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Abstract

We extend a recently proposed real-space renormalization group scheme for
dynamical triangulations to situations where the lattice is coupled to continuous
scalar fields. Using Monte Carlo simulations in combination with a linear,
stochastic blocking scheme for the scalar fields we are able to determine the
leading eigenvalues of the stability matrix with good accuracy both for cM = 1
and cM = 10 theories.

1 Introduction

Dynamical triangulations offer a powerful way to investigate two-dimensional quan-
tum gravity and, when coupled to scalar fields, bosonic string theories. This manner
of discretizing such theories allows the use of techniques drawn from statistical me-
chanics. Great strides have been made in analytically understanding such models,
notably with the development of matrix model techniques for solving the discrete
systems and continuum approaches based on quantizing Liouville theory [1]. How-
ever, all these analytic approaches break down when applied to systems whose mat-
ter central charge cM is greater than unity. Furthermore, the analytic approaches
allow us to compute only correlation functions of integrated operators — they yield
very little information on the nature of the quantum geometry or physically inter-
esting questions concerning matter field correlators defined on geodesic paths.

To answer such questions, we must rely on Monte Carlo simulation techniques.
Combining this powerful numerical tool with another, the renormalization group, in
the form of the Monte Carlo Renormalization Group (MCRG), provides new insight
into the critical behavior and hence the continuum limit for these models.

In this paper we describe our efforts to develop an efficient and functional blocking
scheme for models of continuous scalar fields coupled to 2d dynamical triangulations.
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We first introduce the class of model we consider and describe our simulation algo-
rithm. Then we discuss real-space renormalization groups (RG) and the particular
blocking schemes we have investigated. The primary goal of this work has been to
extend the MCRG techniques, developed in Ref. [2], to continuous scalar fields. As a
test of this method we have investigated models of one (cM = 1) and ten (cM = 10)
scalar fields coupled to two-dimensional gravity respectively. The former model is
chosen as it is solvable in the continuum, the latter as it represents a system where
the back-reaction of matter is so strong that the internal geometry degenerates into
polymer-like structure. As this RG method involves blocking a dynamical geometry,
we start by demonstrating that it preserves the relevant fractal structure of the tri-
angulations, characterized by such geometric exponents as the Hausdorff dimension
dH and the string susceptibility exponent γs. For the matter sector we have applied
a linear stochastic blocking scheme to the fields and, for both the models we con-
sider, after optimizing the blocking procedure, we determine the critical exponents
governing the rescaling of the fields.

2 Model and Numerical Approach

The model we examine is a two-dimensional dynamically triangulated surface cou-
pled to D copies of Gaussian scalar fields. It has a canonical (fixed area) partition
function

Z =
∑

τ,φ

e−Sτ [φ], (1)

where the sum is over all possible combinatorial triangulations1 τ , as well as over
all possible configurations of the fields φ. The action,

S[φ] =

D
∑

µ=1

∑

<i,j>

(

φµ
i − φµ

j

)2
, (2)

depends on µ = 1, ...,D (= cM ) scalar fields φµ, and the second sum is over all
nearest neighbor lattice points, i and j. Notice that due to the back-reaction of the
matter fields on the geometry, coupling multiple copies of scalar fields to dynamical
triangulations leads to genuinely different statistical systems, as the partition func-
tions do not factorize, in contrast to the behavior on a regular lattice. In this paper
we investigate models with one and ten fields, corresponding to matter with central
charge cM = 1 and 10 respectively.

The partition function Eq. (1) is evaluated numerical using Monte Carlo methods.
The triangulations are update using a standard link-flip move — a link lab connecting
two adjacent triangles tabc and tbad is removed and replaced by the link lcd. We accept
or reject such a move based on a Metropolis test.

1A priori, different ensembles of triangulations can be used provided they lead to a well defined
partition function Eq. (1). In this work we use combinatorial triangulations, excluding self-energy
and tadpole diagrams from the corresponding dual graph, as this simplifies the geometric blocking.
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Figure 1: The auto-correlation time τCPU , measured in real-time, for different volumes N
and for different ratios of Metropolis versus overrelaxation updates. The auto-correlations
are estimated for the slowest mode, the radius of gyration

∑

i φ2
i , for the model Eq. (1)

coupled to one scale field.

