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Abstract

Android's intent framework facilitates binder based interprocess communication (IPC) and 

encourages application developers to utilize IPC in their applications with a frequency unseen in 

traditional desktop environments. The increased volume of IPC present in Android devices, 

coupled with intent's ability to implicitly find valid receivers for IPC, bring about new security 

challenges to the computing security landscape.

This work proposes Intentio Ex Machina1 (IEM), an access control solution for Android intent 

IPC security. IEM separates the logic for performing access control from where the intents are 

intercepted by placing an interface in the Android framework. This allows the access control 

logic to be placed inside a normal application and reached via the interface. The app, called a 

“user firewall”, can then receive intents as they enter the system and inspect them. Not only can 

the user firewall allow or block intents, but it can even—within designed limitations—modify 

them. Since the user firewall runs as a normal user application, developers are free to create their

own user firewall applications which users can then download and enable. In this way, IEM 

creates a new genre of security application for Android systems allowing for creative and 

interactive approaches to active IPC defense.

1Latin for intent of the machine. Ex Machina is an acronym meaning Extensible Mandatory Access Control Hook Integrating 
Normal Applications.
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1 Introduction

1.1 Overview

One of the constraints which has shaped the design of Android is the limited hardware resources 

of the devices it is intended to run on. Due to limited memory, Android's creators wanted to 

design an architecture which encourages apps to leverage the functionalities and capabilities of 

the other apps already present on the device. By doing so, Android devices can conserve memory

by avoiding overlapping code between apps. This philosophy deviates from the traditional 

desktop environment where apps frequently try to minimize their dependency on other software 

by implementing all their own code.

To illustrate this difference, consider the task of taking a picture using a device's camera. In the 

traditional computing environment, the app would contain all the code necessary to access the 

camera, take the picture, and store said picture for future use. This is done to ensure that when a 

user installs the desktop app, it will run without the need for any additional software. On the 

contrary, in the Android environment, every Android device comes pre-installed with a default 

camera app. When a third-party app needs to take a picture using the camera, it can ask the 

already installed camera app, through interprocess communication (IPC), to take a picture on its 

behalf and return a reference for the picture to the requesting app so it can access the picture 

later.

It is also important to note that while this example Android app happened to utilize the 
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capabilities of the default camera app, it did not have to know the default camera app's name or 

process explicitly in order to do so. Instead, Android's system server, a privileged system app 

running in user space, receives from the third-party app a request describing the task it is trying 

to perform and the system server finds on behalf of the third-party app an appropriate receiver. 

More of this mechanism will be explained later, but for now it is sufficient to note the implicit 

nature of this IPC transaction and how it strongly contrasts the explicit IPC of traditional desktop

systems.

Due to this shift in app design philosophy, IPC occurs more frequently and among more apps in 

Android than in desktop systems like Windows or Linux. From the security perspective, this 

increased utilization of IPC and the frequently implicit nature of Android's IPC gives rise to 

interesting and unique security concerns.

First, since an app does not need to explicitly know a receiver in order to perform IPC, an app on

Android is able to invoke any other app which has components registered for handling requests. 

This is concerning for the receiving app because by registering components for request handling,

the app is opening itself to requests which could come from any other app on the device, 

including apps which may be malicious or come from untrusted sources. If the receiving app's 

exposed components happen to contain vulnerabilities, the attack surface for exploiting these 

vulnerabilities becomes system wide. Attacks related to this problem have already been observed

in the wild and are categorized as component hijacking[1].
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Second, since any app can register its components to handle any type of request, sender apps 

have cause for concern regarding where their data will end up. If a malicious app registers itself 

to handle a wide variety of requests, the sender app could find its data being exfiltrated into the 

hands of devious actors. This sort of attack has been categorized in other works as intent 

spoofing[2][3].

These problems have motivated both researchers and developers to seek solutions. My solution 

for intent IPC access control is an architecture which leverages the system-centric and 

standardized nature of intent IPC. IEM is motivated by the insight that while every firewall 

intercepts packets and takes actions based on some decision engine, these pieces don't have to 

reside near each other. Specifically, IEM replaces the intent firewall's engine with an interface 

which can bind to a normal app. This “user firewall” can then act as the system's intent firewall. 

The user is free to install a user firewall in any of the ways they would normally install an app on

their device. By placing the decision engine in an app, and not in a framework component like 

the intent firewall, developers can easily design the engine to utilize all the capabilities of any 

normal app including pushed updates which don't require rebooting or flashing, rich graphically 

enhanced user interaction, and access to system resources such as GPS and networking. In other 

words, rather than trying to be the be-all end-all solution to intent security in Android, IEM is a 

generic platform upon which developers can easily create, deploy, and maintain user firewalls. 

These user firewalls can then evolve with the changing threat landscape to meet the needs of 

their respective users.
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I have made a virtual machine image containing IEM and a proof-of-concept user firewall 

available for download2.

1.2 Related Work

This subsection discusses the IPC security mechanisms already present in the Android system as 

well as proposed designs from related research. These security architectures can be categorized 

into two general categories: access control and virtualization.

1.2.1 Access Control

In the access control category, we first find the sender permissions mechanism currently 

implemented in official versions of Android. This security feature allows receivers to require of 

the request sender a particular permission. This mechanism improves security by allowing for 

some restriction in which senders can invoke the receiver's exposed components, but it has its 

glaring limitations[4]. First, the receiver can only specify a single permission which the sender 

must have. Since it is common for Android apps to have multiple permissions, this means that 

the receiver's exposed components can be invoked by apps of lesser privilege. Second, even in 

the case of requester apps of equal or greater privilege, privilege and trustworthiness are not 

strongly correlated[5][6]. Applications coming from a variety of sources can request any 

combination of permissions and these permissions are granted upon approval by the user during 

installation. This makes it plausible for a malicious app to have as many, if not more, permissions

as the receiving app it is trying to exploit. These problems have been the motivation for works 

such as XmanDroid[7], Saint[8], CRePE[9], and others[10][11][12][13][14]. Even if the 

developer of the receiving app wants to explicitly check who the sender of the intent is, his app 

2http://jupiter.syr.edu/iem.amp.html
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can only see the last app to send the intent. ChainDroid[15] and Scippa[16] both demonstrate 

situations where this is inadequate for enforcing access control.

