rw=1|v=0 ∩Ru)
, and λ(3)

vu = λ
P0(Rv|u)

P1(Rv|u)
.

Observe that in the interactive process, even though sensor observations are

conditionally independent, the decision regions at the FC are not determined by

simple likelihood ratio tests. A similar phenomenon was noted in [42, 43].

In terms of the obtained decision regions in Theorem 4.1, the Lagrangian in

(4.2) can be written as

LY X =
∑
v

P1(Rv)P1(Rw=1|v) + λ

[
α−

∑
v

P0(Rv)P0(Rw=1|v)

]

for the YX process, and as

LXYX =
∑
u,v

P1(Rv|u)P1(Rw=1|v ∩Ru) + λ

[
α−

∑
u,v

P0(Rv|u)P0(Rw=1|v ∩Ru)

]

for the XYX process.

Example: Constant Signal in White Gaussian Noise

Consider the detection of a constant signal s in white Gaussian noise with obser-

vations

x = s+ z1, y = s+ z2, x, y ∈ R = X = Y , (4.7)
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where z1 ∼ N(0, σ2
x), z2 ∼ N(0, σ2

y) and z1 and z2 are independent of each other,

and the two hypotheses under test are

H0 : s = 0, H1 : s = 1.

Fig. 4.2 shows the dependence of the probability of detection on σx when σy is

fixed. The corresponding false alarm probability is Pf = 0.2. The figure shows

that the XYX process has strictly larger probability of detection compared with

the YX process.

The curve corresponding to centralized fusion in Fig. 4.2 is obtained by re-

peating the same optimization procedure using (4.1) and (4.2), but with the prob-

ability of the centralized decision w = ρ(x, y) given by pi(w = 1) =
∑

x,y p(w =

1|x, y)pi(x, y). Here, the decision rule popt(w = 1|x, y) = IRw=1(x, y), the constant

false alarm probability constraint α = p0(w = 1), and the detection probability

Pd = p1(w = 1) can be easily written as

Rw=1 =

{
(x, y) :

x

σ2
x

+
y

σ2
y

> t = lnλ+
1

2σ2
x

+
1

2σ2
y

}
,

α =

∫ ∞

−∞
Q

(
σyt−

σy

σx

x

σx

)
e
− x2

2σ2
x√

2πσ2
x

dx,

Pd =

∫ ∞

−∞
Q

(
σyt−

σy

σx

x

σx

− 1

σy

)
e
− (x−1)2

2σ2
x√

2πσ2
x

dx,

where the threshold t as a function of α is obtained by solving the constant false

alarm probability constraint.

4.3 The asymptotic Neyman-Pearson test

Here, we will use scalar quantization since, as pointed out in [44], it is simpler and

more efficient (in terms of a smaller processing delay) than vector quantization.
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Figure 4.2: Performance of XYX and YX processes

Consider n observation samples (x1, y1), ..., (xn, yn), and suppose processing is

carried out on a sample-by-sample basis. For the XYX process, the two sensors

go through, for each k = 1, · · · , n, a decision process with uk = γk(xk), vk =

δk(yk, uk). The final decision at node X utilizes the entire observation sequence xn

and the output sequence vn from node Y, i.e., w = ρ(xn, vn). We have, therefore,

pi(w) =
∑
xn,vn

p(w|xn, vn)pi(x
n, vn), (4.8)

where p(w|xn, vn) is determined by the final decision rule.

Meanwhile for the YX process, sensor Y sends a decision sequence vk = δk(yk),

k = 1, · · · , n, and X uses vn and its own observation xn to make the final decision

w = ρ(xn, vn). We again have the relation (4.8).

As shown in [19], and based on [33], the error exponent for the NP test is the
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KL distance

D(p0(x, v)∥p1(x, v)) =
∑
x,v

p0(x, v) log
p0(x, v)

p1(x, v)
. (4.9)

This will be our objective function for the asymptotic performance of the NP test.

One-way tandem fusion (YX process)

In the one-way tandem fusion network, as shown in Fig. 4.1(a), Y sends a decision

v = δ(y) to X. The optimal decision v is chosen so as to maximize the KL distance

K[x, v] = D
(
p0(x, v)∥p1(x, v)

)
(4.10)

at sensor X.

Since pi(x, v) = pi(x)pi(v), we have

K[x, v] = D
(
p0(x)∥p1(x)

)
+
∑
v

p0(v) log
(
p0(v)/p1(v)

)
(4.11)

where pi(v) =
∑

y p(v|y)pi(y).

By application of Proposition 3.1 in the optimization of (4.11), we get the

following result, the proof of which is given in [19].

Theorem 4.2. The optimal decision rule at Y is popt(v|y) = IRv(y), where

Rv=1 =

{
y :

p1(y)

p0(y)
> λ

}
, (4.12)

λ =

(
log

β(1− α)

α(1− β)

)/(
β − α

β(1− β)

)
, (4.13)

where α = P0 (p1(y)/p0(y) > λ) and β = P1 (p1(y)/p0(y) > λ) .

The maximum KL distance is given by

KYX
max = K[x] + α∗ log

α∗

β∗ + (1− α∗) log
1− α∗

1− β∗ , (4.14)

where K[x] = D(p0(x)∥p1(x)) and α∗ and β∗ are the values of α and β that

maximize the KL distance.
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Interactive fusion (XYX process)

For the interactive fusion process in Fig. 4.1(b), X first sends a decision u = γ(x)

to Y. Then Y makes a decision v = δ(y, u) and sends it back to X. The optimal

decisions u and v are chosen so as to maximize the KL distance K[x, v],KXYX in

the final step at X. The KL distance can be written as

KXYX = D
(
p0(x, v)∥p1(x, v)

)
= D

(
p0(x)∥p1(x)

)
+
∑
x

p0(x)
∑
v

p0(v|x) log
p0(v|x)
p1(v|x)

, (4.15)

where pi(v|x) =
∑

u p(u|x)
∑

y p(v|y, u)pi(y). Once more, by applying Proposition

3.1 in the optimization of (4.15), we get the following result, the proof of which is

given in [19].

Theorem 4.3. For the XYX process, the optimal decision rule at sensor X is

popt(u|x) = IRu(x), with decision region given by

Ru=1 = {x :
∑

u IRu(x)AuBu > 0} , (4.16)

Au = β
(2)
u −α

(2)
u

β
(2)
u (1−β

(2)
u )

, Bu =
β
(2)
1 −β

(2)
0

α
(2)
1 −α

(2)
0

− λ
(2)
u , (4.17)

and the optimal decision rule at sensor Y is popt(v|y, u) = IRv|u(y), with decision

regions given by

Rv=1|u =

{
y : p1(y)

p0(y)
> λ

(2)
u

}
, (4.18)

λ
(2)
u =

(
log β

(2)
u (1−α

(2)
u )

α
(2)
u (1−β

(2)
u )

)/(
β
(2)
u −α

(2)
u

β
(2)
u (1−β

(2)
u )

)
, (4.19)

where α
(2)
u = P0(Rv=1|u), and β

(2)
u = P1(Rv=1|u).

In terms of the decision regions, the KL distance (4.15) can be expressed as

KXYX = K[x] +
∑
u,v

P0(Ru) P0(Rv|u) log
P0(Rv|u)

P1(Rv|u)

= K[x] + α(1)f(α
(2)
1 , β

(2)
1 ) + (1− α(1))f(α

(2)
0 , β

(2)
0 ), (4.20)
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where K[x] = D(p0(x)∥p1(x)), α(1) is a constant independent of the thresholds,

and

f(α, β) = α log
α

β
+ (1− α) log

1− α

1− β
. (4.21)

Thus we have the following theorem.

Proposition 4.4. The YX and XYX processes achieve identical K[x, v]. That

is,

KYX
max = KXYX

max . (4.22)

Proof. The KL distances achieved by the two fusion systems, KYX from (4.14) and

KXYX from (4.20), are respectively

KYX = K[x] + f(α, β), (4.23)

KXYX = K[x] + α(1)f(α
(2)
1 , β

(2)
1 ) + (1− α(1))f(α

(2)
0 , β

(2)
0 ), (4.24)

where the function f(α, β) is defined in (4.21).

Let α∗ and β∗ be the optimal values that maximize f(α, β) in KYX. Comparing

(4.12)-(4.13) and (4.18)-(4.19), it is apparent that the same α∗ and β∗ also maxi-

mize both f(α
(2)
1 , β

(2)
1 ) and f(α

(2)
0 , β

(2)
0 ) in KXYX. This is so since for each value of

u, the threshold dependence of the LRT using y is identical to that used in the YX

process. Thus, the optimal decision on v at Y for the XYX process simply ignores

the input from u, leading to identical LRTs for both values of u.

Proposition 4.4 holds for any probability distribution. The results for the con-

stant signal in WGN under hypotheses (4.7) are shown in Fig. 4.3, where the KL

distances of YX and XYX processes coincide with each other. Also plotted are the
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KL distances of XY and YXY that also coincide with each other. An interesting

observation from the plot is that the two sets of curves, each corresponding to

making final decision at different nodes, intercept each other at the point when

σx = σy = 1. Thus for this example, it is always better to make the final decision

at the sensor with better signal to noise ratio.
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 d
is

ta
n

c
e

x

XY
YX
XYX
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y
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Figure 4.3: Comparison of KL distances of one-way tandem fusion and interac-

tive fusion with different communication directions. For this plot, we fix σy = 1

throughout while varying σx.

4.4 Generalizations

In a two-sensor tandem network with a single round of interaction and 1-bit sensor

output, we have shown that interactive fusion may strictly improve the detection

performance of fixed sample size NP test, but not the asymptotic performance of

the large sample NP test. We now consider more realistic settings in which this
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u2 = Γ2(y, u1)

u3 = Γ3(x, u2)

X Y

p(x, y|Hi)

u1 = Γ1(x)

y

X Y

p(x, y|Hi)

(a) (b)

u1 = Γ1(x)

u2 = Γ2(y, u1)

u4 = Γ4(y, u3)

u5 = Γ5(x, u4)

x y
x

u3 = Γ3(x, u2)

Figure 4.4: Sample MIF processes: (a) N = 3 MIF (XYX process), and (b)

N = 5 MIF (XYXYX process).

result remains valid. These settings involve multiple round iterations, multiple

sensors, and soft (i.e., multi-bit) sensor output.

Multiple-step memoryless interactive fusion (MIF)

In multiple round interactive fusion, sensors exchange 1-bit information repeat-

edly in N > 3 steps. Without any restriction on memory, it is not difficult to see

that interactive fusion may strictly outperform the one-way tandem fusion asymp-

totically. Indeed, for N large enough, the performance of interactive fusion with

memory will approach that of centralized detection.

However, there might be situations where the multiple round interactive fusion

may proceed in a memoryless fashion, which we refer to as memoryless interactive

fusion (MIF). In this case, a sensor’s decision at each step depends on its own

observation and the latest decision (but not on earlier decisions) of the other sensor.

For this memoryless processing model, we show that with respect to asymptotic
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detection performance, multiple-step interactive fusion still has no advantage over

the one-way tandem fusion.

We begin with the expansion of the probability pi(uN) = p(uN |Hi) of the

final decision uN . Denote any sequence s1, ..., sN by sN . Let uN be the sequence

of decisions in the MIF process XYXY· · ·YX involving two independent sensors X

and Y, and let

zN ≡ (z1, ..., zN) = (x, y, x, y, ..., y, x) (4.25)

be the corresponding sequence of observations used at processing, as shown in

Fig. 4.4 for N = 3, 5. Here we assume N is odd, thus, the decision process

always starts with and ends at node X. Then because of the dependence structure

uk = Γk(zk, uk−1), zk = x when k is odd, and zk = y when k is even, we obtain

pi(uN) =
∑

zN ,uN−1

pi(z
N)

N∏
k=1

p(uk|zk, uk−1)

=
∑

x,y,uN−1

pi(x, y)

(N−1)/2∏
r=1

[p(u2r−1|x, u2r−2)p(u2r|y, u2r−1)] .

(4.26)

Now using conditional independence, pi(x, y) = pi(x)pi(y), we get

pi(uN |x) =
∑

y,uN−1

pi(y)

(N−1)/2∏
r=1

[p(u2r−1|x, u2r−2)p(u2r|y, u2r−1)] . (4.27)

With this expansion of pi(uN), the following lemma, based on Proposition 3.1 and

proved in [19], gives the peculiar nature of the resulting decision regions which are

determined by an observation that is directly involved in the KL distance.

Lemma 4.5 (Degenerate MIF decision regions). Let uN = ΓN(x, uN−1) be the

decision at the final step of a MIF process XYXY· · ·YX with independent obser-

vations x and y. Let the objective function be given by the KL distance at the final
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step,

K[x, uN−1] =
∑

x,uN−1

p0(x, uN−1) log
p0(x, uN−1)

p1(x, uN−1)
. (4.28)

Then all decision regions based on x, i.e., in the optimal decision rule

popt(u2r−1|x, u2r−2) = IRu2r−1|u2r−2
(x),

with decisions u2r−1 = Γ2r−1(x, u2r−2), r = 1, 2, ..., N−1
2

, have the following general

form.

Ru2r−1=1|u2r−2 =

{
x :

∑
α

IDα(x)Aα,r,u2r−2 > 0

}
, (4.29)

where {Dα} is a partition of the data space X , and the coefficients Aα,r,u2r−2 are

independent of x.

Notice that (4.16) is a special case of (4.29). The following are some remarks

about the degenerate decision regions (4.29):

• They depend on the distributions p0(x) and p1(x) only globally over X , and

not pointwise in x. Therefore given a single data point x ∈ X , they cannot

distinguish between H0 and H1.

• They are determined by piecewise constant functions with discrete probability

distributions, and hence cannot define independent continuous threshold pa-

rameters; i.e., they contain no independent thresholds.

• They have piecewise constant probability; i.e., they have the same probability

under both hypotheses.

• Their only role is to reparametrize the thresholds of the other regions. Conse-

quently, they cannot improve optimality of the KL distance (as the next lemma

shows).
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x y⃗

v⃗ = δ⃗(y⃗)

w = ρ(x, v⃗)

X

p(x, y⃗|Hi)

x y⃗

v⃗ = δ⃗(y⃗, u)

w = ρ(x, v⃗)

X Y⃗

p(x, y⃗|Hi)

u = γ(x)

(b)(a)

Y⃗

Figure 4.5: (a) = one-way tandem fusion (Y⃗X process), and (b) = interactive

fusion (XY⃗X process)

The following lemma, proved in [19], shows that the decision regions given by

(4.29) are trivial in the sense that they do not participate in the decision process.

Lemma 4.6. With respect to dependence on thresholds, the decision regions (4.29)

of Lemma 4.5 have piece-wise constant probabilities. Moreover, such probabilities

play no role at convergence and therefore do not contribute to the overall decision

process.

Therefore, careful analysis of the MIF process shows that whenever a sensor’s

data is explicitly summed over in the KL distance, the decision process becomes

independent of that particular sensor’s data. Since repetition of the decision pro-

cess involving only one sensor’s data cannot improve performance, it follows that

MIF processing does not improve performance with respect to the KL distance.



CHAPTER 4. INTERACTIVE DISTRIBUTED DETECTION 56

Interactive fusion between the FC and multiple peripheral

sensors

Consider our main setup in Fig. 4.1 and maintain sensor X as the FC while

replacing sensor Y by K different sensors Y⃗ = {Y1, ...,YK}, with respective in-

dependent observations y⃗ = {y1, ..., yK}. The resulting system is shown in Fig.

4.5. For the Y⃗X process, we have decisions (v⃗, w) ≡ (v1, ..., vK , w) based on

observations (x, y⃗) ≡ (x, y1, ..., yK), where v⃗ = δ⃗(y⃗) =
(
δ1(y1), ..., δK(yK)

)
and

w = ρ(x, v⃗) ≡ ρ(x, v1, ..., vK). Similarly, for the XY⃗X process, the decisions

(u, v⃗, w) ≡ (u, v1, ..., vK , w) are based on observations (x, y⃗) ≡ (x, y1, ..., yK), with

u = γ(x), v⃗ = δ⃗(y⃗, u) =
(
δ1(y1, u), ..., δK(yK , u)

)
and w = ρ(x, v⃗) ≡ ρ(x, v1, ..., vK).

In the fixed sample size NP test with Lagrangian (4.2), pi(w) is given by

pi(w) =
∑
x,y⃗,v⃗

p(w|x, v⃗)p(v⃗|y⃗) pi(x)pi(y⃗) =
∑
x,y⃗,v⃗

p(w|x, v⃗)
K∏

k=1

p(vk|yk) pi(x)
K∏

k=1

pi(yk) (4.30)

for the Y⃗X process, and

pi(w) =
∑

x,v⃗,y⃗,u

p(w|x, v⃗)p(v⃗|y⃗, u)p(u|x) pi(x)pi(y⃗)

=
∑

x,v⃗,y⃗,u

p(w|x, v⃗)
K∏
k=1

p(vk|yk, u) p(u|x) pi(x)
K∏
k=1

pi(yk)

(4.31)

for the XY⃗X process. It suffices to find the XY⃗X decision regions only since those

for Y⃗X can be deduced from them by simply deleting the first decision u. Using

Proposition 3.1 and following the same steps as in the proof of Theorem 4.1, we

obtain the following. For the initial decision at X, popt(u|x) = IRu(x), with

Ru=1 =

{
x :

∂BS

∂p(u = 1|x)
> 0

}
=

{
x :

p1(x)

p0(x)
Q(x) > λ(1)Q(x)

}
, (4.32)

where λ(1) = λ(0)
∏K

k=1 P0(Rvk=1|u=1)−
∏K

k=1 P0(Rvk=1|u=0)∏K
k=1 P1(Rvk=1|u=1)−

∏K
k=1 P1(Rvk=1|u=0)

,

Q(x) = −
∑

v⃗(−1)v1+...+vKIRw=1|v⃗(x), while expressions for λ(0) and the objec-
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tive function S are found in Appendix A of [19]. For the decision at each Yk ∈

{Y1, ..., Yk}, we have popt(vk|yk, u) = IRvk|u(yk), with

Rvk=1|u =

{
yk :

∂BS

∂p(vk = 1|yk, u)
> 0

}
=

{
yk :

p1(yk)

p0(yk)
> λ

(2)
k,u

}
, (4.33)

where

λ
(2)
k,u = λ(0)

∑
v\vk

[
P0

(
Rw=1|v\vk,vk=1 ∩Ru

)
− P0

(
Rw=1|v\vk,vk=0 ∩Ru

)]∏
k′ ̸=k P0

(
Rvk′ |u

)∑
v\vk

[
P1

(
Rw=1|v\vk,vk=1 ∩Ru

)
− P1

(
Rw=1|v\vk,vk=0 ∩Ru

)]∏
k′ ̸=k P1

(
Rvk′ |u

) .
For the final decision at X,

Rw=1|v⃗ =

{
x :

∂BS

∂p(w = 1|x, v⃗)
> 0

}
=

{
x :

p1(x)

p0(x)
>
∑
u

λ
(3)
v⃗u IRu(x)

}
, (4.34)

where λ
(3)
v⃗u = λ(0)

∏K
k=1 P0(Rvk|u)∏K
k=1 P1(Rvk|u)

.