Updates of the Gaussian fields proceed in two ways. The first is a standard
Metropolis update, where a small (local) change in the fields is accepted/rejected
based on a Metropolis test. However, as this updating procedure suffers from very
long auto-correlations we also employ an overrelaxation algorithm to update the
fields. This involves replacing one of the fields at a node i with

φi → φ′
i =





2

qi

∑

<i,j>

φj



 − φi , (3)

where j indexes the qi neighbors of i. Since
∑

<i,j>(φi − φj)
2 =

∑

<i,j>(φ′
i − φj)

2,
the action is preserved and the move is automatically accepted. The overrelaxation
algorithm is, however, non-ergodic and some amount of Metropolis updates have
to be included. We find, nonetheless, that by using a ratio of only one Metropolis
update to every five overrelaxation updates the auto-correlations, measured in real-
time, are reduced by about a factor of four compared to a pure Metropolis update.
This is illustrated in Figure 1. This reduction can be understood qualitatively as
the overrelaxation suppresses the usual random walk behavior of local updating
algorithms [3]. However, in contrast to overrelaxation applied to scalar fields on a
regular lattice [4], on dynamical triangulations critical slowing down is not reduced,
only the overall prefactor — the dynamics of the updating procedure are dominated
by the local geometric moves.
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3 Monte Carlo Renormalization

A powerful tool for investigating the critical behavior of statistical systems is the
renormalization group. The usual approach is to use some “course graining” pro-
cedure whereby the system is blocked or replaced by one with fewer degrees of
freedom, effectively integrating out the short distance fluctuations while preserving
the long-distance physics of the system. This renormalization group operation can
be written in terms of a projection operator, P, that maps the system from the old
degrees of freedom to the new ones while preserving the partition function Eq. (1):

e S′[φ′] =
∑

φ

P
[

φ′, φ
]

eS[φ], with
∑

φ′

P
[

φ′, φ
]

= 1. (4)

In general, upon application of the renormalization group the action S[φ], ex-
panded on a suitable basis of operators {Oα}, changes according to

S =
∑

α

KαOα
P−→ S′ =

∑

α

K ′
αO′

α . (5)

The K’s and the O’s are coupling constants and operators defined on the bare
lattice, while their primed counterparts denote the corresponding quantities on the
blocked lattice. Repeated iteration of the RG transformation leads to a flow in the
associated coupling constants towards a fixed point {K∗}:

{K}(0) P→ {K}(1) P→ ...
P→ {K∗} . (6)

A linearized approximation to the RG transformation in the vicinity of a critical
(unstable) fixed point:

δK(k+1)
α = K(k+1)

α − K∗
α ≃

∑

β

∂K
(k+1)
α

∂K
(k)
β

∣

∣

∣

∣

∣

∣

K=K∗

δKβ ≡
∑

β

Tαβ δK
(k)
β , (7)

yields an eigenvalue equation for the stability matrix Tαβ,

∑

β

Tαβ ui
β = λi u

i
α. (8)

An eigenvalue λi, corresponding to a relevant operator ui
α in the effective action,

defines a critical exponent yi associated with the fixed point: λi = b yi , where
b = N (k)/N (k+1) is the volume blocking factor.

For some simple systems one may be able to write down an exact expression
for the projection operator P and determine the critical properties explicitly from
the stability matrix. In general, though, this is not possible. For dynamical trian-
gulations, where the blocking involves both the geometry and the fields living on
the surface, this task is even more complicated. Especially since, as discussed in
next section, an explicit form of a projection operator for blocking the geometry is
not available. For these reason we resort to a Monte Carlo Renormalization Group
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Figure 2: Node decimation: A sequence of link-flips around the selected node i reduce its
coordination number to three. Then the node is removed, leaving a new triangle in its place.

procedure. This allows the determination of the elements of the stability matrix
through Monte Carlo simulations in combination with a local blocking method for
both the fields and the geometry:

∂〈O(k+1)
γ 〉

∂K
(k)
α

=
∑

α

∂K
(k+1)
α

∂K
(k)
β

∂〈O(k+1)
γ 〉

∂K
(k+1)
α

, (9)

where

∂〈O(k′)
γ 〉

∂K
(k)
α

= 〈O(k′)
γ 〉〈O(k)

α 〉 − 〈O(k′)
γ O(k)

α 〉 . (10)

3.1 Blocking the Geometry

In dealing with fields on a dynamical triangulation we need a renormalization group
prescription that integrates out the small scale feature of both the geometry and of
the field configuration while preserving the large scale physics. The prescription we
apply separates these two tasks. We first block the geometry independently from
the fields by removing nodes at random, then assign new blocked scalar fields to
the renormalized lattice. In this way the blocked triangulation serves as an inert
scaffold for the field blocking. This method has previously been applied to an Ising
model coupled to dynamical triangulations, where it yielded surprisingly accurate
estimate of the critical properties of the model [2].