The other IPC access control mechanism present in Android is the intent firewall. Unfortunately, 

this firewall also has major shortcomings in the robustness of its rule set which is why very few 

production Android devices have intent firewall policies despite the firewall being present and 

enabled[17]. It can be configured via SEAndroid[18].

Other works, such as Boxify[19], use runtime sandboxing to force untrusted apps to send their 

system transactions through additional access control mechanisms. These solutions can also 

restrict Binder IPC, but implementing them requires expert knowledge of Linux IPC and 

syscalls. Since they work at the native level, the context of the transaction is obscured. IEM user 

firewalls use concepts the average app developer is already familiar with.

My work is conceptually similar to Android Security Modules[20], but differentiates itself in two

key aspects. First, while ASM only facilitates the monitoring of resources, my work enables 

modification for the purposes of redirection and data sanitization. Second, ASM uses callback 

timeouts; a limitation which violates the design goals of this work.

1.2.2 Virtualization

On the virtualization side of Android security, solutions attempt to achieve isolation between 

processes by virtualizing different portions of the Android device. One solution, Cells[21], 

achieves this isolation by creating virtual devices which run on top of the host device. Another 
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solution, Airbag[22], also achieves process isolation, but rather than creating full virtual devices, 

this solution creates virtual system servers which prevents processes from different containers 

from communicating. There are also other works which implement isolation, such as 

TrustDroid[23].

Virtualization is an attractive approach to solving Android app security because it not only 

controls the interactions between apps, but it goes a step further and isolates them. Not only is an

app not allowed to communicate with another app, it cannot communicate with another app. This

isolation, however, comes with side effects; both in implementation and in runtime 

reconfiguration.

First, virtualization requires the duplication of objects. Where there was originally one object, 

there are now multiple which increases resource consumption and creates overhead when 

switching between virtual objects.

Second, components can break if they are duplicated naively. Both Cells and Airbag ran into this 

problem when they duplicated the Android SurfaceFlinger. This Android component handles 

writing to the device's screen and functions under the assumption that it is the only object at its 

level trying to access the screen. Duplicate this component, and now multiple SurfaceFlinger are 

trying to write to the device's screen simultaneously. To patch this side effect, the Android system

must be modified to multiplex these competing signals. This increases the complexity of 

implementing and maintaining the code needed for virtualization which makes real-world 
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deployment less practical.

Lastly, virtualization solutions lack flexibility when security configurations require change. Since

virtualization creates a stronger isolation between apps than access control, reconfiguring 

virtualization becomes a more costly task involving migrating apps from one container to 

another. This is in contrast to access control which simply has to load and parse the new policy.

I chose an access control design for IEM because I want to leverage the unique nature of intent 

IPC. Specifically, IEM leverages the fact that all intents must travel through the Android system 

server using a standardized message format which the system can understand. A virtualization 

solution would not leverage the semantic understanding the system server has of intent messages.
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2 Background

2.1 Intent

Intents are a framework level abstraction of Linux Binder IPC. They serve as a simplified and 

standardized object for communicating with other apps and system services. Using intents also 

carries the added benefit that if a user apps does not explicitly know the name of a valid receiver 

for a particular IPC transaction, the user app can implicitly describe a receiver based on the task 

they're trying to perform and then the Android system server will find a suitable receiver.

The Android system server maintains a binder of handles for use in delivering intents to other 

apps. Whenever a system or user app is created, it is assigned a binder handle which allows it to 

communicate with the system server. Upon start up, every app uses its binder handle to the 

system server to register itself as an active app on the Android device. This registration process 

includes the registering app giving the system server a binder handle to itself which is then stored

for future use.

Upon receiving an intent, the system server has to resolve which component should receive that 

intent. If a target component is explicitly specified by the sending app, then the system server 

just checks the intent against the specified receiver's intent filter and confirms that they match. 

Otherwise, the system server will search its list of intent filters to find the eligible receivers for 

that intent. If the intent is intended for an activity, the system server will generate a list of all the 

valid receivers and then the user will be prompted to pick one. If the intent is for a service, the 
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system server will pick the first eligible receiver. If the intent is a broadcast, then all the 

subscribed receivers will be selected.

Once the receiver or receivers have been resolved, the intent is then passed to the intent firewall. 

The firewall compares the intent against its policies and decides if it should be dropped or 

allowed. If it is dropped, that's the end for that intent. If it is allowed, the system server then 

looks up the binder handle for the receiver, or starts the receiving app if it isn't currently running,

and delivers the intent to the receiver's message queue.

Finally, the receiver processes the intent and if a response is necessary the system server will 

forward it back to the original sender. These transactions occur asynchronously since they 

involve communicating across processes. Therefore, the original sender receives the results via a 

callback invoked by the system server.

2.2 Activity Manager Service

The system server in Android is a privileged process which runs in user space and which apps 

communicate with via binder transactions. The system server itself can be further divided into a 

collection of services, each of which is designed to manage particular tasks in the Android 

system. Since IEM is itself an object within one of the services, some background knowledge on 

them is necessary.

