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Abstract

Software packing is a method employed by malicious applications to hide their original intent.

Extracting the original intent of an application from its application bundle, whether to per-

form a security analysis on it, to search for security �aws(or bugs) or simply for educational

purposes is a key requirement for the security community. With the �uidity provided by the

Android app store coupled with a complete application-framework based environment for a

malicious user to employ as an attack space, it is of great importance to examine Android

applications and extract their intent. For basic applications, simple reverse engineering tools

can be used to extract a semantic view of the application very close to the original source code

of the application. However for applications, which have been deliberately packaged/packed

in such a way that their original intent cannot be extracted by simply reverse-engineering

them, we need a more intricate procedure to extract enough information to be able to repro-

duce the original intent of the application. These applications are packaged such that the

actual code is hidden/encrypted and only during run-time is the actual code unpacked and

executed. To unpack such applications, we present DroidUnpack, a tool based on dynamic

program analysis, which is able to extract the original intent of the application, generically.

DroidUnpack is designed by exploiting some fundamental features of the Android Runtime

which cannot be mutated by a malicious user to unpack the application. We also attempts

to alleviate tedious manual analysis required by a user to analyze di�erent types of packed

applications, by providing a generalized tool which is able to unpack android applications,

regardless of the packing technique used.
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Chapter 1

Introduction

Software obfuscation or Run-time packing is a intricate tool used by attackers and software

vendors alike to protect their code. Although it can be an absolute boon for software

vendors, helping them protect their closed source code base, it can be an absolute nightmare

for security analysts when they encounter malicious application which are obfuscated or

packed. Simple reverse engineering of such applications proves ine�ective and more complex

mechanisms are needed to extract meaningful code belonging to these applications.

Binary packing on desktop computers, being a very old problem has been extensively

studied since its discovery and various solutions haven been designed to accordingly handle

these packed application and extract meaningful source code from them. Although this is

the case, the problem of handling binary samples from the wild was scarcely addressed as

highlighted very recently by "SoK: Deep packer inspection: A longitudinal study of

the complexity of run-time packers"(17).

With the onset of smart-phones, there had to be a reinvention of the run-time envi-

ronment to adapt to a completely di�erent user interface and hardware structure than a

desktop computer. On Android, a virtual-machine based sandbox-styled interpreted envi-

ronment based on dalvik byte-code, very similar to java byte-code was designed. As

these systems were designed, new packing techniques were introduced and classic binary
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unpacking solutions were no longer applicable to them. Various projects in the recent years

have attempted to unpack these android applications to diverse degrees. Although a por-

tion of them produce very accurate results, their extraction processes are based on explicit

packing features, modeled around some of the state of the art packers available for Android

applications. Dynamic analysis based unpackers usually insert hook-points in the run-time

and/or kernel source code to extract �les from memory when certain trigger features are

met. Albeit they result in successful code extraction for applications packed with any of

the known packers, a smart malicious agent could easily subvert these detectors by changing

the packing design ever so slightly. Moreover, with the advent of the ART, where most/all

of the dalvik functions are translated into native code, the problem of unpacking becomes

even more complex as simple tap points fail to provide complete coverage of the executed

code. We take a brand new perspective to solve the problem of generic code unpacking

by considering factors which cannot be manipulated by these packers. We register for key

events which represent java/dalvik method dispatch points in perspective of the run-time

and excerpt information for the particular method from the guest memory by, reading `state

information from run-time data structures for dalvik interpreted methods` and `native code

from the oat file for ART native methods` both of which remain accurate regardless of

the packing technique used. We �rst design and implement a dynamic analysis platform for

the new ART based on "Droidscope: seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis"(18), which provides various

Virtual machine introspection (VMI) tools and �nally we present DroidUnpack, a plug-in,

about 703 Source lines of code (SLOC) of C++, which performs generic code extraction

from packed android applications.
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Chapter 2

Background and solution overview

2.1 APK packing

Run-time packing or Executable compression is a process where the the code and/or data of

an application is compressed/encrypted to various degrees and a run-time element, usually

a shared library or such is used to dynamically decompress/decrypt the original code and

execute it. This process is employed by malicious users to hide their program's original intent.

Even after years of arduous research on trying to propose a generic method of unpacking,

Ugarte-Pedrero et al. (17), after conducting a through study on the complexity of run-time

packers showed that a great majority of samples employ a multi-layered packing mechanism,

whereas most solutions only expect simple single-layered code unpacking and are ill-equipped

to handle di�erent/complex packer designs. This paper importantly highlights the lack of a

stable generic unpacking scheme.

While still based on the same core principles as its binary predecessors, android APK

packers have starkly di�erent designs. Most of the run-time packers, start with the APK,

which is merely a set of .dex �les and resources corresponding to the particular application

and encrypt each of the .dex �le and create a new APK which contains a single .dex �le

(which would act as a launchpad for the application), an obfuscated native library and �le-
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chunks corresponding to the original .dex �les. The new application starts up from the

single .dex �le which then loads the obfuscated native library. This library is the main

unpacking agent which performs all the necessary steps to correct the �le-chunks to form

a veri�able .dex �le/s representing the original application, load it into memory and start

executing the application. While this a commonly followed design, most packers di�er in

that they 1. employ di�erent ways to obfuscate/unobfuscate .dex �les, 2. di�erent ways of

launching the application which a�ects the complete execution pattern of the application. . .

.To cover their tracks these packers employ various techniques like 1. deleting any corrected

.dex �le they drop into memory as soon as it is loading 2. skewing the .dex �le backing data

structure of the run-time in memory to hinder debuggers 3. hooking various system functions

to detect if being tracked. . . which make it especially hard for a security analyst to deduce

their original intent. Many of these packers now fully support the new ART, which is much

more sophisticated than the older dalvik run-time causing a bigger challenge. In essence,

apart from the fundamental principle of the ART mechanisms which are built in, anything

that the packer can control can be fair gain for implementing packing features. The next

section talks about some of the unpackers which exist and goes on to highlight the need for

a generic unpacking mechanism.

2.2 APK unpackers

There have been many projects and publications alike attempting to solve the problem

of packed android APKs and many of them are successful for particular samples sets. In

general, for a packed APK they start o� by manually investigating the behavior of the

packed application under execution, noting down techniques used by the packer. Once this

is done, some of them propose an automatic framework to extract .dex �les and others

manually do so, both relying on the behavioral aspects of the packer which they deduced in

the previous step. This investigation is then repeated for a suit of know packers. Since these
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packed applications are virtually impossible to extract using any known static analysis based

approaches, all the unpackers (which intend to handle complex packed applications) are based

on di�erent dynamic program analysis techniques. Nasim et al. (14) perform unpacking by

performing a memory dump when a new module is loaded by the application, using either

a kernel module or a ptrace based method and then a python script to parse the memory

to the �nd the .dex �le corresponding to the application and extract it. Modern packers

are very advanced in that they have anti-debug features built into them to detect ptrace

based tracking methods. They also hook common functions used to read into the memory

and suspend the process if they observe that they are being tracked or another program is

attempting to read their memory space, hence easily evading this unpacking scheme. Kim

et al. (13) develop another such a similar unpacker project which attempts to dump the

memory but instead uses a method whereby they change the source code of the DVM and

add hook functions into a function dvmFexFileOpenFromFd which is used to load the .dex

�le, and at that point dump the memory belonging to the .dex �le data structure passed

onto the function. .dex �les are often mangled by a packer and during the time of loading

to memory are not completely reliable, in that their contents are not accurate and cannot be

assumed to be complete. The DVM does not perform any code veri�cation, but instead just

checks if the di�erent headers and o�sets in the .dex �le hold good when loading it. Some

packers take advantage of this and have a child process dedicated to correcting the .dex �le

during the runtime. This would mean that the a .dex �le collected during load time may

be incorrect. "Android packers: facing the challenges(19) is another work which uses

"LiME"(16) to read into the memory and "volatility"(11) plug-ins to perform memory

forensics on the collected memory dumps. "General unpacking method for Android

Packer(NO ROOT)"(15) is another project which hooks functions, in their case they

hook di�erent functions for di�erent packers, to perform a memory dump. Keeping all

these problems in mind, Zhang et al. (20) take a slightly di�erent approach to unpacking by

identifying known packers using 1. inserted classes 2. location_ for ART and fileName
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for DVM. The former is used to identify the packer while the latter is used to get an idea of

the location of the .dex �le for the dalvik run-time or the ART to extract it.

These solutions su�er from the same issues where the packer's features need to be studied

before hand to get a fair idea of what functions are to be hooked etc. They also su�er from

the fact that more advance packers perform complex selective code unpacking, which means

that these unpackers unload a .dex �le into memory and start up the application, but the

dex code of all of the methods in the .dex �le are encrypted or obfuscated, and a runtime

library belonging to the library performs selective unpacking where in it decrypts the .dex

code of the method right before this method is called defeating any unpacking attempts

where the unpacking scheme which performs a memory dump at only one speci�c point in

the application life-time.

With all these things in mind, there was a recent work by Bodong et al. (10) which

attempts to address the problem of generality in unpacking. They go about their work by

hooking into all the functions which are responsible to interpret dalvik code in the DVM

(source code) and in their callback function, they read the DexMethod data structure and

extract dex code speci�c to each method. Although feasible, this scheme will not work for

the ART because of several reasons,

1. There is very minimal interpreted code in ART and a majority of the code is compiled

Ahead-of-Time (AOT), hence hooking any particular method in the ART library will

not provide complete code coverage.

2. Once an ART native method is dispatched from the run-time from a particular function,

calls to other ART native methods, within that module, from that point on, need not

trap back to the run-time

6



2.3 Solution Overview.

There are many challenges facing APK unpacking as we saw in the previous sections. Packed

samples are completely immune to static analysis. They have anti-debug features which

render unpackers which attempt to read .dex �les from the memory via system calls or

ptrace based methods useless. Some packers mutate the .dex �le contents in memory,

which means that even after getting a memory dump, an analyst cannot successfully �nd or

extract the actual code. Finally, with 69% of the android users now using KitKat Operating

system or above, all of which are based on the new Android run-time (ART), an unpacker

must be able to support it.

