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Abstract

We describe the statistical behavior of anisotropic crystalline membranes. In
particular we give the phase diagram and critical exponents for phantom mem-
branes and discuss the generalization to self-avoiding membranes.

1 Introduction

The statistical mechanics of phantom tethered membranes with bending rigidity is quite
well understood if the elastic and bending moduli are isotropic. There is a continuous crum-

pling transition from the expected high-temperature crumpled phase to a low-temperature
flat phase that has no analogue in conventional spin systems [1, 2]. This flat phase is char-
acterized by long-range orientational order of the membrane in the embedding space and
large longitudinal (in-plane) fluctuations. Two important generalizations of this class of
membranes arise by incorporating self-avoidance and/or intrinsic anisotropy. In [3] Radz-
ihovsky and Toner (RT) showed that intrinsic anisotropy generally leads to a much richer
phase diagram for phantom (non-self-avoiding) tethered membranes. Although anisotropy
is irrelevant in the flat and crumpled phases it leads to an entirely new tubular phase sep-
arated by distinct continuous phase transitions from both the conventional phases. This
phase diagram is shown in Fig. 1.

¿From the applied point of view both isotropic and anisotropic membranes should be
important. Isotropic membranes may be made by suitable random polymerization of fluid

1Research supported by the Department of Energy U.S.A under Contract No. DE-FG02-85ER40237, by

Syracuse University, by Alexander von Humboldt Stiftung, and by the Deutsche Forschungsgemeinschaft.
2Talk given at Lattice 98, Boulder Colorado, July 1998.
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Figure 1: The mean field theory phase diagram for phantom anisotropic membranes from
[3].

vesicles. On the other hand polymerization in the presence of an applied electric field
should in principle yield an anisotropic membrane [4]. Polymerized membranes with in-
plane tilt order have a natural anisotropy. The tubular phase is characterized by long-range
orientational order in one (extended) direction only — in the remaining transverse direction
the membrane is crumpled.

The tubular phase thus resembles a rough sausage with a crumpled cross-section. This
existence of this totally tubular phase was confirmed by Monte Carlo simulations in [5].
In this paper the size (Flory) exponent νF , describing the growth of the tubule-diameter
RG with internal system size (L), and the roughness exponent ζ, characterizing the height
fluctuations along the extended tubule axis, were also reported. The results νF = 0.305(14)
and ζ = 0.895(60) were in rough qualitative agreement with the theoretical predictions
ν = 1

4 and ζ = 1 of [3]. More extensive subsequent simulations [6] have improved these
first results – the best current results are νF = 0.269(7) and ζ = 0.859(40). Configurations
characteristic of the various phases are shown in Fig. 2.

2 Model

A tethered membrane is described by a 2-dimensional regular triangulated net, with the
topology of a disk. Each node of the net has six neighbors, except at the boundary. The
Hamiltonian of the system is

H[r] =
∑
〈σσ′〉

|rσ − rσ′ |2
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Figure 2: The three phases of anisotropic membranes:(a) tubular (b) crumpled and (c) flat.

− κ1

∑
〈ab〉

(x)
na · nb − κ2

∑
〈ab〉

(y)
na · nb . (1)

where rσ is the position in 3-dimensional space of the node labelled σ = (σx, σy). The first
sum runs over all nearest-neighbor pairs (bonds) of the membrane, and is the tethering
potential. The second and third term are the bending energies in the x and y intrinsic
directions. The bending energy is a ferromagnetic interaction between the unit normals to
the faces of the membrane. The strength of this interaction is anisotropic: if two adjacent
faces share a bond parallel to the x direction the coupling is κ1; otherwise it is κ2.

The canonical partition function for a membrane of fixed number of nodes N is

Z =

∫
[dr] δ(rcm) e−H[r]. (2)

The Hamiltonian of Eq.(1) was simulated using Monte Carlo methods for triangular
lattices ranging from 252 to 1752 nodes. Further numerical details are given in [5, 6].

3 Global Phase Diagram

To determine the global phase diagram of anisotropic membranes we explored the line
(κ1, κ2) = (3κ, κ). We have also simulated the lines (κ, 0) and (2, κ) on smaller lattices.
Distinct signatures of phase transitions were found in the specific heats Ci

V associated with
the variance of the two bending energy terms in the action Ex and Ey;

Ci
V (κ) =

κ2

L2

∂

∂κ
〈Ei〉. (3)

In Fig. 3 we show the total specific heat along the line κ1 = 3κ2 for lattice sizes up to 1752.
There are two distinct peaks. We have confirmed that the two peaks occur at different

values of the bending rigidity, signaling the existence of two distinct transitions.
Performing a similar analysis along the other two lines in the (κ1, κ2) plane yields a

phase diagram consistent with that of Fig. 1. This confirms the three phase scenario.
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Figure 3: The value of the total specific heat CV for various lattice sizes. The interpolating
lines are obtained using multi-histogramming methods.

4 Tubular Exponents

A more detailed understanding of this tubular phase is obtained by looking at the fluctu-
ations of the zero-mode of the tubule height hrms, analogous to the height fluctuations of
a flat membrane, and the scaling of the width of the tubule RG

⊥ [5, 6]. These are expected
to scale as hrms ∼ Lζ and RG

⊥ ∼ LνF .
We find ζ = 0.859(40) and νF = 0.269(7). The result for νF is in excellent agreement

with the analytic continuum prediction of [3] (νF = 1/4) but the roughness exponent is
well below the analytic prediction ζ = 1. Further studies are under way [6].

The most challenging problem in the physics of tubules is the incorporation of self-

avoidance. Self-avoidance becomes relevant below the upper-critical embedding dimension
d = 11, and here one can develop a systematic ǫ expansion [10]. This expansion can be
improved and this is treated in the contribution to this proceedings by Alex Travesset
[11, 12]. We are also performing Monte Carlo simulations of this system. Preliminary
results indicate a flat-to-tubular transition in the physical case of three dimensions. The
specific heat plot is shown in Fig. 4.
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