Similarly, for the asymptotic NP test, the KL distance KXY⃗X , K[x, v⃗] =

D
(
p0(x, v⃗)∥p1(x, v⃗)

)
can be expressed as

D
(
p0(x)∥p1(x)

)
+
∑
x

p0(x)
∑
v⃗

p0(v⃗|x) log
p0(v⃗|x)
p1(v⃗|x)

, (4.35)

where pi(v⃗|x) =
∑

u p(u|x)
∑

y p(v⃗|y, u)pi(y). By the same steps as in the proof of

Theorem 4.3 for the XY⃗X process, the decision rule at sensor X is popt(u|x) =

IRu(x), where

Ru=1 =

{
x :

∂BK[x, v⃗]

∂p(u = 1|x)
> 0

}
=

{
x :
∑
u

IRu(x)Cu > 0

}
,

Cu =
∑
v⃗

(∑
u′

(−1)u
′−1P0(Rv⃗|u′) log

P0(Rv⃗|u)

P1(Rv⃗|u)
−
∑
u′

(−1)u
′−1P1(Rv⃗|u′)

P0(Rv⃗|u)

P1(Rv⃗|u)

)
,

(4.36)

and the pair of decision regions Rv=1|u in the rule popt(v|y, u) = IRv|u(y) at sensor

Y has the following K analogs corresponding to the sensors Y⃗; for each k =

1, ..., K, we have popt(vk|yk, u) = IRvk|u(yk), with

Rvk=1|u =

{
yk :

∂BK[x, v⃗]

∂p(vk = 1|yk, u)
> 0

}
=

{
yk :

p1(yk)

p0(yk)
> λ

(2)
ku

}
,

λ
(2)
ku =

∑
v⃗(−1)vk−1

∏
k′ ̸=k P0

(
Rvk′ |u

)
log

P0(Rv⃗|u)
P1(Rv⃗|u)∑

v⃗(−1)vk−1
∏

k′ ̸=k P1

(
Rvk′ |u

) P0(Rv⃗|u)
P1(Rv⃗|u)

,

(4.37)
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x

X

(b)

u1 = Γ1(x)

u⃗2 = Γ⃗2(y⃗, u1)

u3 = Γ3(x, u⃗2)

u⃗4 = Γ⃗4(y⃗, u3)

u5 = Γ5(x, u⃗4)

(a)

x y⃗

u⃗2 = Γ⃗2(y⃗, u1)

u3 = Γ3(x, u⃗2)

X

p(x, y⃗|Hi)

u1 = Γ1(x)

Y⃗

p(x, y⃗|Hi)

y⃗

Y⃗

Figure 4.6: Sample MIF processes with K peripheral sensors: (a) N = 3 multi-

sensor MIF (XY⃗X process), and (b) N = 5 milti-sensor MIF (XY⃗XY⃗X process).

where Pi

(
Rv⃗|u

)
=
∏K

k=1 Pi

(
Rvk|u

)
. The degenerate decision regions of Lemma 4.5

maintain their form as well. Since the decision rules have the same critical features

(including threshold structure), our conclusions hold for this more general setup as

well. This includes the multiple-step MIF of Section 4.4 with K peripheral sensors,

shown in Fig. 4.6 for N = 3, 5 steps.

Interactive fusion with soft sensor outputs

We have shown in Section 4.3 that the Y X and XYX processes have identical

asymptotic detection performance when the output of each sensor is always binary.

Now consider the other extreme case where the exchange of information is endowed

with unlimited bandwidth. In that case, entire observations can be exchanged

between sensors. Thus, both the YX and XYX processes again achieve exactly the

same detection performance, namely, that of centralized detection. It remains to

see if that is still the case for interactive fusion when soft information is exchanged,
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i.e., sensor outputs are of a multiple but finite number of bits.

Consider the case where u and v can take respectively m and l bits. Equiv-

alently, we have u ∈ {0, 1, ..., 2m − 1} and v ∈ {0, 1, ..., 2l − 1}. Improvement

of performance of the fixed-sample NP test by interactive fusion is immediate by

induction, since the single bit decisions are a particular case of the multiple bit

decisions. Therefore we consider the situation for the asymptotic test.

By Proposition 3.1, the optimal decision rule at X is popt(u|x) = IRu(x), with

the decision regions given by

Ru=k =
∩
k′ ̸=k

{
x :

∂K[x, v]

∂p(u = k|x)
− ∂K[x, v]

∂p(u = k′|x)
> 0

}
,

k = 0, 1, ..., 2m − 1,

(4.38)

and the optimal rule at Y is popt(v|y, u) = IRv|u(y), with the decision regions

given by

Rv=k|u =
∩
k′ ̸=k

{
y :

∂K[x, v]

∂p(v = k|y, u)
− ∂K[x, v]

∂p(v = k′|y, u)
> 0

}
,

k = 0, 1, ..., 2l − 1,

(4.39)

where the objective function K[x, v] is defined by (4.15). It is straightforward,

with the help of equation (3.9), to verify that all of the critical features of our

analysis remain unchanged. In particular, by the same procedure as in the proofs

of Theorem 4.3 and Lemma 4.5, the decision regions Ru=k in (4.38) have the form

Ru=k =
∩
k′ ̸=k

{
x :

2m−1∑
k′′=0

IRu=k′′
(x)ak′′k′ > 0

}
, k = 0, 1, ..., 2m − 1, (4.40)

which admits a piecewise constant probability. Hence multiple bit passing before

the final decision does not alter our results.
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Conclusion

We have applied the decision theory developed in Chapter 3 to study two-sensor

tandem fusion networks with conditionally independent observations. Based on

the optimum decision structure in each case, we have shown that while interactive

fusion improves performance of the fixed sample size NP test, it does not affect

asymptotic performance as characterized by the error exponent of type II error.

Several extensions of the above result were considered. The lack of improvement

in asymptotic detection performance of one-step interactive fusion was shown to

extend to multiple-step memoryless interactive fusion. Furthermore, the result was

shown to be valid in a more general setting where the FC simultaneously interacts

with K ≥ 1 independent sensors. Finally, the results we also shown to be true in

the case of multi-bit sensor output.



Chapter 5

Optimal Fusion Architecture

5.1 Introduction

This section is based on [21], the references in which include [20, 12, 13, 18, 19, 32].

Assume we wish to detect either a deterministic signal, or a Gaussian dis-

tributed random signal, in the presence of additive Gaussian noises using a two-

sensor fusion system. That is, we have a distributed detection system with two

sensors, one serving as a fusion center (FC) while the other as a peripheral sensor

(PS) whose output is passed on to the FC for final decision making. As shown in

Figure 5.1, a natural question about the preferred communication direction arises.

What would be the optimal way of organizing the fusion system, i.e., which of the

two sensors must serve as the FC for optimal detection performance?

We will show that for better detection performance at sufficiently low signal to

noise ratio (SNR), the better sensor, i.e., the sensor with higher SNR, should serve

as the fusion center. For the detection of a constant signal in additive Gaussian

noises, it was also found in [18, 20] that under the Neyman-Pearson and Bayesian

61
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criteria with conditionally independent observations, the sensor with lower SNR

should serve as the FC. Note that these conclusions are false for general detection

problems [32].

x y

v = δ(y)

w = ρ(x, v)

X Y

p(x, y|Hi)

x y

w′ = ρ′(y, v′)

X Y

p(x, y|Hi)

u′ = δ′(x)

(b)(a)
YX direction XY direction

Figure 5.1: Depiction of the communication directions

In what follows, we first derive the optimal Bayesian test with dependent obser-

vations, which is valid for any continuous probability distribution that satisfies the

assumptions of Proposition 3.1. Next, we consider the model with a random signal

in additive Gaussian noises, and describe the topology of the resulting decision

regions. Finally, we present computational results for low SNR.

5.2 The optimal Bayesian test

Consider a system of two sensors X and Y, with two possible directions of com-

munication as shown in Fig 5.1. In the YX direction, Fig. 5.1 (a), sensor Y makes

the first decision v = δ(y) with its observation y, and passes v to sensor X. Sensor

X, now equipped with v and its own observation x, then makes the final decision

w = ρ(x, v). In the reverse direction XY, Fig. 5.1 (b), sensor X makes the first
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decision v′ = δ′(x), which is then used by sensor Y to make the final decision

w′ = ρ′(y, v′).

Without loss of generality, we will derive the test for the YX direction only.

In addition, we consider only deterministic binary decisions since we are working

under the assumptions of Proposition 3.1. The Bayesian cost function is given by

S[w] =
∑
w,i

Cwi p(w,Hi) =
∑
w,i

Cwiπi pi(w), (5.1)

where pi(w) =
∑

x,y,v p(w|x, v) p(v|y) pi(x, y), and πi = p(Hi). We note that since

we consider only deterministic decisions, after optimization pi(w) can be written

as

pi(w) =
∑
x,y,v

IRw|v(x) IRv(y) pi(x, y), (5.2)

where Rw=1|v are the decision regions at X and Rv=1 is the decision region at Y.

We have the following result.

Lemma 5.1. With simple binary hypotheses Hi : (x, y) ∼ pi(x, y), i = 0, 1, the

optimal decision rule popt(v = 1|y) = IRv=1(y), popt(w = 1|x, v) = IRw=1|v(x), for

the Bayesian decision problem with objective function (5.1) is given by the following

decision regions. At Y,

Rv=1 =

{
y :

p1(y)

p0(y)

∑
x[IRw=1|v=1

(x)− IRw=1|v=0
(x)]p1(x|y)

P0(Rw=1|v=1)− P0(Rw=1|v=0)
> λ0

}
, (5.3)

and at X,

Rw=1|v =

{
x :

p1(x)

p0(x)

∑
y IRv(y)p1(y|x)

P0(Rv)
> λ0

}
, (5.4)

where λ0 =
C10−C00

C01−C11

π0

π1
, and the summation

∑
x,
∑

y over continuous random vari-

ables is by means of integration. For conditionally independent observations, the
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decision regions are given by simple likelihood ratio tests as follows:

Rv=1 =

{
y :

p1(y)

p0(y)
> λ(1)

}
, (5.5)

Rw=1|v =

{
x :

p1(x)

p0(x)
> λ(2)

v

}
, (5.6)

where λ(1) = λ0
P0(Rw=1|v=1)−P0(Rw=1|v=0)

P1(Rw=1|v=1)−P1(Rw=1|v=0)
and λ

(2)
v = λ0

P0(Rv)
P1(Rv)

.

Proof. By Proposition 3.1, the local decision regions are given by

Rv=1 =

{
y :

∂S[w]

∂p(v = 1|y)
< 0

}
,

Rw=1|v =

{
x :

∂S[w]

∂p(w = 1|x, v)
< 0

}
.

Due to the constraint p(v = 1|y) + p(v = 0|y) = 1, we must use the differentiation

rules
∂p(v′|y′)
∂p(v|y)

= (−1)v
′−vδy′y,

∂p(w′|x′, v′)
∂p(w|x, v)

= (−1)w
′−wδx′xδv′v. (5.7)

Therefore, at Y

∂pi(w)

∂p(v = 1|y)
=
∑
x,v

(−1)v−1p(w|x, v) pi(x, y)

=
∑
x,v

(−1)v−1IRw|v(x) pi(x, y),

⇒
∂S[w]

∂p(v = 1|y)
=
∑
w,i

Cwiπi
∂pi(w)

∂p(v = 1|y)

=
∑
w,i

Cwiπi
∑
x,v

(−1)v−1IRw|v(x) pi(x, y).

(5.8)
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Similarly, at X,

∂pi(w)

∂p(w = 1|x, v)
= (−1)w−1

∑
y

p(v|y) pi(x, y)

= (−1)w−1
∑
y

IRv(y) pi(x, y),

⇒
∂S[w]

∂p(w = 1|x, v)
=
∑
w,i

Cwiπi
∂pi(w)

∂p(w = 1|x, v)

=
∑
w,i

Cwiπi(−1)w−1
∑
y

IRv(y) pi(x, y).

(5.9)

Straightforward simplification of (5.8) and (5.9) leads to (5.3) and (5.4).

When the observations x and y are conditionally independent, i.e. pi(x, y) =

pi(x)pi(y), then pi(x|y) = pi(x) and pi(y|x) = pi(y), in which case the decision

regions (5.3) and (5.4) reduce to (5.5) and (5.6).

The topologies of the decision regions (5.3) and (5.4) are in general unknown

for an arbitrary distribution, and they do not simplify to LRT’s unless under very

special circumstances. For the example with normal distributions that follows, we

will be able to determine the topologies of the decision regions.

5.3 Random signal in additive Gaussian noise

In this model, the sensor observations are given by

x = s+ z1, y = s+ z2, (5.10)

where z1 ∼ N(0, τ), z2 ∼ N(0, λ), and the signal s is determined by two hypotheses

H0 : s = 0, H1 : s ∼ N(µ, σ2
s). (5.11)
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Equivalently,

H0 : (x, y) ∼ N

 0

0

 ,

 τ 0

0 λ

 ,

H1 : (x, y) ∼ N

 µ

µ

 ,

 σ2
s + τ σ2

s

σ2
s σ2

s + λ

 .

(5.12)

A very important parameter here is the signal variance σ2
s . Notice that σ2

s

determines the correlation coefficient of the bivariate normal distribution p1(x, y) =

p(x, y|H1). Thus, in the limit σ2
s → 0, the observations become conditionally

independent. Also, in the limit of large SNR, σs → ∞ with τ and λ finite, the YX

and XY processes approach identical performance since the decision rule (while

still not determined by simple LRT’s) becomes independent of τ and λ.

The above random signal model was considered in [12] and [13], where the

decision of the first sensor Y was simply assumed to be based on a LRT, i.e.,

Rv=1 =

{
y :

p1(y)

p0(y)
> λ0

}
, λ0 =

C10 − C00

C01 − C11

π0
π1

. (5.13)

The optimal decision rule, as derived in Theorem III.1 below, looks drastically

different from the simple LRT. For the decision region at X however, our method

(due to Lemma 5.1) gives the decision regions (5.15) and (5.16) which are of the

same structure as those of [12] and [13]. Nevertheless, the difference in the decision

region at Y alone may lead to remarkably different conclusions about the preferred

communication direction. This is because the analysis done in [12] is no longer

valid with our decision rule given by Theorem 5.2.

For simplicity, we assume that we have real samples x, y ∈ R. The proof of

the following theorem uses an idea due to [12] to determine the topologies of the

decision regions.
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Theorem 5.2. The decision regions for this model are the following. At Y, there

are thresholds T±
v ∈ R, T−

v < T+
v , such that

Rv=1 =

y :
p1(y)

p0(y)

Q(
T−
1 −µ1(y)

σ1
)−Q(

T+
1 −µ1(y)

σ1
)−

[
Q(

T−
0 −µ1(y)

σ1
)−Q(

T+
0 −µ1(y)

σ1
)
]

Q(
T−
1√
τ
)−Q(

T+
1√
τ
)−
[
Q(

T−
0√
τ
)−Q(

T+
0√
τ
)
] >λ0

 ,

(5.14)

where µ1(y) =
y+µλ/σ2

s
1+λ/σ2

s
, σ2

1 = τ + λ
1+λ/σ2

s
, and λ0 is as defined in Lemma 5.1.

At X, there are thresholds t± ∈ R, t− < t+, such that

Rw=1|v=1 =

x :
p1(x)

p0(x)

1− [Q( t
−−µ2(x)

σ2
)−Q( t

+−µ2(x)
σ2

)]

1− [Q( t−√
λ
)−Q( t+√

λ
)]

> λ0

 , (5.15)

Rw=1|v=0 =

x :
p1(x)

p0(x)

Q( t
−−µ2(x)

σ2
)−Q( t

+−µ2(x)
σ2

)

Q( t−√
λ
)−Q( t+√

λ
)

> λ0

 , (5.16)

where µ2(x) =
x+µτ/σ2

s
1+τ/σ2

s
and σ2

2 = λ+ τ
1+τ/σ2

s
.

Proof. The general form of the decision regions follows from Lemma 5.1. From

(5.3) and (5.4), and following the proof of Lemma B.1, [12], let us define the

following functions, which are the logarithms of the left hand sides of the defining

inequalities of the decision regions.

f(y) = log
p1(y)

p0(y)
+ log

∑
x[IRw=1|v=1

(x)− IRw=1|v=0
(x)]p1(x|y)

P0(Rw=1|v=1)− P0(Rw=1|v=0)
,

gv(x) = log
p1(x)

p0(x)
+ log

∑
y IRv(y) p1(y|x)

P0(Rv)
,

where p0(y) = n(y|0, λ), p1(y) = n(y|µ, λ), p0(x) = n(x|0, τ), p1(x) = n(x|µ, τ),

p1(x|y) = n(x|µ1(y), σ
2
1), and p1(y|x) = n(y|µ2(x), σ

2
2) are normal pdfs.