To accommodate to these shortcomings we look at the problem from a di�erent perspec-

tive. Regardless of what packer is used to pack an application, what features it implements,

because applications on the android phone are run and managed by a standard ART run-

time, they have no control of the execution engine of the run-time. For ART compiled native

methods, there are some data-structures which hold important data, like the o�set of these

methods in a module and for interpreted .dex methods, there are data-structures which hold

the dalvik byte-code corresponding to each method, in the run-time, both of which are not

in the packer's control. Execution of an android application (albeit benign or malicious),

whose core logic has been written in Java and compiled into an APK and then packed, has

to resemble that of the unpacked application and to satisfy this, the packer cannot mutate

certain structures in the ART run-time at any cost.

Acknowledging these facts we �rst design a system which is able to provide us with a

platform to perform unpacking. We build this platform as an upgrade to (18), which is based

on the Android emulator (which is based on QEMU). It is designed such that it can support

the new Android emulator as well as the recent ART run-time. This emulator based dynamic

analysis tool provides us full control of the guest system and all the necessary features to

perform the unpacking. The unpacking process itself is done by carefully studying the ART

run-time and extracting information from some key data-structures in the run-time at key
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events (/hook-points) during the execution of the application. We are able to produce a code

extraction of all the native/interpreted methods that belong to the application during the

lifetime of the application accurately defeating run-time packers, hence providing a security

analyst with a block by block trace of the application for further analysis.

2.4 Contributions

1. A complete dynamic analysis platform which supports various virtual machine intro-

spection features like

(a) native-call tracing

(b) native-instruction tracing

(c) java function tracing

(d) memory read/write tracing . . .

for the new ART run-time, based on Droidscope, a similar such tool for the DVM run-

time .And in doing so a good overview of the working of the Android run-time (ART)

for interested researchers.

2. An unpacker, implemented as a plug-in for the above-mentioned tool, which performs

a very generic unpacking procedure which is able to successfully extract accurate code

from any packed application, regardless of what packing mechanism was used.

3. A case study of some special known packers

4. A platform for an security analyst to perform further analysis (apart from just code

extraction) on the behaviour of these packed applications from the wild.

8



Chapter 3

The Android run-time (ART)

Before we begin speaking about the unpacker, it is important to understand the new Android

run-time (ART) to help the reader in getting a �rm grip of this system as well as lay the

ground for the later sections. The Android run-time (ART) is the application run-time

environment used by the Android operating system since version 4.4 "KitKat".

3.1 History

Before ART, the android Operating System (OS) was based on a process virtual

machine, whereby source code of an application was written in Java, and the Java classes

which belonged to an application were compiled into dalvik byte-code (similar to java

byte-code). Each .java �le was compiled into a .dex �le (similar to .class �les) and

these .dex �les were combined together with the resources required by the application (like

images. . . ) and an Android application package (APK) was released for the user to in-

stall. During installation, further platform/hardware speci�c optimization was performed

on the the .dex �les and .odex �les were produced. For execution, the Dalvik virtual ma-

chine (DVM) would load these .odex �les into memory and execute the dalvik byte-code in

them by interpreting them one-by-one. Each dalvik byte-code is provided an instruction

handler. These instruction handlers are basically written in C and/or in assembly for
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every architecture. Each instruction handlers is like an o�set of a computer goto -like

implementation with the byte-code being the selection mechanism. Depending on architec-

ture, instruction-to-instruction transitions may be done as either computed goto or jump

table. In the computed goto variant, each instruction handler is allocated a �xed-size area

(e.g. 64 byte). "Over�ow" code is tacked on to the end. In the jump table variant, all of the

instructions handlers are contiguous and may be of any size. A Java function in invoked by

the DVM (the run-time) via a function dvmCallMethod, which essentially pulls the byte-

code corresponding to the particular method from the .odex �le (which is loaded onto the

memory) and begins interpreting them one-by-one. Figure 3.1 (Source: Wikipedia) shows a

good graphical interpretation of the APK of the DVM.

10



Figure 3.1: A comparison of APK �le structure in ART and the older DVM (Source:

Wikipedia)

3.2 What is the new Android run-time (ART)?

Interpreting methods tends to make a system signi�cantly slower, to improve on performance

Android made a big decision to adopt native code. For backward compatibility, the APK

structure had to remain the same, hence none of the Java code could be compiled to native

code during release time. This cannot done, also because the target architecture of an
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application is unknown at release time, this data is only known during install time. During

the installation of the application, a tool called dex2oat is invoked which compiles every

single Java/dalvik method, one class after the other for all classes in the .dex �le (present

in the APK) one-by-one into native code speci�c to the architecture of the device. After

compilation, its back-end oatwriter, combines the older .dex �les with the compiled native

code and creates an OAT �le. As we see in Figure 3.2, the OAT �le is essentially an ELF

�le (on the older DVM runtime, there was no executable code in an .odex �le as all the

code was interpreted, so the whole �le could be loaded onto memory as read/write, but the

.oat �le requires a .text section which had to be executable, hence promoting an ELF

based �le design). For backward compatibility and because of the constraint that some

dalvik byte-code just CANNOT be compiled into native code and HAVE to be interpreted,

the Android run-time (ART) had to still keep the .dex �les with the original dalvik byte-

code. Every Java method of a class can be either compiled to native code, also

known as `quick code` or not, in which case it is interpreted. Henceforth any

reference made to quick code or intepreted code refers to the Java functions

which were compiled accordingly. Hence each class which is written to the .oat �le

gets a label 1. kOatClassAllCompiled - All functions of the class is compiled into native

code. 2. kOatClassSomeCompiled - Some of the functions of the class are compiled to

native code. 3. kOatClassNoneCompiled - None of the functions are compiled to native

code and all of them have to be interpreted. OatDexFile is used to hold information about

a corresponding .dex �le as well as to point to all the OatClasses which belong to the

particular �le. DexFile is the exact same data structure used in the DVM based android,

more about this will be explained in the later sections in detail as and when required but

it is important to note that a .dex �le is unaware of the presence of any native code and

is an independent entity (this is important because a user cannot have a reference to a

.dex �le based data structure and derive the o�set of the corresponding native code is a

straightforward manner, this will be dealt with in the later sections). OatClass is data
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which can be reached via the OatDexFile and holds a list of o�sets corresponding to the

compiled methods of the particular class. Following this is space for other important run-

time information like bitmaps for the Garbage Collector (GC), VmapTables which map the

Virtual registers to memory addresses etc.. Following this is the quick/native code, which can

only be referenced via the o�set information in the OatClass, they contain a minimalistic

header called the OatMethodHeader, which holds information like code_size, code_o�set,

gc_map_o�set etc...

Figure 3.3 shows the memory dump of an OAT �le, in this case the

system@framework.oat �le where we observe the layout as described in Figure 3.2. Now

that we have a good overview of the �le structure let us explore the run-time!
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ELF Header Magic "0x7f ELF"

Simple ELF header with section information.

OAT Header Magic "OAT \n 039 \0"

variable length with count of D OatDexFiles.

OatDexFile[0]
OatDexFile[1]
...
OatDexFile[D]

one variable sized OatDexFile with o�-

sets to Dex and OatClasses

DexFile[0]
DexFile[1]
...
DexFile[C]

one variable sized DexFile for each Oat-

DexFile. These are literal copies of the

input .dex �les. Here exists the dalvik

byte code corresponding to each .dex

�le.

OatClass[0]
OatClass[1]
...
OatClass[C]

one variable sized OatClass for each of C

DexFile::ClassDefs. Contains OatClass

entries with class status, o�sets to code,

etc. This is important because it holds

the o�set into the native code for each

method

GcMaps, VmapTables, MappingTable and padding as following this will be the native

code which needs to be aligned

OatMethodHeader[0]

MethodCode[0] (native)

...

OatMethodHeader[N]

MethodCode[N] (native)

�xed size header for a CompiledMethod

including the size of the MethodCode.

One variable sized blob with the code of

a CompiledMethod. Pairs are dedupli-

cated.

Figure 3.2: OAT File Layout
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Figure 3.3: Framework OAT �le memory dump

15



3.3 libart.so: the heart of ART and its execution mech-

anism.

This section will serve as a bedrock for the later sections.libart.so, written in C++, is

the main run-time library which handles and executes an android application. When the

application starts up, via any entry point, libart.so starts o� by locating the .oat �le

belonging to the process to be started, checks its sanity and loads it onto memory and

starts executing the application. It spawns certain essential threads, each thread corre-

sponding to a thread on the Java side. The main application starts thread as soon as it

spawns, calls the Java function void java.lang.Thread.run() starts up and initializes

all the required framework classes. Once this is done the <clinit> function belonging to

the application is invoked, which initializes classes belonging to the application and starts

executing the application. This is a view from the java perspective, but how does the

libart.so handle function invocation?. As we discussed earlier, Java methods are com-

piled into quick code or interpreted code. Once the .oat �le is parsed and loaded onto

memory, it initializes and populates data structures in the run-time(libart.so) which mir-

ror features on the Java side. By Java features we mean Thread, Objects, Classes, Java

methods. . . are all mirrored on the run-time. To study method invocation behavior, of par-

ticular interest to us is the ArtMethod ((2)) class in libart.so which essentially mirrors

a Java Method. Now, an instance of the ArtMethod might be either compiled into quick

code, or may not have any quick code. An ArtMethod is invoked in ART runtime via a two

key functions, void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t

args_size, JValue* result, const char* shorty), belonging to ArtMethod OR

bool DoCall(ArtMethod* method, Thread* self, ShadowFrame& shadow_frame,

const Instruction* inst, uint16_t inst_data, JValue* result). The former is

used to handle functions compiled as quick-code/native-code, while the latter is used for

interpreted code(called using handlers of invoke-XXX/range dalvik instructions). The
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Thread data structure, which mirrors a java thread, holds a managed stack of all the invoked

(java) methods belonging in it. ArtMethod::Invoke performs the following functions

1. performs some security checks to make sure there were no over�ows etc ..