Activity manager service (AMS) is the main service for handling intents. Every user app is 

created with a binder handle for reaching AMS and most communication between apps starts 
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with the AMS. It has a collection of public methods for receiving intents and communicates with 

all the other system server services to make sure that the intent is resolved, permissions are 

checked, and the receiver is running and ready to receive the intent. Within the activity manager, 

there are four other components of interest to the IEM. The first is the intent firewall—explained 

in more detail later—which inspects every intent. Aside from that, there is the activity stack 

supervisor, the broadcast queue, and the active services components.

The activity stack supervisor manages the activity components of the user apps and is 

responsible for handling activity intents. This includes resolving the intent, checking if the 

intended receiver is already running, and checking with the intent firewall that the intent should 

be allowed.

The broadcast queue is the component within activity manager for handling broadcast intents. 

This includes resolving the intent, queuing up the intent for delivery to the decided receivers, and

managing the queue as broadcasts are canceled or updated. As with activity stack supervisor for 

activity intents, this is the component which will check with the intent firewall before allowing 

broadcast intents.

Finally, active services is the activity manager component for handling service intents. Like the 

other two components, this includes resolving the intent and checking with the intent firewall 

that it should be allowed, but uniquely this component handles scheduling the services to be 

started, stopped, and restarted as necessary.



11

2.3 Intent Firewall

The intent firewall is an access control mechanism originally introduced in Android 4.3 and is 

present in all production Android devices; although almost none of them use it. The version of 

the intent firewall present in version 4.3 was more of a place holder than an actual firewall and it 

wasn't until version 4.4 that most of its currently existing features were implemented. As of 

Android 5.1 (Lollipop), almost no code has been modified from the 4.4 version. SEAndroid's 

configuration files support intent firewall policies[18], but few leverage this. The main purpose 

of the intent firewall is to buy time during a major malware outbreak by allowing device 

manufacturers to push policies which will explicitly block the malware's IPC[17]. Since such 

outbreaks are extremely rare, the intent firewall has almost never been used. Illustration 1 shows 

how the intent firewall fits into the framework.

Policies for the intent firewall are defined using one or more XML formatted files that are then 

written to a protected system directory on the Android device. Since this directory is a system 

directory, it is only accessible to privileged apps which prevents arbitrary apps from 

Illustration 1: Android Intent Firewall.
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reconfiguring the firewall. This directory is checked at boot time by the intent firewall and then 

continuously monitored for changes. If a change is detected, the intent firewall will automatically

try to parse any new or modified files with the XML extension for firewall rules. If a file is 

deleted from this directory, the intent firewall will automatically delete the rules associated with 

that file.

The activity manager checks intents against the intent firewall near the end of the flow. 

Consequently, even though intents can be implicit or explicit when the sending app creates them,

all intents are explicit by the time they enter the intent firewall. Also, all three types of intents 

(activity, service, and broadcast) are checked by the intent firewall before reaching the receiver. 

In the case of pending intents, a special mechanism where an app can store an intent in the 

activity manager and trigger it later, the pending intent is already an explicit intent by the time it 

enters the firewall. Although the intent firewall checks all intents going from the sender to the 

receiver, any responses returned to the sender are not checked. In other words, allowing an intent

to be delivered to its intended receiver implicitly allows any response to be returned to the 

sender. IEM also makes this implication.
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3 Design

This section formulates the main architectural goal of IEM and assesses the challenges in trying 

to achieve it. Illustration 2 contains a high-level overview of the design which will be explained 

in the following subsections.

3.1 Architectural Goal

All firewalls contain three critical pieces: the interceptor, the decision engine, and the policy. The

interceptor captures the data packet and delivers it to the decision engine which then decides if 

the packet should be allowed or denied based on the configuration defined in the policy. From 

this model, we can make some insightful observations. First, there is little flexibility in where an 

interceptor can be placed since it has to be somewhere along the original path of the packet. On 

the other hand, the decision engine can be placed anywhere so long as the interceptor can reach 

it. Second, while the policy is easy to reconfigure, it is restricted by the logic of the decision 

engine. A particular policy can only refer to attributes which the engine defines.

Illustration 2: Intentio Ex Machina.
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With these two observations in mind, reconsider the intent firewall in Illustration 1. In this case, 

the interceptor and the decision engine both reside in the framework. The interceptor must be 

placed in the framework because it's the only point through which all intents must pass, but what 

about the decision engine? Since it resides in the framework, modification requires an OS patch 

which is quite inconvenient. Sure implementation is easiest when the engine is in the same spot 

as the interceptor, but what would happen if it were moved somewhere else? Specifically, what 

would happen if the engine was placed inside a normal app? It could then be installed, updated, 

and maintained with the ease of any other app. Now the policy is less restricted by the engine 

because said engine can easily be swapped out for new logic.

With this idea in mind, the goal of IEM is to provide a hook in the intent flow to allow for an app

to serve as the intent firewall. As previously mentioned, doing this makes changing the firewall's 

enforcement logic easier which in turn allows for more flexibility. Making the firewall an app 

empowers the user to install the solution which fits their needs. One user might download a user 

firewall which monitors his location and restricts the apps he can use while in the office. Another

user might use a user firewall which prevents apps from getting her location while she's driving. 

A parent might put a user firewall on her child's device to prevent him from playing video games

before dinner, or maybe he can text message his friends only after he finishes his math 

homework. These are all apps an Android developer can program, so these are all apps which 

IEM can empower.
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Illustration 2 shows IEM and how it interfaces with the rest of the framework and other apps. 

From here on, “IEM” specifically refers to the hook which resides in the framework while “user 

firewall” refers to any app which leverages IEM. Edge 3 is the most novel part of the design 

because this edge does not exist in the original intent firewall. Intents first enter the system 

server through the public API at edge 1. This is where activity manager resolves the receiver. 