The general idea for blocking the lattice geometry utilizes a scheme called node

decimation. This proceeds by randomly picking nodes and removing them from the
triangulation. Removing a node with a coordination number q will leave a q–sided
hole; that hole must be randomly triangulated. In practice, this is done by randomly
flipping links around the selected node until its coordination number is reduced to
three. Now when the node is removed the three-sided hole in the triangulation can
be replaced by a triangle. This is illustrated in Figure 2. This procedure is then
repeated until a fraction of the nodes, corresponding to a desired blocking factor b,
has been removed.

The link-flips in the intermediate step are performed independent of the scalar
fields residing on the adjacent nodes. This amounts to choosing the different re-
triangulations of the polygonal hole with equal probability provided no geometric
constraint is violated — demanding that the result is a combinatorial triangulations

5



may restrict the possible re-triangulations. As this restriction is non-local, it is
not possible to write down an explicit projection operator for the node decimation.
Alternative weight distributions for the re-triangulations where explored in Ref. [2];
however, the observed critical behavior was not very sensitive to the particular
choice.

This blocking method is justified a posteriori by verifying that it preserves the
long distance physics, or the fractal structure, of the geometry. This we do in
Section 4.1.

3.2 Blocking the Scalar Fields

For the scalar fields we have applied a linear RG transformation to assign the block
lattice fields. For a node i that survives the decimation procedure a new scalar field
φ′

i is constructed as a function of the original fields φ on the bare lattice:

φ′
i = ξ



αφi + (1 − α)
1

qi

qi
∑

j=1

φj



 +
χ√
aw

. (11)

Here ξ is an overall rescaling of the fields, and α determines the relative weight
between the contribution of field on the bare lattice node i and the contribution
from its bare lattice neighbors φj. Notice that blocking is stochastic — χ is a
Gaussian random noise with 〈χ2〉 = 1. The amplitude of the noise depends on a
auxiliary parameter aw.

The RG transformation Eq. (11) can be expressed in terms of a projection oper-
ator

P
[

φ′, φ
]

= exp



−aw

2

∑

i



φ′
i − ξ



αφi + (1 − α)
1

qi

qi
∑

j=1

φj









2

 , (12)

and depends on three parameters: α, ξ and aw. As these parameters are crucial for
a successful blocking procedure it is necessary to establish some criteria for how to
choose their optimal values:

(i) The relative weight α, between the contribution from the fields on the initial
bare lattice node and on its neighboring nodes, must be chosen appropriate for the
particular geometric blocking factor b = N ′/N being used. Clearly as b → 1, α
should approach one, and as b grows α should decrease. However, we have found
that in practice this scheme is fairly robust under reasonable choices of α. In this
paper we us α = 0.5.

(ii) The amount of noise in the blocking procedure is controlled by the parameter
aw. In general each choice of aw will lead, under renormalization, to a local fixed
point. This results in a line of fixed points, all corresponding to the same continuum
limit but differing in the range of their interactions on the lattice. For an optimal
RG transformation the value of aw should correspond to as local effective action
as possible and, in addition, should bring us in a vicinity of a fixed point with a
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minimal amount of blocking. In practice, the optimal value a∗w is determined as
the one yielding the most rapid convergence of the eigenvalues λi in the blocking
procedure.

(iii) The most difficult is the determination of an appropriate value for ξ — the
field renormalization constant. In general, an arbitrary choice of ξ will produce fixed
point behavior, but only with one choice, ξ∗ will the action flow towards the non-
trivial, local fixed point representing the continuum limit. Therefore simply looking
for stability of eigenvalues is not sufficient to determine ξ∗. One option is to keep
the expectation value of some long-range observable, such as the radius of gyration
〈φ2〉, fixed under the blocking (as done by Lang [5]). We use, however, an alternative
method discussed in Ref. [6]. It uses the property of the theory Eq. (1) that an
arbitrary re-scaling of the fields does not change the physical content. This implies
that the fixed point action should include a marginal operator corresponding to these
(redundant) perturbations. Associated to the marginal operator is a sub-leading
eigenvalue equal to one; requiring that such an eigenvalue exist in the spectrum of
the stability matrix provides a criteria for choosing the optimal value ξ∗.