2. checks if the ArtMethod contains native code and if checks pass, invoke

art_quick_invoke_stub

3. art_quick_invoke_stub is a architecture speci�c Assembly (ASM) method which

sets up the stack frame and registers, extracts the method o�set form the ArtMethod

data structure and jumps to this o�set. The Stack and registers for the method are

laid out as shown in Figure 3.4

DoCall on the other hand, is used to handle interpreted .dex methods and works by

allocating and setting up a shadow stack for the target method and then, the dalvik byte-

code corresponding to the ArtMethod, which is actually stored in a data structure called,

Dex::CodeItem is extracted for the particular method and submitted to the interpreter

functions, which interprets and executes each of the instruction one by one based the goto-

implementation based method we spoke about earlier. A layout of Dex::CodeItem is shown

in Figure 3.5. This is a key data structure as it points us to the dalvik byte-code correspond-

ing to the particular method.

3.4 Final words.

Now that we have a fair idea about the execution pattern of the Android run-time (ART),

we can begin to model our dynamic analysis tool to support some of the features we require

to perform unpacking.
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Quick invocation stub internal.
On entry
r0 = method pointer
r1 = argument array or null for no argument methods
r2 = size of argument array in bytes
r3 = (managed) thread pointer
[sp] = JValue result
[sp + 8 ] = core register argument array
[sp + 12 ] = fp register argument array

uint32_t * fp_reg_args
uint32_t * core_reg_args
result_in_�oat
Jvalue* result

<- Caller frame

lr
r11
r9
r4

<- r11

uint32_t out[n-1]
.. ..
.. ..
uint32_t out[0]
ArtMethod*

Output args

<- SP

Figure 3.4: Quick invoke, stack and register layout

registers_size_ ins_size_

outs_size_ tries_size_

insns_size_in_code_units_

insns_

Figure 3.5: 32-bit code layout of the Dex::CodeItem data structure which holds the dalvik
byte-code.

18



Chapter 4

DroidScope:ART

4.1 Overview and older Droidscope

DroidScope (18) is a dynamic program analysis tool developed on top of the Android emu-

lator which provides a user with a host of very useful Virtual machine introspection (VMI)

tools like basic-block tracing, native call tracing, dalvik call tracing, native instruction trac-

ing, dalvik instruction tracing. . . .DroidScope reconstructs both the OS-level and Java-level

semantics simultaneously and accurately. It provides a platform for the user to dynamically

load and unload plug-ins and a set of Application Program Interface (API)s to be used in the

plug-ins to which expose its various features. Basic block level callbacks are implemented by

hooking key points in the in the Translated Block (TB) translation is the android emulator

(for more information please refer to (18), (12), (9)). Native-level API callbacks are imple-

mented on top of Basic-block callback (this will be explained in more detail in the following

section). Dalvik method callbacks are implemented by hooking the dvmCallMethod function

in the Dalvik virtual machine (DVM) and reading data about the method like name, dalvik

byte-code. . . from the Method data structure. Dalvik instruction callbacks are implemented

by hooking a range of functions which correspond to the interpretation of all the dalvik

byte-code, once execution reaches any of these functions, the contents of the DexPc is read
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and disassembled. This older version of Droidscope supported android versions "4.2"-, and

only the Dalvik virtual machine (DVM).

4.2 The new Droidscope with ART support

To accommodate to a completely di�erent run-time in ART, we have had to comprehensively

re-work DroidScope to still be able to accurately recover both Java and Native level semantic

features. This section will provide an expansive overview of how we achieved this step-by-step

and a lot of implementation detail will be based o� of the details discussed in chapter 3.

4.2.1 Recovering Native semantics.

Below is a list of linux-level semantic information that Droidscope provides along with a very

brief summary of how they are implemented. We will not dive deep into this as it is covered

in detail in (18), (12), although a basic overview is imperative to understand the higher level

working of the system. All or most of the these features were ported from the older version

of Droidscope with changes as and when required.

1. Basic block entry/exit callback - This is a very important concept and will be

repeated several times while discussing the implementation. A basic block is de�ned

as a block of ARM(this can be any architecture) instructions terminated by a jump or

by a virtual CPU state change which the translator cannot deduce statically. A basic

block begin/end is when code jumps into/out of a piece of code form another basic

block. This is captured by hooking the translation procedure of QEMU((18), (12),

(9)). This is a very powerful tool because a function begin is in essence a basic block

begin, hence native functions tracing is built on top of basic block begin tracing as well

as a host of other features.

2. Process map - A list of all processes running on the guest system and some infor-

mation like PID, PGD, memory modules loaded. . . for each process. This information
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is collected by hooking the fork system call (or a variant) of the Linux kernel and

reading the kernel's process linked list and looking for newly added processes.

3. Memory-mapped modules for each process - All code (+data) required for

each process is loaded from the �le-system onto memory to be executed. A pro-

cess's vm_area_struct holds a linked list of all loaded modules for the process. We

hook kernel functions which mutate this list, and at these hooks, detect new module

loads, and collect information like (a) base address at which module is loaded (mod-

ule_base_address) (b) size of the module (c) name of the module (d) inode_number

corresponding to each module etc....

4. Native function tracing - On the new version of Droidscope we develop a new

method of Native function tracing, whereby for each loaded native module, which is

basically an ELF binary, or an ELF shared library (essentially the only two places

where executable native code exists), as required, we use a �le system forensics tool

called "Sleuthkit"(7) to dump the �le corresponding to the inode_number of the

module into our host system, use a simple elf disassembler and collect o�sets of all

exported functions/symbols belonging to the module. Now, (module_base_address +

o�set) of a function is equal to the address of the function in memory and during a basic

block begin callback, when the program counter is equal to (module_base_address +

o�set) for any function, then that basic block is the beginning of the particular native

function. This is a very useful feature and will be used extensively in the sections to

come.

5. Apart from these, Droidscope provides various other features like, native instruc-

tion begin/end callbacks, memory read/write callbacks, module load/unload callbacks,

wrapper functions to read a blob of memory from the guest ram etc...

21



4.2.2 Recovering Java semantics : Introduction

Now that we have a good understanding of how native level semantics are recovered in

Droidscope, let us discuss how we designed our system on top of these features to give us the

same �exibility and features from a Java point-of-view for the new Android run-time (ART).

Let us �rst take up process/java application creation callbacks. Java applications, like native

applications are spawned by forking, but they di�er in that the application name is not

resolved when a fork takes places, hence we employ a di�erent approach to track the creation

of these processes by 1. making a list of all processes which have been forked by an appli-

cation called main, which is the init process for every android application. All processes

on this list are not android application 2. we hook a function in the libcutils.so library

called set_process_name which is used to set the name of a particular android application.

In this hook function we check if the process currently calling set_process_name is on our

list, if so, we upgrade the process data structure with the name of the application and invoke

our android application process begin callback with the accurate name of the application.

This is an important tool as a user can now begin tracing of a program by its name.

Next task is recovering java function level semantics, or a Java function callback. During

the installation of an application, as discussed before, a compiler/tool dex2oat is invoked

on the APK to compile it into an ART speci�c OatFile, and one of the arguments that

can be passed to this compiler is dalvik.vm.dex2oat-filter, the options for which are

either "speed" or "interpret-only", the former instructs the compiler to translate AS

MANY functions as possible into native code leaving the others as interpreted functions,

and the latter, commonly used for debugging instructs the compiled to not compile ANY

function to native code. By default this argument is set to "speed". For all intents

and purposes, from now on we will consider function tracing as obtaining a

trace/names of every single Java function executed by an single application. No

packing behavior is expected from the application and that problem will be dealt

with after this section, building upon this. Since there is not really one single function
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on the Android run-time (ART), as we saw in the previous chapter, we need to come up

with a more sophisticated technique to handle both quick code or compiled methods and

interpreted methods, in separate independent methods. Let us look at an overview of each

implementation following the general algorithm used.

4.2.3 Compiled ART methods

Referring to Figure 3.2 we see that the compiled native methods corresponding to Java

methods are present in the very end of the oat�le, and observe that they are laid out very

similar to how native functions would be laid out in an executable or native shared library.

Hence to trace there methods, we can take a similar approach as tracing native methods,

by collecting the o�sets of all the compiled methods and corresponding each o�set to a Java

method (we can collect the name for reference). For native binaries/shared libraries, as their

formats are pretty simple, extracting o�sets from them is a fairly easy process BUT for

oat�les, we need to follow a di�erent process. The general idea is to obtain the the oat�le

belonging to the method, and extract o�sets from it.

We know from our discussion in chapter 3 that the function, void ArtMethod::Invoke

(Thread* self, uint32_t* args, uint32_t args_size, JValue* result

, const char* shorty) from libart.so is usually used to dispatch a `compiled method`,

this by no means covers all compiled methods, but it is su�cient for us to use as a hook

point to perform o�set extraction from the OatFile belonging to the called ArtMethod.

Then next challenge is to discover which module the called ArtMethod belongs, because

as we recall the function call is in libart.so and ArtMethod is a very simplistic data

structure which does not contain any back reference to the originating module. We can

reach the DexFile data structure from the ArtMethod data structure and this method will

be used for both compiled and native code extraction. Let us discuss that and come back to

the o�set extraction problem.
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DexFile data structure form ArtMethod

It is important to note that because we are using a dynamic analysis platform,

and performing analysis in a plug-in running on the host system and pro�ling

the guest android system, all pointers to these data structures point to memory

on the guest RAM and not the host RAM. They cannot be dereferenced directly

nor can be used to invoke any class functions, to read �eld data form a pointer

to a data structure in the guest memory, we �rst need to read a block of memory

starting from the pointer upto a size equal to the size of the data structure. We

can then cast this block to a pointer to the original data structure and read data

from it, BUT caution is be taken as only POD - based data structure can be read

with this method, if there are more pointers in the data structure, this process

has to be repeated. A sample of this process can be seen in Code Listing 4.1.