Following some basic security checks, the intent enters the IEM via edge 2. Illustration 3 

highlights IEM's internal logic. The intent is delivered to the user firewall and a response is 

returned via edge 3. If the user firewall decides to allow the intent, the response will come back 

to IEM which will then pass the intent to the activity manager via edge 2. Finally, the intent is 

delivered via edge 4.

The next subsection identifies and addresses the key challenges in trying to achieve the IEM 

architecture.

Illustration 3: The flow of intents 
through IEM.
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3.2 Design Challenges

Illustration 3 shows that there are three new pieces which IEM introduces into the Android 

system. This subsection considers each piece in turn and addresses the challenges which arise 

due to their addition.

3.2.1 Intent Interceptor

The first new piece an intent reaches is IEM's interceptor. Which intents are appropriate to 

intercept? I began by intercepting all the intents and then quickly realized why this is a poor 

decision and consequently why this is not a trivial problem.

The problem is not trivial because we cannot assume that the user firewall will always be 

responsive since it's an app. Like any other app, it can crash or freeze. This is different from the 

original intent firewall which could simply intercept all intents because it didn't have to worry 

about the state of any other component.

Since the system server uses intents to start components, if the interceptor intercepts everything 

and the user firewall crashes, the system will no longer be able to start any component. The 

device is now stuck in an unrecoverable state. For this reason, intents created by the system are 

exempt from being intercepted.

Once system intents have been exempt, all that remains are app created intents. These can be 

safely forwarded because failing to deliver them will only impact the app and not the system.



17

3.2.2 User Firewall Interface

After the interceptor, the intent next reaches the user firewall interface. In order for the user 

firewall to be able to inspect intents, this interface has to be able to send the appropriate intents 

to an app and get a response on how the intent should be handled.

How can the interface forward an intent to an app and get a response? The answer to this 

challenge can be derived from a feature which already exists in Android: the extensible 

framework. This design pattern works by having a system service bind to an app service which is

chosen by the user in the device settings. Once bound, the system and app can exchange 

messages to communicate. This allows the user to install third party apps to serve as the 

keyboard, the settings administrator, the “daydream” screen when the device is docked, and 

more.

IEM mimics this architecture. When the user enables a user firewall, IEM will bind to that app's 

user firewall service. Once a binding has been established, the intercepted intents will be sent to 

the user firewall via that binding. The messages sent through the binding include a “reply to” 

handle which the user firewall can then use to return a response to the interface. If the user 

firewall decides to allow the intent, it sends a reply message via the binder handle. Otherwise, it 

can just discard the message.

There is another challenge regarding the design of the user firewall interface. In the original 

intent firewall, intents are processed entirely inside the framework. For IEM, there is now an 
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interface performing IPC with a user app. This change carries consequences which must be 

addressed.

As mentioned earlier, the user firewall app could crash or freeze. If this happens, the user 

firewall interface will no longer get responses from the app. With this in mind, should the 

interface be allowed to maintain any notion of state when communicating with the user firewall? 

If state is allowed, this has to be done by either having the interface's worker threads block while 

performing IPC with the user firewall or by storing information in a database inside the system 

server. Both these options carry grave consequences because they can lead to resource 

exhaustion. Even if a timeout mechanism is implemented for preventing the buildup of blocked 

threads or data entries, the design will still be weakened because now an artificial time limit has 

been imposed on the user firewall for making access control decisions. If this timeout is short, 

then it no longer becomes possible for the user firewall to involve the user in the decision 

making process. This reduces the flexibility of the firewall logic which weakens the goal the 

architecture strives to achieve. If the timeout is long, the device will become unresponsive. There

is no middle ground; either choice is detrimental to the goal of designing a platform which 

allows for the easy creation of many different firewall decision engines. For this reason, there 

shouldn't be any timeouts. The interface must be completely stateless.

Since IEM has to maintain statelessness and never be waiting on the user firewall app, the 

message sent to the user firewall has to contain all the necessary information so that the intent's 

state can later be reconstructed. To address this challenge, I introduce the concept of the intent 
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wrapper. Illustration 4 summarizes its structure. The intent wrapper is a bundle containing the 

original intent along with everything necessary to duplicate the sending of the intent. This 

includes sender information; something which the original intent firewall doesn't consider. By 

wrapping these additional variables together along with the intent, the user firewall receives a 

complete picture of who the sender is, who the receiver is, and what interaction they're 

performing.

3.2.3 User Firewall

The intent now reaches the user firewall. Since this app has the intent wrapper containing its 

state, what should the firewall be allowed to modify? It could, for example, perform data 

sanitization or redirect the intent to a different receiver. However, allowing the user firewall to 

modify all the fields of the wrapper would be dangerous because this gives it the power to send 

any intent to any app on behalf of any other app. There is value in allowing for modification, but 

having no restrictions grants too much power. This problem is addressed by the intent token.

Illustration 4: Intent 
wrapper.
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Inspiration for the intent token comes from the SYN cookie design which prevents SYN flooding

by making the TCP handshake stateless.[24] Similarly, the intent token allows IEM to remain 

stateless while still restricting the user firewall app's power. Tokens are generated inside IEM by 

hashing a secret which it creates at startup. Randomized salts are used to ensure tokens are 

unique. As long as the secret is kept confidential, the user firewall will be unable to create valid 

tokens and consequently cannot send arbitrary intents on behalf of other apps. In this way, the 

user firewall is a privileged app, but only to the extent essential to it performing its role as an 

intent firewall.