Observe that f(y) and gv(x) are convex, as can be seen by verifying that f ′′(y) ≥
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0 and g′′v (x) ≥ 0. That is,

f ′(y) =
y

λ
− y − µ

σ2
s + λ

+

∑
x

(
x−µ′

1(y)

σ2
1

)
[IRw=1|v=1

(x)− IRw=1|v=0
(x)]p1(x|y)∑

x[IRw=1|v=1
(x)− IRw=1|v=0

(x)]p1(x|y)

=
y

λ
− y − µ

σ2
s + λ

+

⟨
x− µ′

1(y)

σ2
1

⟩
y

,

⇒

f ′′(y) =
σ2
s

λ(σ2
s + λ)

+

⟨(
x− µ′

1(y)

σ2
1

−
⟨
x− µ′

1(y)

σ2
1

⟩
y

)2⟩
y

≥ 0,

where ⟨ ⟩y denotes the self-evident conditional expectation involved, and similarly,

g′v(x) =
y

τ
− y − µ

σ2
s + τ

+

∑
y

(
y−µ′

2(x)

σ2
2

)
IRv(y)p1(y|x)∑

y IRv(y)p1(y|x)

=
y

τ
− y − µ

σ2
s + τ

+

⟨
y − µ′

2(x)

σ2
2

⟩
x

,

⇒

g′′v (x) =
σ2
s

τ(σ2
s + τ)

+

⟨(
y − µ′

2(x)

σ2
2

−
⟨
y − µ′

2(x)

σ2
2

⟩
x

)2
⟩

x

≥ 0.

Therefore, the decision regions take the form

Rv=1 = [t−, t+]c, Rw=1|v = [T−
v , T+

v ]c, v = 0, 1, (5.17)

where t±, T±
v are thresholds depending on λ0 and the distribution parameters

{µ, τ, λ, σ2
s}, and Ac denotes complement of the set A. Substituting (5.17) in (5.3)

and (5.4), we obtain the decision regions in terms of Q-functions as stated in the

theorem.

It is not difficult to see that as σ2
s → 0, the decision regions (5.14), (5.15),

and (5.16) are determined by simple LRT’s as expected. Based on the derived

topologies of the decision regions, we will now estimate and compare detection

performance for the two directions, YX and XY.
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5.4 Computational results for low signal to noise

ratio

Having determined the global nature of the decision regions Rv=1 = [t−, t+]c,

Rw=1|v = [T−
v , T+

v ]c, we now compute the threshold values that minimize the cost

function S[w]. The optimal value of the cost function is given by

Sopt[w] =
∑
w,i

Cwiπi
∑
x,y,v

IRw|v(x) IRv(y) pi(x, y)

= π0
∑
w

Cw0

∑
x,y,v

IRw|v(x) IRv(y) p0(x, y)

+ π1
∑
w

Cw1

∑
x,y,v

IRw|v(x) IRv(y) p1(x, y)

= π0
∑
w

Cw0

∑
v

p0(Rw|v) p0(Rv) + π1
∑
w

Cw1

∑
x,y,v

IRw|v(x) IRv(y) p1(x, y)

= π0C00 + π0(C10 − C00)
∑
v

p0(Rw=1|v) p0(Rv) + π1C01

− π1(C01 − C11)
∑
x,y,v

IRw=1|v(x) IRv(y) p1(x, y)

= min
T

S(T ), T = (t−, t+, T−
0 , T−

1 , T+
0 , T+

1 ).

Consider the special but important case of minimizing the error probability (cor-

responding to C00 = C11 = 0, C10 = C01 = 1). We have

Pe[w] = π0
∑
v

p0(Rw=1|v ×Rv) + π1
∑
v

p1(Rw=0|v ×Rv)

= π0
∑
v

p0(Rw=1|v ×Rv) + π1 − π1
∑
v

p1(Rw=1|v ×Rv)]

= π0[p0(Rw=1|v=1 ×Rv=1)− p0(Rw=1|v=0 ×Rv=1)

+ p0(Rw=1|v=0)] + π1 − π1[p1(Rw=1|v=1 ×Rv=1)

− p1(Rw=1|v=0 ×Rv=1) + p1(Rw=1|v=0)].
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The inequalities t− < t+, T−
0 < T+

0 , and T−
1 < T+

1 are constraints on the

optimization problem.
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Figure 5.2: Performance of YX and XY directions

Results for signal variance σ2
s near 0 are given in Fig. 5.2. In this figure, the

prior probability π1 = 1/2, but the same behavior is observed for various values

of π1 ̸= 1/2. For various values of σs = 1, 3, 5, 7, the behavior is identical to

that for σs = 0 where the observations are conditionally independent. For each

value of σs, the figure clearly shows that when τ < λ (i.e., when X is the better

sensor), YX performs better as it has smaller probability of error, meanwhile XY

performs better when τ > λ (i.e., when Y is the better sensor). Hence the better

sensor is the preferred FC for 0 ≤ σs ≤ 7. There is no apparent reason why this

result should not extend to large σs, especially as our decision rules are valid for

all σs. However, the large σs regime requires a more efficient code for numerically

computing the optimal threshold values than what is available. Therefore we have



CHAPTER 5. OPTIMAL FUSION ARCHITECTURE 71

deferred to future work on the large correlation regime.

Conclusion

Based on the results of Chapter 3, have derived the general form of the optimal

Bayesian test for a two sensor tandem fusion network with dependent observations.

Application of this test to a random signal in additive Gaussian noise shows that

for small correlation strength, measured by the signal to noise ratio, the sensor

with the cleaner data is still the preferred fusion center. This is in agreement with

the case of independent observations.



Chapter 6

Detection over Acyclic Graphs

6.1 Introduction

This section is based on ongoing work on distributed detection over acyclic directed

graphs. It is a continuation of the discussion of sensor network rules initiated in

Section 3.5. In the Bayesian framework, and under mild assumptions on the depen-

dence structure of the local sensor decisions, we obtain decision rules for arbitrary

directed graphs. We also briefly study large sample asymptotic analysis, and derive

associated Chernoff and Kullback information measures. These information mea-

sures are then used to define online sensor comparison with respect to asymptotic

optimality in the network.

It is certainly the case that detection of a phenomenon by a network of dis-

tributed sensors is analytically more complex than detection of the same phe-

nomenon by a centralized sensor network. This complexity arises for a number of

reasons which include the following.

(i) The decision rules for different sensors are coupled in such a way that exact

72



CHAPTER 6. DETECTION OVER ACYCLIC GRAPHS 73

analysis may be impossible, especially when the observations of the sensors

are conditionally dependent.

(ii) For a given sensor X in the network, the number of decision thresholds for X

grows exponentially with the number of sensors that transmit their decisions

to X. If IX is the number of sensors transmitting to X, then X requires at

least 2IX thresholds for binary processing.

(iii) When sensor X is allowed to transmit more than one type of message (i.e.,

different sensors receive different messages from X), the number of decision

channels connecting parents to offsprings of X increases. If OX is the number

of distinct messages X is transmitting, this leads to a total of at least 2OX

more computational steps in binary processing. Moreover, X now requires

at least OX ×2IX thresholds for binary processing. An even more interesting

consequence of the ability of sensors to transmit multiple messages is that

decision processing over a closed path in a directed graph becomes nontrivial.

If we relax (i) and (iii) by considering only conditionally independent observa-

tions, and also require that each sensor transmits only one type of message, then

the decision rules even for the most elaborate graphical networks closely resemble

those of simple networks. Under these assumptions, our main objective is to de-

termine the optimal decision threshold structure in any sensor network for which

desired communication and fusion patterns already exist in the form of directed

graphs. See Fig 6.1 for example.

Another objective will be to define online sensor comparison based on large sam-

ple asymptotic analysis. Let us refer to this type of comparison as AAR (asymptotic

accuracy rate, or Chernoff information) comparison. AAR comparison can serve

as an alternative to the usual ROC (receiver operating curve) sensor comparison
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in the large sample regime. AAR comparison works for M-ary decisions, and as we

will see, it is robust with respect to Bayesian cost structure and prior probability.

We can also use AAR comparison to compare graphical network patterns in

the following way. Suppose we are given K sensors Xn = (X1, ..., XK). Let

G(Xn, L) be the collection of all network patterns G with at most L direct links

between any two sensors from Xn. For any given network pattern G ∈ G(Xn, L),

define an online fusion center for G to be the sensor XG in G that has the largest

AAR. Then it is natural to define the optimal network pattern to be the network

pattern G ∈ G(Xn, L) such that the AAR of XG is larger than that of XG′ for all

G′ ∈ G(Xn, L).

Distributed detection over directed graphs with at most one path between

any two nodes was studied in [3, 4], where some optimal control techniques were

developed and optimal communication architectures were discussed. We consider

distributed detection over arbitrary acyclic directed graph networks. Meanwhile

the methods of [3, 4] penalized error at every root node in a tree, for simplicity, we

consider only the costs at a single fusion center. Because we are interested mainly

in the fused decision, all graphs are assumed to be connected. Bayesian detection

over graph networks (feedback/memory included) was discussed in Section 4.5 of

[8], where decision rules were derived under binary hypothesis testing. We obtain

decision rules under M-ary hypothesis testing but, for computational purposes, we

likewise restrict to binary decisions. Because our main focus is on the graphical

structure, we also assume the sensors take only one set of observations so that

the decision process is static, i.e., memory and feedback are not included in our

discussion, although multiple processing steps can occur if we allow for cyclic

communication paths in the network.
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Figure 6.1: An 11-node acyclic directed graph

For an illustration of our notation, consider the 11-node directed graph of Fig

6.1. Every arrow denotes a communication channel and the direction in which

information must flow. Each node Xj represents a sensor whose observation we

denote by xj ∈ Xj, where the alphabet Xj is for simplicity taken to be the vector

space Rnj for a positive integer nj. The decision of sensor Xj is denoted by uj =

γj(xj, ũj), where γj is an integer-valued function and ũj is the set of decisions of all

parents of Xj. The decision uj is passed on to every offspring of Xj. For example,

in Fig 6.1, sensor X7’s decision u7 = γ7(x7, ũ7), where ũ7 = {u2, u5}, is transmitted

to the sensors X1, X3, and X6. By convention, if there are n nodes in a graph, we

consider X1 to be the fusion center, after which the labeling and placement of all

other nodes X2, X3, ...., Xn may come in any order.

In the work of [32] and related literature, e.g., Sections 4.4 and 4.5 of [41], two

sensors are compared in terms of their stand-alone receiver operating characteristic
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(ROC) curves. ROC curve comparison is useful if the sensor quality is determined

by more than one parameter, including variance and prior probability. It is also

useful when each sensor has a separate local objective and the overall network

objective is designed in such a way that it depends on these local objectives. A

downside of ROC curve comparison is that it only works for binary decisions, since

in that case the detection probability and false alarm probability are related by a

single threshold parameter. In our analysis, we assume for simplicity that (i) the

overall network objective is independent of any local objectives, (ii) every sensor

uses the same prior probability, (iii) a sensor’s quality is determined solely by the

variance of its observation.

In what follows we first describe graphical networks and provide the threshold

structure of decision rules for acyclic graph networks, including effects of commu-

nication over nonideal channels. This is followed by a short discussion on large

sample analysis, from which the obtained Chernoff and Kullback information mea-

sures are then used to define online comparison among individual sensors and

comparison of network patterns.

Notation: Let us recall the notation introduced in Section 3.1. Sensors are

labeled using upper case letters X, Y , Z, and so on. Random variables, as well as

their values, are denoted by lower case letters x, y, z, u, v, w, etc. Also, we do

not distinguish between summation and integration symbols, i.e., if u is discrete

and x is continuous, we write
∑

u,x =
∑

u

∑
x, where

∑
u denotes summation over

u, and
∑

x denotes integration over x. Similarly, if u, v are discrete and x, y are

continuous, we write δ(u,x)(v,y) = δuvδxy, where δuv is the Kronecker delta, while δxy

is the Dirac delta.
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6.2 Graphical networks

Recall that optimal Bayesian decision rules for acyclic graphs were derived in

Section 3.5, and presented in Theorem 3.3. The following observations about an

acyclic graph network are what made that result possible.

1. For any given pair of sensors Xi, Xj in a network, multiple directed paths

betweenXi andXj do not lead to any intersections between different decision

regions as long as these paths have the same sense, i.e., they do not form a

loop.

2. Processing in a closed path can be nontrivial (i.e., distributed, or decentral-

ized) only if a sensor on that path is allowed to send multiple messages.

Therefore the simple network decision rules we have seen in the previous chapters,

as well as their experimental implementation, can be readily extended to arbitrary

directed graphs provided we make one more simplifying assumption about the

sensor network, besides conditional independence of observations. The assumption

is that every sensor passes the same message to its offsprings. This eliminates

networks containing closed processing paths.

Note, however, that a sensor can of course be allowed (if necessary) to send

multiple messages in a directed acyclic graph, and that the single-message decision

rules we will obtain can easily be extended to multiple-message decision rules for

any acyclic directed graph.

Acyclic directed graphs

Consider a directed graph G = (V, ρ), where V = {X1, ..., Xn} are vertices,

V × V = {(Xi, Xj) : i = 1, ..., n, j = 1, ..., n}
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is the set of placeholders (i.e., possibilities) for directed arrows connecting the

vertices [thus (Xi, Xj) represents the possibility of an arrow directed from Xi to

Xj], and the map

ρ : V × V → {0, 1}, (Xi, Xj) 7→ aij = ρ(Xi, Xj)

indicates the presence or absence of an arrow, i.e., aij = 1 says an arrow pointing

from Xi to Xj exists, while aij = 0 means such an arrow does not exist. For

computational purposes, the links in the graph are more conveniently written in

matrix form: the matrix of G is given by

MG =
n∑

i=1

n∑
j=1

ρ(Xi, Xj)eij =
n∑

i=1

n∑
j=1

aijeij,

where eij is the matrix with (i, j)th entry 1, and 0 for all other entries. For example,

the matrix of the graph in Fig 6.1 is

· · · · · · · · · · ·

· · · · · · 1 · · · ·

1 · · · · · · · · · ·

1 · 1 · · · · · · · ·

· · · · · · 1 · · · ·

· · 1 · · · · · · · ·

1 · 1 · · 1 · · · · ·

· · · · · · · · 1 · ·

· · · 1 · · · · · · ·

· · · · 1 · · · · · ·

· · · · · 1 · · 1 · ·


Notice that (i) the number of 1-entries is the number of arrows in the graph, (ii)

the 1’s in the jth column correspond to the parents of Xj, and (iii) the 1’s in the

ith row correspond to offsprings of Xi. The total number of thresholds is

23 + 20 + 23 + 21 + 21 + 22 + 22 + 20 + 22 + 20 + 20 = 36.
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These observations are crucial for developing a general optimization code for the

graphical networks.

Denoting the observation and decision of Xj by xj and uj respectively, the

dependence structure of the decisions is given by

uj = uj(xj, ũj), ũj = {ui : i = 1, ..., n, aij = 1},

where ũj consists of the decisions of the parents of Xj (i.e, all nodes X̃j = {Xi :

i = 1, ..., n, aij = 1} bearing arrows into Xj) in the graph G.

If a node Xk has Ik parents (i.e., in-degree) then its number of thresholds is

2Ik . Since we have assumed that each node passes the same message to all of its

offsprings, the total number of thresholds is

n∑
k=1

2Ik .

As before, let X1 be the fusion center. Also let x⃗ = (x1, ..., xn) and u⃗ =

(u1, ..., un), and consider the risk function

S =
∑
u1,h

Cu1hp(u1, h) =
∑
x⃗,u⃗,h

Cu1h

n∏
i=1

p(ui|xi, ũi) ph(x⃗)πh

(a)
=
∑
x⃗,u⃗,h

Cu1h

n∏
i=1

p(ui|xi, ũi)
n∏

i=1

ph(xi)πh,

where step (a) holds for conditionally independent observations.

Theorem 6.1. The binary decision rule for the network {X1, ..., Xn} viewed as an

acyclic directed graph are as follows. We have popt(uk|xk, ũk) = IRuk|ũk
(xk), with

decision regions

Ruk=1|ũk
=

{
xk :

∂BS

∂popt(uk = 1|xk, ũk)
< 0

}
=

{
xk :

p1(xk)

p0(xk)
> λ

(k)
ũk

}
,
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where λ
(1)
ũ1

= λ
∑

u⃗\(u1,ũ1)
∏

i̸=1 p0(Rui|ũi )∑
u⃗\(u1,ũ1)

∏
i̸=1 p1(Rui|ũi )

, λ = (C10−C00)(1−π)
(C01−C11)π

, and

λ
(k)
ũk

= λ

∑
u⃗\{u1,ũk}

(−1)uk−1p0(Ru1=1|ũ1
)
∏

i̸∈{1,k}
p0(Rui|ũi

)∑
u⃗\{u1,ũk}

(−1)uk−1p1(Ru1=1|ũ1
)
∏

i̸∈{1,k}
p1(Rui|ũi

)
, for k ∈ {2, 3, ..., n}.

The optimal value of the risk function is

Sopt =
∑
x⃗,u⃗,h

Cu1h

n∏
i=1

IRui|ũi
(xi)

n∏
i=1

ph(xi) πh =
∑
u⃗,h

Cu1h

n∏
i=1

ph(Rui|ũi
) πh

(a)
= π

1− ∑
u⃗\u1

p1(Ru1=1|ũ1
)
∏
i≠1

p1(Rui|ũi
)

+ (1− π)
∑
u⃗\u1

p0(Ru1=1|ũ1
)
∏
i ̸=1

p0(Rui|ũi
),

(6.1)

where step (a) holds for 0-1 cost.