To summarize our strategy: We determine a∗w as the value yielding the most
stable eigenvalues of the stability matrix. Using this value of aw, we then deter-
mine the correct renormalization constant ξ∗ by looking for a marginal sub-leading
eigenvalue.

In calculating the stability matrix in the MCRG analysis, we have used the
following basis of field operators:

Om =
∑

i

φi�
mφi , m = 0, 1, 2... , (13)

where

�φi =
∑

〈ij〉

φj − qiφi . (14)

Measured in lattice units, an operator φi�
mφi extends m steps away from the node

i. Hypothetically, a lattice of volume N could require a basis with operators up to
order m ∼ N1/dH ; in practice, however, including operators with m ≤ 4 proved to
be sufficient.

4 Numerical Results

We have simulated the model Eq. (1) for one and ten scalar fields on triangulations
of up to N = 4000 triangles. A typical run consisted of about five million sweeps,
each sweep includes approximately N link-flips, N Metropolis updates, and 10N
overrelaxation updates. For each volume we collected and stored few thousand
independent configurations, each of which is then blocked using a node decimation
with a volume blocking factor b = 2. Storing the configurations was essential as
it allowed us to repeat the blocking and to analyze a wide range of values of the
parameters aw and ξ.

7



Table 1: The fractal dimensions dH , for ten scalar fields coupled to dynamical triangula-
tions, after k = 0, 1, and 2 node decimations.

k dH

0 2.36(9)
1 2.29(7)
2 2.28(7)

4.1 Geometric Properties

To demonstrate that the node decimation preserves the long distance fractal struc-
ture of the geometry, we have measured two different geometric exponents: the
internal Hausdorff or fractal dimension dH and the string susceptibility exponent γs.

The Hausdorff dimension provides a measure of the intrinsic “dimensionality” of
the triangulations and is defined by the volume of a geodesic ball with radius r:
v(r) ∼ rdH . A convenient way of measuring dH in numerical simulations is provided
by the node-node distribution function n(r,N) — the number of nodes at a geodesic
distance r from a marked node. Simple scaling arguments [7, 8] imply that

n(r,N) = N1−1/dH f
( r

N1/dH

)

, (15)

and dH is determined as the value that optimally “collapses” distributions n(r,N),
measured on different lattice volumes, on a single scaling curve. Notice, however,
that in determining dH on blocked triangulations only distributions n(k)(r,N) cor-
responding to the same amount of node decimation k should be included in the
analysis.

In Table 1 we show the measured values of the fractal dimensions for D = 10
and node decimation k = 0, 1, and 2. For ten scalar fields coupled to dynamical
triangulations, the geometry is expected to degenerate into branched polymers with
dH = 2. This is in reasonable agreement with what we observe, dH ≈ 2.3, especially
as we use triangulations of relatively modest size2. The important observation is
that the estimate of dH does not change notably as the node decimation is iterated.

The string susceptibility exponent γs defines the leading singular behavior of
the grand-canonical partition function: Z(µ) ≈ Zreg + (µ − µc)

2−γs . This in turn
implies that the canonical partition function behaves asymptotically as: Z(N) ∼
exp(µcN)Nγs−3. A powerful method to measure γs is provided by the distribution
of minimal neck baby universes — a part of the triangulation connected to the rest
via a minimal neck consisting of three links. The distribution of baby universes of
size B on a triangulation of total volume N can be written as [10]:

bN (B) ≈ B Z(B) (N − B) Z(N − B)

Z(N)
∼ (N − B)γs−2Bγs−2. (16)

2The Hausdorff dimension usually requires much larger triangulations for its accurate determi-
nation, especially if its value is large. This prevented us from measuring dH for a single scalar field,
where numerical simulations indicate dH ≈ 4 [9].
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Figure 3: Measured values of the string susceptibility exponent γs versus the number of
node decimations k, for zero, one and ten scalar fields coupled to 2d–gravity.

