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Abstract

Following the Non-Relativistic QCD approach we use a gauge invariant
smearing method with factorization to measure the excitation energies for
a heavy QQ̄ system on a 243×48 lattice at β = 6.2. The results come from
averaging over an ensemble of 60 QCD configurations. In order to enhance
the signal from each configuration we use wall sources for quark propaga-
tors. The quark Hamiltonian contains only the simplest non-relativistic
kinetic energy term.

The results are listed for a range of bare quark masses. The mass
splittings are insensitive to this variable though there are a slight trends
with increasing quark mass. For an appropriate choice of UV cut-off
(a−1 = 3.2Gev) the mass spectrum compares reasonably well with the
experimental values for the spin-averaged energy gaps of the Υ system.

We also present results for the DE and DT waves for the lowest bare
quark mass. The results are consistent with degeneracy between the two
types of D wave. This encourages the idea that even with our simple quark
Hamiltonian the departure from rotational invariance is not great.

http://arXiv.org/abs/hep-lat/9311006v1


1 Introduction

In a previous paper [1] we studied heavy quark bound states appropriate to
a description of the J/ψ andΥ systems using the non-relativistic approach of
Lepage (NRQCD) [2, 3, 4, 5]. We investigated the lowest bound states for S,
P and D waves ignoring spin effects for the quarks using gauge configurations
from the UKQCD collaboration on a 163×48-lattice with a β-value of 6.2. In the
present paper we report results on the first excitations in the S and P -channels for
this system (again without spin). We obtained these results using 60 quenched
QCD configurations from the UKQCD collaboration on a 243 × 48 lattice at
β = 6.2 . The new results are reasonably consistent with our previous ones but
considerably more precise.

Our results are based on the construction of a number of smeared and un-
smeared operators that couple to the appropriate channels and the measurement
of their cross correlators. The smeared operators are constructed in a gauge
invariant manner. Using a simple subtraction procedure we show that the corre-
lation functions do indeed have a multi-exponential structure. Our best estimates
of the lowest states and the first excited states in both the S and P -channels of the
QQ̄ system are established by performing consistent correlated fits to the mea-
sured operator correlators using appropriately factorizing two-exponential forms.
Some three-exponential fits were attempted to test the range of applicability of
the fits but did not lead to different conclusions.

2 Quark Propagators

The quark propagator in a given gauge field background is

G(x, y) = 〈ψ(x)ψ†(y)〉 , (1)

where the angle brackets indicate averaging over the quark degrees of freedom
{ψ(x)} and x = (x, t), y = (y, 0) . When t = 0, G(x, y) = δxy .

The evolution for the (non-relativistic) quark propagator G(x, y) is

G(x+ t̂, y) = U †

t̂
(x)

(

1 − H0

n

)n

G(x, y) + δxyδt0 (2)

where t̂ denotes a unit step in the time direction and n is the order of the time-
step update as discussed by Thacker and Davies [6]. We set G(x, y) = 0 for t ≤ 0 .
The modified update is necessary for stability at certain values of the bare quark
mass. In this paper we use n = 3 . The hamiltonian H0 is that appropriate to
non-relativistic propagation ignoring spin of a quark of mass M , namely

H0 =
−1

2Ma

3
∑

µ̂=1

∆+
µ̂ ∆−

µ̂ (3)
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The covariant finite differences ∆+, ∆− are given by their usual expressions (we
have suppressed all colour and spin indices)

∆+
µ̂G(x, y) = Uµ̂(x)G(x+ µ̂, y) −G(x, y) , (4)

∆−
µ̂G(x, y) = G(x, y) − U †

µ̂(x− µ̂)G(x− µ̂, y) . (5)

3 Smeared Operators

The ideal method for detecting excitated states in a given channel is to construct
operators each of which couples only to one of the states. An alternative approach
is to accept as a starting point a basis set of operators with quantum numbers
appropriate to the channel of interest and to recognize that an intermediate state
will couple to each of these operators in a unique way so that the exponential
contribution associated with that state to the cross correlators of the basis op-
erators will have a factorizing form. This is the approach we have adopted in
dealing with the gauge invariant smeared operators we construct and use in our
simulation.

