A School Design: for homeless children in NYC

Tingjie Zhou
Syracuse University

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Part of the Architecture Commons

Recommended Citation
https://surface.syr.edu/architecture_theses/453

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
A SCHOOL DESIGN
for homeless children in NYC

Tingjie Zhou
ABSTRACT

By the end of 2017, more than fifteen thousand homeless families with over twenty-three thousand children lived in shelters in New York City (Coalition for the homeless, Facts About Homelessness). Receiving education in a school, a daily activity for school age children, can easily become an unachievable thing for homeless children. Though many programs and acts are carried out to help these children, their educational situation is still severe.

Noticing the circumstance that homeless children are facing, I’m interested in the role that architecture can play in responding to homeless children’s educational concerns. When looking at the schools with high percentage of homeless children, it’s notable that most of these schools have family shelters nearby. Considering this as a point of departure, this thesis seeks to address the challenges of providing a quality education for homeless children broadening its architectural scope to the surrounding community.

In terms of the social and technical complexity of school design for homeless children, my inquiry is applying an evidence-based and data-driven design method to school design. The data relevant to this thesis will include social data on homeless children’s education concerns and technical data on building environment. Led by the collected data and the hypotheses based on evidence, the school design proposal aims at discovering opportunities to improve the quality of education and retain homeless children in school. Meanwhile, the process of the school design proposal will be compiled into a textual and graphic documentation, which can serve as a design methodology reference for designers, architects and students.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>1</td>
</tr>
<tr>
<td>Situation</td>
<td>4</td>
</tr>
<tr>
<td>Position</td>
<td>8</td>
</tr>
<tr>
<td>Question</td>
<td>11</td>
</tr>
<tr>
<td>Methodology</td>
<td>18</td>
</tr>
<tr>
<td>Site Study</td>
<td>20</td>
</tr>
<tr>
<td>Design Process</td>
<td>24</td>
</tr>
<tr>
<td>Design Presentation</td>
<td>32</td>
</tr>
<tr>
<td>Appendices</td>
<td>36</td>
</tr>
<tr>
<td>Bibliography</td>
<td>39</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure 2. “Student Homelessness.” New York State Education Department in the Student Information Repository System (SIRS), retrieved from https://nysteachs.org/resources/data-on-student-homelessness-nys/.

Figure 3. “Schools and Shelters.” Institute for Children, Poverty and Homelessness (ICPH), retrieved from http://icph.maps.arcgis.com/apps/webappviewer/index.html?id=b40652bdf54e4e67a064fadf68d8ef3

Figure 4-7. “Data-Driven Design.” HDR, retrieved from https://www.hdrinc.com/insights/data-driven-design-hdr.

Figure 10. NYC Wind-Rose

Figure 11. NYC Sun-path and Dry Bulb Temperature

Figure 12. “Schools and Shelters.” Institute for Children, Poverty and Homelessness (ICPH), retrieved from http://icph.maps.arcgis.com/apps/webappviewer/index.html?id=b40652bdf54e4e67a064fadf68d8ef3

Figure 15. “Site Boundary.” Accessed from Google Map.

Figure 16. Summer Sun Shadow
LIST OF ILLUSTRATIONS

Figure 17. Winter Sun Shadow

Figure 18. "Student identified as homeless." New York State Education Department in the Student Information Repository System (SIRS), Retrieved from https://nysteachs.org/resources/data-on-student-homelessness-nys/.

Figure 19. Tanner, C Kenneth, "Minimum Classroom Size and Number of Students Per Classroom." Revised Findings and Conclusions, September 1, 2009.