Proof. This is the result of Theorem 3.3 simplified for binary decisions.

For a numerical outcome of Theorem 6.1, consider the following example.

Example. Let the observations of the sensors (X1, ..., Xn) be given by

xk = s+ bk, k = 1, ..., n,

where bk ∼ N(0, σ2
k) and the hypotheses are

H0 : s = 0, H1 : s = 1.

For the above example, Fig 6.3 displays the relative performance of the acyclic

graph in Fig 6.1 and the binary tree in Fig 6.2. For this numerical computation,

we have assumed the sensors are identical, i.e., σk = σ1 for all k.
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Figure 6.2: An 11-node binary tree network
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Figure 6.3: Relative performance of the sample acyclic graph of Fig 6.1 and the

sample binary tree of Fig 6.2. The graphs each contain 11 sensors but the acyclic

graph has greater connectivity and thus performs better.
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We also have the following result, which has been obtained in certain fusion

settings by [45, 46].

Theorem 6.2 (Nonideal channel effects). Let X1, X2, · · · , Xn be a sensor network

in the form of an acyclic directed graph. Then the Bayesian decision rules for the

network have the same form as in Theorem 6.1, except that everywhere, we replace

ph(Ruk|ũk
) with

∑
ũ′
k
ph(Ruk|ũ′

k
)p(ũ′

k|ũk), where [p(ũ
′
k|ũk)] is a 2Ik×2Ik multi-channel

transition matrix, with Ik the number of parents of Xk. In particular, the objective

function (6.1) becomes

Sopt =
∑
u⃗,⃗̃u′,h

πhCu1h

n∏
k=1

ph(Ruk|ũ′
k
) p(ũ′

k|ũk). (6.2)

Proof. If Xj is transmitting its decision uj to Xi through a channel

gji : uj 7→ u′
j = gji(uj),

where gji is a random function independent of the observations, then u′
j = gij(uj) ∈

ũ′
i. The objective function can be expanded as

S =
∑
u1,h

Cu1hp(u1, h) =
∑

u⃗,⃗̃u′,x⃗,h

Cu1hp(u⃗, x⃗, ⃗̃u
′, h)

=
∑

u⃗,⃗̃u′,x⃗,h

πhCu1h

n∏
k=1

p(uk|xk, ũ
′
k) p(ũ

′
k|ũk) ph(x⃗),

where u⃗ = (u1, ..., un) are the decisions of the sensors, meanwhile ⃗̃u′ = (ũ′
1, ..., ũ

′
n)

are the messages received by the sensors, i.e., ũ′
k consists of the messages channeled

to Xk by its parents. The decisions have the dependence structure uk = uk(xk, ũ
′
k).

Thus a straightforward application of the decision procedure developed in Section

3.5 yields the desired result, and in particular, (6.2) holds.
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On directed graphs with cycles
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Figure 6.4: A 10-node directed graph containing cycles. The graphs (a) and (b)

are equivalent.

Let us again assume that every sensor passes the same message to its offsprings.

Then without any further constraint on the dependence structure of the decisions

(as determined by the arrows in the graph), a closed path in a graph is trivial in the

sense that it is equivalent to a centralized sub-collection of sensors. The situation

may be described more precisely as follows.

Lemma 6.3. In a graphical sensor network, suppose a closed path consists of r

sensors Xi1 , Xi2 , ..., Xir , with respective observations xi1 , xi2 , ..., xir . Suppose fur-

ther that

• the dependence structure of the decisions of the sensors is determined only

by the directed arrows in the graph, and

• every sensor in the network passes the same message to its offsprings.
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Then the subnetwork Y = {Xi1 , Xi2 , ..., Xir} behaves like a centralized sensor sys-

tem with all observations y = {xi1 , xi2 , ..., xir} available at the same location.

Proof. If no constraint (apart from that imposed by the arrows) is placed on the

dependence struture of the decisions, then in particular, there is no timing con-

straint. Thus information will continue to flow in the closed path until the decision

of very sensor has achieved maximum performance, which is predicted to be the

performance of a centralized network formed by the r sensors.

The above discussion shows that directed graphs containing cycles are equiva-

lent to acyclic directed graphs, unless there are extra communication constraints

to render the cyclic processing nontrivial.

6.3 Large sample asymptotic analysis

Fix k ∈ {1, ..., n}. LetXk make a T -observations sample, xTk = (xk,1, ..., xk,t, ..., xk,T ),

and make a corresponding sequence of decisions

uT
k = uT

k (x
T
k , ũ

T−1
k ) = (uk,1, ..., uk,t, ..., uk,T ).

The decisions are made in a sequential manner, i.e., a decision is made after each

sample. Thus for each t ∈ {1, ..., T},

uk,t = uk,t(x
t
k, ũ

t−1
k ) ∈ {0, 1}rk ≃ {1, 2, ..., 2rk} (6.3)

is an rk-bit random variable. Here, rk is sensor Xk’s transmission rate (in bits per

sample).

Let Mk be the size of a linear indexing set for the value set of the decision

sequence uT
k , i.e., as a random variable, uT

k can take on Mk possible values simply
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labeled as {uT
k (mk) : mk = 1, ...,Mk} = {uT

k (1), ..., u
T
k (Mk)}. Then the number of

bits per sample rk can be written as

rk =
1

T
log2 Mk or Mk = 2rkT .

Thus for each mk ∈ {1, ...,Mk}, we have

uT
k (mk) ∈ ({0, 1}rk)T = {0, 1}Trk ≃ {1, 2, ..., 2rk}T

≃ {1, 2, · · · , 2Trk} = {1, 2, · · · ,Mk},

⇒ uT
k : (xT

k , ũ
T−1
k )

≃7−→ mk ∈ {1, 2, · · · ,Mk},

where all powers of sets are Cartesian, and ≃ denotes equivalence with respect

to cardinality (i.e., A ≃ B means “the sets A and B have the same number of

elements”). Furthermore, we may wish to impose a rate constraint

1

T
log2Mk = rk ≤ Rk, (6.4)

where Rk is a fixed bit rate representing the maximum number of bits per sample

that Xk can transmit to its offsprings.

For simplicity, let the bit rate of the fusion center X1 be set at r1 = 1. Then

the error probabilities (based on the final decision u1,T ) at the fusion center are

αT = p(u1,T = 1|H0) = p0(u1,T = 1), (False alarm),

βT = p(u1,T = 0|H1) = p1(u1,T = 0), (Missed detection).

With a constraint αT ≤ εT on the false alarm, we define the error exponent for

missed detection as

b(ε,R1, ..., Rn) = lim inf
T→∞

− 1

T
log

(
inf
AT

βT

)
, (6.5)

where

AT =

{{
p
(
uT
k |xT

k , ũ
T−1
k

)}
k
: {rk ≤ Rk}k, αT ≤ εT

}
≃
{{

p
(
mk|xT

k , m̃k

)}
k
: {rk ≤ Rk}k, αT ≤ εT

}
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is the set of possible decision strategies. That is, we have

βT ≈ e−b(ε,R1,...,Rn)T for large T.

In the Bayesian formulation, the risk function at X1 has the expansion

ST =
∑
u1,T ,h

Cu1,Th p(u1,T , h) =
∑
u1,T ,h

πhCu1,T h p(u1,T |h)

=
∑
u1,T ,h

πhCu1,Th ph(u1,T ) =
∑

u⃗T ,x⃗T ,h

πhCu1,T h ph(u⃗
T , x⃗T )

=
∑

u⃗T ,x⃗T ,h

πhCu1,T h

n∏
k=1

p
(
uT
k |xT

k , ũ
T−1
k

)
ph
(
x⃗T
)

=
∑

m⃗,x⃗T ,h

πhCu1,T h

n∏
k=1

p
(
mk|xT

k , m̃k

)
ph
(
x⃗T
)

=
∑
m⃗,h

∑
{xT

k ∈Rmk|m̃k}k

πhCu1,T h ph
(
x⃗T
)
,

(6.6)

where u⃗T = (uT
1 , · · · , uT

n ), x⃗
T = (xT

1 , · · · , xT
n ), and m⃗ = (m1, ...,mn). The main

challenge is to design the decision regions {Rmk|m̃k
: k = 1, ..., n} in an optimal

way. For large T , the law of large numbers says these regions can be approximated

by sets of sequences xT
k whose empirical distributions

p(a|xT
k ) =

|{t : xk,t = a}|
T

=
cardinality{t : xk,t = a}

T
, a ∈ Xk,

are close (in a certain sense) to the marginal distributions for ph
(
x⃗T
)
. Using this

reasoning, it is possible to derive bounds on the error exponent b(ε,R1, ..., Rn).

We can use a likelihood ratio quantizer to provide an upper bound for ST as

follows. Let

R
(LR)
mk|m̃k

=
{
xTk : λ

(k)
mk|m̃k

< lh(x
T
k ) < λ

(k)
mk+1|m̃k

}
,
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where lh(x
T
k ) =

maxh′ ph′ (x
T
k )

ph(x
T
k )

, and the thresholds λ depend on T . Then for any

εk > 0, we can choose T large enough so that

ST ≤
∑
u1,h

πhCu1,T h

n∏
k=1

e
−T

[
L
(k)
h −εk−rk

]
,

L
(k)
h = lim

T→∞
max
p(mk)

− 1

T

∑
mk

p(mk) log ph

(
λ
(k)
mk|m̃k

< lh(x
T
k ) < λ

(k)
mk+1|m̃k

)
.

Thus, if

rk < L
(k)
h − εk,

then ST → 0 as T → ∞. The quantity L
(k)
h is an example of an information

measure at Xk, since it is a function of the likelihood ratio statistic lh(x
T
k ) and

determines estimation accuracy to some extent. Concrete examples of information

measures are the following.

6.4 Chernoff information and Kullback-Leibler

distance

The discussion here is related to the discussion in Section 11.8 of [33]. The Cher-

noff information is derived as follows (Note here that neither the hypothesis h

nor the decision u1,T needs to be binary). With the usual optimization variables
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p(uk|xT
k , ũ

T
k ) in mind, we have

minST = min
∑
u1,T ,h

Cu1,T h p(u1,T , h)

= min
∑

u1,T ,h,xT
1 ,ũT

1

Cu1,T h p(u1,T |xT
1 , ũ

T
1 )ph(x

T
1 , ũ

T
1 )πh

(s1)
=

∑
u1,T ,h,xT

1 ,ũT
1

Cu1,T h IR
u1,T |ũT1

(xT
1 )ph(x

T
1 , ũ

T
1 )πh

(s2)
=

∑
u1,T ,h,xT

1 ,ũT
1

Cu1,T h IRu1,T
(xT

1 , ũ
T
1 )ph(x

T
1 , ũ

T
1 )πh

(s3)
=
∑
xT
1 ,ũT

1

min
u1,T

∑
h

πhCu1,Th ph(x
T
1 , ũ

T
1 )

(s4)
=
∑
xT
1 ,ũT

1

min
λ

e

∑
u1,T

λu1,T
log

∑
h

πhCu1,T h ph(x
T
1 ,ũT

1 )

= min
λ

∑
xT
1 ,ũT

1

e
∑

u1,T
λu1,T

(xT
1 ,ũT

1 ) log
∑

h πhCu1,T h ph(x
T
1 ,ũT

1 )
,

where
∑

u1,T
λu1,T

= 1. Step (s1) is due to the optimal decision rule atX1. Step (s2)

is simply step (s1) along with the assumption that the optimal rule at X̃1 is already

given, so that both xT
1 and ũT

1 are treated observational data by X1. Thus, we have

introduced a conditionally optimal rule at X1, with decision regions Ru1,T
. Step

(s3) is merely a reinterpretation of the (conditionally) optimal rule at X1. Step (s4)

is due to a familiar mathematical identity min(|a1|, |a2|, ...) = min
λ:
∑

λi=1

∏
i |ai|λi .

We define the Chernoff information for testing M hypotheses at X1 to be

C(p0, p1, · · · , pM−1) = lim
T→∞

− 1

T
log min(ST )

(s)
= −min

λ

[
log
∑
x1,ũ1

e
∑

u1
λu1 (x1,ũ1) log

(
max
h

cu1,h ph(x1,ũ1)

)]
,

where
∑

u1
λu1 = 1,

cu1,h = lim
T→∞

[πhCu1,T h]
1/T = lim

T→∞
[Cu1,T h]

1/T ∈ {0, 1},
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and step (s) assumes the independence ph(x
T
1 , ũ

T
1 ) =

∏T
t=1 ph(x1,t, ũ1,t), as well as

uses the well known identity

lim
T→∞

(∑
i

|ai|T
)1/T

= max
i

|ai|.

Note that if Xk, k ̸= 1, is viewed as an independent fusion center with risk

S
(k)
T =

∑
uk,T ,h

C
(k)
uk,T h p(uk,T , h),

then the above procedure can be repeated to obtain the Chernoff information at

Xk as

C(k)(p0, p1, · · · , pM−1) = lim
T→∞

− 1

T
log min(S

(k)
T )

= −min
λ

[
log

∑
xk,ũk

e
∑

uk
λuk

(xk,ũk) log

(
max
h

c
(k)
uk,h ph(xk,ũk)

)]
.

When h and u1 are both binary, and we consider 0-1 costs, then cu1,h = 1−δu1,h,

and we obtain the usual expression for Chernoff information,

C(p0, p1) = − min
0≤λ≤1

log ∑
x1,ũ1

p0(x1, ũ1)e
λ(x1,ũ1) log

p1(x1,ũ1)
p0(x1,ũ1)


(s)

≤
∑
x1,ũ1

p0(x1, ũ1) log
p0(x1, ũ1)

p1(x1, ũ1)
= D(p0|p1),

as given in Section 11.9 of [33], where step (s) is due to Jensen’s inequality. Note

that because the situation is symmetric, we also have C(p0, p1) ≤ D(p1|p0). Thus,

we have the Kullback-Leibler (KL) distance bound

C(p0, p1) ≤ min
(
D(p0|p1), D(p1|p0)

)
. (6.7)

Recalling that D(p0|p1) is the best possible error exponent for the Neyman-Pearson

test (Chernoff-Stein Lemma, Section 11.8 of [33]), the above inequality shows
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that sacrificing an arbitrarily small false alarm detection performance can improve

(asymptotic) missed detection performance.

The KL bound (6.7) can be obtained for more general h and u1 (again with the

help of Jensen’s inequality) as follows. Let h, u1 have the same alphabet of size

M , and let cu1,h = 1− δu1,h. Then

C(p0, p1, · · · , pM−1) = −min
λ

[
log
∑
x1,ũ1

e
∑

u1
λu1 (x1,ũ1) log

(
max
h

cu1,h ph(x1,ũ1)

)]

≤ −min
λ

[
log
∑
x1,ũ1

max
h

e
∑

u1
λu1 (x1,ũ1) log(cu1,h ph(x1,ũ1))

]

≤ (M − 1)
∑
x1,ũ1

min
h̸=0

p0(x1, ũ1) log

(
p0(x1, ũ1)

ph(x1, ũ1)

)
.

Since the above inequality holds if 0 on the right hand side is replaced by any value

of h, we get

C(p0, p1, · · · , pM−1) ≤ (M − 1)min
h

∑
x1,ũ1

min
h′ ̸=h

ph(x1, ũ1) log

(
ph(x1, ũ1)

ph′(x1, ũ1)

)
.

Online sensor comparison and asymptotically optimal net-

work patterns

Since Chernoff information does not depend on the prior, we may use it to describe

(asymptotically) optimal network patterns. Here, “optimal” will mean “asymptoti-

cally optimal”. Note that by definition, every sensor is a local fusion center (LFC).

On the other other hand, a sensor may or may not be a global fusion center (GFC),

which is defined as follows.

Consider a set of sensors Xn = {X1, ..., Xn}. We may rank sensors according

to quality such that Xk is better than Xk′ if

C(Xk)(p) ≥ C(Xk′ )(p),
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where C(Xk)(p) denotes C(Xk)(p0, p1, ..., pM−1), i.e., the Chernoff information of Xk.

Consider a network pattern G = (VG, AG) over X
n, where VG = Xn is the set of

vertices and AG = {ρkk′ : k, k′ = 1, ..., n} is the set of arrows: there is an arrow

Xk → Xk′ if and only if ρkk′ = 1, and ρkk′ = 0 otherwise. Let C(X)
G (p) denote the

chernoff information of a sensor X in G.

X is a global fusion center in G, written G ≤ X, if

C(X)
G (p) = max

X′∈G
C(X′)
G (p).

That is, a GFC is any sensor with maximal Chernoff information.

Let G be a set of network patterns over Xn. For example, we may consider G

to be the set of all network patterns over Xn with at most L edges, i.e.,

G = G(Xn, L) = {G = (Xn, AG) : |AG| ≤ L}.

. Let GX = {G ∈ G : G ≤ X} be the set of network patterns in each of which X

is a GFC. Then we have the following problems:

1. Find an optimal network pattern in G with X as a GFC.

2. Find an optimal fusion center with respect to G.

For problem 1, GX is an optimal pattern with X as a GFC if

C(X)
GX

(p) = max
G∈GX

C(X)
G (p) = max

G∈G: G≤X
C(X)
G (p).

For problem 2, X is an optimal fusion center (with respect to G) if

C(X)
GX

(p) = max
Y ∈Xn

C(Y )
GY

(p) = max
Y ∈Xn

max
G∈GY

C(Y )
G (p).

We note that the optimality defined here is robust with respect to the Bayesian

cost structure and prior probability, since the Chernoff information depends neither

on cost structure nor on prior probability.
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Conclusion

We have studied distributed detection over sensor networks in the form of acyclic

directed graphs. It was found that the decision rules for such networks are not more

complicated than those for simple networks, provided we assume that each sensor

sends the same message to all sensors receiving from it. This is still true regardless

of whether sensor observations are conditionally independent or not. Information

measures associated with large sample analysis of error probability were used to

define sensor comparison and to define asymptotic optimality of network patterns.