Listing 4.1: Sample code showing how guest data structures are read from memory

// The ArtMethod is read off of r0

target_ulong called_art_method = env->regs[0];

// Get the ArtMethod from guest memory.

art::mirror::ArtMethod *methodzz;

char block1[SIZEOF_TYPE(art::mirror::ArtMethod)];

DECAF_read_mem_with_pgd(env, pgd_strip(cr3), called_art_method, block1,

SIZEOF_TYPE(art::mirror::ArtMethod));

methodzz = (art::mirror::ArtMethod *)(block1)

Back to the problem at hand, our goal is to �nd out the module to which this particular

ArtMethod belongs to so that we can perform o�set extraction form this module, and as

the ArtMethod itself does not hold any clue to this, we aim to extract the DexFile Data

structure, which holds the base address of the DexFile, and as Figure 3.2 shows us, if we

�nd out which module the DexFile belongs to, and since the DexFile is embedded inside the

OAT �le, we �nd the module loaded into memory corresponding to the OatFile. To move
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from the ArtMethod to the DexFile we follow the following steps

1. The ArtMethod data structure has a �eld called

HeapReference<Class> declaring_class_; which is a pointer to the mirror data

structure of the class to which this method belongs to. HeapReference is just a

wrapper around the pointer to the class which is technically on the Java heap. As this

data structure is laid out in the class memory completely as a value type, we use the

same method as shown in Code Listing 4.1 to �rst read the ArtMethod from the guest

memory and then read the class pointer.

2. Once we have a pointer to the class data structure which was wrapped inside the

HeapReference, this too does not contain a direct reference to the DexFile to which

the class belongs to but it contains a DexCache data structure which basically holds

resolved copies of strings, �elds, methods, and classes from the dex�le as well as a

pointer to the DexFile data strucutre to which this class belongs to (Voila!). We

extract the DexCache and �nally the pointer to the DexFile using similar methods

explained above.

3. Once we have the DexFile pointer, we dump and read the whole DexFile data struc-

ture. In benign circumstances, the DexFile data structure is a treasure which contains

a lot of important data required for Virtual machine introspection (VMI), but right

now we are only concerned with const byte* const begin_; which points, in the

guest memory, where the DexFile starts.

O�set extraction from the OatFile

As mentioned earlier, DroidScope provides an API which, given a particular process and an

address, returns the module to which this address belongs to. Once we have this information,

we dump the OatFile from memory completely and extract the o�sets based on Algorithm 1.

This is a fairly complicated and intricate process were we iterate through essentially each of
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the DexFiles present inside the OatFile and then walk each class of every DexFile. Then

for each class, we do sanity checks to verify the class and �nally for each method (OatMehod),

which contains compiled code, we extract it along with the name of the function and add

it to our internal map as seen in Line 30 in Algorithm 1. We internally maintain a data

structure such as

MAP[module_base -> MAP[ code_o�set -> method_name]]

Final Java function tracing for native ART methods.

This works well because performing the particular parsing every single time would be highly

time consuming and to solve that every module's OatFile o�sets are extracted once. Now

that we have a all the o�sets of compiled code in an OatFile we can now trace native

code execution for the particular application to retrieve Java level function call tracing. To

achieve this we register for a Basic Block begin callback, in which we check �rst the current

module to which this Basic Block belongs to, then if this module is an OatFile and has

o�sets extracted for it, we check if the current Program Counter is equal to { module_base

+ offset } for any of the extracted o�sets, if so then this is the start of a Java function

pointed to by the method_name corresponding to the offset in the MAP.

4.2.4 Interpreted Java methods

Depending on certain options, a large/small part of an android APK is still interpreted. This

means that tracing Java functions should include tracing of dalvik interpreted methods. As

discussed in Chapter chapter 3, interpreted methods are ALL dispatched via a function call,

bool DoCall(ArtMethod* method, Thread* self, ShadowFrame& shadow_frame,

const Instruction* inst, uint16_t inst_data, JValue* result) in the Android

run-time (ART). Simply hooking this function and employing a simple process to extract

the name of the method from the ArtMethod will be su�cient.

26



Algorithm 1 Extract o�sets of each compiled method from the OatFile

1: procedure extract_art_offsets__(module_base, module_size,
module_name, process_identifier)

2: if module_base == extracted then
3: Return
4: end if
5: oat_file_contents← ReadGuestMemory(process_identifier
6: ,module_base,module_size)
7: oat_file_valid← CheckOatMagic(oat_file_contents)
8: if oat_file_valid == false then
9: Return
10: end if
11: host_oat_file_dump← DumpContentsToFile(oat_file_contents
12: ,module_name)
13: oat_file← artOatFileOpenMemory(oat_file_contents, host_oat_file_dump)
14: if OatF ile == nullptr then
15: Return
16: end if
17: oat_dex_files_← oat_file->GetOatDexFiles()
18: for each oat_dex_file_ in oat_dex_files_ do
19: dex_file← oat_dex_file_->OpenDexFile()
20: class_defs← dex_file->GetClassDefs()
21: for each class_def in class_defs do
22: oat_class← oat_dex_file_->GetOatClass(class_def)
23: class_data← dex_file->GetClassData(class_def)
24:

25: if class_data != nullptr then
26: oat_methods← oat_class->GetOatMethods()
27: for each oat_method in oat_methods do
28: method_name← PrettyMethod(oat_method)
29: code_offset← oat_method->GetCodeOffset()
30: AddOffsetAndNameToMap(module_base,method_name
31: , code_offset)
32: end for
33: end if
34: end for
35: end for
36: end procedure
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Java Function name from ArtMethod

Since just hooking the above mentioned function will give us full coverage of all interpreted

functions, we can go ahead by extracting the function name. To do so we can start with

the �rst argument, the ArtMethod. In an android APK, the DexFile present inside the

OatFile is the only location where strings like method names, class names, parameter

list. . . are present. The DexFile contains a �eld MethodId for all methods present in the

�le, this contains o�sets into the DexFile to other important data structures like the class

to which the method belongs to, the name of the method. . . . The DexFile also contains

an array of StringId data structure for all strings present in the �le, were each StringId

essentially contains the o�set to the particular string from the beginning of the DexFile and

any other data structure in the DexFile, which needs to point to a string, hold a reference

into this array. Hence to extract the name we perform the following steps

1. Extract the DexFile from the ArtMethod as described in section 4.2.3.

2. Read the dex_method_index_ �eld from the ArtMethod which is essentially an index

into the MethodId array pointing to the MethodId for this particular method.

3. Read that particular MethodId from the DexFile and extract the name_idx_ �eld in

it, which is essentially an index into the StringId array pointing to the name of this

particular method.

4. Read the particular StringId, which contains a �eld string_data_off_ which is the

o�set of a leb128 encoded string from the beginning of the DexFile

5. Decode and read the string present at the address (dex_file_begin_ + string_data_off_

and print/dump out the function name.
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4.2.5 Recovering Java semantics : Final Picture

Now, in this section we combine the algorithms from subsection 4.2.3 and subsection 4.2.4

into a single algorithm and showcase its implantation on Droidscope. Algorithm-2 summa-

rizes the process of java api tracing by covering both interpreted and native java functions in

an abstract view. The process is implemented in a basic-block (BB) begin callback (CB)

function in Droidscope:ART. As discussed in subsection 4.2.1, a basic-block (BB) is de-

�ned as a block of ARM(this can be any architecture) instructions terminated by a jump

or by a virtual CPU state change which the translator cannot deduce statically and a basic

block begin/end is when code jumps into/out of a piece of block of code from another basic

block. We begin in the callback to check if the CB belongs to the process being tracked, if so

we extract the native function call correspond to this BB (only if the BB is the �rst one of a

function then that is a function call). If this a call to doCall... or ArtMethod::Invoke,

the two functions that we have talked about, then we follow the process described in sec-

tion 4.2.3 to extract the DexFile from the ArtMethod. Once we have the DexFile. If

the function call was to ArtMethod::Invoke, then we go ahead and extract all the com-

piled method o�sets from the particular DexFile's OatFile. If the function call was to

doCall... then we go ahead and extract the function name for the particular ArtMethod

with the process as described in section 4.2.4 and dump it.

After this is done, we check if the the current module, to which this basic block belongs

is an OatFile of which he have extracted o�sets for. If so, we check if the current program

counter is equal to the sum of the module's base address plus one of these o�sets. If so, we

extract the function name corresponding to the o�set and dump this.
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Algorithm 2 JAVA API Call tracer for Droidscope : ART

1: procedure block_begin_cb(cpu_state_information)
2: current_pc← GetCurrentPc(cpu_state_information)
3: current_cr3← GetCurrentCr3(cpu_state_information)
4:

5: if (current_cr3! = tracked_cr3) then
6: Return
7: end if
8:

9: current_module← GetCurrentModule(cpu_state_information)
10:

11: if (current_module == “libart.so′′) then
12:

13: current_function← GetCurrentFucntion(cpu_state_information)
14:

15: if (current_function == (“doCall...′′||“ArtMethod :: Invoke...′′) then
16:

17: dex_file← GetDexFileFromArtMethod()(section 4.2.3)
18: dex_file_module← GetModuleForAddress(dex_file.begin_)
19:

20: if (current_function == “ArtMethod :: Invoke...′′) then
21: extract_art_offsets__(dex_file_module)[Function− 1]
22: Return
23: else
24: dex_method_name← GetDexMethodName(dex_file, art_method)
25: (section 4.2.4)
26: dump_function_name(dex_method_name)
27: Return
28: end if
29: end if
30: end if
31: if (ArtOffsetsForModuleBase(dex_file.begin_) == TRUE) then
32: dex_method_name← GetDexMethodNameForOffset(current_pc)
33: dump_function_name(dex_method_name)
34: Return
35: end if
36: end procedure
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Chapter 5

DroidUnpack

Now that we have a solid understanding of the execution environment on the Android run-

time (ART) and a reliable analysis engine which is able to get a complete execution trace of

Java function calls made by an application, we can build our unpacker on top of it. Before

we proceed we present a series of objectives that we want to be able to achieve with this

unpacker.

5.1 Objectives

1. A generic unpacker which is able to dump/log the code execution of every single Java

function for a packed android application regardless of features used by a packer.

2. Furthermore, the unpacker should be able to log all memory writes made by the ap-

plication and automatically detect if any of these regions in memory was executed.