Figure 20. Diagram of the school

Figure 21. Exploded Axon

Figure 22. Scenario - Outdoor Playground

Figure 23. Scenario - Roof Sport Space

Figure 24. Scenario - Activity Room

Figure 25. Scenario - Learning Street

Figure 26. Scenario - Laundry

Figure 27. Scenario - Accommodation

Figure 28. Scenario - Neighborhood

Figure 29. Scenario - Cubicle and Resting Space

Figure 30. Scenario - Social Activity Corner

Figure 31. Scenario - Art Studio

Figure 32-34. "Positive Tomorrow." MA+ Architecture, retrieved from https://www.maplusarch.com/educationpositivetomorrows
SITUATION

Social Issue

By the end of 2017, more than fifteen thousand homeless families with over twenty-three thousand children lived in shelters in New York City (Figure 1). Report from SIRS shows the number of student defined as homelessness in NYC is more than one hundred thousand (Figure 2). Homeless students includes those who are doubled-up, living in hotel/motel, living in shelters and those who are unsheltered.

In some schools, the percentage of children who are homeless reaches 30% (Institute for Children, Poverty and Homelessness, Interactive Map). When looking at the schools with high percentage of homeless children, it’s notable that most of these schools have family shelters nearby (Figure 3).

Receiving education in a school, a daily activity for school age children, can easily become an unachievable thing for homeless children. Though many programs and acts are carried out to help these children, their educational situation is still severe.

According to a 2016 report from the Independent Budget Office of the City of New York, children who are housed in the city’s homeless shelters have obstacles to get to school and have high rates of absence (Pappas, “Not Reaching the Door”). Children’s education is affected by housing instability.
SITUATION

Architecture’s Role in Education

A study in New York City reveals that middle and high schools with unsatisfactory building components have higher suspension rates, lower test scores and lower attendance (Boese, “A Data Analysis Report”). A lot of experiments and research results show that people’s working and learning performance are influenced by physical environment (Tanner, “Student Outcome”). Architecture as a tangible environment can shape people’s behavior. Thus, though thoughtful design, school architecture can benefit students.

The Potential of Data and Evidence in Design

Data is a potent tool that can help us understand situations we are facing. It can also be a powerful tool to guide architecture design decisions. The data relevant to this thesis will include sociological data on homeless children’s education issue and technical data on building environment. For each unique project, evidence as well as hypotheses from research can help make critical design decisions.

Figure 3 Schools and Shelters
(Based on data from Institute for Children, Poverty and Homelessness)
Architecture is never neutral. It either heals or hurts. Our mission is to research, build, and advocate for architecture that promotes justice and human dignity.

(MASS Design Group, “About”)

POSITION

The education dilemma that homeless children face, caused by deep-rooted homelessness in New York City, is a complicated issue. It cannot be eradicated without the efforts of political, social and economical contributions.

However, I also believe that architecture as a physical environment can influence people’s behavior and cognition either positively or negatively. So I hope through rational and logical design process, school architecture could release the stress that homeless children are going through and promote justice and human dignity.

In this thesis, I’m focusing on some of the factors that prevent homeless children from receiving education in school. By collecting and analyzing data, especially sociological data, I am doing a data-driven conceptual school design for homeless children. Hopefully, the research, data-driven design process, and the school design would become a prototype and referential case for those who want dedicate themselves to helping homeless children.
QUESTION

Based on the severe education situation of homeless children and the role that architecture can play, here comes the questions.

Question 1:
Concerning the difficulty for homeless children to focus on their education, how can evidence and data be applied to school design for retaining homeless students in school, and helping them get fair opportunities to receive education?

Question 2:
Taking the elementary school design in Bronx, New York City as an example, how can the sociological and environmental data influence the design outcome and contribute to the school prototype especially for homeless children?

In order to answer these questions, the first step took was to figure out: what is data-driven design and what is evidence-based design.
WHAT IS DATA-DRIVEN DESIGN?

“... connects the built environment to predictive analytics and operational design through computational design.”
(HDR, “Data-Driven Design”, 3)

Use sensors and devices to monitor visibility, noise, humidity, light, temperature, and air quality. Cameras track the location of workers over time. Steelcase uses a sensor-based system to help organize and optimize office space.

(Denny, “Big Data”)

Get data about actual utilization of space at any given point of time in any office buildings through machine learning.

