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Abstract

We report the status of a high-statistics Monte Carlo simulation of
non-self-avoiding crystalline surfaces with extrinsic curvature on lat-
tices of size up to 1282 nodes. We impose free boundary conditions.
The free energy is a gaussian spring tethering potential together with
a normal-normal bending energy. Particular emphasis is given to the
behavior of the model in the cold phase where we measure the decay
of the normal-normal correlation function.
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1 Introduction

In recent years there has been a lot of interest in the statistical mechanics of
crystalline and fluid surfaces [1]. The former is believed to describe physical
polymerized membranes [2] and the latter may be a regularization of string
theory.

We focus our study on crystalline surfaces with bending rigidity embed-
ded in R3. It is conjectured that this model has a second order phase transi-
tion driven by the competition between entropy and the bending energy [3].
The high temperature phase is characterized by crumpled configurations. In
the low temperature phase the system is no longer isotropic and the surfaces
are roughly flat.

One may wonder what stabilizes the flat phase. The theoretical argument
is that the in-plane elastic constants prevent the surface from fluctuating
arbitrarily in the embedding space. This leads to an effective long wave
stiffening of the surface [1, 3].

The crumpling transition has been studied numerically with simulations
explicitly incorporating 2-d elastic constants [4, 5, 6]. There have also been
simulations with a simple gaussian spring potential playing the role of the
tethering potential [7, 8, 9, 10, 11, 12]. In both cases evidence has been
presented for a continuous phase transition.

In the latter class of models the equilibrium spring length is taken to be
zero, and a simple calculation indicates that the microscopic elastic constants
vanish [13]. It is tempting to argue, therefore, that the flat phase of these
models is not truly stable, even in the limit of large bending rigidity.

Our ultimate aim is to carefully compare the behavior of the appropriate
observables in the cold phase as a function of the equilibrium spring length.

2 The Model

Consider a system of particles connected to form a triangular 2–d mesh
embedded in 3 dimensions. Let each particle be labeled by an internal
discrete coordinate system x = (x1, x2) denoting its position on the mesh.
Its actual position in the embedding space is given by the 3 dimensional
vector r(x1, x2). The action has a tethering potential and a bending energy
term. Our choice is to use simple gaussian springs between the vertices as a
tethering potential and a normal-normal interaction as the bending energy
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term. Therefore the action is

S =
∑

〈xx′〉

(lxx′)
2 + λ

∑

〈αβ〉

(1 − ~nα · ~nβ) . (1)

Here the subscripts x, x′ label the vertices and lxx′ is the distance between
the vertices x and x′ in the embedding space. The subscripts α, β label the
faces (triangles) of the surface, ~n is the unit normal to the face and λ is the
bending rigidity. The sums extend to nearest neighbours. Eq. 1 describes
phantom surfaces since it does not include self-avoidance. The surface is a
rhombus with free boundaries cut out of a triangular lattice. In the case of
a spring of length a, (lxx′) has to be replaced by (lxx′ − a). In this case our
model would closely resemble the one of [4] discussed above.

We focused our analysis on the following observables: the specific heat,

Cv =
λ2

V

(

〈S2

e 〉 − 〈Se〉
2
)

. (2)

Here Se is the bending energy term considered above and V is the total
number of vertices.

The radius of gyration,

R2

g =
1

3V
〈
∑

i

r
′
i · r

′
i〉. (3)

Here r
′
i is the position of the node i in the embedding space referred to the

center of mass. This observable measures the physical extent of the surface
and its scaling behavior with system size defines the size (Flory) exponent
ν, via the relation Rg ∝ Lν . The exponent ν is related to the Hausdorff
dimension dH via the relation ν = 2/dH .

The eigenvalues of the inertia tensor; these eigenvalues give information
on the shape of the surface and how it scales with system size. They are
obtained by diagonalizing the anisotropic part of the inertia tensor

Aab =
∑

i

r′a(i)r
′
b(i) (4)

where a, b refer to the components of the vector r
′.

The normal-normal correlation function,

G(R) = 〈
1

N

∑

|α|=R

(~nα · ~nO)〉. (5)

Here the sum extends to all triangles of the surface which have a geodesic
distance R from the center of the surface O. The angle brackets represent
the Monte-Carlo average.