Chapter 7

Conclusion

7.1 Main results and application

Based on familiar notions of optimization and statistics (Appendices A,B), we have

developed a detection network optimization technique (Chapter 3) that can be ap-

plied in a variety of distributed detection systems. The obtained decision procedure

provides necessary and sufficient conditions for, i.e., a complete characterization of,

optimality in any decision optimization problem for which the underlying decision

objective function is differentiable, monotonic, and convex in decision probabilities.

This defines the scope of applicability of the result.

Our decision optimization procedure was applied in the following three dis-

tributed detection settings.

1. Interactive distributed detection (Chapter 4): Under the Neyman-Pearson

framework, we studied effects of a single round of interaction through ex-

change of 1-bit decisions between two sensors, both in the fixed sample case

and in the large sample case. We observed that without any communica-

93
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tion rate constraints, interaction improves performance of the fixed sample

test but not its asymptotic performance. These results were generalized to

cases involving multiple rounds of memoryless interaction, multiple sensors

in parallel, and exchange of multibit decisions.

2. Optimal fusion architecture (Chapter 5): In the Bayesian framework, we de-

rived the optimal decision rule for the detection of a deterministic or Gaussian

signal in Gaussian noise by a two-sensor tandem fusion network. We found

that for low SNR, the sensor with higher SNR should serve as the fusion

center.

3. Detection by acyclic graph networks (Chapter 6): We showed that in a sensor

network in the form of an acyclic directed graph, if each sensor transmits the

same message to all of its off-springs in the network, then the optimal decision

rules for such a network are similar to those of simple tandem and parallel

networks. This is still true when the sensors communicate through non-ideal

channels. In a brief study of large sample asymptotic analysis we derived

Chernoff and Kullback information measures and used these measures to

define a scheme for comparison among sensors and among sensor network

patterns. This type of comparison scheme can be used, in particular, to

determine (asymptotically) optimal sensor distributions within a given class

of sensor network patterns.

7.2 Future research

Here we present a number of problems indicating possible directions for future

research. These problems come from the major parts of this thesis, and they



CHAPTER 7. CONCLUSION 95

include natural extensions of our optimal signal detection procedure as well as

additional problems arising from the three main applications we have studied.

Based directly on our decision procedure of Section 3.3, the following are a

number of possible research directions.

1. Sequential detection: Using our decision optimization method, we would

like to describe both centralized and distributed sequential detection from

scratch. We expect our method to provide a relatively simple description of

the sequential detection problem, especially in the distributed setting.

2. Deeper study of randomization of decision rules and dependence of detection

performance on randomization parameters : In particular, when randomiza-

tion does make a difference, we would like to be able to select the best possible

(i.e., an optimal) randomized decision rule in an automatic way using our

decision procedure.

3. Optimization of non-differentiable convex decision functions : For simplicity,

we assumed differentiability of the decision function in our analysis. However,

we expect that the same decision process should still apply, with minimal

adjustments, when the objective function is non-differentiable. In particular,

the (partial) derivative of the decision function should be replaced by its

subdifferential.

4. Extension to harmonic decision functions : Given that some key properties of

convex functions which made our analysis possible are possessed by all sub-

harmonic functions, we expect that our optimization procedure for monotonic

convex decision functions can be readily extended to a similar optimization

procedure for monotonic subharmonic decision functions.
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5. Relation to the optimization of submodular set functions : We would like to

explore connections between our optimization procedure and the optimiza-

tion of submodular set functions used for the determination of optimal sensor

placement within a given network pattern.

Each of our three main applications also gave rise to a research problem as

follows.

6. Interactive distributed detection: What is the cost incurred by additional

rounds of interaction? The main point here is that although interaction

can strictly improve performance of the fixed sample test, the additional

communication steps involve can be costly. A natural way to account for

this would be to modify the original objective function, say by including an

additional term in it.

7. Optimal Fusion architecture: What is the optimal communication direction

for large SNR? What is needed here is simply an efficient computational

algorithm, since the optimal decision rule is already available.

8. Acyclic graph detection: What is the optimal sensor distribution that achieves

uniform reliability (asymptotically) in a sensor network? Here, uniform relia-

bility refers to the situation where the value of the local Chernoff information

is the same at each sensor.

7.3 Comments on sequential detection

At first sight, dynamic programming (DP) methods appear to be the ideal choice

for sequential detection problems. This is mainly because DP itself is sequential
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in nature. The DP approach is an inductive approach which, for more practical

reasons, typically dictates that optimization should be done incrementally after

each observation sample. Unfortunately, however, DP is suboptimal in general.

Moreover, despite its built in sequential nature, DP does not necessarily provide

the most convenient description of the sequential detection problem.

It is theoretically more convenient to consider a deductive approach in which

we assume that an exhaustive collection of sequential detection plans or strategies,

each consisting of a (possibly infinite) sequence of observation samples along with

a corresponding randomly generated sequence of decisions, are already available.

In such an approach, it is necessary to explicitly specify additional constraints

ensuring that at any given step, processing continues to the next step if and only if

the decision outputs of all previous steps each failed to meet the stopping criterion.

(Note that such stopping constraints are implicit in an inductive approach such as

DP). One then proceeds to select the sequential detection plan that optimizes the

underlying objective function of the sequential test.

Note however that the inductive approach is preferred over the deductive ap-

proach when knowledge of available sequential detection strategies is severely lim-

ited. When knowledge of available sequential detection strategies is unlimited,

then with respect to optimality, the deductive approach is always preferred over

the inductive approach.

Based on the above discussion, we conclude that our optimization technique

developed in Chapter 3 can provide a more convenient description of the sequen-

tial detection problem, as compared with a dynamic programming approach. To

apply our method in sequential detection, we need to first specify a decision func-

tion, a natural choice of which is some measure of stopping time as a function of

the probabilities of the decision sequences. Next we specify stopping constraints,
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which should greatly reduce the number of nontrivial optimization variables (i.e.,

probabilities of the decision sequences). Finally, we optimize the decision func-

tion by selecting an optimal decision strategy (i.e., a decision sequence or strategy

whose probability optimizes the decision function). If the decision function is a

monotonic convex function of probabilities of the decision sequences, then either

Proposition 3.1 or Corollary 3.2 (depending on whether we are maximizing the

decision function or minimizing it) will provide a complete characterization of the

solution of the optimization problem.
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Appendix A

Optimization of Convex Functions

A.1 The optimization problem

We will briefly discuss optimization problems in general. Our main focus, however,

will be on a class of problems called convex problems. For a fixed positive integer

d, a real-valued function f on the d-dimensional real vector space Rd =
{
x =

(x1, x2, ..., xd) : xi ∈ R
}
is a mapping expressed as

f : x ∈ D ⊂ Rd 7→ f(x) ∈ R,

where the domain D is not necessarily all of Rd. For the purpose of optimization

however, it is convenient to allow functions to take infinite values, in which case,

we simply present every function in the form

S : Rd → R̄ = R ∪ {±∞}, x 7→ S(x),

where the natural domain of S is separately defined as

dom S = {x ∈ Rd : S(x) ∈ R}.

A standard reference for the material in this chapter is [47].
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The most basic optimization problem for S can be presented in the form

optimize S(x)

subject to x ∈ C
(A.1)

where C is a subset of Rd called the constraint set of the problem, and S is called

the objective function of the problem.

In the basic optimization problem (A.1), our objective is either to minimize

(i.e., find the smallest value of) or to maximize (i.e., find the largest value of)

the function S. However, every maximization problem can be rewritten as a min-

imization problem, and likewise, every minimization problem is a maximization

problem. Consequently, without loss of generality, we will temporarily assume for

convenience that every optimization problem is in the form

minimize S(x)

subject to x ∈ C
(A.2)

The optimal value of S will be denoted by Sopt, and we will write

Sopt = min
x∈C

S(x).

We say a point y ∈ Rd is an optimum (or an optimal point) of S if S(y) = Sopt,

and we write

y ∈ argmin
x∈C

S(x) =
{
z ∈ Rd : S(z) = Sopt

}
,

where the set argmin
x∈C

S(x) is called the solution set of the problem.

If the restriction S|C : C → R is a convex function (Definition A.2), then the

problem is called a convex problem.

If the constraint set C is not specified in the problem (A.1), then we assume

C = Rd, and refer to the problem as unconstrained. Otherwise it is a constrained
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optimization problem. Most practical optimization problems are constrained in

nature, and it is often possible to simplify the constraints by adjusting (or redefin-

ing) the objective function in some way. Some of these adjustment techniques are

discussed next in Section A.2.

A.2 Constrained optimization

Recall that the basic problem (A.2) is constrained if C ( Rd, i.e., if C is a proper

subset of Rd. It is often possible to solve a complex optimization problem by

solving a number of simpler optimization problems. However, such a possibility is

difficult to uncover or identify when the geometric structure of the constraint set C

is sufficiently intricate. By trading the geometric complexity of C for a relatively

trivial algebraic refinement of the function S, the problem can become a lot easier

to solve.

When the set C is specified in terms of equality or inequality constraints, and

the function S satisfies some regularity conditions (e.g., differentiability), then the

problem can be rewritten as an equivalent problem

minimize L(x, λ)

subject to (x, λ) ∈ C̃
(A.3)

where the new objective function L : Rd × Rd̃ → R, (x, λ) 7→ L(x, λ) depends on

the original objective function S, and the new constraint set C̃ is geometrically

simpler than the original constraint set C. The function L is called a Lagrangian

function of the problem. The new optimization variables λ = (λ1, λ2, ..., λd̃) are

called Lagrange multipliers.

We will now make the above discussion more explicit.
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Equality constraints and the Lagrangian

Consider an optimization problem with equality constraints:

minimize
x∈Rd

S(x),

subject to hi(x) = 0, i = 1, ..., n.

(A.4)

Let C = {x ∈ Rd : hi(x) = 0, i = 1, ..., n} denote the constraint set as before,

and let γ : [0, 1] → C, t 7→ γ(t) be any smooth curve in C. For simplicity, we will

further make the following assumptions.

1. S and hi are twice differentiable.

2. S has local minima in C, which we wish to find.

Then the constraints imply that

0 =
d

dt
hi(γ(t)) = γ′(t)T · ∇hi(γ(t)), i = 1, ..., n,

i.e., at the optimum, the hyperplane spanned by the gradients {∇hi : i = 1, ..., n}

is orthogonal to C. Moreover, because this holds for all γ, the vectors {∇hi : i =

1, ..., n} span the orthogonal complement of the tangent space (i.e., the space of all

vectors that are tangent or “parallel”) to C at the optimum.

Also, recall that at a local minimum, we have

0 =
d

dt
S(γ(t)) = γ′(t)T · ∇S(γ(t)),

0 ≤ d2

dt2
S(γ(t)) = γ′(t)T · ∇2S

(
γ(t)

)
· γ′(t). (A.5)

The first of these relations says that at the optimum, ∇S is orthogonal to C.

Since the orthogonal complement to C at the optimum is spanned by the gradients
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{∇hi : i = 1, ..., n}, it follows that at the optimum the vector ∇S must lie in the

hyperplane spanned by the gradients {∇hi : i = 1, ..., n}, so that

∇S(x) +
n∑

i=1

λi∇hi(x) = 0, for some λi ∈ R.

The optimization problem (A.4) can now be restated as

minimize
(x,λ)∈Rd+n

L(x, λ) = S(x) +
n∑

i=1

λihi(x), (A.6)

The optimality conditions (for a local minimum) are given by

∇x,λL(x, λ) = 0, (d+n equations)

∇2
x,λL(x, λ) ≽ 0,

or equivalently, by

∇xL(x, λ) = ∇S(x) +
n∑

i=1

λi∇hi(x) = 0,

∇λi
L(x, λ) = hi(x) = 0, i = 1, ..., n,

∇2
x,λL(x, λ) =

 ∇2
xS(x) 0

0 0

 ≽ 0,

where ≽ denotes positive definiteness over the constraint set C as implied by the

relation (A.5) which holds for every smooth curve γ in C that passes through the

optimum.

These optimality conditions show that the problems (A.4) and (A.6) are equiv-

alent for the objective of finding local minima of S.
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Inequality constraints and the KKT Lagrangian

Consider a problem with inequality constraints:

minimize
x

S(x)

subject to fi(x)≤0, i=1,...,m
hj(x)=0, j=1,...,n

(A.7)

We again assume for simplicity that S, fi, hj are twice differentiable, and that S

has local minima in the constraint set, C = {x ∈ Rd : fi(x) ≤ 0, hj(x) = 0, i =

1, ...,m, j = 1, ..., n}, that we wish to find.

The inequality constraints fi(x) ≤ 0 hold if and only if

fi(x) + s2i = 0, for some si ∈ R, (A.8)

where si are known as slack variables and their actual values need to be optimal.

Therefore the problem becomes

minimize
x,{si}

S(x)

subject to fi(x)+s2i=0, i=1,...,m
hj(x)=0, j=1,...,n (A.9)

As before, we can write down a Lagrangian

L(x, s, λ, ν) = S(x) +
m∑
i=1

λi

(
fi(x) + s2i

)
+

n∑
j=1

νjhj(x),

in terms of which the optimization problem (A.7) becomes

minimize
x,s,λ,ν

L(x, s, λ, ν).

The optimality conditions (for a local minimum) are given by

∇x,s,λ,νL(x, s, λ, ν) = 0,

∇2
x,s,λ,νL(x, s, λ, ν) ≽ 0,
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which are equivalent (after {si} has been completely eliminated) to

∇S +
m∑
i=1

λi∇fi(x) +
n∑

j=1

νj∇hj(x) = 0,

fi(x) ≤ 0, i = 1, ...,m,

λi ≥ 0 i = 1, ...,m,

λifi(x) = 0, i = 1, ...,m,

hj(x) = 0, j = 1, ..., n,

νj ∈ R i = 1, ..., n.

The above relations, called KKT conditions, show that the original problem (A.7)

is equivalent to the problem

minimize
x,{λi},{νj}

L(x, λ, ν) = S(x) +
m∑
i=1

λifi(x) +
n∑

j=1

νjhj(x)

subject to x ∈ Rd, λ ∈ [0,∞)m, ν ∈ Rn

(A.10)

A.3 Convex functions

Many problems that arise in practice are convex. Convex functions possess nice

properties which make their optimization relatively easy to handle computation-

ally. We will present some basic properties of convex functions in this section. The

optimization of convex functions is considered in Section A.4.

The discussion in this section pays special attention to the following points:

1. The description of a convex set in terms of line segments through the set,

and basic operations that preserve set convexity.

2. The behavior of a convex function along line segments through its domain,

and basic operations that preserve function convexity.
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These points provide a way of understanding maxima and minima of convex func-

tions in terms of two-dimensional geometry. They are also useful for identifying

those optimization problems that are convex, as well as constructing convex func-

tions.

To simplify our discussion, we will denote the oriented line segment between

two points x, y ∈ Rn by [x, y]. It is convenient to view [x, y] as the image of the

parametrization

lx,y : [0, 1] → Rn, t 7→ lx,y(t) = (1− t)x+ ty. (A.11)

Set convexity

Definition A.1 (Convex set). A set D ⊂ Rn is convex if [x, y] ⊂ D for any two

points x, y ∈ D.

The following are some operations that preserve set convexity, and they are not

difficult to check using Definition A.1.

1. Composition of operations that each preserve set convexity : It is clear that

if f : U ⊂ Rm → V ⊂ Rn, g : V ⊂ Rn → W ⊂ Rk are mappings that each

preserve set convexity, then their composition g ◦ f : U ⊂ Rm → W ⊂ Rk

also preserves set convexity.

2. Set intersection: If A,B ⊂ Rn are two convex sets, let D = A ∩ B. Then

for any x, y ∈ D, [x, y] ⊂ A and [x, y] ⊂ B, and so [x, y] ⊂ D, i.e., the

intersection of convex sets is a convex set.

3. Affine transformation: If D ⊂ Rn is convex and f : Rn → Rm, x 7→ Ax+ b

is an affine function, then f(D) ⊂ Rm is convex. More precisely, we have the

following.
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Let f : U ⊂ Rm → V ⊂ Rn, x 7→ Ax + b, be a surjective affine function,

where A is an n ×m matrix with real entries and b ∈ Rn. Observe that for

x, y ∈ U , we have

f
(
(1− t)(Ax+ b) + t(Ay + b)

)
= Af

(
(1− t)x+ ty

)
+ b, for all t ∈ [0, 1],

and so f([x, y]) = [f(x), f(y)]. Thus, if [x, y] ⊂ U , then [f(x), f(y)] ⊂ V .

This shows that affine mappings preserve set convexity.

4. Perspective transformation: A map of the form P : Rn+1 → Rn, (x, t) 7→ x/t

is called a perspective function. This function simply uses the last component

of (x, t) to scale the rest and drops that last component, and thus preserves

set convexity.

5. Fractional linear transformation: This is the composition of an affine trans-

formation and a perspective transformation P . Let g : Rn → Rm+1, x 7→

(Ax + b, cTx + d), where A ∈ Rm×n, cT ∈ R1×n, b, d ∈ R. Since P :

Rm+1 → Rm, we have Rn g−→ Rm+1 P−→ Rm, i.e., we have the composition

P ◦ g : Rn → Rm, which is given by

P ◦ g(x) = P (Ax+ b, cTx+ d) = (Ax+ b)/(cTx+ d), for x ∈ Rn.

Function convexity

Definition A.2 (Convex function). A function f : D ⊂ Rn → R is convex if D is

a convex set, and for all x, y ∈ D, we have

f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y), for all t ∈ [0, 1].

Remark. It follows immediately from Definition A.2 that a function is convex

if and only if it is convex along every line segment through its domain. For this
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reason, any characterization of convexity in one dimension may be readily extended

to higher dimensions simply by considering it along every line segment through the

function’s domain.