(Rajagopal, “Microsoft Office”)

The following images show some aspects, in which advanced design companies such as HDR and Zaha Hadid Architects apply data-driven method to architecture design.
WHAT IS DATA-DRIVEN DESIGN?

After learning about data-driven design in different design companies (HDR, Zaha Hadid Architects, Steelcase, and Microsoft), the following chart is a summary of tools used for data-driven design and relevant aspects.

Considering the time limitation as well as technical difficulty, I'm not taking the tools that advanced companies usually use for data-driven design. Instead, I come up with the tools that I plan to use in this thesis and its potential aspects.
WHAT IS EVIDENCE-BASED DESIGN?

“Evidence-based design is a process for the conscientious, explicit, and judicious use of current best evidence from research and practice in making critical decisions, together with an informed client, about the design of each individual and unique project.”

(Hamilton and Watkins, “Evidence-Based Design for Multiple Building Types,” 9)

“Presented with a problem, researchers draw on theory, training, accumulated knowledge, and experience to generate tentative ideas about how to solve it.”

(Zeil, “Inquiry By Design,” 18)

WHAT IS EVIDENCE-BASED DESIGN?

An explicit definition of evidence-based design is following:

The design elements are produced by fact, analogies and hypotheses, which are based on collected information and stories from books, news, reports, videos.

The fact, analogies and hypotheses together reflect homeless children’s life and education condition as well as their specific needs.
METHODOLOGY

The method of this thesis includes four steps:
1. Data and Evidence Collecting
2. Imaging
3. Presenting
4. Testing

Here are some examples of what these steps contain.

Data and Evidence Collecting

Situation Evidence
• Excerpt evidence and stories from books, videos, reports, news.

Site Data
• Collect geographic data of schools with homeless students in NYC.
• Collect geographic data of family shelters in NYC.
• Filter the schools with more than 40% homeless students.
• Based on the collected data, map the schools and family shelters.
• Filter schools surrounded by dense family shelters as potential sites.
• The final selected project site is PS 65 Mother Hale Academy, which is located in the Bronx.
• Collect census data, academic performance data, enrollment and attendance data of the Mother Hale Academy.
• Analyze the data and extract relevant information of the school.

Technical Data and Evidence
• Physical environment and behavior study.
• School design pattern study.
• School design case study.
• Anthropometric data.

Imaging

Visualizing data and evidence.

Example: five factors of homeless children based on evidence

4. Testing

After coming up with the conceptual school design, building environment simulation tools will be used to test green and sustainable aspect of the school.

Example:
Use wind-rose to test building opening directions and natural ventilation.
Use sun-path and dry bulb temperature to test building geometry and indoor temperature.
SITE STUDY

A school with high percentage of homeless children in the Bronx, NYC is selected as the site.

Mother Hale Academy

- **Borough:** Bronx
- **Total Students:** Around 400
- **Percentage of Homelessness:** 40%
- **Student attendance:** 89% (City: 93%)
- **Students chronically absent:** 47% (City: 23%)
- **Grades:** K-5

Students in Families Eligible for HRA Assistance

<table>
<thead>
<tr>
<th>Economic Need Index</th>
<th>Compared to District Average</th>
<th>Compared to City Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.2%</td>
<td>+5.5%</td>
<td>+26.2%</td>
</tr>
</tbody>
</table>

Students in Families with Income Below Federal Poverty Level (Estimated)

<table>
<thead>
<tr>
<th>Students in Families with Income Below Federal Poverty Level (Estimated)</th>
<th>Compared to District Average</th>
<th>Compared to City Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.2%</td>
<td>+9.2%</td>
<td>+29.8%</td>
</tr>
<tr>
<td>54.0%</td>
<td>+6.1%</td>
<td>+28.4%</td>
</tr>
</tbody>
</table>

Students in Temporary Housing

<table>
<thead>
<tr>
<th>Students in Temporary Housing</th>
<th>Compared to District Average</th>
<th>Compared to City Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.4%</td>
<td>+22.4%</td>
<td>+32.6%</td>
</tr>
</tbody>
</table>