5.2 Code Extraction

Although we were able to implement Java function call tracing successfully, special care

must be taken to track the execution of packed applications. Runtime packers try very

hard to obfuscate their true intentions and make it very hard for a security analyst to
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study execution �ow of the application. Additional to this we need to extract code, dalvik

byte-code for interpreted method and arm instructions for native ART methods as function

names are sometimes simply obfuscated/mangled by a packer and hence simply extracting

function name is insu�cient for a security analyst to perform further evaluation. What data

structures to read and how to do so from memory should be carefully chosen because runtime

packers sometimes perform selective unpacking, header mangling etc which means that the

extraction technique must be immune to these features. The following approach is used for

native and interpreted method,

1. Native methods: One of the challenges of the new Android run-time (ART) was to

study the execution of native code in a Java context. Every time we detect the be-

ginning of a compiled ART function, because we have extracted the o�sets beforehand

from the OatFile we have also collected the size in memory of these methods. We

go ahead and dump the native code from the start to its end. For good analysis it is

preferred to have dalvik byte code for all functions rather than native code to keep

things consistent, but this is a harder challenge because strict checks are performed

on the ART native code, but no strict checks are performed on the byte code during

installation. Hence a packer can, after installation wipe out all the dalvik byte-code

from the dex �les in memory, because they are not required for the execution of the

application. The only option to make the most generic would be to disassemble the

native code into byte-code, this is a particularly challenging problem and is under our

future plans.

2. Interpreted functions: Interpreted methods are comparatively easier in that, each

interpreted functions is assigned a data structure in the Android run-time (ART),

called DexFile::CodeItem, shown in Listing 5.1. Similar to extracting the name of the

function for interpreted functions, the ArtMethod data structure holds an reference

its CodeItem data structure present in its DexFile. We proceed by extracting this

data structure and disassembling/logging insns_size_in_code_units_ number of
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instructions starting from insns_ as seen in CodeItem.

Listing 5.1: DexFile::CodeItem

// Raw code_item.

struct CodeItem {

uint16_t registers_size_;

uint16_t ins_size_;

uint16_t outs_size_;

uint16_t tries_size_;

uint32_t debug_info_off_;

// file offset to debug info stream

uint32_t insns_size_in_code_units_;

// size of the insns array, in 2 byte code units

uint16_t insns_[1];

};

5.3 Unpacking algorithm and other features.

The unpacker is essentially a plugin on Droidscope:ART which is developed on top of

the Java API tracer plugin we described previously with some additional features added.

With very little addition to the JAVA API tracer, we are able to implement a generic,

robust unpacker for the latest Android run-time (ART) as seen in Algorithm-3. We insert

an additional memory write callback, which essentially records all memory writes made by

an application. Since these packers tend to dynamically write into the target OatFile to

correct portions of the code before execution, we can study such behavior with the help of

this callback. Apart from this the only additional features is the code extraction which is

performed for each method, as described in section 5.2.
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Algorithm 3 DroidUnpack plugin for Droidscope:ART

procedure memory_write_callback(virtual_address, cpu_state_information)
current_cr3← GetCurrentCr3(cpu_state_information)

if (current_cr3! = tracked_cr3) then
Return

end if
RecordAddressWrite(virtual_address)

end procedure

procedure block_begin_cb(cpu_state_information)
current_pc← GetCurrentPc(cpu_state_information)
current_cr3← GetCurrentCr3(cpu_state_information)

if (current_cr3! = tracked_cr3) then
Return

end if

current_module← GetCurrentModule(cpu_state_information)

if (current_module == “libart.so′′) then

current_function← GetCurrentFucntion(cpu_state_information)

if (current_function == (“doCall...′′||“ArtMethod :: Invoke...′′) then

dex_file← GetDexFileFromArtMethod()(section 4.2.3)
dex_file_module← GetModuleForAddress(dex_file.begin_)

if (current_function == “ArtMethod :: Invoke...′′) then

if (art_offsets_extracted(dex_file_module) == TRUE)OR
(dirty_memory_write_in_module(dex_file_module == TRUE) then

extract_art_offsets__(dex_file_module)[Function− 1]
end if
Return

else
dex_method_name← GetDexMethodName(dex_file, art_method)

(section 4.2.4)
dump_function_name(dex_method_name)
dex_code_item← GetDexCodeItem(dex_file, art_method)
dump_code_code(dex_code_item)
Return

end if
end if

end if
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if (ArtOffsetsForModuleBase(dex_file.begin_) == TRUE) then
dex_method_name← GetDexNativeMethodNameForOffset(current_pc)
dex_method_size← GetDexNativeMethodSizeForOffset(current_pc)
dump_function_name(dex_method_name)
if (DirtyMemoryInRange(current_pc, current_pc+dex_method_size) ==

TRUE) then
dump_dirty_code_metadata()

end if
Return

end if
end procedure
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Chapter 6

Results

6.1 Overall results

We conduct a simple evaluation to measure the veracity of our work, by running the same

unpacker plugin, unchanged on 10 applications each packed by 6 standard commercial pack-

ers, " Alibaba Inc."(1), " Qihoo360 Inc."(6), "Tencent Inc."(8), "Bangcle Inc."(4),

"Baidu Inc."(3) and "Ijiami Inc."(5), as well as on the unpacked application. Veri�-

cations was done manually on the results (function call and code dumps) comparing the

result of each packer with the that from the unpacked application. We were successfully able

to extract code from 5 of the 6 packers we tested with for all applications except for the

Qihoo360 Inc packer which incorporates an anti-emulation feature. The results are seen in

Table 6.1. We compare each of the packer with data extracted from the original unpacked

version of the application present 3 parameters, Code unpacked %(CU), which is simply

amount of original function �ow we could extract from the packed samples, Dirty Native

Code %, which was the percentage of compiled native java functions which were dynamically

mutated by the application during the runtime of the application and �nally Dirty Dalvik

Code %, a similar parameter which indicates the percentage of interpreted Dalvik functions

which were dynamically mutated. In the next section we take a look at all these packers

36



Table 6.1: Overall Comparison
Packers
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com.banasiak.coin�ip

CU % 1 100 100 100 100 - 100
DNC[%] 2 X X X[89.41] X X X
DDC[%] 3 X[100] X[70.37] X[13] X[3.57] X X

io.github.sanbeg.�ashlight

CU % 100 100 100 100 - 100
DNC[%] X X X X X X
DDC[%] X[100] X[62.5] X[3.59] X[20] X X

com.frankcalise.h2droid

CU % 100 100 100 100 - 100
DNC[%] X X X[90] X X X
DDC[%] X[100] X[89.47] X[2.08] X[9.52] X X

com.tortuca.holoken

CU % 100 100 100 100 - 100
DNC[%] X X X[85.33] X X X
DDC[%] X[100] X[16.98] X[8.51] X[3.64] X X

ru.gelin.android.browser.open

CU % 100 100 100 100 - 100
DNC[%] X X X[3.8] X X X
DDC[%] X[65.06] X[10.86] X[4.64] X[4.17] X X

edu.killerud.�leexplorer

CU % 100 100 100 100 - 100
DNC[%] X X X[13.63] X X X
DDC[%] X[100] X[55.55] X[3.59] X[18.18] X X

edu.killerud

CU % 100 100 100 100 - 100
DNC[%] X X X[15] X X X
DDC[%] X[100] X[71.42] X[1.7] X[22.22] X X

de.boesling.hydromemo

CU % 100 100 100 100 - 100
DNC[%] X X X[97.36] X X X
DDC[%] X[100] X[31.25] X[7.45] X[11.11] X X

individually, for one of the applications, com.banasiak.coinflip.

1Code Unpacked %.
2Dirty Native Code[%]
3Dirty Dalvik Code[%]
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Figure 6.1: Behavior of the Alibaba packer.

6.2 Case Studies

6.2.1 Alibaba Inc.

This packer adds two shared libraries, libmobisec.so and libmobisecx.so into the APK.

The original .dex �le is packed and encrypted and its replaced by a standard custom made

.dex �le which acts as a launchpad to bring up their shared library, libmobisec.so, which

performs bulk of the unpacking. This library itself is obfuscated and it corrects itself, extracts

the the original .dex �le and loads the it into the shared library libmobisecx.so, which

is under its control which can be observed in Figure 6.1. We see that three ART/OAT files

were loaded, the �rst one being the framework �le, the second being their launchpad �le

and the third the actual application. We can verify this is the java function traces.

We see in Figure 6.2 the comparison of the java api trace between the Alibaba packer

and the unpacked application. We see that we have been able to successfully get the same

functions �ow as the unpacked application even with this application being packed. Also, it
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is interesting to see that every function call made to the original .dex �le is followed and

preceded by custom function calls. The packer has inserted these functions calls to inject a

form of indirection which would render many analysis techniques fruitless. Also interesting

to note is that as we observed before, the .dex �le is actually embedded in their own shared

library. This is a clever strategy as it gives the packer full control of the read/write into

the code, but as we discussed in the our motivation section, we rely on the fact that the for

the application to execute naturally, it has to adhere to certain constraints imposed by the

Android run-time (ART), meaning that some data structures in the run-time can never be

mutated and we exploit this to unpack there applications.
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(a) JAVA function call trace from the unpacked application.

(b) JAVA function call trace from the application packed with ALI.

Figure 6.2: Comparing the JAVA api traces between the unpacked and the packed application

output both obtained from our unpacker plugin.
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6.2.2 Baidu Inc.

Similar to the previous packer, Baidu includes a custom shared library libbaiduprotect.so

which performs the similar role of decrypting/unloading and starting the application. Here

as seen in Figure 6.3, the packer spawn another child process where the actual application is

executed. We also observe that the framework, the launchpad and the actual ART/OAT �les

were successfully loaded and the target �le is actually present in the heap. Let us now have

a look at the java api calls.

Figure 6.3: Behavior of the Baidu packer.

As we observe the java api calls in the compare them with the the unpacked application,

in Figure 6.4 we see that again we are able to successfully unpack the application. It is

interesting to note here that the target application is actually loaded somewhere on the

heap/dynamically allocated memory.
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(a) JAVA function call trace from the unpacked application.

(b) JAVA function call trace from the application packed with Baidu.

Figure 6.4: Comparing the JAVA api traces between the unpacked and the packed application

output both obtained from our unpacker plugin.
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6.2.3 Bangcle Inc.