The operators we investigated for the S-channel were in addition to the stan-
dard point operator (we use χ(x) to denote the anti-quark degrees of freedom)

O(0)(x) = χ†(x)ψ(x) + h.c. , (6)

a set of operators of the form

O(m)(x) =
∑

µ̂

χ†(x)
(

Mm
µ̂ (x)ψ(x+mµ̂) + M̂m

µ̂ (x)ψ(x−mµ̂)
)

+ h.c. , (7)

where the µ̂-sum is over space like directions and the matrices Mm
µ (x) and M̂m

µ (x)
have the (appropriately ordered) product forms

Mm
µ̂ (x) =

m−1
∏

ν=0

Uµ̂(x+ νµ̂) and M̂m
µ̂ (x) =

m
∏

ν=1

U †
µ̂(x− νµ̂) . (8)

For the P -channel we use a family of operators of the form

O
(m)
µ̂ (x) = χ†(x)

(

Mm
µ̂ (x)ψ(x+mµ̂) − M̂m

µ̂ (x)ψ(x−mµ̂)
)

+ h.c. , (9)

The DE wave operators are

O
DE(m)
µ̂ν̂ (x) = χ†(x)

(

Mm
µ̂ (x)ψ(x+mµ̂) + M̂m

µ̂ (x)ψ(x−mµ̂)

−Mm
ν̂ (x)ψ(x+mν̂) − M̂m

ν̂ (x)ψ(x−mν̂)
)

+ h.c. , (10)
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and the DT wave operators are

O
DT (m)
µ̂ν̂ (x) = χ†(x)

(

∆
(m)
µ̂ ∆

(m)
ν̂ + ∆

(m)
ν̂ ∆

(m)
µ̂

)

ψ(x) + h.c. , (11)

where
∆

(m)
µ̂ ψ(x) = Mm

µ̂ (x)ψ(x+mµ̂) − M̂m
µ̂ (x)ψ(x−mµ̂) . (12)

The correlation functions we measure are

F S
nm(t) =

1

V

∑

x,y

〈O(n)(x)O(m)(y)〉 , (13)

for S-wave analysis, and

F P
nm(t) =

1

3V

∑

µ̂,x,y

〈On
µ̂(x)Om

µ̂ (y)〉 , (14)

for the P -wave analysis. Here V = 243, the spatial lattice volume.
All of the above operators are of the form

O(x) = χ†(x)Ψ(x) , (15)

where for an appropriate set of (SU(3)-matrix) coefficients {Cxx′}

Ψ(x) =
∑

x′

Cxx′ψ(x′) , (16)

and x′ = (x′, t) . A typical correlation function can be expressed as

F12(t) =
1

V

∑

xy

〈TrḠ12(x, y)G
†(x, y)〉 + c.c. , (17)

where
Ḡ12(x, y) = 〈Ψ(1)(x)Ψ(2)†(y)〉 , (18)

where 1 and 2 indicate the two (possibly the same) smeared operators. Of course

the Green’s function Ḡ12(x, y) =
∑

x′ C
(1)
xx′G(2)(x′, y) where G(2)(x′, y) can be cal-

culated with an appropriate change of initial condition by the same method as
the original quark Green’s function.

4 Wall Source Method

Because the computing overhead is considerable it is desirable to extract as much
signal as possible from each pass through a gauge field configuration. To this end
we modify the measured correlators F S

nm(t), F P
nm(t) and FD

nm(t)as follows. Eq(17)
leads to a method of computation for our typical correlation function F12(t)
that requires the evaluation of the Green’s functions for at least a representative
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sample of y-values on the initial time slice if we wish to maximize the information
to be extracted from each configuration. This is computationally onerous. An
alternative procedure is the following. We replace the single y-summation in
eq(17) with a double sum thus