Figure 12 Schools and Shelters (Based on data from Institute for Children, Poverty and Homelessness)

Figure 13 Students in Need of Additional Supports (2017-18) (Source: Based on NYC Department of Education)

Figure 14 Enrollment Over Time (Source: Based on NYC Department of Education)
Figure 15. Site Boundary (Source: Google Map)

Figure 16. Summer Sun Shadow Jun 22, 8am/10am/12pm/2pm/4pm

Figure 17. Winter Sun Shadow Dec 22, 8am/10am/12pm/2pm/4pm
DESIGN PROCESS

The chart below shows the process from original evidence and data to design aspects such as program, program layout, and building geometry. Evidence column in this page comes from the case study Oklahoma City school, which is specially designed for homeless children (see Appendix I).
It turned out that when students didn’t have clean clothes, they often stayed home from school out of embarrassment.

"I think people don’t talk about not having clean clothes because it makes you want to cry or go home or run away or something. It doesn’t feel good."

85% of high-risk elementary school students increased their attendance during the 2017 - 2018 program.

(Whirlpool, "Care Counts Result")

Children who are housed in the city's homeless shelters have obstacles to get to school and have high rates of absence. Children's education is affected by housing instability.

(New York City Independent Budget Office, "2016 Report")

"As the percentage of students receiving school lunch at free and reduced cost increased, the achievement level decreased."

(Tanner, "Student Outcome")

School districts that serve large populations of students of color and students from low-income families receive far less funding than those serving White and more affluent students.

(Morgan and Amerikaner, "Funding Gaps 2018")

Laundry with washing machines and dryers.

Laundry

Unsheltered rate: 5%
Sheltered & unsheltered rate: 40%
Accommodation capacity: 5 to 64 students

Number of classroom: 18
Classroom size: 1029 Sq.Ft to 1344 Sq.Ft

Mother Hale Academy Total Student: 400
Mother Hale Academy Homelessness rate: 40%

New York State Education Department in the Student Information Repository System

Number of Students
plus 1 Teacher

Elementary School
[Sq.Ft. (Meters)]

Secondary School
[Sq.Ft. (Meters)]

<table>
<thead>
<tr>
<th>Class</th>
<th>Elementary School</th>
<th>Secondary School</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>539 (50.13)</td>
<td>704 (65.47)</td>
</tr>
<tr>
<td>11</td>
<td>564 (52.45)</td>
<td>768 (71.42)</td>
</tr>
<tr>
<td>12</td>
<td>637 (59.24)</td>
<td>832 (77.38)</td>
</tr>
<tr>
<td>13</td>
<td>686 (63.80)</td>
<td>896 (83.33)</td>
</tr>
<tr>
<td>14</td>
<td>735 (68.36)</td>
<td>960 (89.28)</td>
</tr>
<tr>
<td>15</td>
<td>784 (72.91)</td>
<td>1024 (95.23)</td>
</tr>
<tr>
<td>16</td>
<td>833 (77.47)</td>
<td>1088 (101.18)</td>
</tr>
<tr>
<td>17</td>
<td>882 (82.03)</td>
<td>1152 (107.14)</td>
</tr>
<tr>
<td>18</td>
<td>931 (86.58)</td>
<td>1216 (113.09)</td>
</tr>
<tr>
<td>19</td>
<td>980 (91.14)</td>
<td>1280 (119.04)</td>
</tr>
<tr>
<td>20</td>
<td>1029 (95.70)</td>
<td>1344 (124.99)</td>
</tr>
</tbody>
</table>

Figure 19. Classroom Size (Source: C. Kenneth Tanner)

Total Student: 400
Grade: K-5
Around 20 students/classroom
Dimensions of social space of children at different ages
Figure 20. Diagram of the school

The diagram of the school design comes from the analysis of original data and evidence. Aspects such as program, program layout, space capacity, building geometry and material quality are considered. Each part has a direct relevance with original data and evidence.
DESIGN PRESENTATION

The elementary school is designed based on the analysis of original data and evidence as shown in design process, which contains aspects such as program, space capacity and material.