Bangcle was one of the more sophisticated packers, with more packing features employed

than others. The shared library used was libsecexe.so which performed the unpacking.

The actual code was contained in a classes.dex �le which was dynamically recovered

and loaded into memory to start the application. The packer employed sever child process,

one of them to observe for p-trace based debugging detection and the other where the

application was actually loaded. The interesting part of this packer is that it employed

another .dex �le, called container.dex which actually performed runtime unpacking of

the application as it executed (more on this in the next paragraph). Also interesting to

note was that unlike other packers that we studied, Bangcle's target/actual application had

all of its functions compiled into native ART functions. We see this behavior in Figure 6.5.

Now lets take a look at some of the more interesting features employed by this packer.

Figure 6.5: Behavior of the Bangcle packer.
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Some interesting features

The most interesting feature about the Bangcle packer is the container.dex. This is

actually an application launched by the parent application (most likely from the shared

library) and acts as an ACTUAL container to the original application. What this means is

that all data (like strings, classes, resources. . . ) are encrypted when the application starts up

and when there is a request to any of these elements, they are trapped by the container.dex

application which decrypts the required data at runtime and provides it to the application.

A more longer version of the api behavior of Bangcle can be found in Appendix for an

interested user. Here in the shorter version in Figure 6.6 where we see that despite these

e�orts by the packer we are able to successfully unpack the application.

6.3 Ijiami Inc.

Similar to the other packers, Ijiami unloads its packed OAT �le onto a �le named “.1”, as

seen in Figure 6.7 compiles this application (we see the invocation to dex2oat) and after the

application starts, deletes the backing �le making it di�cult for a security analyst to unpack

the application. In Figure 6.8 we see that we are successfully able to recover the accurate

execution trace of the application compared to its unpacked application.
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(a) JAVA function call trace from the unpacked application.

(b) JAVA function call trace from the application packed with Bangcle.

Figure 6.6: Comparing the JAVA API traces between the unpacked and the packed applica-
tion output both obtained from our unpacker plugin.
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Figure 6.7: Behavior of the Ijiami packer.
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(a) JAVA function call trace from the unpacked application.

(b) JAVA function call trace from the application packed with Ijiami.

Figure 6.8: Comparing the JAVA api traces between the unpacked and the packed application
output both obtained from our unpacker plugin.
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6.4 Qihoo360 Inc.

This unpacker employed an emulator detector which crashes the application on the android

emulator. We see in Figure 6.9 that the application actually starts, invokes some shell

commands and crashes unexpectedly.

Figure 6.9: Behavior of the Qihoo360 packer.

6.5 Tencent Inc.

Behavior was similar to other packers, the target ART/OAT �le is loaded onto the dynamic

heap and the executed as seen in Figure 6.10 and we see in Figure 6.11, successful code

extraction.
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Figure 6.10: Behavior of the Tencent packer.

49



(a) JAVA function call trace from the unpacked application.

(b) JAVA function call trace from the application packed with Tencent.

Figure 6.11: Comparing the JAVA api traces between the unpacked and the packed appli-
cation output both obtained from our unpacker plugin.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

In the years to come, the android execution environment will shift more towards the design

of the new Android run-time (ART) to keep pace with other platforms like the iOS who's

complete execution is done as native code. In this project, Droidunpack we essentially

provide a strong dynamic analysis framework, based on the new Android run-time (ART) to

set the stage for performing research projects on the framework. In the process of doing so

we study the ART in an exhaustive way in all its relevant aspects and present them for an

interested security analyst. We then summarize the gist of important features required for

us to implement a platform which will provide us with various Virtual machine introspection

(VMI) features. Additionally, we are precisely able to recover both native and Java level

semantics for Android applications on the new Android run-time (ART).

We lay out the necessary foundations required for the construction of a generic android

unpacker. We brie�y describe some of the work that has been done on unpacking android

applications, their strengths and shortcomings. Acknowledging these factors, we look at the

problem from a new perspective. We argue that for any packed android application, with

the core of its original application written in java, regardless of what packer was used, has
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to conform to some strict rules imposed by the Android run-time (ART), in that certain

data structures in the run-time are beyond the control of a packer. With this, we design our

unpacker by tapping into certain key events in the run-time of an application to successfully

perform unpacking of the application. We then evaluate the unpacker against some of the

standard commercial packers to verify the working and accuracy of the unpacker.

7.2 Drawbacks

Although we provide a robust and generic unpacking framework, it su�ers from some small

issues like code-coverage and anti-emulation detection features. We unpack and extract all

the code executed by the application, with `executed` being the key word. Since android is

a GUI based environment, simple testing where we start the application, trace it for some

�xed time and kill it will cover lesser code than what is actually present. This means that in

essence we are not able to cover and unpack the source code of the whole application. This is

a particularly di�cult problem since packers employ features where they unpack a function

right before it is dispatched and decrypt it again after it �nishes execution. In such a case,

it becomes a lot more di�cult to generically unpack the complete application. To address

this we present some interesting plans that we mean to implement. Anti-emulation is a bane

for dynamic analysis tools based on emulators. Although there are no plain solutions to this

problem, there are always anti-anti-emulation tools to help avoid these to an extent.

7.2.1 Breaking out of DroidUnpack

One other important topic to think about is how attackers can subvert such an unpacking

mechanism. Apart from having anti-emulation stubs installed, an attacker can carefully

move the original implementation of the application, into native JNI code. Although a

sophisticated process, the user can �nd a way to convert the java/dalvik code present in the

APK into a custom representation and move it into shared native libraries, hence breaking
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out of the the ART runtime.

7.3 Future Work

As next steps in the evaluation of this project we plan to perform more large scale analysis on

a huge data-set of malicious/benign Android applications in the wild, to better understand

a trend in their design and behavior. To address the problem of code coverage, we plan to

design an engine for force execution of java functions combined with the unpacker.
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Appendix A

Source code excerpts from the

DroidUnpack plug-in.

Below is a small cut-down version of the unpacker plug-in. Code Listing A.1 basically

provides the implementation of the di�erent algorithms discussed in the document. Only

the important callback functions are listed and other parts of the code are omitted to keep

it compact.

Listing A.1: Source code from the DroidUnpack plug-in.

/∗

Copyright (C) <2012> <Syracuse System Security (Sycure ) Lab>

This i s a plugin of DECAF. You can red i s t r i bu t e and modify i t

under the terms of BSD l icense but i t i s made ava i lab l e

WITHOUT ANY WARRANTY. See the top−l e v e l COPYING f i l e for more de ta i l s .

For more information about DECAF and other softwares , see our

web s i t e at :

http :// sycurelab . ecs . syr . edu/

I f you have any questions about DECAF, please post i t on

http :// code . google .com/p/decaf−platform/

∗/

/∗∗

∗ @author Abhishek VB

∗ @date June 22 2015

∗/

stat ic void Sk ipA l lF i e l d s ( a r t : : C las sDataI temIterator& i t ) {

while ( i t . HasNextStat icFie ld ( ) ) {
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i t . Next ( ) ;

}

while ( i t . HasNextInstanceFie ld ( ) ) {

i t . Next ( ) ;

}

}

// Main algorithm which extract o f f s e t s of native functions from an OAT f i l e .

stat ic void extract_art_offsets__ ( target_ulong base_ ,

target_ulong s i z e ,

std : : s t r i n g name ,

CPUArchState∗ env ,

target_ulong cr3 ) {

i f ( base_to_of f sets . count ( base_ ) ) {

return ;

}

// Try to grab the memory and open and OAT f i l e

std : : vector<uint8_t> oat_f i l e_contents ;

target_ulong oat_fi le_end = base_ + s i z e ;

// For the range of module , read i t from memory onto a buf fer .

for ( target_ulong oat_f i l e_base = base_ ; oat_f i l e_base != oat_fi le_end ;

oat_f i l e_base += 1) {

uint8_t ph = 0 ;

DECAF_read_mem_with_pgd( env , cr3 , oat_fi le_base , (void∗)&ph ,

s izeof ( uint8_t ) ) ;

oat_f i l e_contents . push_back (ph ) ;

}

std : : s t r i n g name1 = dex_f i l e s_di r + std : : to_str ing ( current_dex_f i l e ) + " . oat " ;

std : : s t r i n g calc_dump = name1 ;

// Save the contents as a loca l f i l e for analys is l a t e r .

binary_save ( oat_f i l e_contents , calc_dump ) ;

// Skip through the ELF header .

std : : vector<uint8_t> elf_magic_needle { 'E ' , 'L ' , 'F ' , ' \0 ' } ;

std : : vector<uint8_t >: : i t e r a t o r i t t =

std : : s earch ( oat_f i l e_contents . begin ( ) , oat_f i l e_contents . end ( ) ,

el f_magic_needle . begin ( ) , el f_magic_needle . end ( ) ) ;

i f ( i t t != oat_f i l e_contents . end ( ) ) {

oat_f i l e_contents . e r a s e ( oat_f i l e_contents . begin ( ) , i t t ) ;

}

else {

// No ELF header , return .

return ;

}

++current_dex_f i l e ;

// Skip over the OAT header .
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std : : vector<uint8_t> oat_magic_needle{ ' o ' , ' a ' , ' t ' , ' \n ' ,

' 0 ' , ' 3 ' , ' 9 ' , ' \0 ' } ;

std : : vector<uint8_t >: : i t e r a t o r i t =

std : : s earch ( oat_f i l e_contents . begin ( ) , oat_f i l e_contents . end ( ) ,

oat_magic_needle . begin ( ) , oat_magic_needle . end ( ) ) ;

oat_f i l e_contents . e r a s e ( oat_f i l e_contents . begin ( ) , i t ) ;

std : : vector<uint8_t >: : i t e r a t o r i t 1 =

std : : s earch ( oat_f i l e_contents . begin ( ) , oat_f i l e_contents . end ( ) ,

oat_magic_needle . begin ( ) , oat_magic_needle . end ( ) ) ;

i f ( i t 1 != oat_f i l e_contents . end ( ) ) {

oat_f i l e_contents . e r a s e ( oat_f i l e_contents . begin ( ) , i t 1 ) ;