F12(t) =
1

V

∑

x,y,y′

〈TrḠ12(x, y)G
†(x, y′)〉 + c.c. , (19)

where y′ = (0,y′) . We now rely on the gauge field averaging to eliminate the
contributions from the gauge non-invariant off-diagonal terms in the above double
(y,y′)-sum leaving only the contribution from the gauge invariant diagonal terms
for which y = y′ . The disadvantage of the method is that the off-diagonal
contributions provide noise even if they do average to zero. The advantage of
the method is that we pick up all the diagonal terms in one pass since it is only
necessary to compute the objects of the form

g(x) =
∑

y

G(x, y) , (20)

which satisfies the same equation as G(x, y) and the initial condition

g(0,x) = 1 . (21)

Similar remarks apply to ḡ12(x) =
∑

y Ḡ12(x, y) . We have then

F12(t) =
1

V

∑

x

〈Trḡ12(x)g
†(x)〉 , (22)

In practice we do find that the method works well and does provide a good signal
relatively economically. It is implicit in the discussion that no gauge fixing has
been imposed on the ensemble of gauge fields. However because of the limitations
of the data set the averaging procedure may not work perfectly. The different
treatment of the two operators in the correlation function may mean that the
symmetry F S,P,D

mn (t) = F S,P,D
nm (t) no longer holds. This does not destroy factor-

ization and we allow for the asymmetry in fitting the data. This procedure is
similar to the multiple origin approach first utilised by Kenway[7] and Billoire et
al.[8], except we seed all sites on the initial timeslice. A quark wall source was
also used by Gupta et al.[9] although they fix to Coulomb gauge.

5 Data Fitting

As indicated above we try to fit the correlation function F S
mn(t) with the multi-

exponential form
F S

mn(t) =
∑

a

γ(a)mγ
′
(a)ne

−M(a)t . (23)
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Our main results are obtained using a two exponential form requiring eight pa-
rameters. This allows us to obtain estimates for the lowest S and P states
together with the first excitations. Our statistical method involved a correlated
least squares fit based on an estimate of the complete set of variances and cross
correlators of all the fitted quantities. Since our results are based on 60 statis-
tically independent gauge field configurations we felt that eight parameters was
a reasonable number for the fitted form. We did perform three exponential fits
in certain cases with twelve parameters. Where these seemed reliable they were
consistent with the two exponential fits but with considerably less tight errorbars.
The results we quote are from separate S and P -channels fits. We also carried
out a combined S and P -channel fit but obtained results that were little different.

The limitations of the data led us to confine ourselves to two operators per
channel in any one fit. The precise form of the 2 × 2 matrix of correlators was
(

Fmm(t) Fmn(t)
Fnm(t) Fnn(t)

)

=

(

(γ(1)
m )2 γ(1)

m γ(1)
n ρ(1)

γ(1)
n γ(1)

m (γ(1)
n )2ρ(1)

)

e−Mt +

(

(γ(2)
m )2 γ(2)

m γ(2)
n ρ(2)

γ(2)
n γ(2)

m (γ(2)
n )2ρ(2)

)

e−(M+∆M)t .

(24)
This is equivalent to the form in eq(23). The asymmetry in the factorized forms
is represented by the departure of the parameters ρ(1) and ρ(2) from unity. Note
that we have parametrized the splitting ∆M between the two levels explicitly
since this is the quantity of direct interest.

The basis of the fitting procedure is the estimate of the correlation matrix of
results. At any one time these comprised the two direct and two cross correlators
for two operators evaluated on 48 time slices. The correlation matrix was there-
fore of dimension 192 × 192 . Our data is extracted from 60 independent gauge
configurations. The correlation matrix is therefore of rank r ≤ 60 and therefore
necessarily singular. In practice the effective rank of the correlation matrix is
even less than this since beyond a certain point the eigenvalues become so small
their estimation from the data is not reliable. The least squares fitting procedure
and the associated error estimates require the use of the inverse of the correlation
matrix. It is necessary and indeed correct to restrict the inversion of the matrix
to an appropriate subspace that is spanned by eigenvectors with eigenvalues large
enough for reliable estimation from the data. The dimension of the subspace is
referred to as the Singular Value Decomposition (SVD) cut.