By measuring the distribution bN (B) on a fixed volume, γs is determined by a fit
to Eq. (16) [11].

We measured γs for D = 0, 1, and 10, and for up to six iterations of the node
decimation3. The result is shown in Figure 3. And, just as for the fractal dimension,
the values of γs proved to be remarkable stable as the blocking procedure is iterated,
in some cases even after as much as 98% of the triangulation has been removed
(k = 6). Combined, the measurements of dH and γs provide strong evidence that
the fractal structure is indeed preserved under this blocking scheme for both the
models we consider.

4.2 Stability Matrix for the Matter Sector

We now turn to the blocking of the matter fields following the prescription in Sec-
tion 3.2. We calculate the stability matrix Tαβ(φ, φ′) using the basis of operators
Eq. (13). In principle, on a finite lattice operators of order m . N1/dH could be
included in the analysis; in practice, though, working with a large basis of opera-
tors is troublesome as it frequently leads to the appearance of complex (unphysical)
eigenvalues. This necessitates a truncation of the basis; we found that including four
operators provided sufficient overlap with the relevant operators in the fixed point
action. We use a bare lattice of volume N (0) = 4000, and a sequence of blocked
lattices: N (k) = 2000, 1000, 500, and 250, produced by k = 1, 2, 3, and, 4 node dec-
imations, respectively. The field blocking was repeated several times using different

3For one scalar field the determination of γs is complicated by logarithmic corrections to the
free energy Eq. (1). This requires a fit to a more complicated functional form than Eq. (16), which
in turn reduces the precision with which γs is determined [11].
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Table 2: The two largest eigenvalues of the stability matrix, λ1 and λ2, for one scalar field
(cM = 1), for different values of the parameter aw, after up to four RG iterations k. A field
renormaliztion ξ = 1.00 and basis of four field operators Om is used in calculating Tαβ .

λ1 λ2

aw k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
4 1.976(6) 1.961(16) 1.944(13) 1.927(25) 0.11(1) 0.24(5) 0.39(5) 0.40(4)

10 1.991(8) 2.002(10) 1.964(13) 1.987(19) 0.38(2) 0.49(4) 0.55(3) 0.55(4)
24 1.991(7) 1.994(8) 2.016(10) 1.980(16) 0.70(2) 0.78(3) 0.80(3) 0.81(2)
32 2.001(5) 1.991(9) 1.995(8) 2.001(12) 0.81(3) 0.81(3) 0.83(3) 0.83(3)
70 1.992(5) 1.988(8) 1.971(13) 1.974(15) 0.91(5) 0.97(3) 0.94(3) 1.02(3)

100 1.995(6) 2.001(8) 1.980(8) 1.975(14) 0.94(4) 1.02(3) 1.00(3) 1.00(2)
130 1.992(6) 1.998(5) 1.991(10) 1.980(19) 0.97(5) 0.99(4) 1.02(3) 1.00(2)
200 1.992(5) 1.992(7) 2.005(8) 1.997(16) 1.01(4) 1.04(3) 1.02(3) 1.03(3)
400 1.998(7) 1.984(9) 2.002(9) 1.973(11) 0.99(4) 1.04(3) 1.04(2) 1.07(3)

1000 1.992(5) 2.002(6) 1.976(8) 1.964(20) 1.05(4) 1.02(3) 1.00(3) 1.05(3)
10000 1.986(5) 1.999(8) 1.998(8) 1.991(15) 1.03(5) 1.02(4) 1.08(3) 1.02(2)
40000 1.990(5) 1.999(6) 2.001(9) 1.989(15) 0.99(7) 0.98(5) 1.04(4) 1.05(3)

sets of parameters, aw and ξ, to determine their optimal values.
The simulations of one scalar field, cM = 1, served as somewhat of a test case as

analytical results are available. We found the leading and sub-leading eigenvalues,
λ1 and λ2, to be remarkably insensitive to the choice of aw, as long as aw > 50.
This is demonstrated in Table 2. This lower limit is understandable as for values
of aw < 50 the noise term in Eq. (11) becomes comparable in magnitude to the
fields themselves. It is, on the other hand, rather surprising that suppressing the
noise altogether, choosing aw ≫ 50, yields equally stable eigenvalues. Naively, one
expects that a fully deterministic blocking, aw = ∞, should lead to a less local fixed
point action [6]. However, contrary to blocking scalar fields on a regular lattice,
the randomness in blocking the geometry may introduce sufficient noise to limit the
range of the interactions in the fixed point action.

