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Blocking of Dynamical Triangulations with Matter

E. Gregorya, S.M. Catteralla and G. Thorleifssona

aPhysics Department, Syracuse University, Syracuse, NY 13244, USA

We use the recently proposed node decimation algorithm for blocking dynamical geometries to investigate a

class of models, with central charge greater than unity, coupled to 2D gravity. We demonstrate that the blocking

preserves the fractal structure of the surfaces.

1. MODEL

The model we examine here is a two dimen-
sional dynamically triangulated surface coupled
to Gaussian fields. It has the (fixed area) parti-
tion function [1]

ZN =
∑

{τ,φ}

e−Sτ [φ], (1)

where the sum is over all combinatorial triangu-
lations τ and field configurations φ. The action,

Sτ [φ] =

D
∑

µ=1

∑

〈i,j〉

(φµ
i − φµ

j )2, (2)

depends on the configuration of Gaussian fields φ.
Here i and j label nodes that are nearest neigh-
bors.

This model is characterized by a central charge
c = D, where D is the number of Gaussian fields.
For 1 < c < 25 there exists no meaningful analyt-
ical solution. To test a recently proposed Monte
Carlo renormalization group method, node deci-

mation [2], we investigated the cases c = 1 and
c = 10. The former was chosen because it is right
at the limit of where a useful analytical solution
can be found, and the latter because it was our
expectation that a c = 10 model should closely
resemble the c = ∞ limit where the surface is
known to be a branched polymer.

2. SIMULATIONS

We update the lattice by proposing standard
link flip moves, which are either accepted or re-
jected according to the outcome of a Metropolis

test. Similarly, the field configuration is updated
by subjecting a proposed change in the field at a
node to a Metropolis test. In addition we have
employed an overrelaxation update of the Gaus-
sian fields, which we find to significantly reduce
autocorrelation times.

An overrelaxation move involves replacing the
value of one of the fields as,

φi → φ′
i = −φi +

2

qi

∑

j

φj , (3)

where the nodes j are the nearest neighbors of
node i, and qi is its coordination number. We see
that since
∑

j

(φi − φj)
2 =

∑

j

(φ′
i − φj)

2, (4)

the action is preserved automatically. Hence,
these moves are always accepted. We find that
using a ratio of only one Metropolis field update
to eleven overrelaxation updates decreases the au-
tocorrelation time by an order of magnitude com-
pared to pure Metropolis updates.

3. MEASURING γs

We chose to investigate how the value of the
string susceptibility exponent γs behaves un-
der successive renormalization group transforma-
tions. The exponent γs defines the behavior of
the grand canonical partition function Z(µ) near
the critical value of the cosmological constant µ:

Z(µ) =

∞
∑

N=0

ZNe−µN (5)

∼ (µ − µc)
2−γs as µ → µc. (6)
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It turns out that the value of γs is related to the
size distribution of minimal neck baby universes.
A minimal neck on a 2D dynamical triangulation
is defined as a three link loop on the surface, that
is not the boundary of one of the triangles. Such
a neck divides the surface into two parts. The
baby universe is defined to be the smaller of the
two parts. It can be shown that for a surface of
size N , the number of baby universes of size B
should go like [3]:

nN (B) ∼ Bγs−2(N − B)γs−2. (7)

Therefore the recipe for finding γs is as follows:
First, search the surface for minimal necks. Sec-
ond, upon finding one, count the number of tri-
angles on each side of the surface and call the
smaller of these two numbers B. Finally, fit the
distribution n(B), averaged over many surfaces,
to Eq. (7) and extract γs. Since γs character-
izes the long distance properties of the surface, it
is an appropriate observable with which to test
how well the node decimation preserves the frac-
tal structure of the surface.

4. NODE DECIMATION

On a regular lattice implementing a real-space
renormalization group is straightforward. A fa-
miliar example is a field of Ising spins on a square
lattice. Here one merely has to block the spins in
some regular way, for example by using a major-
ity rule to convert each block of spins into one
spin on the reduced lattice. On a random lattice,
such neat blocking is not possible. Here the lat-
tice itself is a dynamical variable. We need a way
to reduce the size of the surface, while retain-
ing its large scale features. To accomplish this
we require a Monte Carlo renormalization group
adapted to random surfaces.

We have used the node decimation proposed in
[2]. The main idea is to remove nodes, at ran-
dom, to reduce the size of the surface. It’s obvi-
ous that removing a node of coordination number
greater that three will result in a non-triangular
hole. To keep the lattice triangular throughout
the process, we first identify the node we want to
remove, then flip links around it until its coordi-
nation number is three. Only then do we remove

the node, leaving a new triangle in its place. In
rare cases, it may be impossible to reduce the co-
ordination number of a node to three by flipping
links, in which case the change will be abandoned
and the node restored to its original condition.