The program layout cannot be fully explained by single data or evidence. However, it has an explicit intention to have group-learning and social space the most prominent parts in school, as well as connect different space by them. As a school specially designed for meeting homeless children’s special needs, spaces for community service and accommodation also play an important role. All the community service spaces are near the entrance and have transparent facade towards streets to welcome nearby communities. Accommodation is lifted and separated from main education space to avoiding disturbance.

Detailed program and spaces as well as their intentions are shown by scenarios.

For a further data-driven development, the school design can be optimized by analyzing building environmental data such as natural ventilation, daylight, energy efficiency, etc.
Outdoor Playground
Outdoor playgrounds are surrounded by transparent facades, which allows interaction between indoor space and outdoor space. Large outdoor areas also provide space for homeless children to hang out with friends.

Roof Sport Space
Due to site area limitations, a running track and a basketball court are placed on the roof. Physical exercise helps children have a healthy body.

Activity Room
Flexible furniture makes different activities possible to happen in this space. Children can re-arrange the space as they like, which creates a sense of belonging.

Learning Street
Corridor is not a boring narrow space for quickly walking through. It's expanded to a "learning street", where children can play and learn from each other.

Laundry
The laundry is equipped with washing machines and dryers. Homeless children and their parents can bring dirty clothes to the laundry. Clean clothes make homeless children more confident. Thus children are willing to come to school.

Accommodation
For those unsheltered homeless children and those who live in cars, garages, etc, accommodation is provided. Parents are also welcome to live here in special situations.

Neighborhood
The accommodation area is like a community, where homeless children can experience the social life with neighbors just like what the other children have every day.

Cubicle and Resting Space
Individual cubicles are provided to students where they can store their own stuff. The flexible furniture can be transformed into a bed. Children can have a rest here if they feel sleepy and tired.

Social Activity Corner
Each learning cluster has a corner for children to sit and play with peers. This corner also exhibit children's work to improve their confidence and achievability.

Art Studio
Students' art studio is adjacent to teachers' studio. Due to limited education funding, the teachers can be homeless artists who need a place to live and work. It can be a win-win solution.
MA+ Architecture came up with a design that would address the challenges homeless students face every day while finding ways to replicate the experiences of children who don’t suffer from homelessness.

The school was designed in part by kids. They submitted drawings and ideas of what they’d like to see in the new school.

Here are some of the factors that influence the design:

As homeless children generally don’t have a place to host playdates, the school provides them with many spaces to meet their request for “a place to sit with friends.”

As many of homeless children are behind developmentally and behaviorally in cooperation and group play, a range of group-learning areas are designed for them to meet with each other and reinforce social skills.

Nurse’s office has a space to nap for those who come into school feeling tired and restless.

Homeless children show a strong desire for safety and security. Considering this need, the layout of the school reinforces safety with glass facades to allow administration offices have a full view of anyone approaching.

(Bellan, “In Oklahoma City, a School Designed for Homeless Children.”)
APPENDIX II
WHIRLPOOL CARE COUNTS PROGRAM

“I think people don’t talk about not having clean clothes because it makes you want to cry or go home or run away or something. It doesn’t feel good.”
(Logan, an eighth-grader)

It turned out that when students didn’t have clean clothes, they often stayed home from school out of embarrassment
(Kirk, “One Answer to School Attendance”).

The program saw more than half of participating high-risk students were no longer at risk for chronic absenteeism. According to teachers surveyed in 2015-2016, for the school that participated in the Whirlpool Care Counts Program, 89% of students had increased classroom participation. 95% of students had more motivation in class. 95% of students participated in more extracurricular activities.
(Whirlpool, “Results”)

BIBLIOGRAPHY

Bellan, Rebecca, “In Oklahoma City, a School Designed for Homeless Children.” CityLab, last modified, Jan 28, 2019.

https://www.hdrinc.com/insights/data-driven-design-hdr

BIBLIOGRAPHY