The two leading eigenvalues do, on the other hand, depend strongly on the field
renormalization constant ξ. This we show in Table 3 for different values of ξ and
using, as a reasonable amount of noise, aw = 100. Using the criteria that there
should exist a (stable) marginal sub-leading eigenvalue, λ2, we judge the optimal
value to be ξ∗ = 1.00(3). The quoted error indicates the interval where λ2 differs
from unity by one standard deviations.

The combination, ξ∗ = 1 and a∗w = 100, yields a leading eigenvalue λ1 =
1.980(8)(90)(10). The numbers in the parentheses give the statistical error on λ1,
and the errors due to the uncertainty in ξ and aw, respectively. The stability of the
two leading eigenvalues under repeated RG iterations is shown in Figure 4.

We studied the model with ten scalar fields using the same procedure. The
stability under blocking of the leading and sub-leading eigenvalues is shown for
different amount of noise aw in Table 4. We select the value aw = 100 as the
most optimal, though again, values of aw > 100 all seem to produce relatively
stable eigenvalues. In contrast to the cM = 1 model, however, for cM = 10 even
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Figure 4: The two leading eigenvalues of the stability matrix for one scalar field (cM = 1),
calculated using aw = 100 and ξ = 1.00, versus the number of RG iterations k.

Table 3: Same as in Table 2, except for varying field renormalization ξ but fixed amount
of noise aw = 100.

λ1 λ2

ξ k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
0.92 2.360(8) 2.350(10) 2.361(10) 2.340(22) 1.09(6) 1.14(4) 1.14(3) 1.11(4)
0.96 2.175(6) 2.166(10) 2.156(10) 2.148(20) 0.94(6) 1.09(4) 1.07(2) 1.08(2)
0.98 2.085(6) 2.076(6) 2.078(13) 2.064(18) 0.97(5) 1.06(3) 1.01(2) 1.04(3)
1.00 1.995(6) 2.001(8) 1.980(8) 1.975(14) 0.94(4) 1.02(3) 1.00(3) 1.00(2)
1.02 1.925(8) 1.907(6) 1.900(7) 1.903(13) 0.87(5) 1.00(4) 0.97(3) 0.99(2)
1.04 1.855(6) 1.848(4) 1.845(10) 1.837(13) 0.89(4) 0.93(3) 0.94(1) 0.95(2)
1.08 1.715(4) 1.705(5) 1.710 (8) 1.700(9) 0.84(4) 0.90(3) 0.89(2) 0.86(3)

using a bases of only four field operators leads occasionally complex and unphysical
eigenvalues. This appears usually in the first iteration of the field blocking and for
the sub-leading eigenvalue λ2. We took this as indicating that the bare system is
not sufficiently close to the critical fixed point for the linear approximation Eq. (7)
to be valid; this observation is supported by the large change in the eigenvalues in
the first iteration. This is not terribly troubling, though, as one can choose aw such
that in the successive blocking all of the eigenvalues are real.

In Table 5 we show the variation in the eigenvalues with the field renormalization.
Using the same analysis as we did for cM = 1, we find that ξ = 0.92(4) gives a sub-
leading eigenvalue close to unity for cM = 10. This value, combined with aw = 100,
corresponds to a leading eigenvalue λ1 = 2.36(20). Here we just quote the dominant
error due to the uncertainty in determining ξ∗. In Figure 5 we show the stability of
the two largest eigenvalues as the fields are blocked using ξ∗ = 0.92 and a∗w = 100.
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Table 4: Same as in Table 2, except for ten scalar fields, cM = 10, and a different field
renormalization, ξ = 0.92. The asterisk indicates a complex eigenvalue.