The following are some operations which preserve function convexity. They

are not difficult to check using Definition A.2, but some of them can be more

conveniently visualized with the help of simple geometric pictures.

1. Nonnegative weighted sum: If {fα(x)}α is a collection of convex functions,

and wα ≥ 0 for each α, then the function
∑

α wαfα(x) is convex.

2. Composition with an affine mapping: If f : D ⊂ Rn → R is convex, and

L : Rm → Rn, x 7→ Ax+ b, where A ∈ Rn×m, b ∈ Rn, then the function

g = f ◦ L : L−1(D) ⊂ Rm → R, x 7→ f(Ax+ b)

is convex.

3. Pointwise supremum: If fα(x) is convex for each α then supα fα(x) is convex

over dom supα fα =
∩

α domfα. In particular, if f(x, y) is convex in x for

each y, then supy∈D f(x, y) is convex for any set D.

4. Pointwise infimum: If f(x, y) is convex in (x, y) and C is a nonempty convex

set, then g(x) = infy∈C f(x, y) is convex if −∞ < g(x) for all x.

5. Perspective of a function: If f : Rn → R is convex then the function

g : Rn+1 → R, (x, t) → tf(x/t), domg = {(x, t) : x/t ∈ domf, t > 0},

is convex.
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6. Composition of convex functions: Let h : Rm → R and g : Rn → Rm be

twice differentiable. Then f = h ◦ g : Rn → R satisfies

∇xi
∇xj

f =
m∑
k=1

∇xi
∇xj

gk(x) ∇gkh(g) +
∑
k,k′

∇xi
gk(x) ∇gk∇gk′

h(g) ∇xj
gk′ .

Therefore, if g is convex, and h is both convex and increasing in each of its

arguments (or if g is concave, and h is both convex and decreasing in each

of its arguments), then f is convex.

Based on the remark following Definition A.2, convexity of a differentiable

function of several variables can be described in terms of the following result for a

function of a single variable.

Theorem A.3.

(a) If f : (a, b) → R is differentiable, then f is convex if and only if f ′ is

monotonically increasing.

(b) If f : (a, b) → R is twice differentiable, then f is convex if and only if

f ′′(x) ≥ 0 for all x ∈ (a, b).

Proof.

(a) Assume f is differentiable on (a, b).

∗ (⇒) Let f be convex. Then for all λ ∈ (0, 1) and x, y ∈ (a, b),

f(λx− (1− λ)y) ≤ λf(x) + (1− λ)f(y),

⇒ f(λ[x− y] + y)− f(y)

λ
≤ f(x)− f(y).

By taking the limit λ → 0, and by interchanging x and y, we obtain

f ′(y)(x− y) ≤ f(x)− f(y), f ′(x)(y − x) ≤ f(y)− f(x). (A.12)



APPENDIX A. OPTIMIZATION OF CONVEX FUNCTIONS 111

If x < y, then (A.12) implies

f ′(x) ≤ f(x)− f(y)

x− y
≤ f ′(y),

and thus f ′ is monotonically increasing.

∗ (⇐) Conversely, let f ′ be monotonically increasing on (a, b). Let x, y ∈

(a, b) such that x < y. For λ ∈ (0, 1), let z = λx + (1 − λ)y. Then

x < z < y, and

f(λx+ (1− λ)y)− [λf(x) + (1− λ)f(y)]

= f(z)− [λf(x) + (1− λ)f(y)]

= λ[f(z)− f(x)] + (1− λ)[f(z)− f(y)]

mvt
= λ(z − x)f ′(c) + (1− λ)(z − y)f ′(d), ( x < c < z < d < y )

= λ(1− λ)(y − x)[f ′(c)− f ′(d)]

≤ 0,

where mvt denotes the mean value theorem. Hence f is convex.

(b) Assume f ′′ exists on (a, b).

∗ (⇒) Let f be convex. Then for x, y ∈ (a, b), x < y,

f ′(x) ≤ f ′(y) ⇒ f ′(x)− f ′(y) = (x− y)f ′′(c) ≤ 0, (x < c < y),

⇒ f ′′(c) ≥ 0.

Since x, y were arbitrary, we have that f ′′(t) ≥ 0 for all t ∈ (a, b).

∗ (⇐) Conversely, let f ′′(x) ≥ 0 for all x ∈ (a, b). Then f ′ is monotoni-

cally increasing, and thus f is convex by part (a).
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By applying Theorem A.3 along every line segment in the function’s domain,

the following results are immediate.

Corollary A.4.

(a) If f : D ⊂ Rn → R is differentiable, then f is convex if and only if

(x− y)T · ∇f(y) ≤ f(x)− f(y), for all x, y ∈ D.

(b) If f : D ⊂ Rn → R is twice differentiable, then f is convex if and only if

∇2f(x) ≽ 0, for all x ∈ D,

i.e., if and only if the Hessian matrix ∇2f(x) is positive semi-definite for all

x ∈ D.

In the optimization of convex functions, the following inequality is frequently

useful.

Theorem A.5 (Jensen’s Inequality). Let f : D ⊂ Rn be integrable, and let p :

D ⊂ Rn → [0,∞) be a probability mass/density function, i.e.,
∑

x∈D p(x) = 1. Let

Ep[f ] =
∑

x∈D f(x)p(x) denote the average of f with respect to p.

If S : (a, b) ⊃ f(D) → R is a differentiable convex function, then

S
(
Ep[f ]

)
≤ Ep

[
S(f)

]
.

Proof. By Corollary A.4,

(u− v)S ′(v) ≤ S(u)− S(v), for all u, v ∈ (a, b). (A.13)

To obtain the result, we set u = f(x), v = Ep[f ], and take the expectation Ep[·] of

both sides of the inequality (A.13).
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Note that the conclusion of the theorem does not require S to be differentiable,

i.e., differentiability was included for simplicity only. This is because the defini-

tion of convexity of a function implies a convex function is differentiable almost

everywhere in its domain.

A.4 Maximization and minimization of a convex

function

The goal in this section is to determine necessary and sufficient conditions for

the maximum, and for the minimum, of a convex function. With respect to opti-

mization, (differentiable) convex functions are nice because they fall in a class of

functions whose maxima and minima on any domain (i.e., a simply connected open

set) occur either on the boundary of the domain or at points where the derivative

equals 0. Such functions are called subharmonic functions.

The important thing about subharmonic behavior is the following. Optimiza-

tion problems involving a large (often infinite) number of optimization variables

arise in detection theory. However, mere knowledge of the fact that the maxima

and minima of the underlying objective function lie on the boundary of the func-

tion’s domain (although a necessary condition only) greatly reduces the number

of optimization variables. Frequently, the reduction in cardinality of the space of

optimization variables is from infinite to at most countable. (See Theorem 3.1).

Moreover, this necessary condition can sometimes directly yield the optimal so-

lution if the objective function and constraints are sufficiently simple. A remark

on this last point is given after Theorem A.6, where monotonicity is essential for

necessary conditions to become sufficient.
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If f : D ⊂ Rn → R is a differentiable convex function, then it is easy to see

that the necessary and sufficient condition for y ∈ Rn to be the minimum of f is

given by

d

dt
f
(
lx,y(t)

)∣∣∣∣
t=1

≤ 0 for all x ∈ D, (A.14)

where lx,y(t) = lx,y(t) = (1− t)x+ ty was defined in (A.11). This condition simply

says that while we approach y along any line segment, the derivative of the function

at y is either 0 or negative. The condition (A.14) is of course equivalent to

(x− y)T · ∇f(y) ≥ 0 for all x ∈ D. (A.15)

The necessary and sufficient conditions for the maximum of a convex function

are a bit more involved because an additional property, which is monotonicity of

the objective function over the constraint set, is required to establish sufficiency of

basic necessary conditions. The main results are presented in Theorem A.6. Note

that in this theorem, the derivative ∇f is denoted by f ′ for convenience.

Theorem A.6 (Convex maximization theorem). Let f : Rn → R̄ = R∪{±∞} be

differentiable and convex in its natural domain, domf = {x ∈ Rn : f(x) ∈ R}. Let

D ⊂ domf be any convex set. Then for any point z ∈ D = D ∪ ∂D,

f(z) = max
x∈D

f(x) (A.16)

if and only if the following conditions hold.

(a) (x− z) · f ′(z) ≤ 0 for all x ∈ D.

(b) f(z) ≥ f(y) for every point y ∈ Rn satisfying (y−x) ·f ′(y) ≤ 0 for all x ∈ D.

Proof. Let z ∈ D.
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• (⇒): Assume z satisfies (A.16). Let y ∈ D. By the convexity of f in D,

Corollary A.4 implies

(x− y) · f ′(y) ≤ f(x)− f(y) for all x ∈ D. (A.17)

Setting y = z in (A.17), we see that “f(x)− f(z) ≤ 0 for all x ∈ D” implies

“(x − z) · f ′(z) ≤ 0 for all x ∈ D”, which verifies condition (a). Condition

(b) is also trivially satisfied.

• (⇐): Assume z satisfies (a) and (b). Let y ∈ D be any point satisfying

“(y − x) · f ′(y) ≤ 0 for all x ∈ D”. Then for each x ∈ D, the function

gx(t) = f (lx,y(t)) = f(x+ (y − x)t), 0 ≤ t ≤ 1,

is nondecreasing at y, i.e., g′x(1) = f ′(y) · (y − x) ≥ 0 for all x ∈ D. This

says that as we approach the point y along any line segment, the function

cannot decrease. Thus y is a relative local maximum, since f(y) ≥ f(x) for

all x ∈ Bε(y) ∩D, where Bε(y) is a ball of some radius ε > 0 centered at y.

Now, by (a), z is a relative local maximum of f onD and, by (b), f(z) ≥ f(y)

for every relative local maximum, y, of f . This means z is a global maximum

of f on D, and so z satisfies (A.16).

Remarks.

1. The condition given in (a) of the theorem is necessary but not sufficient for

a global maximum as one can easily verify using a simple quadratic function

on the real line. However, if for all x ∈ D the derivative g′x(t) = (y − x) ·

f ′(x+ (y − x)t) of

gx(t) = f(x+ (y − x)t), 0 ≤ t ≤ 1,
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has the same sign for all 0 ≤ t ≤ 1, then condition (a) is necessary and

sufficient for a global maximum. In other words, if f is monotonic in D,

then (a) is a complete characterization for a maximum of f . In particular,

if f is an affine function, then (a) is necessary and sufficient for a global

maximum of f .

Monotonicity as described above is too strong. In the following remarks, we

will see that the maximum is always a boundary point, and so monotonicity

is only required with respect to one point of the boundary ∂D in order for

(a) to be necessary and sufficient for a global maximum. I.e., if there is a

point w ∈ ∂D such that f ′ is monotonic along every line segment through w

in D, then (a) is both necessary and sufficient for a global maximum.

2. Note that the derivative f ′ does not have to be zero at a relative local max-

imum. Also, every global maximum is a relative local maximum.

3. Let L : Rn → R, y 7→ max
x∈D\{y}

(x− y) · f ′(y). Then the theorem says z ∈ D is

a global maximum of f on D if and only if

f(z) = max
y∈D :L(y)≤0

f(y).

4. Note that because f is convex, if y ∈ D satisfies (x − y) · f ′(y) ≤ 0 for all

x ∈ D, then y must be a boundary point of D. That is, every local maximum

lies on the boundary ∂D of D. This can be seen geometrically by recalling

that a function is convex if and only if it is convex along each line segment

in its domain.

Therefore, z ∈ D is a global maximum of f on D if and only if z ∈ ∂D, and

f(z) = max
y∈∂D :L(y)≤0

f(y).



APPENDIX A. OPTIMIZATION OF CONVEX FUNCTIONS 117

5. Algorithms exist for solving the optimization problem in Theorem A.6. See

[48] for example.

6. In typical problems that arise in detection theory with a huge number of

optimization variables, the role of condition (a) is to cut down the space

of optimization variables to an at most countable number of threshold vari-

ables. Condition (b) then guarantees that (direct) optimization over these

threshold parameters will yield an optimal solution, provided the function is

monotonic. The above two-step optimization procedure is explicitly carried

out in Chapters 3 to 6.

Corollary A.7 (Convex minimization theorem). A point z ∈ Rn is the global

minimum of the function f given in Theorem A.6 if and only if it satisfies (x −

z) · f ′(z) ≥ 0 for all x ∈ D, which is the reverse inequality version of condition (a)

of the theorem.

Proof. This follows the same arguments as in the proof of Theorem A.6. Also see

the discussion leading to the conditions (A.14) and (A.15).



Appendix B

Statistical Information Inference

The term statistics refers to a collection of conceptual methods for quantifying and

processing experimental observation. Some of these methods include probability

in Section B.1, random variables in Section B.2, point estimation in Section B.4,

and hypothesis testing in Section B.5.

Given a relatively new physical system, one would like to be able to predict

its behavior under certain desired operating conditions. Accordingly, one performs

an experiment on the system by first subjecting it under specific (external or

environmental) conditions, and then monitoring and recording the system’s basic

behavioral responses to the conditions. In a typical experiment, the above process

may be repeated as many times as necessary. From a practical standpoint, it

is observed that accuracy in predicting the system’s behavior using experimental

results increases with the number of repetitions.

The basic behavioral responses of the system noted above are called outcomes

of the experiment. The set of all possible outcomes of the experiment is called the

A more complete discussion of the concepts in this chapter can be found in [49].

118
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sample space of the experiment. The sample space will be denoted by S. Subsets

of S are called events of the experiment.

B.1 Probability

For computational convenience, the experiment is often specified in the form

(S,Σ, P ), and called a probability measure space, where the entries are defined

as follows.

• S is the sample space of the experiment as defined above.

• Σ is a nonempty collection of events (i.e., subsets of S) which is closed under

complement and countable union, in the sense that Σ contains the comple-

ments and countable unions of its elements. Σ is called a σ-algebra (sigma

algebra) over S.

• P is a real function of the form P : Σ → [0, 1], with the following defining

properties.

(i) P (S) = 1.

(ii) P (U) ≤ P (V ), whenever U ⊂ V .

(iii) P (U ∪ V ) = P (U) + P (V ), whenever U ∩ V = ∅.

P is called a probability measure over S. Note that property (iii) can be

extended to any countable collection of sets in Σ.

The probability P (U) of an event U ⊂ S is a measure of its likelihood of

occurrence in the experiment. Since events do intersect (so that the “previous”

occurrence of one affects the likelihood of “subsequent” occurrence of another), a
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useful concept is that of conditional probability, where the probability of an event

U given that another event V has already occurred is defined as

P (U |V ) , P (U ∩ V )

P (V )
, or by P (U ∩ V ) = P (U |V )P (V ).

If {Ui, i = 1, ..., n} ⊂ Σ is a partition of the sample space S, then

P (V ) = P

(
V ∩

n∪
i=1

Ui

)
=

n∑
i=1

P (V ∩ Ui) =
n∑

i=1

P (V |Ui)P (Ui)

⇒ P (Ui|V ) =
P (Ui ∩ V )

P (V )
=

P (V |Ui)P (Ui)∑n
j=1 P (V |Uj)P (Uj)

, (B.1)

where the relation (B.1) is known as Bayes rule.

B.2 Random variables

Random variables are functions on sample spaces. More precisely, let (S,Σ, P )

be the probability measure space representing an experiment. Then any function

X : S → X is called a random variable, where X is a vector space. Note that the

probability measure P is seen as summarizing all possible results of the experi-

ment, meanwhile a random variable X is seen as isolating a particular aspect or

realization of the experiment.

It is not difficult to observe that every random variableX gives rise to a measure

space (X ,ΣX , PX), where ΣX is a σ-algebra over X such that X−1(A) ∈ Σ for all

A ∈ ΣX , and the function

PX : ΣX → [0, 1], A 7→ P (X−1(A))

is called the probability distribution of X. Therefore, apart from isolating a certain

aspect of the experiment, a random variable also summarizes the results of the
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experiment through its probability distribution. Note that PX(A) = P (X−1(A))

is often simply written as P (X ∈ A), or as P (X = x) if A = {x} consists of a

single point x ∈ X .

Given s ∈ S, let x = X(s) ∈ X , and let Ux = X−1(x) = X−1(X(s)). We say

X = x (in a random manner) with probability

P (X = x) = PX

(
{x}
)
= P

(
X−1(x)

)
= P (Ux).

In other words, X can take on any value x ∈ X(S) but with a certain degree of

uncertainty determined by the probability function P . The expected value of a

random variable X is defined as

EP [X] =
∑
x∈X

x pX(x),

where the function pX : X → [0,∞), defined such that

P (X ∈ A) =
∑
x∈A

pX(x),

is called the probability mass function (pmf) of X if X is discrete, or probability

density function (pdf) ofX ifX is continuous. Note that
∑

x∈A denotes integration

over A ⊂ X if X is continuous. The existence of the function dPX

dx
, pX is

determined by the Radon-Nikodym theorem.

A function (or transformation) of a random variable is again a random variable,

in the following sense. If X : S → X is a random variable and f : X → Y is any

function (or transformation), then the composition Y = f ◦ X : S
X→ X f→ Y ,

written simply as Y = f(X), is a random variable. A collection of random variables

Xn = (X1, ..., Xn), Xi : S → Xi, is again a random variable given by

Xn : S → X n = X1 × · · · × Xn, s 7→ Xn(s) =
(
X1(s), ..., Xn(s)

)
.
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Verification of the above claims, based on the definitions, is straightforward.

Note that we can have a possibly continuous collection of random variables, an

example of which is the following.

Definition B.1 (Random process). A random process {X(t) : t ∈ R} is a collec-

tion of random variables indexed by time. That is, for each value of t, X(t) is a

random variable.

Basics of computation with random variables

In this section, for simplicity, we set X = R. Thus, a (univariate) random variable

X is a mapping from the sample space to the reals:

X : S → R.