More challenging, however, is deciding which other parts of the wrapper should be included in 

the hash to prevent modification. This answer can be determined by grouping the contents of the 

intent wrapper into the three mutually exclusive categories shown in Illustration 4: sender, intent,

and receiver. The variables pertaining to the sender's identity stand out from those of the intent 

and receiver because the sender is the creator of the intent. If the user firewall changes who 

created the intent, all integrity is lost. The user firewall could create an intent and change the 

sender to be another app. On the other hand, changing the receiver seems reasonable because 

receiver resolution is the reason apps give intents to the Android system in the first place. For 

these reasons, the user firewall is allowed to modify the action to be performed and who will 

carry it out, but it cannot change who sent it. The complete intent token is shown in Illustration 5.
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3.3 Threat Model

Illustration 3 shows that the boundaries between the IEM, framework, and app spaces are crossed

in four places. This subsection addresses the security of these crossings in the order that intents 

reach them.

The threat model for IEM assumes that the framework is secure and trustworthy. This includes 

the activity manager since it is apart of the framework. This assumption is made because IEM is 

designed solely to enforce intent security, so any compromise of other framework components is 

out-of-scope. The model also assumes that the secret created by IEM for generating tokens is 

kept secret. This is a safe assumption because IEM never needs to share this secret with any 

other party.

The first boundary crossing is from the sender in app space to the activity manager in the 

framework. This boundary is protected by activity manager's public API which is outside the 

control of IEM. Therefore, IEM assumes that this boundary is secure.

Illustration 5: Intent token.
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The next boundary is between IEM and the activity manager. Since the threat model already 

assumes that activity manager is trustworthy, the boundary is between two trusted parties. This 

makes the boundary secure.

After entering IEM, the intent next reaches the boundary between the user firewall interface in 

the IEM space and the user firewall in app space. This surface can be attacked by a malicious app

so protection mechanisms are necessary.

Three actions occur over this boundary. First, the interface binds to the app. Second, the interface

sends the app intents to inspect. Third, the interface receives intents from the app. Attacking the 

first action requires the attacker to bind to either the interface or the user firewall. The interface 

protects against this by disallowing apps from initiating the binding process. Instead, it is always 

the interface which initiates the binding and since it gets its target from the device settings, it will

bind with the correct service. Since the interface is apart of the system, the user firewall can 

differentiate the attacker from the interface by checking the UID of the bind request. Attacking 

the second and third actions can be performed by either the user firewall or another app. If the 

attacker is another app, it will have to sniff and spoof binder messages. Since the Binder is part 

of the Linux kernel, this is out-of-scope for IEM. In the case where the attacker is the user 

firewall, spoofing cannot occur since the contents of the message are protected by the intent 

token. This covers all the actions which occur over this boundary.

The last boundary crossing is from the user firewall interface to the activity manager. This path is
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used to deliver the allowed intents to their receivers. An attacker targeting this boundary has to 

spoof a user firewall response, but as stated earlier, this is prevented by the intent token. 

Therefore, this boundary is secure.
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4 Implementation

Intent Firewall & IEM

All intent, caller uid, caller pid, resolved type

Activity resolved receiver

Service resolved service, resolved application

Broadcast receiver uid

IEM only

Activity caller thread, caller package name, caller userid, request code, caller 
binder, start flags, options bundle

Service caller thread, caller binder, caller callbacks, caller package name, 
flags, caller userid

Broadcast caller thread, intent receiver, result code, result data, required 
permission, appop flags, is sticky, is serialized, receiver userid

Table 1: Breakdown of parameters by intent type.

This section covers the details and challenges faced in implementing IEM in Android AOSP. The

problems are presented in order of the edges they pertain to in Illustration 2. The particular 

versions of Android which IEM is implemented in are 5.0.2 and 5.1.1.

4.1.1 Sender API Return Values

Starting with edge 1 of Illustration 2, we must consider the return values of the methods used by 

apps to send intents to the activity manager. Although the actual process of delivering the intent 

to the intended receiver is carried out asynchronously, a return value is synchronously returned to

the sender. For example, when an app requests to have a service started, activity manager will 

return the name of the resolved service to the sender.

This synchronously returned value poses a design challenge for IEM because once it forwards 
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the intent to the user firewall, activity manager drops the intent. This is necessary in order to 

remain stateless. Since the intent was dropped, the value returned to the sending app will indicate

a failure; regardless of the user firewall's response. In practice, this is not a problem for activity 

or broadcast intents because developers do not invoke the API directly but rather use the Context 

class. An exception is raised if the value returned indicates a failure, but is then immediately 

discarded in an empty catch block. Nothing is returned to the app code which invoked Context; 

neither in the successful case, nor in the unsuccessful case.

Services, however, are often invoked in order to perform tasks which are of critical importance to

the app. For this reason, Context does make sure the value returned by the activity manager 

reaches the calling app code and some apps are designed to stop if the response doesn't match 

expectations. Google's music app, for example, will raise an exception and crash if it believes it 

failed to start its service which manages the downloading of music streams. For this reason, 

simply removing the return value is not an option.

Since waiting for the user firewall's response is also not an option given the design goals, IEM 

has to return the original value even though the user firewall might decide to block the service 

intent. I have evaluated this side effect considerably and deemed it to be acceptable. In the case 

that the user firewall decides to allow the service intent, nothing changes from the sender's 

perspective since the task is carried out asynchronously. If the user firewall does block the 

service intent, then the sender will never get a response from the service it tried to start or bind. 

Since this communication is inherently asynchronous, Android apps already account for the case 
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where a response isn't received. Google's music app, for example, continues working without 

issue aside from the fact that it won't be able to stream music. Since the app doesn't crash or 

freeze, this outcome is acceptable.

4.1.2 Intent Firewall API

This brings us to edge 2. In the original intent firewall, interactions with the activity manager are 

performed via one of three exposed methods. They're separated based on the type of intent they 

process; activity, service, or broadcast. This separation is necessary since the different intents 

require different internal data structures. IEM also uses three public methods for this reason. 