λ1 λ2

aw k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
4 2.361(4) 2.339(8) 2.323(17) 2.290(21) 0.041(12) 1.27(11) 1.12(11) 1.07(14)

24 2.366(3) 2.360(6) 2.345(7) 2.337(10) 0.32(5) 1.23(10) 1.22(11) 0.95(9)
32 2.361(4) 2.347(5) 2.355(7) 2.350(10) 0.46(48) 1.41(27) 1.02(18) 1.07(17)
70 2.353(4) 2.352(6) 2.350(6) 2.352(11) 0.64(7) 1.30(23) 0.95(11)∗ 1.02(4)

100 2.360(3) 2.359(5) 2.359(9) 2.332(10) 0.63(3)∗ 1.05(7)∗ 1.01(5) 1.00(3)
130 2.360(4) 2.351(5) 2.362(8) 2.331(10) 0.69(3)∗ 1.07(9) 0.95(5) 1.08(3)
200 2.363(4) 2.357(6) 2.334(6) 2.344(14) 0.73(5)∗ 1.02(5) 1.07(4) 1.09(3)
400 2.356(3) 2.358(6) 2.359(8) 2.349(8) 0.92(5)∗ 0.96(5) 0.99(4) 1.06(3)

1000 2.351(4) 2.354(4) 2.351(10) 2.339(11) 0.94(6)∗ 0.87(8)∗ 1.01(3) 1.09(3)
10000 2.365(4) 2.352(5) 2.351(6) 2.341(13) 0.87(8)∗ 0.94(6) 1.02(4) 0.93(8)

∞ 2.354(4) 2.360(6) 2.356(8) 2.334(11) 1.00(7)∗ 1.01(8) 1.05(3) 1.01(4)

Table 5: Same as in Table 4, except for variable field renormalization ξ and using fixed
amount of noise, aw = 100.

λ1 λ2

ξ k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4
0.84 2.823(4) 2.831(9) 2.813(11) 2.790(10) 0.62(5)∗ 1.09(4)∗ 1.10(12) 1.12(4)
0.88 2.578(3) 2.581(5) 2.582(6) 2.567(11) 0.76(12) 0.99(8) 1.09(7) 1.06(5)
0.90 2.467(4) 2.463(6) 2.463(9) 2.426(13) 0.72(9) 1.06(11) 1.08(6) 1.13(5)
0.92 2.360(3) 2.359(6) 2.359(9) 2.332(10) 0.63(3)∗ 1.07(5)∗) 1.01(5) 1.00(3)
0.94 2.169(3) 2.179(6) 2.164(6) 2.162(12) 0.62(11)∗ 1.16(8) 1.00(8) 0.94(4)
0.96 2.169(3) 2.179(6) 2.164(6) 2.162(12) 0.53(4)∗ 1.21(30) 1.00(6) 0.94(3)
1.00 1.993(3) 1.996(5) 1.986(7) 1.990(8) 0.58(3)∗ 0.91(9) 0.83(6)∗ 0.87(4)

Additional evidence for a fixed point structure is provided by the flow of the op-
erators, Eq. (13), as the field blocking is iterated. This is demonstrated in Figure 6
for the expectation value of the operator O1 = 〈φi�φi〉, both for cM = 1 and 10.
Notice that in order to eliminate undue influence of geometric finite-size effects, we
only compare operators measured at the same blocked lattice volume, N (k) = 250,
but which corresponding to different amount of node decimation. For both models,
the value of the operator changes substantially in the first blocking iteration; this
indicates that bare model is relatively far away from the critical fixed point This
effect is more pronounced for the cM = 10 model, as discussed earlier. However, al-
ready after the second blocking of the fields, the operators appear to have converged
to their fixed point values.

5 Discussion

Although there exists no analytic RG calculation for dynamical lattices, using the
results of matrix model calculations one can nevertheless predict the appropriate
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Figure 5: The two leading eigenvalues of the stability matrix for ten scalar fields (cM = 10),
using aw = 100 and ξ = 0.92, versus the number of RG iterations k.

value of ξ, the field renormalization constant, for the case cM = 1. Additionally,
simple dimensional arguments yield an estimate of some of the eigenvalues of the
stability matrix.

First lets look at the origin of the length dimension in the lattice fields. On the
bare lattice we simulate a system with fields governed by the continuum action (let
us take the internal dimension d to be arbitrary for the moment),

Scont =

∫

ddx
√

g (∂φcont(x))2 . (17)

If we scatter points separated by a distance h throughout the manifold, we can
approximate this action by

Scont ≈
∑

<i,j>

1

h2
(φcont(xi) − φcont(xj))

2 hd. (18)

To write this in terms of lattice fields, as we did in Eq. (2), requires

φcont = φlath
2−d
2 . (19)

The continuum field, φcont, has length dimension β = −η/2 defined by the scaling
of the geodesic two-point function,

〈φcont(xi) φcont(xj)〉 ∼ r−η
ij . (20)

This implies that a change of the length scale of problem, h → sh, should induce a
change of scale of the (continuum) fields:

φcont → φconts
−β. (21)
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Figure 6: The “flow” of the (normalized) operator O1 = 〈φi�φi〉 for both one and ten
scalar fields. All the measurements are done on triangulations of volume 250, generated by
different amount k of node decimation from bare lattices of volume 2k250. The fields are
blocked using aw = 100, and ξ = 1.00 and 0.92 for c = 1 and 10 respectively.