In assessing the results of the fitting procedure we examined cases with a range
of values of initial off-set and SVD cuts for different combinations of smeared
operators. Our criterion for a choice of result was that the χ2-value be acceptably
near unity per degree of freedom and that the error was the best (usually the
first) of a range of reasonably good and statistically consistent fits.
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6 Explicit Diagonalization Scheme

Before exhibiting the results of the correlated fits we show directly the existence
of a second exponential by means of a diagonalization method. Lüscher and Wolff
[10] have shown that the eigenvalues of the correlation matrix are of the form

e−M(a)t
(

1 +O(e−∆M(a)t)
)

(25)

where ∆M(a) is the distance of state M(a) from other states. Thus we evaluate
the eigenvalues of the correlation matrix using the appropriate Numerical Recipes
routines [11]. Fig. 1 shows the result for Ma = 1.5 for the S-wave combination
OS

0 (x) and OS
4 (x) - the ground state S-wave is suppressed revealing the existence

of the exponential associated with the first excited state. Fig. 2 shows effective
mass plots for the 1S and 2S states obtained from these graphs. Figs. 3 & 4 show
similar results for the 1P and 2P states. The results are reasonably consistent
with those of the correlated fits discussed below which were used to produce the
quoted numbers.

In order to obtain reasonably smooth plots the effective mass was defined as

M(t) = 0.25 ∗ log

(

A(t)

A(t+ 4)

)

, (26)

where

A(t) =
(

F (t) + wF (t+ 1) + w2F (t+ 4) + w3F (t+ 3)
)

/4 , (27)

and w is chosen to render the terms in the sum of comparable size.

7 Correlated Fits for S and P Waves

The results of the correlated fits are shown in Table 1 . Also shown are the
operators used to obtain the results, the χ2 per degree of freedom, the SVD-cuts
and the off-sets at which a reasonable statistical stability set in.

M0a Chan. Ma ∆Ma χ2/dof SVD-cut Off-set Operators m
1.5 S 1.1152(8) 0.198(24) 25.6/18 26 17 0 and 4

P 1.243(12) 0.116(12) 19.2/20 28 11 2 and 6
2.0 S 0.9788(7) 0.194(12) 11.53/12 20 12 1 and 4

P 1.112(13) 0.105(20) 14.48/20 28 11 2 and 6
3.0 S 0.8287(7) 0.179(17) 21.68/18 26 15 0 and 4

P 0.969(17) 0.090(17) 11.6/14 22 11 2 and 6

Table 1: The results for the ground states and first excited splits in the S and
the P channels.
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It is also interesting to compare the various mass splits with the spin-averaged
values of the Υ-system. We use a conversion factor from lattice units to physical
units of a−1 = 3.2 . The results are listed in Table 2 .
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It is clear that the pattern of mass splitting for the lower two bare masses
(M0a = 1.5 & 2.0) is reasonably close to the actual splitting for the Υ except for
the 2S level which appears to be too high but exhibits a downward trend as M0a
increases. The other splits are less sensitive to changes in the bare mass.

M0a 1S − 2S 1S − 1P 1S − 2P 1P − 2P
1.5 0.198(24) 0.128(12) 0.244(17) 0.116(12)

0.634(77) Gev 0.410(38) Gev 0.781(54) Gev 0.371(38) Gev
2.0 0.194(8) 0.133(13) 0.238(24) 0.105(20)

0.621(26) Gev 0.426(42) Gev 0.762(77) Gev 0.336(64) Gev
3.0 0.179(17) 0.140(17) 0.230(24) 0.090(17)

0.573(54) Gev 0.448(54) Gev 0.736(77) Gev 0.288(54) Gev

Expt(Υ) 0.563 Gev 0.430 Gev 0.795 Gev 0.365 Gev

Table 2: The results for various mass splits in lattice and physical units compared
to the spin-averaged results for the Υ-system. The conversion factor is a−1 = 3.2
Gev.