However, the arguments have been modified. Since it was decided that IEM should be stateless, 

additional parameters which are not necessary in the original intent firewall design are now 

required. It is now necessary for the activity manager to give IEM these internal data structures 

regarding the state of the intent transaction. These new values were systematically selected based

on the parameters needed by activity manager's intent sending API. Table 1 compares the original

parameters with the new ones. Remember that the values pertaining to the sender's identity are 

tokened to prevent modification by the user firewall.

With activity and broadcast intents, all the public API in the activity manager ultimately call a 

single API. The different entry points are merely for convenience. This makes it easy for IEM to 

later invoke the correct API when it needs to restore an intent's state. This is not the case for 

service intents. They use four different API which each perform a unique action: start, stop, bind,

or peek. If IEM doesn't invoke the correct API, the wrong action will be performed.
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In the original firewall, all four service API first resolve the intent and then call the same method 

to retrieve the appropriate record for the receiver. It is this method which invokes the intent 

firewall, therefore the action being performed is not known to the firewall. The problem is 

illustrated in Illustration 6. This is fine for the original design, but not for IEM.

To restore this lost information, the receiver lookup method has to be modified to keep track of 

which action is being performed. This is a side effect of making IEM stateless. The change, 

however, is minimal. The total impact to the Android AOSP code is presented in the evaluation 

section.

4.1.3 Intent Unparceling

This brings us to edge 3. A significant implementation choice which has to be made here is 

where to store the intent token. Since the goal is to minimize how much of Android AOSP is 

impacted by the IEM implementation, I initially decided to store the token in the extras field of 

the intent. This ended up causing system crashes and after further study, I discovered why. The 

problem has to do with how the intent extras field is structured.

Illustration 6: Service API flow.
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The extras field is a bundle containing any additional information which the receiver of an intent 

needs. Since intents have to be able to move through the binder, the extras bundle is comprised 

of only basic data types and parcelable Java objects which can be flattened into basic data types 

and then later reinitialized. Basic data types are always the same size, but some parcelable 

objects, like the Java string, are not. This means that if a process wants to read the contents of the

extras, it has to somehow determine the boundary between objects in the extras bundle. This is 

done by placing an integer before each item in the extras which identifies the data type of the 

object.

The problem, however, is what happens if the parsing process reaches an item with an unknown 

identifying value? Since it does not know what the data type is, it cannot know how big the item 

is and therefore cannot parse the extras bundle beyond that point. When an app component uses a

custom parcelable Java class, the developer gives this class to all the other components which 

may need to communicate with that component. This is fine for app developers, but not for IEM. 

For this reason, the token cannot be stored in the extras field of the intent.

Modifying intent is now unavoidable, so the question becomes how should it be modified? The 

two options are to either modify the way bundles are structured and parsed or to create a new 

standalone field for the intent token.

Modifying the bundle would be wonderful since it would patch a known vulnerability[25] and 

enable user firewalls to always be able to check the extras field. Unfortunately, bundles are used 
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extensively throughout the Android architecture. The system impact would be difficult to 

measure let alone evaluate.

Instead, IEM modifies intent to have an additional field which can hold the token. This does not 

cause any problems for currently existing apps since they never need to read or write to this field.

Due to the virtual nature of the Android runtime environment, developers don't even need to 

change SDKs to write apps for an Android device using IEM. The modification made to intent 

for IEM has no impact on current or future Android apps. It is fully compatible with the current 

Android ecosystem.
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5 Applications

The generic nature of IEM allows developers to create many different kinds of user firewalls 

which can serve a variety of purposes. All the user firewalls which are presented in this section 

could be implemented in the original intent firewall, but doing so would be vastly impractical. 

Developers would need to have Android framework specific knowledge to access resources 

without using an SDK and each firewall would have to be tested extensively since 

implementation modifies the operating system. Some of the examples are designed to address 

very specific needs, so it would be very challenging to anticipate and generalize these firewalls 

to a degree which justifies implementing them into the official Android OS source code.

The developer of a user firewall only needs to implement a service component. Drawing 1 is a 

template for the handler. The data bundle contains all the objects listed in Table 1. This 

architecture gives the user firewall developer the flexibility to design the internal logic of his app

however he desires to provide whatever services and features his end-users require.

Drawing 1: UFW service handler template.

@Override
public void handleMessage(Message msg) {
  Bundle data = msg.getData();
  Bundle res = checkIntent(data);
  if (res != null) { //allow
    Message r = Message.obtain(null, 1);
    r.setData(res);
    try {
      msg.replyTo.send(r);
    } catch (RemoteException e) {}
  }
  //blocked intents require no action
}
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In this section, I describe a few examples of user firewalls which are made possible by IEM. I 

have chosen just a small sample from the infinite number of possible user firewalls which I 

believe to be sufficient to demonstrate the flexibility of the IEM architecture.

5.1 Simple Firewall

For the first example, I will start with a more simplistic user firewall which implements the 

functionality of a traditional firewall. Illustration 7, is an image of this simple user firewall. 

Users can select a policy and then the user firewall will enforce it.

In the case of Illustration 7, the user has selected the block browser policy. While this policy is 

being enforced, the user will be unable to open the browser. This means that tapping the 

browser's icon in the device's launcher will not start the app and tapping a URL in another app 

will not cause the browser's activity to start. The user firewall also contains some other example 

policies. For example, one policy will block the Google Play Service (GPS). While this service is

blocked, apps will not be able to utilize Google Play for updating, performing in-app purchases, 

Illustration 7: Blocking intents.
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or any other functionality this service provides. Another policy will block Gmail's services. With 

this policy enabled, users can open Gmail and read their current email, but they will not be able 

to fetch or send new emails. This user firewall can even enforce policies which stop the user 

from accessing the devices settings or recent app menus, a capability which will be greatly 

leveraged in another example firewall. This example app also displays real-time statistics for the 

user like which policy is currently loaded and how many intents that policy has allowed or 

blocked.