}

std : : s t r i n g error_msg ;

std : : unique_ptr<art : : OatFile> oa t_ f i l e (

a r t : : OatFi le : : OpenMemory( oat_f i l e_contents , calc_dump , &error_msg ) ) ;

// CHECK( oat_fi le . get () != NULL) << calc_dump << ": " << error_msg ;

i f ( o a t_ f i l e . get ( ) == nu l l p t r ) {

i f ( bad_dex_file_bases . count ( base_ ) )

bad_dex_file_bases [ base_]++;

else

bad_dex_file_bases [ base_ ] = 1 ;

// Ugly !

auto j 3 = json : : parse ( get_str ing ( json_path ) ) ;

j 3 [ " dex_f i l e_ in t eg r i t y " ] = fa l se ;

s td : : s t r i n g s = j3 . dump ( ) ;

save_str ing ( s , json_path ) ;

return ;

}

monitor_print f ( default_mon , "art_file_done__ !  %s %s\n" , name . c_str ( ) ,

name1 . c_str ( ) ) ;

std : : unordered_map<target_ulong , std : : s t r ing > to_add_offsets ;

std : : unordered_map<target_ulong , target_ulong> to_add_sizes ;

const std : : vector<const ar t : : OatFi le : : OatDexFile∗> oat_dex_files_ =

oat_f i l e−>GetOatDexFiles ( ) ;

for ( s i ze_t i = 0 ; i < oat_dex_files_ . s i z e ( ) ; i++) {

const ar t : : OatFi le : : OatDexFile∗ oat_dex_fi le = oat_dex_files_ [ i ] ;

CHECK( oat_dex_fi le != nu l l p t r ) ;

std : : s t r i n g error_msg ;

const ar t : : DexFile∗ dex_f i l e = oat_dex_file−>OpenDexFile(&error_msg ) ;

i f ( dex_f i l e == nu l l p t r ) {

std : : cout << "Fai l ed  to  open dex f i l e  ' "

<< oat_dex_file−>GetDexFileLocation ( ) << " ' :  " << error_msg ;

continue ;

}
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for ( s i ze_t class_def_index = 0 ; c lass_def_index < dex_f i le−>NumClassDefs ( ) ;

c lass_def_index++) {

const ar t : : DexFile : : ClassDef& c la s s_de f =

dex_f i le−>GetClassDef ( c lass_def_index ) ;

const ar t : : OatFi le : : OatClass oat_class =

oat_dex_file−>GetOatClass ( c lass_def_index ) ;

const byte∗ c lass_data = dex_f i le−>GetClassData ( c la s s_de f ) ;

i f ( c lass_data != nu l l p t r ) {

ar t : : C las sDataI temIterator i t (∗ dex_f i le , c lass_data ) ;

Sk ipA l lF i e l d s ( i t ) ;

uint32_t class_method_index = 0 ;

while ( i t . HasNextDirectMethod ( ) ) {

const ar t : : OatFi le : : OatMethod oat_method =

oat_class . GetOatMethod ( class_method_index++);

uint32_t code_of f s e t = oat_method . GetCodeOffset ( ) ;

to_add_offsets [ code_of f s e t ] =

PrettyMethod ( i t . GetMemberIndex ( ) , ∗dex_f i le , true ) ;

to_add_sizes [ code_of f s e t ] = oat_method . GetQuickCodeSize ( ) ;

i t . Next ( ) ;

}

while ( i t . HasNextVirtualMethod ( ) ) {

const ar t : : OatFi le : : OatMethod oat_method =

oat_class . GetOatMethod ( class_method_index++);

uint32_t code_of f s e t = oat_method . GetCodeOffset ( ) ;

to_add_offsets [ code_of f s e t ] =

PrettyMethod ( i t . GetMemberIndex ( ) , ∗dex_f i le , true ) ;

to_add_sizes [ code_of f s e t ] = oat_method . GetQuickCodeSize ( ) ;

i t . Next ( ) ;

}

}

}

}

base_to_sizes [ base ] = std : : move( to_add_sizes ) ;

base_to_of f sets [ base ] = std : : move( to_add_offsets ) ;

base_to_oat_fi le [ base ] = (void∗) o a t_ f i l e . r e l e a s e ( ) ;

}

// This i s the memory write ca l l back which reg i s t e r s writes made to memory

target_ulong current_cr3 = 0x00 , current_pc = 0x00 ;

CPUArchState∗ current_env = NULL;

stat ic void hook_writes (DECAF_Callback_Params∗ params ) {

i f ( ! ( t a r g e t c r 3 s . count ( current_cr3 ) ) )

return ;

byte_addrs_written . i n s e r t ( params−>mw. vaddr ) ;

}

// This i s the heart of the unpacker , as described in the document , a basic−block

// i s the piece of code which i s terminated by a control−f low transfer instruct ion

// We hook at the beginnning of each basic block and perform required extract ion

// for each basic block .

stat ic void block_begin_cb (DECAF_Callback_Params∗ param) {
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char modname [ 1 0 2 4 ] ;

char functionname [ 1 0 2 4 ] ;

// char process_name [1024] ;

CPUArchState∗ env = param−>bb . env ;

target_ulong cur_pc = param−>bb . cur_pc ;

target_ulong cr3 = DECAF_getPGD( env ) ;

i f (DECAF_is_in_kernel ( env ) | | ! ( t a r g e t c r 3 s . count ( cr3 ) ) ) {

current_cr3 = 0x00 ;

return ;

}

current_env = param−>bb . env ;

current_cr3 = cr3 ;

module∗ art_module = NULL;

art_module = VMI_find_module_by_pc( cur_pc , cr3 , &base ) ;

i f ( art_module != NULL &&

( s t r s t r ( art_module−>name , "system@framework@boot . oat " ) != NULL) ) {

i f ( ! f ramework_of fsets_extracted ) {

char∗ oa t_f i l e_s t r ;

ex t rac t_oat_f i l e ( env , base , &oat_f i l e_s t r ) ;

extract_art_of fsets_framework ( base , art_module , env , cr3 ,

std : : s t r i n g ( oa t_f i l e_s t r ) ) ;

f ramework_of fsets_extracted = true ;

}

i f ( f ramework_of fsets . count ( ( cur_pc − base − 0x1000 ) ) ) {

f p r i n t f ( log_fd_jumps , " java  func t i on  c a l l  = %s \n" ,

f ramework_of fsets [ ( cur_pc − base − 0x1000 ) ] . c_str ( ) ) ;

f f l u s h ( log_fd_jumps ) ;

}

}

i f ( art_module != NULL && ( s t r s t r ( art_module−>name , " l i b a r t " ) != NULL) ) {

i f ( funcmap_get_name_c( cur_pc , DECAF_getPGD( env ) , modname , functionname ) ==

0) {

int reg_num = is_an_invoke_call ( functionname ) ;

// Extract member o f f s e t from invoke .

i f ( reg_num != −1) {

// th i s pointer ! artMethod

target_ulong dex_cache , dec l a r ing_c la s s ,

called_art_method = env−>regs [ 0 ] ;

// We need to dig one l e v e l deeper

i f ( reg_num == 3) {

target_ulong actual_art_method = 0x00 ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) , called_art_method ,

&actual_art_method , s izeof ( target_ulong ) ) ;

called_art_method = actual_art_method ;

}

// Get the ArtMethod

ar t : : mirror : : ArtMethod∗ methodzz ;

char block1 [SIZEOF_TYPE( ar t : : mirror : : ArtMethod ) ] ;
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DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) , called_art_method , block1 ,

SIZEOF_TYPE( ar t : : mirror : : ArtMethod ) ) ;

methodzz = ( ar t : : mirror : : ArtMethod ∗ ) ( block1 ) ;

// Get the ArtMethod ' s declaring c lass

ar t : : MemberOffset d e c l a r i n g_c l a s s_o f f s e t =

methodzz−>Dec l a r i ngC la s sO f f s e t ( ) ;

byte∗ raw_addr = reinterpret_cast<byte∗>(methodzz ) +

de c l a r i n g_c l a s s_o f f s e t . Int32Value ( ) ;

a r t : : mirror : : HeapReference<art : : mirror : : Class>∗ objref_addr =

reinterpret_cast<art : : mirror : : HeapReference<art : : mirror : : Class >∗>(

raw_addr ) ;

d e c l a r i ng_c l a s s = ( target_ulong ) objref_addr−>AsVRegValue ( ) ;

a r t : : mirror : : Class∗ c l a z z = nu l l p t r ;

char block2 [SIZEOF_TYPE( ar t : : mirror : : Class ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) , dec l a r ing_c la s s , block2 ,

SIZEOF_TYPE( ar t : : mirror : : Class ) ) ;

c l a z z = ( ar t : : mirror : : Class ∗) block2 ;

// Get the Declaring c lass ' s DexCache

ar t : : MemberOffset dex_cache_offset = c lazz−>DexCacheOffset ( ) ;

raw_addr =

reinterpret_cast<byte∗>( c l a z z ) + dex_cache_offset . Int32Value ( ) ;

a r t : : mirror : : HeapReference<art : : mirror : : DexCache>∗

dexcache_objref_addr = reinterpret_cast<

art : : mirror : : HeapReference<art : : mirror : : DexCache>∗>(raw_addr ) ;

dex_cache = ( target_ulong ) dexcache_objref_addr−>AsVRegValue ( ) ;

a r t : : mirror : : DexCache∗ dexcachezz = nu l l p t r ;

char block3 [SIZEOF_TYPE( ar t : : mirror : : DexCache ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) , dex_cache , block3 ,

SIZEOF_TYPE( ar t : : mirror : : DexCache ) ) ;

dexcachezz = ( ar t : : mirror : : DexCache∗) block3 ;

// Get the DexFile from the DexCache of the declaring c lass of the

// Artmethod

ar t : : MemberOffset d ex_f i l e_o f f s e t = dexcachezz−>GetDexFi leOf fset ( ) ;

raw_addr =

reinterpret_cast<byte∗>(dexcachezz ) + dex_f i l e_o f f s e t . Int32Value ( ) ;

uint64_t∗ dex_f i l e_re f = reinterpret_cast<uint64_t∗>(raw_addr ) ;

a r t : : DexFile∗ d e x f i l e z z = nu l l p t r ;

char block4 [SIZEOF_TYPE( ar t : : DexFile ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) , ∗dex_f i l e_re f , block4 ,

SIZEOF_TYPE( ar t : : DexFile ) ) ;

d e x f i l e z z = ( ar t : : DexFile ∗) block4 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ WE ARE DONE! WE GOT THE DEXFILE! NOW TIME TO GET THE FUNCTION NAME ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// Try to grab a l l methods from the dex f i l e !