3



0.4 0.6 0.8 1.0 1.2
Bending Rigidity

0.0

1.0

2.0

3.0

4.0
C

v

L = 16
L = 32
L = 46
L = 64

Figure 1: The specific heat as a function of the bending rigidity.

3 Theoretical Predictions

A self-consistent perturbation theory analysis of the continuum model [14]
yields predictions for the critical exponents. The exponents of interest are
the size (Flory) exponent ν and the roughness exponent ξ. The roughness
exponent is defined by the scaling of the minimum eigenvalue of the inertia
tensor (4),

λ ∝ L2ξ. (6)

At the critical point the theory predicts ν = ξ = 0.732 while in the
cold phase ν = 1 and ξ = 0.59.

As far as the normal-normal correlation is concerned the only analytical
result is for λ = 0 (gaussian model). In this case the correlation function
follows a decay law G(R) ∝ −1/R4.
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Figure 2: The scaling of the radius of gyration squared with system size in
the cold phase(λ = 1.1). The fit gives a value of ν = 1.05(4).

4 Numerics and Results

We performed Monte-Carlo simulations of systems of sizes 162 to 1282 ver-
tices. We used the single hit Metropolis algorithm. The largest lattice was
simulated on a MASPAR MP1 massively parallel processor, while all other
sizes were simulated on workstations. We gathered statistics of the order of
30–50×106 sweeps per data point for the largest lattices (64 and 128). Our
statistics are comparable for the smaller lattices.

As can be seen in Fig. 1 the specific heat Cv shows a growing peak with
system size. Presently our statistics are not yet sufficient to allow a reliable
estimate of the exponent α which characterizes the growth. Preliminary fits
indicate a value of α ≈ 0.5 consistent with the value obtained in [10, 11]
using the same method. Our best estimate for the critical value of the
coupling is around λ ≃ 0.79. Work is currently under way to gather better
statistics and perform a Ferrenberg-Swendsen type analysis.
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Figure 3: The normal-normal correlation function at λ = 0.8 (around the
phase transition).

Fig. 2 shows the radius of gyration versus system size at a fixed value of
λ (1.1). The data fits well to a scaling ansatz with ν = 1.05(4), as expected
in the flat phase. In the crumpled phase the data does not fit a power law
behavior, indicating, as expected [4, 5], a log-like scaling (dH = ∞). Our
estimate of the critical coupling is not precise enough to allow for a fit to
Rg at the transition.

Figures 3 and 4 show the normal-normal correlation around and above
the phase transition respectively. Fig. 3 demonstrates the effect of finite-
size corrections to the value of the critical coupling. For the smaller volume
L = 32 the correlation decays to zero with r, but fits indicate a non-zero
asymptotic value for L = 64. One possible reason is that, due to the volume
dependence of the pseudo-critical coupling, the smaller volume is in the
crumpled phase while the larger is in the cold (flat) phase. Note that for
large r the correlations will always decay to zero because of our choice of
boundary conditions. This is a finite size effect and the data close to the
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Figure 4: The normal-normal correlation function at λ = 1.1 (in the cold
phase).

boundary has to be excluded from the fits.
Figure 4 shows the correlation in the cold phase. The data for L = 64

fits well to a behavior

G(R) ≃
1

Ra
+ b (7)

with a = 0.51(1) and b = 0.3(1). Data for higher values of λ and of the
system size L show a consistent behavior.

This is very important—the presence of a non-zero asymptote for the
normal-normal correlation function indicates that the normals remain or-
dered on a macroscopic scale.

This result supports the existence of a stable flat phase. Our present
focus is on the precise nature of this phase; in particular we would like to
know if there is a well defined roughness exponent ξ and if so how it depends
on the bending rigidity. The existence of a flat phase with a roughness
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exponent independent of λ would indicate that the entire flat phase λ > λc

is critical and that this model is in the same universality class as [15, 16, 17].
Another possibility is that the roughness exponent will depend on λ. In

this case the flat phase would still be stable but not critical.
A possible interpretation of the stability of the flat phase is that the

model discussed here dynamically generates a non-zero length scale which
can serve to define non-zero renormalized elastic constants. This simple
model could then be used to study the properties of physical (polymerized)
membranes in regimes in which self-avoidance is irrelevant.
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