Since this example is designed to adhere to the functionality of a traditional firewall, it does not 

leverage the intent rewriting functionality of the IEM. That will be utilized in the next example.

5.2 Redirecting Intents

Unlike traditional firewalls, user firewalls are not restricted to binary allow or deny access 

control. It is also possible for user firewalls to allow an intent, but modify some of its contents. 

This allows for some interesting use cases such as intent redirection.

Illustration 8: Redirecting intents.
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Consider a corporation which is concerned about employees taking pictures using their phone 

while in the office. Banking institutions are an example since there may be sensitive information 

in documents and on computer monitors which could be captured when the photo is taken. Lets 

suppose that the corporation has created a camera app for their employees which is designed to 

only take “safe” photos. However, since this app is very restrictive, employees don't want to have

to use the corporate camera app when they aren't at work. A user firewall can control which 

camera app is launched based on GPS location using intent redirection.

Illustration 8 demonstrates this case. When the user wants to launch the normal camera app, the 

user firewall will check the user's current location. If they aren't in the office, the intent will be 

allowed. If they are in the office, the intent will be redirect to the corporate camera app and it 

will show up instead.
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5.3 Preventing Intent Denial of Service

When I implemented the intent token, I intentionally created a new field for it because 

attempting to read or write to any part of the extras bundle of an intent will raise an unmarshaling

exception if any object in the extras is a custom class and the receiver does not have a definition 

for it. I discovered that most apps do not handle the unmarshaling exception and will crash. The 

Gmail app is one such example. This is a known vulnerability which Google has classified as 

being low severity[25].

To demonstrate the potential damage of this vulnerability, I created a malicious app called 

Marshal Bandit. Upon boot, Marshal Bandit queries the activity manager for all the running 

services and spams them with intents containing a custom object in the extras bundle. This 

causes services on the device to repeatedly crash and overwhelms activity manager's worker 

threads. The result is a denial of service which causes the device to become unresponsive and 

eventually crash. Since the user cannot access the Settings app while the attack is underway, the 

Illustration 9: Intent DoS detection.
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device is crippled. Even if the user is advance enough to know how to boot the device into safe 

mode, she won't know which app to uninstall. Marshal Bandit is a normal app with no granted 

permissions.

This type of attack cannot be stopped in current Android devices, but it can be stopped by a user 

firewall thanks to IEM. In Illustration 9, I demonstrate a user firewall which can detect the 

sudden flood of intents coming from the malicious app. Upon detection, the user firewall will 

inform the user which app is performing the attack while stopping the attacker's background 

processes, halting the spam of intents. The user can then regain control of the device and 

uninstall the malicious app. This user firewall is a normal app using only permissions which any 

app can request and IEM. The successful thwarting of this recently discovered denial of service 

attack demonstrates the flexibility and capability of IEM. Implementing logic of this complexity 

at the framework level would be too challenging compared to the narrow scope of attacks it 

addresses. With IEM, a user firewall app which addresses this vulnerability can be developed by 

a single developer in one work day.



36

5.4 Sanitizing Intent Data

Since user firewalls can modify the contents of the intent itself, a user firewall can perform data 

sanitization. This is applicable to trends such as “Bring Your Own Device” for the corporate 

environment.

If an Android app wants to share data with another app, most ways of doing so require an intent. 

The intent will either contain the data itself, a URI pointing to a file containing the data, or the 

intent will be for a service binding which will then be used to share data back and forth. In all 

three cases, a user firewall can either block or alter the data by dropping or modifying the initial 

intent. Illustration 10 demonstrates this functionality. In this example, when the user tries to open

a malicious image file, the user firewall modifies the intent so a benign image is opened instead. 

This same technique can just as easily be applied to other types of data to either prevent data 

leakage or to protect apps from exploitation. This functionality is similar to the web application 

firewall (WAF) concept[26].

Illustration 10: Data sanitization.
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This is by no means a complete solution to controlling data flow—intents aren't involved in 

networking transactions—but IEM can allow user firewalls to solve some BYOD problems while

being easy to develop, deploy, and maintain.

5.5 Isolating Applications

User firewalls leveraging IEM can also isolate applications from each other by inspecting the 

sender and receiver of every intent. This allows the user firewall app to create “secure 

containers”. Once the user places an app in a secure container, the user firewall can enforce a 

policy on the boundary between the container and the rest of the device. Maybe apps can't send 

intents to apps in the container. Maybe container apps can't send intents out. Maybe the 

contained apps can't bind to the location provider to get GPS position. There are many possible 

applications for this design such as parental control.

Current parental control apps struggle to keep the child confined to the safe environment because

it is difficult to prevent the child from accessing the device's settings and recent apps list. Both of

these actions involve sending an intent. Therefore, if the parental control apps were to become 

user firewalls, they could simply drop these intents and thereby prevent the child from escaping 

the parental control app's environment. It would also become possible for the app to enforce its 

parental control on the default launcher, as compared to current solutions which entail creating a 

new launcher on top of the default launcher.

Application isolation can be achieved knowing only the sender and receiver of the intent. 
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However, there are more complicated problems which user firewalls can tackle which require 

knowing the sender's sender. This is the problem of caller chains which is the focus of the next 

example application.

5.6 Determining Caller Chains

One potential shortcoming with the Android permissions architecture is that it only considers the 

immediate sender of an intent. It does not account for the case where a chain of apps are invoked 

via intents. If an attacker invokes an app with slightly greater permissions and that in turn 

invokes another app with still greater permissions, the final receiver could be excessively more 

privileged than the original sender. This pattern can lead to privilege escalation[27][4][28][29][7]

[30]. Multiple works have identified this problem and implemented caller chains to resolve 

it[16]. However, all these solutions are relatively complex and require modification of the 

Android operating system.