The ratios of mass splits is independent of the choice for a−1 . For each
bare quark mass these ratios are listed in Table 4 taking the central value of the
1S − 1P split as the base.

M0a 1S − 2S 1S − 1P 1S − 2P 1P − 2P
1.5 1.55(19) 1.00(12) 1.91(13) 0.91(9)
2.0 1.46(6) 1.00(13) 1.79(18) .79(15)
3.0 1.28(12) 1.00(17) 1.64(17) 0.64(12)

Expt(Υ) 1.31 1.00 1.85 0.85

Table 3: The results for various mass splits expressed as ratios to the central
value of the 1S − 1P split and compared to the spin-averaged results for the
Υ-system.

These results are not dissimilar to those of the phenomenological non-relativistic
quark models [12]. The spectrum is relatively independent of the bare quark mass
though the 2S state is rather high. Apart from the anomalously high 2S state
the ratios that fit best correspond to a bare quark mass somewhere between
M0a = 1.5 and M0a = 2.0 . Using the same conversion factor as above we find
these correspond to M0 = 4.8 Gev and M0 = 6.4 Gev. This is to be compared
with the B-quark mass of ∼ 5 Gev suggested by the mass of the Υ itself. If
we take the 1S − 1P mass split for M0a = 1.5 as the correct basis on which to
calculate then we find a−1 = 3.4(3) Gev which encompasses the above value.

Our results for a−1 are higher than suggested by a measurement of the string
tension σ . At β = 6.2, σa2 = 0.026(1) [14, 13] that is

√
σa = 0.161(3) . If we use

the phenomenological value
√
σ = .42 Gev we obtain a−1 = 2.6(1) Gev. This is in
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line with other estimates of a−1. Another way of expressing this discrepancy is to
note that our lattice calculation at β = 6.2 yields a ratio

√
σ/∆M(1S−1P ) ≃ 1.25

whereas the phenomenological result is ≃ 1.0 . The question then is whether or
not there is a reasonable explanation of this discrepancy for our model. One
answer is to recognize that the string tension is associated with the long range
part of the quark potential while the 1S − 1P split comes about as a result of a
balance between long and short range effects in the potential. The short range
force is controlled by the strong coupling evaluated at a higher momentum, q∗,
than that, q̄, associated with the string tension. The main difference between
the quenched and unquenched theories is the differential renormalization of the
strong coupling α(q) at a given q due to the vacuum polarization effects of light
quarks. If we fix the string tension to be the same in both theories then we
have αU(q̄) = αQ(q̄) However because the quenched coupling runs faster than the
unquenched one we have αU(q∗) > αQ(q∗) . The short range force in the quenched
theory will therefore be weaker than in the unquenched case. Because the S-wave
states are particularly sensitive to the short range part of the Q−Q̄ force they will
be more deeply bound in the unquenched theory than in the quenched one. The
P -waves will be controlled more by the longer range part of the force associated
with the string tension. This will tend to leave the P -waves unchanged between
the two theories with the result that for a given string tension ∆M(1S−1P ) will
be greater in the unquenched relative to the quenched theory. In turn this will
yield a lower value for the ratio

√
σ/∆M(1S − 1P ) for the unquenched relative

to the quenched theory in line with our results. Similar results will hold for for
any two quantities associated with different momentum scales. In the quenched
theory they will yield different estimates for a−1 while unquenched theory (by
definition) will produce consistent estimates.

8 Correlated Fits for D Waves

In Table 4 we show the results for a two exponential fit to the two versions of the
D wave operators for the bare quark mass M0a = 1.5 .

M0a Chan. Ma ∆Ma χ2/dof SVD-cut Off-set Operators m
1.5 DE 1.373(11) 0.315(13) 23.7/18 26 6 2 and 6

DT 1.388(19) 0.389(41) 22.5/14 22 6 1 and 4

Table 4: The results for the ground states and first excited splits in the DE and
the DT channels.