The next step is to block the Gaussian fields
themselves. One obvious approach is to let the
fields on the blocked nodes be given by

φ′
i = ξ



(1 − α)φi +
α

ni

∑

j

φj



 . (8)

Here ni is the coordination number of the i-th
node. The first term is the direct contribution of
the field at that node to the blocked lattice, and
the second term is an average of the neighbors
of the node on the original lattice. We have in-
troduced a relative weight α between those two
terms, which in principle depends on the block-
ing factor b = N/N ′, where N and N ′ are the
volumes of the bare and blocked lattices, respec-
tively. Clearly α should go to zero as b → 1. As b
becomes larger, α should grow as well. Choosing
an α that is too large for a given blocking fac-
tor may, on the other hand, result in a cooling
effect where the Gaussian fields on the blocked
lattice are overly correlated. Preliminary results
indicate that this scheme is fairly robust under
choice of α.

In general, we must re-scale the blocked fields
by an overall factor ξ. Simple arguments suggest
that ξ should be given by

ξ = b
−β

dH , (9)

where dH is the fractal dimension of the surface
and β = −η/2 is the length dimension of the
scalar field, defined by the scaling of the two-point
function;

〈φiφj〉 ∼ rη
ij . (10)

From dimension counting we get the undressed
length dimension βo for a scalar field in two di-
mensions;

H =

∫

d2x(∂φ)2 =⇒ βo = 0. (11)

In the presence of quantum gravity βo must be
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Table 1
The string susceptibility exponent γs measured on surfaces obtained via node decimation (using b =

√
2)

.
Blocking c = 0 c = 1/2 c = 1 c = 10
0 -0.495(12) -0.209(8) −0.038(58) 0.570(7)
1 -0.498(7) -0.365(5) 0.030(57) 0.562(16)
2 -0.500(12) -0.334(10) 0.124(67) 0.569(9)
3 -0.495(15) -0.341(6) 0.04(17) 0.542(14)
4 -0.505(19) -0.315(11) 0.582(11)
5 -0.497(20) -0.348(3) 0.493(21)
6 0.515(34)
Analytic result −1/2 −1/3 0 1/2

replaced by β, the dressed field dimension. For
c ≤ 1 we can use the KPZ scaling [4];

β − β(1 − β)

1 − γs

= βo, (12)

where

γs = 1
12

(

c − 1 −
√

(25 − c)(1 − c)
)

. (13)

So, for c = 1, β = β0 = 0. For c > 1 however,
the process is more complicated. The scale factor
ξ can be determined numerically by measuring
some operator O, that has n powers of φ in it.
After m blockings, O will scale like

Om = ξnmO0. (14)

It is thus possible to determine ξ by construct-
ing a ratio of operators, obtained by different
amount of blocking, but compared at the same

volume. In particular, we have

ξn =
Om+1

Om

. (15)

Preliminary investigations of the blocking of the
Gaussian fields for c = 1 seem to confirm that the
overall scale factor ξ = 1.

It is worth noting that the corresponding expo-
nent η, has recently been determined numerically
for an Ising model coupled to 2D gravity, by a
direct fit to Eq. (10) [5].

5. RESULTS

We have measured the value of γs as a function
of blocking level for: c = 0 (pure gravity), c = 1

2

(Ising spins), c = 1 and c = 10. Bare lattice No =
2000 was used for c = 1/2, No = 1000 for the
other models. These simulations were performed
with several million sweeps apiece. The results
are summarized in Table 1.

These results clearly show that the node deci-
mation preserves the analytically predicted value
of γs, even after several iterations. In the case
of an Ising model coupled to gravity, the mea-
sured value of γs agrees more closely with the
analytic prediction after one or two blocking it-
erations than on the bare lattice. This indicates
that the blocking procedure may be useful in min-
imizing finite volume effects. The c = 1 case is
notoriously difficult to fit, and even after fitting
n(B) to a form with logarithmic corrections the
results have larger errors.

REFERENCES

1. D.V. Boulatov, V.A. Kazakov, I.K. Kostov,
A.A. Migdal, Nucl. Phys. B275 (1986) 641.

2. G. Thorleifsson and S.M. Catterall, Nucl.
Phys. B461 (1996) 350.

3. S. Jain and S.D. Mathur, Phys. Lett. B286
(1992) 239; J. Ambjørn, S. Jain, and G. Thor-
leifsson, Phys. Lett. B307 (1993) 34.

4. F. David, Mod. Phys. Lett. B186 (1987) 379;
J. Distler and H. Kawai, Nucl. Phys. B321
(1989) 509; V.G. Knizhnik, A.M. Polyakov
and A. Zamolodchikov, Mod. Phys. Lett. A3
(1988) 819.

5. J. Ambjørn, K.N. Anagnostopoulos, U. Mag-
nea and G. Thorleifsson, NBI-HE-96-23, SU-
4240-637 (July 1996) (hep-lat/9606012).

http://arxiv.org/abs/hep-lat/9606012

	Blocking of Dynamical Triangulations with Matter
	Recommended Citation

	arXiv:hep-lat/9608077v1  14 Aug 1996