The measure space associated with X is (R,ΣX , PX), where the probability distri-

bution PX : ΣX → [0, 1], A 7→ PX(A) is given by

PX(A) ≡ P (X ∈ A) , P
(
X−1(A)

)
= P

(
{s ∈ S : X(s) ∈ A}

)
.

A random variable is said to be discrete if its image is a discrete set in R, or con-

tinuous if its image is a continuous set in R. We note however that the description

of a continuous random variable is similar to that of a discrete random variable,

except that summation
∑

is replaced by integration
∫
.

For a discrete random variable X, the evaluation of PX is often for convenience

specified in terms of a probability mass function (pmf) fX for X. Likewise, if X

is continuous, the evaluation of PX is specified in terms of a probability density

function (pdf) fX for X. The pmf or pdf is given by

P (X ∈ A) =
∑
x∈A

fX(x) or P (X ∈ A) =

∫
A

fX(x)dx.
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The cumulative distribution function (cdf) of a random variable X is defined as

FX(x) , P (X ≤ x) =


∑x

x′=−∞ fX(x
′), if X is discrete∫ x

−∞ fX(x
′)dx′, if X is continuous

⇒ 0 ≤ FX(x) ≤ 1.

Therefore,

fX(x) =

 FX(x)− FX(x− 1), if X is discrete,

dFX(x)
dx

, if X is continuous.

The expected value (or mean) and variance of a function g(X) of the random

variable X are respectively defined by

µg(X) = E[g(X)] =


∑∞

x=−∞ g(x)fX(x), if X is discrete,∫∞
−∞ g(x)fX(x)dx, if X is continuous,

σ2
g(X) = Var[g(X)] = E

[(
g(X)− E[g(X)]

)2]
.

Note that Z = g(X) : S → R, s 7→ Z(s) = (g ◦ X)(s) = g(X(s)) is itself a

random variable with distribution function given by

PZ(A) = P (Z ∈ A) = P (Z−1(A)) = P (X−1(g−1(A))) = PX

(
g−1(A)

)
,

FZ(z) = P (Z ≤ z) = P
(
g(X) ≤ z

)
= P

(
X ∈ g−1

(
(−∞, z]

))
=


∑

x∈Ag(z)
fX(x), if X is discrete,∫

Ag(z)
fX(x)dx, if X is continuous,

where

Ag(z) = g−1
(
(−∞, z]

)
=
{
x ∈ R : g(x) ∈ (−∞, z]

}
=
{
x ∈ R : g(x) ≤ z

}
.
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For simplicity, we assume that the random variables are continuous in what

follows, while noting that the case of discrete as well as mixed random variables is

much the same. Note that a mixed random variable is one whose range in R has

both discrete and continuous subsets that are disjoint. Also, we will sometimes

denote a pmf, or pdf, fX by pX .

Analogously to the univariate random variable, we define a bivariate random

variable (X, Y ), its inherited probability distribution PX,Y , its pdf fX,Y , and its cdf

FX,Y as follows:

(X,Y ) : S → R2, s 7→ (X(s), Y (s)), PX,Y : ΣX,Y → [0, 1], A 7→ PX,Y (A),

where

PX,Y (A) ≡ P ((X,Y ) ∈ A) , P
(
(X,Y )−1(A)

)
= P

(
{s ∈ S : (X(s), Y (s)) ∈ A}

)
,

P ((X,Y ) ∈ A) =

∫
A
fX,Y (x, y)dxdy,

FX,Y (x, y) , P (X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
f(x′, y′)dx′dy′, ⇒ 0 ≤ FX,Y (x, y) ≤ 1,

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

PX,Y is said to be the joint probability distribution for the pair of random variables

(X, Y ), while the component random variables X and Y are said to have marginal

distribution functions

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

FX,Y (x,∞)

dx
− FX,Y (x,−∞)

dx
,

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx =

dFX,Y (∞, y)

dy
− dFX,Y (−∞, y)

dy

associated with (i.e., due to) the joint distribution. The expected value and dis-
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tribution of a new random variable Z = g(X,Y ) are given by

E[g(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy,

FZ(z) = P (Z ≤ z) = P
(
g(X,Y ) ≤ z

)
=

∫
Ag(z)

fX,Y (x, y)dxdy,

where Ag(z) = {(x, y) ∈ R2 : g(x, y) ≤ z}.
We can similarly proceed to describe multivariate random variables X =

(X1, ..., Xn), where the mean vector MX and covariance matrix ΣX of X are de-

fined as

MX = E[X] = (E[X1], ..., E[Xn]),

ΣX = E
[
(X − E[X])(X − E[X])T

]
=

[
E
[
(Xi −E[Xi])(Xj −E[Xj ])

]]
ij

.

If X is a Gaussian-distributed real multivariate random variable, then a basic fact

is that its pdf is completely determined by the pair (MX ,ΣX) and given by

fX(x) =
e−

(x−MX )TΣ−1
X

(x−MX )

2√
(2π)n detΣX

.

It is also useful to note that if {Xi} are jointly Gaussian-distributed, then so is any

collection of variables {Yk =
∑

i akiXi} that each depend linearly on the variables

{Xi}.

Given any two random variables X and Y (each of which may be multivariate),

it is often convenient to write

fX,Y (x, y) =
fX,Y (x, y)

fY (y)
fY (y) = fX|Y (x|y)fY (y), fX|Y (x|y) =

fX,Y (x, y)

fY (y)
,

where fX|Y (x|y) is referred to as the conditional pdf of X given Y . Equivalently,

in a shorthand notation where X ∼ fX(x) means X is distributed according to

the density function fX(x), we can also write

X|Y ∼ fX|Y (x|y).
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Definition B.2 (Characteristic function, Moment generating function). The char-

acteristic function of a random variable X is defined to be the function

MX(t) = E[etX ] =
∑
x∈X

fX(x)e
tx,

for every complex number t ∈ C for which the expectation exists. The restriction

of MX(t) to t ∈ R is called the moment generating function (mgf) of X.

Note that the characteristic function of a random variable can be used to de-

termine its distribution.

Definition B.3 (Independence, Conditional independence, Identical distribution,

iid sequence).

Let Xn = (X1, X2, ..., Xn), Y be random variables. We say the random variables

X1, X2, ..., Xn are independent, or that the sequence of random variables Xn =

(X1, X2, ..., Xn) is independent, if

p(xn) = p(x1)p(x2) · · · p(xn).

Similarly, we say X1, X2, ..., Xn are conditionally independent (or that Xn is con-

ditionally independent) with respect to Y if

p(xn|y) = p(x1|y)p(x2|y) · · · p(xn|y).

A sequence of random variables X1, X2, · · · is identically distributed if for all

i, j, we have pXi
= pXj

, i.e., pXi
(x) = pXj

(x) for all x ∈ X . We say the sequence

X1, X2, · · · is iid if it is both independent and identically distributed.

Definition B.4 (Convergence in distribution, Convergence almost surely, Conver-

gence in probability).
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A sequence of random variables X1, X2, · · · converges in distribution to a random

variable X if

lim
n→∞

FXn(x) = FX(x)

whenever FX is continuous at x ∈ X .

The sequence X1, X2, · · · converges almost surely to X if for any ε > 0, we

have

P (lim |Xn −X| < ε) , P (lim supEε
n) = 1,

where Eε
n = {s ∈ S : |Xn(s)−X(s)| < ε}, and lim supEε

n = ∩∞
m=1 ∪∞

n=mEε
n.

The sequence X1, X2, · · · converges in probability to X if for any ε > 0, we

have

limP (|Xn −X| < ε) , limP (Eε
n) = 1.

Theorem B.5 (Central limit theorem). Let X1, X2, ... be a sequence of iid random

variables. Then the random variable Yn =
√
n(X̄n−µ)

σ
, where X̄n = 1

n

∑n
i=1Xi,

converges in distribution to the standard normal random variable, i.e.,

lim
n→∞

fYn(x) = N(0, 1)(x) =
1√
2π

e−
x2

2 , x ∈ R.

Alternatively, for sufficiently large n we have

fX̄n
(x) ≈ N(µ, σ2/n)(x) =

1√
2πσ2/n

e
− (x−µ)2

2σ2/n . (B.2)

Proof. For simplicity, assume the mgf of the Xi’s exists near t = 0. Then the mgf
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of Yn =
√
n(X̄n−µ)

σ
= 1√

n

∑n
i=1

Xi−µ
σ

is given by

MYn(t) = M 1√
n

∑n
i=1

Xi−µ

σ

(t) = M∑n
i=1

Xi−µ

σ

(
t√
n

)
=

[
MX−µ

σ

(
t√
n

)]n
=

[
∞∑
k=0

1

k!
M

(k)
X−µ

σ

(0)
tk

n
k
2

]n
=

[
1 + 0 +

t2

2n
+

∞∑
k=3

1

k!
M

(k)
X−µ

σ

(0)
tk

n
k
2

]n
n→∞−→ e

t2

2
+limn→∞

∑∞
k=3

1
k!
M

(k)
X−µ

σ

(0) tk

n
k−2
2 = e

t2

2 ,

where limn(1 + an)
n = elimn nan , and the limiting mgf is that of the standard

normal distribution N(0, 1).

Lemma B.6 (Chebychev-Markov inequality). Let X be a random variable, and

let g : X → (0,∞) be an integrable function. Then

P (g(X) ≥ c) ≤ 1

c
E[g(X)], for any c > 0.

Proof.

P (g(X) ≥ c) =
∑

x∈X :g(x)≥c

fX(x) ≤
1

c

∑
x∈X :g(x)≥c

g(x)fX(x) ≤
1

c

∑
x∈X

g(x)fX(x).

Theorem B.7 (Laws of large numbers). Let X1, X2, ... be iid random variables

with EXi = µ, VarXi = σ2 < ∞, and X̄n = 1
n

∑n
i=1 Xi. Then we have the

following.

1. Strong law: X̄n converges almost surely to µ.

2. Weak law: X̄n converges in probability to µ.

Proof. Observe that

P
(
lim |X̄n − µ| < ε

)
= 1 ⇐⇒ P

(
lim |X̄n − µ| ≥ ε

)
= 0.
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1. Let

An = {s ∈ S : |X̄n(s)− µ| ≥ ε} = {s ∈ S : |[X1(s) + · · ·+Xn(s)]/n− µ| ≥ ε}

≃ {(x1, ..., xn, 0, 0, · · · ) ∈ R∞ : |(x1 + · · ·+ xn)/n− µ| ≥ ε},

where ≃ denotes equivalence of sets with respect to cardinality, i.e., A ≃ B

if A and B have the same cardinality. Then

P
(
lim |X̄n − µ| ≥ ε

)
= P (lim supAn) = P

( ∞
∩

m=1

∞
∪

n=m
An

)
≤ inf

m≥1
P
( ∞

∪
n=m

An

)
≤ inf

m≥1

∞∑
n=m

P (An) = inf
m≥1

∞∑
n=m

P (|X̄n − µ| ≥ ε).

Thus, it is sufficient to show that
∑∞

n=1 P (|X̄n−µ| ≥ ε) < ∞. This finiteness

easily follows from the central limit theorem, i.e., from the fact that X̄n is

distributed according to (B.2) for large n. Hence,

0 ≤ P
(
lim |X̄n − µ| ≥ ε

)
≤ inf

m≥1

∞∑
n=m

P (|X̄n − µ| ≥ ε) = 0.

2. Almost sure convergence implies convergence in probability for the following

reason: Let Bn =
∪∞

k=n Ak, where Ak is as defined in part 1 above. Then

P (|X̄n − µ| ≥ ε) = P (An) ≤ P (Bn), which implies

limP (|X̄n − µ| ≥ ε) = limP (An) ≤ limP (Bn) = P (lim supAn)

= P (lim |X̄n − µ| ≥ ε),

⇒ limP (|X̄n − µ| ≥ ε) ≤ P (lim |X̄n − µ| ≥ ε).

Alternatively, by the Chebychev-Markov inequality, we get

P (|X̄n − µ| ≥ ϵ) = P ((X̄n − µ)2 ≥ ϵ2) ≤ E(X̄n − µ)2

ϵ2
=

σ2

nϵ2
→ 0 as n → ∞.
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B.3 Statistical information

A function of several random variables is called a statistic. If Xn = (X1, ..., Xn) is

a collection of random variables and f : X n → Y is any function, then the random

variable Y = f ◦Xn : S
Xn

→ X n f→ Y , written Y = f(Xn) = f(X1, ..., Xn), is said

to be a statistic based on Xn. In particular, Xn is a statistic based on Xn.

A basic property of every random variable is uncertainty or entropy, and is

defined as a measure of the amount of randomness in the variable. Therefore,

we can view the space R = {X : S → X} consisting of all random variables

as a “field of uncertainty”, with the random variables being the points of the

space. Information is a measure of how much two variables in R are separated in

randomness. That is, information is randomness distance, or distance with respect

to randomness, between random variables in R. Therefore, information is relative

uncertainty, and one may of course loosely refer to the randomness of a random

variable as the “information content” of the variable.

A basic example of an information measure dP : R×R → R is given by

dP (X, Y ) = P (X ̸= Y ), (B.3)

which is a familiar quantity known as error probability in a context where one of the

variables is viewed as an estimate of the other. Other examples, called distortions,

are given by

dP (X,Y ) = EP [d(X, Y )], (B.4)

where d : X × Y → R is a deterministic “distance” function.

In general, information metrics are real-valued functions of statistics. Ex-

amples include asymptotic detection and estimation performance metrics such as
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Shannon, Kullback, Chernoff, and Fisher information. Note that all of these met-

rics are special instances of the quantities in (B.3) and (B.4), which have certain

convenient properties, including additivity over independent random variables in

particular.

B.4 Estimation I: Point estimators and sufficiency

Consider a sequence of random variables Xn = (X1, ..., Xn) : S → X n, s 7→

(X1(s), ..., Xn(s)). Any value xn = (x1, ..., xn) ∈ X n of Xn is called a data sample,

where n is the sample size. If the sequence xn is generated according to the

distribution ofXn, it is called a random data sample. Consequently, we may loosely

refer to Xn itself as a “random sample”. Because Xn summarizes the results of a

composite experiment in the form of a series of experiments, each variable Xi in

the random sample Xn is called an (experimental) observation.

Assume we have a system with a property θ that can take values in a set Θ,

but we do not know its true (current) value. Then in order to determine the

true value of θ, we further assume that we have conducted an experiment on the

system and made observations Xn = X1, ..., Xn. The observations are presumed to

have been randomly (and independently) generated from the system according to

a distribution pθ(x) = p(x|θ), written Xi ∼ p(xi|θ), so that p(xn|θ) =
∏n

i=1 p(xi|θ),

which is just another way of saying that the sample Xn summarizes the results of

an experiment on the system (by means of its distribution p(xn|θ)). Consequently,

Xn contains information about the true value of θ. Accordingly, we have the

following definitions.

Definition B.8 (Point estimator). Any statistic T (Xn) for the purpose of inferring

the true value of θ is called a point estimator of θ.
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By the reasoning in (B.4), estimation performance of an estimator T (Xn) can

be investigated using a metric of the form

D = Ep(x,θ)

[
d
(
T (Xn), ϑ

)]
, (B.5)

where ϑ is θ viewed as a random variable.

Definition B.9 (Sufficient statistic). T (Xn) is a sufficient statistic for θ if Xn,

as an estimator of θ, is no better than T (Xn), i.e., if

Ep(x,θ)d
(
T (Xn), ϑ

)
≤ inf

T ′
Ep(x,θ)d

(
T ′(Xn), ϑ

)
, (B.6)

where the infimum is taken over all possible estimators of θ based on Xn.

Proposition B.10. The following are equivalent.

1. T (Xn) is a sufficient statistic for θ.

2. We have a Markov chain ϑ → T (Xn) → Xn, i.e.,

p(θ, xn|T (xn)) = p(θ|T (xn))p(xn|T (xn)).

Equivalently,

p(θ|xn, T (xn)) = p(θ|T (xn)).

3. The conditional distribution

h(xn) = pθ(x
n|T (xn)) , p(xn|T (xn), θ)

is independent of θ.
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4. For any points xn, yn, zn ∈ X n satisfying the redundancy condition T (xn) =

T (yn) = T (zn), the function

h(xn, yn, zn) =
pθ(y

n|T (xn))

pθ(zn|T (xn))

is independent of θ, where

pθ(y
n|T (xn)) = pθ(X

n = yn|T (Xn) = xn) = p(Xn = yn|T (Xn) = xn, θ)

=
pθ(y

n, T (xn))

pθ(T (xn))
.

5. For all xn, yn ∈ X n,

T (xn) = T (yn) ⇒ ∂

∂θ

p(xn|θ)
p(yn|θ)

= 0.

(Note that some continuity and differentiability are assumed in this case)

Proof. The equivalences 2 ⇐⇒ 3 ⇐⇒ 4 ⇐⇒ 5 are straightforward.

The main challenge is with 1 ⇐⇒ 2. For this case, we must choose the

function d in (B.6) in such a way that the following conditions hold.

(a) An estimator T1(X
n) is closer in randomness to ϑ than another estimator

T2(X
n), i.e.,

Ep(x,θ)d
(
T1(X

n), ϑ
)
≤ Ep(x,θ)d

(
T2(X

n), ϑ
)
,

if and only if we have a Markov chain ϑ → T1(X
n) → T2(X

n).

(b) For every estimator T ′(Xn), we have a Markov chain ϑ → Xn → T ′(Xn),

i.e., Xn is the best possible estimator.

It then follows that a statistic T (Xn) satisfies a Markov chain ϑ → T (Xn) → Xn

[ in addition to a Markov chain ϑ → Xn → T (Xn) ] if and only if it satisfies

(B.6).
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Theorem B.11 (Factorization theorem). A statistic T (Xn) is sufficient for θ if

and only if there are functions α, βθ (with α independent of θ) such that

p(xn|θ) = α(xn) βθ

(
T (xn)

)
. (B.7)

Proof.