// This process i s simialar to what i s done in the DexMethodIterator

raw_addr = reinterpret_cast<byte∗>( d e x f i l e z z ) + 4 ;
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uint32_t∗ begin_decaf = reinterpret_cast<uint32_t∗>(raw_addr ) ;

target_ulong dex_begin = ( target_ulong ) ( uintptr_t )(∗ begin_decaf ) ;

module∗ dirty_module = VMI_find_module_by_pc(

reinterpret_cast<target_ulong >(∗begin_decaf ) , cr3 , &base ) ;

i f ( dirty_module != NULL &&

s t r s t r ( dirty_module−>name , " framework" ) == NULL) {

extract_art_offsets__ ( base , dirty_module−>s i z e ,

std : : s t r i n g ( dirty_module−>name ) , env , cr3 ) ;

} else i f ( dirty_module == NULL) {

target_ulong prev_end = 0x00 ;

// monitor_printf (default_mon , "unknown module %x\n" ,

// reinterpret_cast<target_ulong>(∗begin_decaf ) ) ;

dirty_module =

VMI_find_next_module ( reinterpret_cast<target_ulong >(∗begin_decaf ) ,

cr3 , &base , &prev_end ) ;

extract_art_offsets__ (prev_end , base − prev_end ,

std : : s t r i n g ( dirty_module−>name ) , env , cr3 ) ;

}

i f ( dirty_module && s t r s t r ( dirty_module−>name , " framework" ) != NULL)

return ;

i f ( reg_num == 3)

return ;

/∗ Here we try to rep l i ca te the process used in

∗ DexFile−>GetMethodName(MethodId&)

∗ The process goes something l i k e th i s

∗ −> From MethodId get the o f f s e t of the name of method in the

∗ StringIds

∗ −> Extract the exact StringId from th i s o f f s e t

∗ −> Use th i s StringId to f ind the o f f s e t of the actual s t r ing

∗ in the DexFile from the base of the de x f i l e

∗

∗/

raw_addr = reinterpret_cast<byte∗>( d e x f i l e z z ) + 8 ;

uint32_t∗ dex_f i l e_s i z e = reinterpret_cast<uint32_t∗>(raw_addr ) ;

// Used to extract code item

ar t : : MemberOffset dex_code_item_offset =

methodzz−>GetDexCodeItemOffset ( ) ;

raw_addr = reinterpret_cast<byte∗>(methodzz ) +

dex_code_item_offset . Int32Value ( ) ;

uint32_t∗ code_item_offset = reinterpret_cast<uint32_t∗>(raw_addr ) ;

// This i s the o f f s e t of the method in the MethodIds array

ar t : : MemberOffset dex_method_id_offset =

methodzz−>GetDexMethodIndexOffset ( ) ;

raw_addr = reinterpret_cast<byte∗>(methodzz ) +

dex_method_id_offset . Int32Value ( ) ;

uint32_t∗ dex_method_id = reinterpret_cast<uint32_t∗>(raw_addr ) ;

// This i s to get the base of the MethodIds array and add the o f f s e t to
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// get the appropriate MethodId member

ar t : : MemberOffset dexf i le_method_ids_of fset =

dex f i l e z z−>GetMethodIdsOffset ( ) ;

raw_addr = reinterpret_cast<byte∗>( d e x f i l e z z ) + 48 ;

uint32_t∗ ids_decaf = reinterpret_cast<uint32_t∗>(raw_addr ) ;

a r t : : DexFile : : MethodId∗ temp_id = ( ar t : : DexFile : : MethodId ∗)(∗ ids_decaf ) ;

temp_id = temp_id + ∗dex_method_id ;

a r t : : DexFile : : MethodId∗ i d z z ;

char block5 [SIZEOF_TYPE( ar t : : DexFile : : MethodId ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) ,

( target_ulong ) ( uintptr_t ) temp_id , block5 ,

SIZEOF_TYPE( ar t : : DexFile : : MethodId ) ) ;

i d z z = ( ar t : : DexFile : : MethodId∗) block5 ;

// Now we have the MethodId in ` idzz ` , and idzz−>name_idx_ holds the

// o f f s e t of the StringId

// Proceed ge t t ing the StringId

raw_addr = reinterpret_cast<byte∗>( d e x f i l e z z ) + 48 − 12 ;

uint32_t∗ str_ids_decaf = reinterpret_cast<uint32_t∗>(raw_addr ) ;

a r t : : DexFile : : S t r ing Id ∗ temp_str_id =

( ar t : : DexFile : : S t r ing Id ∗)(∗ str_ids_decaf ) ;

temp_str_id = temp_str_id + idzz−>name_idx_ ;

ar t : : DexFile : : S t r ing Id ∗ s t r_idzz ;

char block6 [SIZEOF_TYPE( ar t : : DexFile : : S t r ing Id ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) ,

( target_ulong ) ( uintptr_t ) temp_str_id , block6 ,

SIZEOF_TYPE( ar t : : DexFile : : S t r ing Id ) ) ;

s t r_idzz = ( ar t : : DexFile : : S t r ing Id ∗) block6 ;

// We now have the StringId at str_idzz , PHEW! !

char block7 [ 2 0 0 ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) ,

dex_begin + str_idzz−>string_data_off_ + 1 ,

block7 , 200 ) ;

b lock7 [ 1 9 9 ] = ' \0 ' ;

i f ( reg_num == 0) {

f p r i n t f ( log_fd_jumps ,

" java  func t i on  c a l l  = %s \n" ,

block7 ) ;

f f l u s h ( log_fd_jumps ) ;

return ;

} else {

f p r i n t f ( log_fd_jumps , " java  func t i on  c a l l  = %s\n" , block7 ,

reinterpret_cast<target_ulong >(∗begin_decaf ) ) ;

a r t : : DexFile : : CodeItem∗ this_code_item ;

char code_item_block [SIZEOF_TYPE( ar t : : DexFile : : CodeItem ) ] ;

DECAF_read_mem_with_pgd( env , pgd_strip ( cr3 ) ,

dex_begin + ( target_ulong )(∗ code_item_offset ) ,

code_item_block ,

SIZEOF_TYPE( ar t : : DexFile : : CodeItem ) ) ;

this_code_item = ( ar t : : DexFile : : CodeItem ∗) code_item_block ;
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uint32_t num_bytes_to_read =

this_code_item−>insns_size_in_code_units_ ∗ 2 ;

target_ulong to_check_start =

dex_begin + ( target_ulong )(∗ code_item_offset ) ;

target_ulong to_check_end =

dex_begin + ( target_ulong )(∗ code_item_offset ) +

SIZEOF_TYPE( ar t : : DexFile : : CodeItem ) + num_bytes_to_read + 4 ;

while ( to_check_end != to_check_start ) {

i f ( byte_addrs_written . count ( to_check_start ) ) {

f p r i n t f ( log_fd_jumps , "<dirty_dalvik_code>\n" ) ;

break ;

}

++to_check_start ;

}

f f l u s h ( log_fd_jumps ) ;

}

}

}

}

end :

i f ( base_to_of f sets . count ( base ) ) {

std : : unordered_map<target_ulong , std : : s t r ing>& oat_module_offsets =

base_to_of f sets [ base ] ;

s td : : unordered_map<target_ulong , target_ulong>& oat_module_sizes =

base_to_sizes [ base ] ;

i f ( oat_module_offsets . count ( ( cur_pc − base − 0x1000 ) ) ) {

increment_something ( "num_native_methods" ) ;

f p r i n t f ( log_fd_jumps , " java  func t i on  c a l l  = %s\n" ,

oat_module_offsets [ ( cur_pc − base − 0x1000 ) ] . c_str ( ) ) ;

target_ulong native_method_size =

oat_module_sizes [ ( cur_pc − base − 0x1000 ) ] ;

target_ulong native_method_end = cur_pc + native_method_size ,

native_method_begin = cur_pc ;

while ( native_method_end != native_method_begin ) {

i f ( byte_addrs_written . count ( native_method_begin ) ) {

f p r i n t f ( log_fd_jumps , "<dirty_native_code>\n" ) ;

break ;

}

++native_method_begin ;

}

f f l u s h ( log_fd_jumps ) ;

}

}

}
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stat ic void c reateproc_ca l lback (VMI_Callback_Params∗ params ) {

i f ( t a rg e tp id == 0 && s t r l e n ( targetname ) > 1 &&

s t r s t r ( params−>cp . name , targetname ) != 0) {

ta rg e tp id = params−>cp . pid ;

t a r g e t c r 3 = params−>cp . cr3 ;

t a r g e t c r 3 s . i n s e r t ( t a r g e t c r 3 ) ;

s trncpy ( actualname , params−>cp . name , s t r l e n ( params−>cp . name ) ) ;

actualname [ 5 1 1 ] = ' \0 ' ;

r eg i s t e r_hooks ( ) ;

DECAF_printf ( " proce s s  found :  pid=%08x ,  cr3=%08x ,  name = %s\n" , targetp id ,

ta rge tc r3 , params−>cp . name ) ;

} else i f ( t a rg e tp id != 0 && params−>cp . parent_pid == targe tp id ) {

t a r g e t c r 3 s . i n s e r t ( params−>cp . cr3 ) ;

DECAF_printf ( " ch i l d  proce s s  found :  pid=%08x ,  cr3=%08x ,  name = %s\n" ,

params−>cp . pid , params−>cp . cr3 , params−>cp . name ) ;

increment_something ( " ch i ld_proce s s e s " ) ;

}

}

63



Appendix B

Results.

The raw results for the experiments can be obtained from

https://gitlab.com/TheLoneRanger14/thesis_results.git. The password to the

zip is `droidunpack` and the zip contains a REAME describing the structure of the results.
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