Illustration 11: Caller chain.
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Using IEM, it is easy to implement a user firewall which can track call chains. Illustration 11 

demonstrates a user firewall which a single developer programmed in under an hour. When an 

intent enters this user firewall, it records the sender and receiver as a pair. The user firewall can 

then use these pairs to recursively determine all the callers associated with a particular receiving 

app. The user firewall can then analyze the callers to determine if the permissions of the receiver 

greatly exceed those of the instigator.



40

6 Evaluation

In addition to evaluating IEM in terms of what useful user firewalls it allows developers to 

create, IEM is also formally evaluated based on three additional criteria. First, how much of the 

framework has to be modified in order to implement IEM? Second, how does IEM impact the 

stability of currently existing Android apps; both when allowing and blocking intents. And third, 

how does IEM impact the time it takes to route intents? Security is also important, but this has 

already been covered in the design section.

Object Modified Added Changed

Intent Firewall 24 606 61.6%

Active Services 14 27 1.8%

Stack Supervisor 3 2 0.2%

Broadcast Queue 4 9 1.3%

AMS 0 39 0.2%

Intent 0 13 0.6%

Table 2: Lines of code modified separated by framework object.

6.1 Code Impact

Since IEM is designed in hopes of one day being integrated into the Android Open-source 

Project (AOSP) source code, one of the criteria for evaluation is the amount of code which has to

be modified in order to implement IEM. Minimizing the lines of code within IEM attests to a 

design which is efficient and maintainable while minimizing the lines of code modified outside 

of IEM attests to the side effect implementing this design has on the rest of the framework. The 

code impact is summarized in Table 2. IEM's interceptor and interface comprise one Java object 

and is compared against the original intent firewall.
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Since IEM requires additional parameters in order to remain stateless, as summarized in Table 1, 

modifying framework objects other than IEM is inevitable. However, Table 2 shows that the 

lines of code modified outside IEM are minimal. Most of these changes are to fetch objects 

which the new IEM public methods require and which are already present inside the calling 

object. The intent class did have to be extended to include an intent token field, but this change 

has no impact on already existing apps.

To test the maintainability of the code, I first implemented IEM in Android 5.0.2 and then 

migrated it to 5.1.1. I was able to do the migration in less than a day.

6.2 Application Stability

I tested IEM using the standard Google apps which come on Nexus devices as well as the top 50 

free third-party apps from the Google Play Store. I explicitly included the Google apps in the 

evaluation because I found that they communicate with each other heavily using a wide variety 

of intent types. The Google Play Service, for example, communicates with every other Google 

app for authentication so the user doesn't have to log into each app individually. The Google apps

also leverage all the intent types with a higher frequency than other third party apps. This is once 

again because the Google apps are heavily interconnected while most other popular apps tend to 

be more standalone.

During the testing of IEM, no cases where found where blocking an intent would cause an app to

crash. When blocking access to the Google Play Services, I did find apps which would refuse to 
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start, prompting the user that Play Services needs to be installed. Blocking an app's own services 

can cause timeouts during operations—like fetching new emails—but once again I did not 

encounter any crashes or freezes. I also noticed that if a service is blocked and then later allowed,

it could take up to a few minutes for the app to re-establish the service connection. Manually 

restarting the app expedited the reconnection time. Blocking broadcasts can disrupt some flows. 

For example, if broadcasts within the Play Store app are blocked, an app update will download, 

but not install.

Overall, I found apps to be stable, even when the user firewall decides to block most intents. I 

recommend that developers creating user firewalls for typical consumers place emphasis on 

informing the user when intents are being blocked, otherwise the lack of feedback could cause 

confusion.

No User Firewall Allow All Intents Call Chain

Activity 346.9 348.2 352.1

Service 14.0 14.9 16.8

Broadcast 7.6 11.8 12.2

Table 3: Milliseconds to route intents from sender to receiver, averaged over 5000 trials.

6.3 Performance

To test the intent routing performance of IEM, I created two simple apps to send and receive 

activity, service, and broadcast intents. The sender app places the current system time inside the 

intent and then the receiving app retrieves this value and calculates the difference.

Table 3 shows the milliseconds needed to send the intent across apps. Each value shown is the 
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average of 5000 trials. The test device was a Nexus 5 running the modified version of Android 

5.0.2. The tested user firewalls implement no caching between intent inspections and inspect 

every intent using the same procedure.

For the first set of trials, I configured IEM to not use a user firewall. This serves as a baseline as 

the logic in this configuration is identical to the original intent firewall. I then tested the intents 

using two user firewall policies. The allow all policy accepts any intent and serves to measure the

overhead added by the round trip between the interface and the user firewall. The call chain 

policy inspects, stores, and logs every intent's sender and receiver and then recursively constructs

chains. This is the most performance intensive example from the applications section.

The results in Table 3 show that the user firewall interface adds some overhead, but the 

difference in routing time remains well below what a human user can perceive. Granted, 

performance is mostly dependent on the efficiency of the particular user firewall app, but the 

experiment shows that IEM itself is acceptably efficient and user firewalls can achieve useful 

functionality with reasonable performance.
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7 Conclusion

Android is the most popular operating system for embedded mobile devices. It is designed to 

encourage apps to leverage IPC with a greater frequency than seen in operating systems which 

target traditional computers. This, coupled with the nature of intent communication, makes 

studying the security of Android IPC a valuable endeavor. The current Android system includes a

firewall which can perform access control on intent IPC. However, its poor usability means it has

almost never been used in practice. This work proposes IEM which separates the interceptor of 

the firewall from its decision engine and places it inside a normal application called a user 

firewall. By doing so, IEM makes it easy to develop and modify the firewall logic, allowing for 

easy implementation of interesting new access control.
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