• (⇐): If p(xn|θ) satisfies (B.7), then it follow immediately from the definitions

that T (Xn) is a sufficient statistic for θ.

• (⇒): Assume T (Xn) is a sufficient statistic for θ. Then for all xn, yn ∈ X n,

T (xn) = T (yn) ⇒ ∂

∂θ

f(xn|θ)
f(yn|θ)

= 0.

Since

∂

∂θ

p(xn|θ)
p(yn|θ)

= 0 ⇐⇒ ∂θp(x
n|θ)

p(xn|θ)
=

∂θp(y
n|θ)

p(yn|θ)
,

we have

T (xn) = T (yn) ⇒ ∂θ ln p(x
n|θ) = ∂θ ln p(y

n|θ), for all xn, yn ∈ X n.

This means ∂θ ln p(x
n|θ) = g(θ, T (xn)) ≡ gθ(T (x

n)) for some function gθ.

Integration of this relation with respect to θ yields a formal solution of the

form

p(xn|θ) = e
∫ θ dθ′ gθ′ (T (xn))+K(xn) ≡ α(xn) βθ(T (x

n)),

which is (B.7).
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Definition B.12 (Necessary statistic). T (Xn) is a necessary statistic for θ if for

all xn, yn ∈ X n,

∂

∂θ

p(xn|θ)
p(yn|θ)

= 0 ⇒ T (xn) = T (yn).

Definition B.13 (Efficient statistic). A statistic T (Xn) is an efficient statistic for

θ if it is both a necessary and a sufficient statistic for θ, i.e., if for all xn, yn ∈ X n,

T (xn) = T (yn) ⇐⇒ ∂

∂θ

p(xn|θ)
p(yn|θ)

= 0.

Note that an efficient statistic is also called a minimal sufficient statistic.

Theorem B.14. (Efficient statistic formula) An efficient statistic T (Xn) has the

form

T (Xn) = hθ

(
∂θ log p(X

n|θ)
)
, (B.8)

where hθ is any invertible function which is at least capable of removing all of the

θ dependence from ∂θ log p(X
n|θ) as its argument.

Proof. Recall that T (Xn) is an efficient statistic iff for all xn, yn ∈ X n,

T (xn) = T (yn) ⇐⇒ ∂

∂θ

f(xn|θ)
f(yn|θ)

= 0.

Since

∂

∂θ

p(xn|θ)
p(yn|θ)

= 0 ⇐⇒ ∂θp(x
n|θ)

p(xn|θ)
=

∂θp(y
n|θ)

p(yn|θ)
,

we have

T (xn) = T (yn) ⇐⇒ ∂θ ln p(x
n|θ) = ∂θ ln p(y

n|θ), for all xn, yn ∈ X n.

This means ∂θ ln p(x
n|θ) = g(θ, T (xn)) ≡ gθ(T (x

n)), where gθ is an invertible

function such that the quantity g−1
θ (∂θ log p(x

n|θ)) is independent of θ. Setting

hθ = g−1
θ , we obtain the formula (B.8).
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B.5 Estimation II: Set estimators and hypothesis

testing

Recall that a point estimator is a statistic of the form T (xn) ∈ Θ, xn ∈ X n. In

general, estimators of the form T (xn) ⊂ Θ, xn ∈ X n, are more practical. These

are called set estimators (or confidence sets).

Definition B.15 (Set estimator). Any statistic T (Xn) for the purpose of infer-

ring a reasonably small subset of Θ containing the true value of θ is called a set

estimator of θ.

With a point estimator, one reports the result of estimation based on xn ∈ Rn

by saying “given θ ∈ Θ, we have θ = T (xn) with probability P (T (Xn) = θ)”. With

a set estimator, one similarly reports the result of estimation based on xn ∈ Rn by

saying “given θ ∈ Θ, we have θ ∈ T (xn) with probability P
(
θ ∈ T (Xn)

)
”.

Note that a point estimator is a special case of a set estimator. This implies,

in particular, that the notion of sufficiency discussed earlier for point estimators

can, at least formally, be extended to set estimators. Moreover, concepts we will

introduce for interval estimators apply to point estimators as well.

Definition B.16 (Degree of confidence, Percentage of confidence). The degree of

confidence (or confidence coefficient) of a set estimator T (Xn) is c = min
θ∈Θ

P
(
θ ∈

T (Xn)
)
. The percentage of confidence of T (Xn) is 100c%, and we say T (Xn) is

a 100c% confidence set for θ.

A method of statistical estimation that involves set estimators in a natural

way is called hypothesis testing. Hypothesis testing, like point estimation, is a

method of inference (of a parameter θ) based on observations. In the discussion
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that follows, it is assumed we have observations {xn ∈ X n} based on at least one

known family of probability distributions {p(xn|θ) : θ ∈ Θ}.

Definition B.17 (Hypothesis, Simple hypothesis). A hypothesis, denoted by H,

is a statement about the inference parameter θ (i.e., a parameter whose value we

wish to infer), which is in the form of a constraint or restriction RH on the value

of θ. By convention, we write

H : RH ,

which reads “H stands for, or represents, the value restriction RH on θ”.

A simple hypothesis, H, is a statement of the form

H : θ = θ0,

for some fixed value θ0 ∈ Θ.

We will say that two statements are mutually exclusive if they cannot be both

valid simultaneously.

Definition B.18 (Hypothesis test). Given a set of (mutually exclusive) hypotheses

on θ, one and only one of which is valid, a hypothesis test is a method for deciding

(based on observations xn ∈ X n) the hypothesis that is most likely to be the valid

one.

Remarks.

I. Observe that by definition, the hypothesis test is determined by statistics

which are real valued functions of the observations. Consequently, every

hypothesis test can be specified as a solution of some optimization problem,

as discussed in Appendix A. Moreover, in practice, the decision involved in
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the test is of course made so as to meet a given objective, which is often the

optimization (minimization or maximization) of some information measure.

II. Note that the above discussion indicates that the notion of an optimal hy-

pothesis test (Definition B.19) is a natural generalization of the notion of a

sufficient statistic (Definition B.9).

Definition B.19 (Objective hypothesis test, Optimal hypothesis test). A hypoth-

esis test is objective if it is specified as a solution of some optimization problem.

An optimal hypothesis test is an objective hypothesis test for which the decision on

the valid hypothesis is optimal with respect to the underlying objective of the test.

The following is a preview of some basic points which are relevant in statistical

decision theory (the subject of Chapter 2) and optimal hypothesis testing (the main

subject of Chapter 3).

Remark. Although the eventual or end objective in a hypothesis test is to decide

the valid hypothesis among a set of say M hypotheses, it is often more useful to

consider intermediate decision operations that can take values in a set whose cardi-

nality is different from M . This is important in distributed detection where some

local sensors may only need to forward quantized versions of their observations to

a fusion center which actually decides the true hypothesis based on the quantized

observations. In general therefore, the intermediate decision output from a local

sensor may not have the same alphabet as the hypothesis.

The above remark is also emphasized in Chapters 2 and 3.

Definition B.20 (Decision rule, Decision function). A decision rule is a point

estimator of the form

γ : xn ∈ X n 7→ u = γ(xn) ∈ {0, 1, · · · , N − 1}, (B.9)
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i.e., an estimator that takes on a discrete set of values.

In objective hypothesis testing, a decision function is an information measure

that depends on both the decision rule and the hypothesis.

We can, for example, consider a decision function of the form

S = Ep(u,h)d(U,H), (B.10)

where H denotes the hypothesis and u the decision. The primary objective of

a hypothesis test is often to select a decision rule that optimizes an underlying

decision function such as the function S in (B.10).

Definition B.21 (Binary hypothesis test, Null hypothesis, Alternative hypothe-

sis). A hypothesis test involving two complementary hypotheses is the simplest type

of hypothesis test, and is called a binary hypothesis test. One of the hypotheses is

denoted by H0 : θ ∈ Θ0 and called the null hypothesis, while the other is denoted

by H1 : θ ∈ Θ1 and called the alternative hypothesis, where Θ1 ∪Θ2 = Θ.

Remarks (Computational Setup and Results).

1. Indicator variables : If we let s = s(θ) = IΘ1(θ) =

 0, θ ∈ Θ0

1, θ ∈ Θ1

, then

the binary hypothesis test becomes a problem of estimating the value of the

binary variable s. The hypotheses become H0 : s = 0, H1 : s = 1. The family

of distributions {p(xn|s) : s = 0, 1} associated with s, i.e., the distribution

of the observation conditioned on s, is given by

p(xn|s = i) =
p(xn, s = i)

p(s = i)
=

p(xn, θ ∈ Θi)

p(θ ∈ Θi)
=

∑
θ∈Θi

p(xn|θ)p(θ)∑
θ∈Θi

p(θ)
, i = 0, 1,

where p(θ) is a prior probability distribution on Θ. Note that if p(θ) is

unknown, then it must be treated as an optimization variable in the objective

function of the test.
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2. For notational convenience, we will often write pi(x
n) = p(xn|s = i). Also,

the hypotheses

H0 : s = 0, H1 : s = 1

are equivalently expressed in terms of the conditional distribution of the

observations as

H0 : x
n ∼ p(xn|s = 0), H1 : x

n ∼ p(xn|s = 1),

where xn ∼ p(xn|s = i) means “xn is distributed according to p(xn|s = i)”.

3. Neyman-Pearson lemma : Now suppose the binary hypothesis test sat-

isfies the following two conditions.

(a) The decision rule (B.9) is binary, i.e., M = 2, where the decision u = 0

is interpreted as acceptance of H0 (or rejection of H1) while u = 1 is

acceptance of H1 (or rejection of H0).

(b) The test’s underlying objective function, such as (B.10), to be max-

imized is a convex function of the conditional probabilities p(u|xn),

viewed as the main optimization variables.

(c) The observationsXn are continuous variables and the distribution pi(x
n)

is continuous.

Then it can be shown (see Proposition 3.1) that under these conditions, the

optimal decision rule for the binary hypothesis test takes the form

popt(θ ∈ Θi|xn) = popt(u = i|xn) = IRu=i
(xn), i = 0, 1, (B.11)

where the decision regions Ru=i are given by

Ru=1 = {xn ∈ X n : p1(x
n)/p0(x

n) > λ} , Ru=0 ∪Ru=1 = X n.
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Here, λ ∈ R is a threshold parameter. A formal statement of this particular

result is well known as the Neyman-Pearson lemma.

4. A set estimator of θ: Let us fix ε > 0, and let θ0 ∈ Θ. Denote by the

pair (ε, θ0) the binary hypothesis test with

H0 : θ ∈ B(θ0, ε), H1 : θ ̸∈ B(θ0, ε),

where B(θ0, ε) ⊂ Θ is the open ball of radius ε centered at θ0. Let the

acceptance region for H0 be

R(ε,θ0) = R
(ε,θ0)
u=0 =

{
xn ∈ X n : p

(ε,θ0)
1 (xn)/p

(ε,θ0)
0 (xn) < λ(ε,θ0)

}
,

where

p
(ε,θ0)
0 (xn) =

∑
θ∈B(θ0,ε)

p(xn|θ)p(θ)∑
θ∈B(θ0,ε)

p(θ)
, p

(ε,θ0)
1 (xn) =

∑
θ ̸∈B(θ0,ε)

p(xn|θ)p(θ)∑
θ ̸∈B(θ0,ε)

p(θ)
.

Then a natural set estimator for θ is given by

T (ε)(xn) =
{
θ0 ∈ Θ : xn ∈ R(ε,θ0)

}
.

Given θ ∈ Θ, we have

P
(
θ ∈ T (ε)(Xn)

)
= P

(
Xn ∈ R(ε,θ)

)
= P

(
R(ε,θ)

)
.

Thus, the confidence coefficient of T (ε)(xn) satisfies

c(ε) = min
θ∈Θ

P
(
θ ∈ T (ε)(Xn)

)
= min

θ∈Θ
P
(
R(ε,θ)

)
.

5. Hypothesis test sequences : Although the result of a single binary hy-

pothesis test does not necessarily yield a direct estimate for the true value

of θ (except when Θ is a binary set), it does reduce the search space for the
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true value of θ from Θ to Θ0 ( Θ or Θ1 ( Θ. Thus, if we consider a sequence

of consecutive binary hypothesis tests τ1, τ2, τ3, · · · and let Θ(τk) denote the

search space in the kth test τk, then we have

Θ = Θ(τ1) ( Θ(τ2) ( Θ(τ3) ( · · · (B.12)

That is, the result of a sufficiently long sequence of binary hypothesis tests

will yield a reasonable estimate for the true value of θ. Of course if we consider

a sequence of tests with more than two hypotheses, then the length N ′ of a

sequence of such tests required to reach a certain desired level of accuracy

will be smaller than the length N of a sequence of binary hypothesis tests

required to reach the same level of accuracy.

6. Multiple hypothesis tests : The description of binary hypothesis tests

given above extends in a straightforward way to multiple hypothesis tests.

The basic idea remains the same: To split up Θ into N disjoint subsets

Θ0,Θ1, ...,ΘN−1, consider hypotheses Hi : θ ∈ Θi, and then find the condi-

tional probabilities p(θ ∈ Θi|xn) that best suite a given objective.

Once again, the multiple hypothesis test for θ with hypotheses Hi : θ ∈ Θi

is equivalent to a multiple hypothesis test for a discrete indicator variable

s with hypotheses Hi : si = µi, where s = s(θ) =
∑N−1

i=0 µiIΘi
(θ) ∈

{µ0, µ1, ..., µN−1}, and the distribution of s is computed as

p(xn|s = µi) =
p(xn, s = µi)

p(s = µi)
=

p(xn, θ ∈ Θi)

p(θ ∈ Θi)
=

∑
θ∈Θi

p(xn|θ)p(θ)∑
θ∈Θi

p(θ)
,

for each i ∈ {0, 1, ..., N − 1}.

7. Note that a multiple hypothesis test can be approximated by a number of

binary hypothesis tests. Also, a binary hypothesis test can be approximated
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by a union-intersection (or intersection-union) test, which is a combination

of a number of binary hypothesis tests.

Generalized likelihood ratio tests

Consider a general binary hypothesis test

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1, Θ0 ∪Θ1 = Θ. (B.13)

For a fixed θ0 ∈ Θ0 and a fixed θ1 ∈ Θ1, we have the simple test

H
(θ0,θ1)
0 : θ = θ0, H

(θ0,θ1)
1 : θ = θ1.

Thus, we have a family of simple tests
{(

H
(θ0,θ1)
0 , H

(θ0,θ1)
1

)
: θ0 ∈ Θ0, θ1 ∈ Θ1

}
. For

each pair (θ0, θ1) ∈ Θ0 ×Θ1, let the decision region for the test
(
H

(θ0,θ1)
0 , H

(θ0,θ1)
1

)
be

R
(θ0,θ1)
u=1 = {xn ∈ X n : p(xn|θ1)/p(xn|θ0) > λθ0,θ1}.

If we choose to accept a data point xn under H1 in (B.13) whenever it falls in

any one of the regions R
(θ0,θ1)
u=1 , then the test (B.13) has a (suboptimal) decision

rule given by the decision region

Ru=1 =
∪

(θ0,θ1)∈Θ0×Θ1

R
(θ0,θ1)
u=1 =

{
xn ∈ X n : sup

θ0,θ1

p(xn|θ1)/λθ0,θ1

p(xn|θ0)
> 1

}

⊂

{
xn ∈ X n :

supθ1 p(x
n|θ1)

supθ0 p(x
n|θ0)

> sup
θ0,θ1

λθ0,θ1

}
= R̃u=1. (B.14)

Tests with a decision region of the form R̃u=1 in (B.14) are called generalized

likelihood ratio tests (GLRT’s). Although such tests are clearly suboptimal in

general, a remark we made earlier says that if such a test is repeated a sufficiently

large number of times, it can yield very good results that may even be judged to

be asymptotically optimal depending on the underlying objective of the test.
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Union-Intersection (or Intersection-Union) tests

There are situations where a binary test (H0, H1) is seen to be composed of elements

of a family of binary hypothesis tests {(H0α, H1α) : α ∈ A}, where A is an index

set.

Consider a test with hypotheses H0 : θ ∈ Θ0, H1 : θ ∈ Θc
0. Suppose that

Θ0 =
∩

α∈A Θ0α. Then

H0 : θ ∈ Θ0 =
∩
α∈A

Θ0α, H1 : θ ∈ Θc
0 =

∪
α∈A

Θc
0α.

Notice that the test involves separate tests of the form

H0α : θ ∈ Θ0α, H1α : θ ∈ Θc
0α, α ∈ A. (B.15)

Thus, if R
(α)
u=1 = {xn : Lα(x

n) > λα} is the decision region of the test (H0α, H1α)

for each α ∈ A, then a (suboptimal) decision region for the test (H0, H1) is given

by

Ru=1 =
∪
α∈A

R
(α)
u=1 =

∪
α∈A

{xn ∈ Xn : Lα(x
n) > λα} =

{
xn ∈ Xn : sup

α∈A
Lα(x

n)/λα > 1

}
.

Similarly, if we consider a test with hypotheses H0 : θ ∈ Θ0, H1 : θ ∈ Θc
0, and

suppose that Θ0 =
∪

α∈AΘ0α, then

H0 : θ ∈ Θ0 =
∪
α∈A

Θ0α, H1 : θ ∈ Θc
0 =

∩
α∈A

Θc
0α.

We again observe that the test involves separate tests of the form (B.15). Thus, if

R
(α)
u=1 = {xn ∈ X n : Lα(x

n) > λα}

is the decision region of the test (H0α, H1α), then a (suboptimal) decision region

for the test (H0, H1) is

Ru=1 =
∩
α∈A

R
(α)
u=1 =

{
xn ∈ X n : inf

α∈A
Lα(x

n)/λα > 1

}
.
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