The encouraging feature of these results is the degeneracy within errors not
only of the basic states in the two channels but also of the first excited states.
The conclusion is that to a good approximation the cubical symmetry of the
(spatial) lattice is replaced by rotatational symmetry. Expressed in physical units

9



∆M(1S − 1D) = 0.83(4) Gev if we again use a−1 = 3.2 Gev. There is so far no
observed D wave for the Υ system but the corresponding state for charmonium
(J/ψ) has ∆M(1S−1D) = 0.702 Gev. Given the simple and approximate nature
of our heavy quark Hamilton this is an encouraging result. The quality of the
results from the simulation restricted the application of the fitting procedure
to the range t < 20 so the outcome for the mass gap may be expected to be
on the high side. This circumstance may also explain why the measured gap
∆M(1D − 2D) ≃ 1 Gev is implausibly high. It is interesting that it showed in
both versions of the D wave spectrum.

9 Conclusions

We have measured the QQ̄ mass splittings for the radial excitations of the S
and P waves using the non-relativistic heavy quark propagators calculated from
quenched gluon configurations from the UKQCD collaboration. Our measure-
ments were based on 60 QCD configurations on a 243 × 48 lattice. The Hamil-
tonian we used to calculate the quark propagators was of the simplest kind con-
taining only the kinetic energy contribution and omitting all higher corrections.
The results emerged from two-exponential correlated fits to pairs of smeared op-
erator correlators. Our best results yielded statistical errors ∼ 10% for the mass
splittings.

On a broad picture our results are not inconsistent with the pattern of spin-
averaged splittings of the Υ-system. In particular the ratios ∆M(1S − 1P ) :
∆M(1S − 2P ) : ∆M(1S − 1D) seem roughly correct. The 2P wave shows a
slight dependence on the bare quark mass. We have not yet determined the
dependence of the 1D wave on this mass. The absence of an experimental 1D
state for Υ restricts us to a comparison with the corresponding charmonium state
or theoretical quark model predictions but that comparison is encouraging. If we
base our evaluation of the cut-off strictly on the 1S− 1P mass split then we find
the value a−1 = 3.4 Gev. This very much in line with scaling predictions from
results of the corresponding calculations performed at values of β =5.7 and 6.0
[15] . This suggested a bare quark mass for the kinetic energy Hamiltonian in
the range 4.8 to 6.4 Gev.

However there are two obvious problems that present themselves. The first is
that the ratio involving the string tension

√
σ/∆M(1S−1P ) is measured as 1.25

compared to a phenomenological value of 1.0 . It is plausible that this discrepancy
may be due to the overly strong running of the coupling in the quenched theory.
The second is the anomalously high value of ∆M(1S−2S)/∆M(1S−1P ) and its
sensitivity to the bare quark mass. It may be that the deficiencies of the quenched
approximation can resolve this problem also. An alternative explanation is that
there is a measurement problem with the S wave channel. Future measurements
using different smeared operators constructed in the Coulomb gauge from quark
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model wave functions should help to resolve the issue.
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Figure Captions

Fig. 1 The results for the S-wave propagator F
(S)
00 (t) (circles) together with

the the results of the diagonalization procedure applied to the correlation
matrix for the operators O

(S)
0 and O

(S)
4 (diamonds) revealing the contribu-

tion of the 2S-state.

Fig. 2 The effective mass plot for the 1S (upper graph) and 2S states (lower
graph). The estimates obtained from the correlated fit are indicated by a
full line.

Fig. 3 The results for the P -wave propagator F
(P )
22 (t) (circles) together

with the the results of the diagonalization procedure applied to the cor-
relation matrix for the operators O

(P )
2 and O

(P )
6 (diamonds) revealing the

contribution of the 2P -state.

Fig. 4 The effective mass plot for the 1P (upper graph) and 2P states
(lower graph). The estimates obtained from the correlated fit are indicated
by a full line.
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