For this to occur, the lattice fields must re-scale under such a change like

φlat → φlats
d−2

2
−β. (22)

In our lattice simulation we do not have direct access to the length scale, but we
do have access to the volume scale. So on a lattice with fractal dimension dH , a
volume rescaling of b = sdH requires the fields be rescaled like

φlat → φlatb
d−2−2β

2dH , (23)

The implication then, is that in d = 2 the field renormalization constant

ξ = b
− β

dH , (24)

This is a generalization of the field renormalization constant given in Ref. [14].
Consider first the case cM = 1. If we assume the action to be dimensionless,

then we can count dimensions to show that the undressed length dimension for a
Gaussian field in a flat two-dimensional space is zero:

S =

∫

d2x(∂φ)2 =⇒ β0 = 0. (25)

In the presence of quantum gravity, however, the field will in general develop an
anomalous length dimension. For cM ≤ 1 we can use the well known KPZ [1]
scaling relations:

β − β(1 − β)

1 − γs
= β0, (26)
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with

γs =
1

12

(

cM − 1 −
√

(25 − cM )(1 − cM )
)

, (27)

to find β, the dressed field dimension. So for cM = 1,

β = β0 = 0, (28)

implying ξ = 1. For cM = 1 our MCRG result of ξ∗ = 1.00(3) can be taken as an
independent numerical determination of β consistent with Eq. (28). For cM = 10,
our result of ξ∗ = 0.92(4) would suggest that β

dH
= 0.12(6).

Although meaningful analytical results are not available for cM > 1, simple
dimensional arguments showing consistency of our cM = 10 results. Consider the
operator O0 = 〈∑i φ

2
i 〉. From the analysis of the eigenvectors of the stability matrix

this is essentially the operator corresponding to the leading eigenvalue. The simplest
ansatz for its behavior under scaling follows from the scaling of the field in Eq. (23)

O0 → b
− 2β

dH
−1

O0 .

The corresponding coupling constant gO0
in a dimensionless action should re-scale

inversely, like

gO0
→ b

1+ 2β

dH gO0
, (29)

suggesting that the leading relevant eigenvalue should be

λO0
= b

1+ 2β

dH . (30)

The extra factor of b is due to the change of the sum over N nodes to a sum over
N ′ = N/b nodes.

We note that substituting β/dH = 0, for cM = 1, and β/dH = 0.12, for cM = 10,
gives λO0

= 1.98(10) and λO0
= 2.36(20), respectively. This is remarkably consistent

with the leading eigenvalues we obtained for both cases.
The remaining check that we can institute is that the critical exponents extracted

from the eigenvalues of the stability matrix are consistent with those obtained
through finite-size scaling analysis. Simple arguments show that if an operator
O at criticality scales like

〈O〉 ∼ Nµ (31)

on lattices of volume N then there should be a leading eigenvalue

λ1 = bµ. (32)

Consider the leading operator O0, again for cM = 10. Its finite-size scaling is shown
in Figure 7 and yields an exponent µ = 1.25(1). This is consistent with the leading
eigenvalue λ1 = 2.36(20) extracted from the stability matrix (Figure 4.2).
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Figure 7: The volume scaling of the operator O0 = 〈∑i φiφi〉 measured on bare triangula-
tions with cM = 10. The straight line is a fit 〈∑i φiφi〉 ∼ V 1.25(1).

6 Conclusions

We have successfully extended the renormalization group scheme for dynamical tri-
angulations based on node decimation to the case of continuous scalar fields coupled
to two-dimensional gravity. Results for the wave function renormalization constant
ξ and hence η

dH
together with the leading eigenvalue of the stability matrix are ob-

tained for cM = 1 and cM = 10 which are consistent with theoretical expectations.
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