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Abstract

We verify that summing 2D DT geometries correctly reproduces the Polyakov
action for the conformal mode, including all ghost contributions, at large volumes.
The Gaussian action is reproduced even for ¢, = 10, well into the branched
polymer phase, which confirms the expectation that the DT measure is indeed
correct in this regime as well


http://arXiv.org/abs/hep-lat/9906032v1

Introduction. In the last decade there has been considerable progress in our understanding of two
dimensional quantum gravity (2DQG). The key element that has made this progress possible is
the recognition that the trace anomaly requires the effective action of 2DQG to be augmented
by a well-defined nonlocal term [fl],

Smom = 1% / /g / & \/=g' R(x) O (z,2') R(x') . (1)

Because this action is conformally invariant, and the massless scalar propagator O~!(z,z’) ~
log(x — 2/)? in two dimensions, S,,om is relevant (strictly, marginal) in both the infrared and
ultraviolet, and leads to nontrivial scaling of the distribution of random geometries in the path
integral for 2DQG.

This scaling behavior has been found analytically in the continuum, both by canonical op-
erator methods for the current algebra of the energy-momentum tensor [Pf], and by covariant
conformal field theory methods for the Euclidean correlation functions [f. The former KPZ
approach exposes the relation of the parameter Q2 to the unique central extension of the current
algebra of diffeomorphisms on the 2D world sheet,
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where ¢, is the central charge of the matter representation. For free matter c,, is the integer
number of free boson or fermion fields: ¢,, = Ny + Ny. The value of Q? = % for ¢,, = 0 is the
value for pure 2DQG.

The second covariant approach to 2DQG is more closely related to the statistical properties
of the ensemble of 2D geometries, and may be checked by a numerical Monte Carlo method
applied to a discretized Euclidean worldsheet [fl]. In this approach fluctuations of the worldsheet
are modelled by performing a sum over a set of dynamical triangulations (DTs). The DT
numerical simulations agree with the continuum scaling predictions in all important respects [f].
In particular, correlation functions of conformal operators acquire well-defined anomalous scaling
dimensions, which can be computed in terms of @* and agree with (B), including the miminal
models for which ¢,,, = 1—6/n(n+1) < 1, where n is an integer n > 2. What is remarkable about
this agreement is that the anomalous action ([l) which gives rise to the ‘gravitational dressing’
of conformal operators in the continuum is not inserted into the discretized action of the DT
simulation by hand, but instead must be generated automatically with the correct coefficient by
the integration measure on the space of geometries in the DT approach.

Despite the satisfactory agreement between theory and the DT approach for correlation
functions in 2DQG, one would like to demonstrate explicitly the appearance of e%mom in the
measure of 2DQG, particularly for ¢,, > 1, where the continuum scaling relations become complex
and the interpretation of the theory becomes much less clear. This is our main purpose in this
Letter.

For studying this question in more detail it is useful to introduce the conformal parameteri-
zation of the metric,

Q2

Gab = 62U§ab 5 (3)

where g4 is a fixed fiducial metric which depends only on the global topology of the two dimen-
sional Euclidean manifold. Since all two-manifolds are locally conformally flat, there is a local



coordinate patch around every point where the fiducial metric has the form .. A finite number
of such coordinate patches and global (Teichmuller) moduli parameters are required to describe
the fiducial metric in any given topology, but all local deformations of g, are contained in the
conformal factor e?*®). The Ricci scalar is given by

R=e¢*(R-200)=¢*R~-200 (4)

in the parameterization (fJ), where the overbars refer to the fiducial metric g, and the absence
of an overbar refers to the full metric g,. It is a theorem in 2D Riemannian geometry that for
any smooth manifold with given continuous R(z), a unique solution to the nonlinear equation
for o () exists such that R is everywhere a specified constant [§]. This constant is necessarily
positive for closed manifolds with no handles, i.e. with the topology of the sphere S?, zero for
closed manifolds with one handle, i.e. with the topology of the torus 72 and negative for closed
manifolds with more than one handle. The uniformization (Yamabe) theorem assures us that we
can construct the conformal factor e uniquely for every 2D closed manifold of fixed topology.

In the conformal parameterization and Euclidean signature the action Sy, becomes

Spl0] = —Sunom = % [ 2 G lo(~0) o + Ro] + const. (5)

which is local and quadratic in . Hence in this variable the distribution of geometries in the
path integral for 2DQG is the same as that of a free scalar field with a well-defined normalization.
As long as ()? is positive this Gaussian distribution is bounded on closed Riemannian manifolds,
as is clear upon integration of the quadratic term in (f]) by parts.

Smooth geometries and the classical limit to 2DQG are recovered only in the large Q2 limit,
Q? — oo (¢, — —0), where the fluctuations in the conformal factor become suppressed. The
25 in (B) for pure 2DQG can be understood in the conformal gauge as arising from 26 from
the ghosts of Faddeev-Popov gauge fixing and —1 for ¢ field itself, which contributes to the
anomalous action as would one additional matter scalar degree of freedom, lowering the effective
value of Q2. Although the KPZ scaling relations become complex for ¢,, > 1, nothing singular
occurs in the action Sg as ¢, is raised above 1 and @? is lowered below 4, However, a heuristic
argument based on the competition of action and entropy of singular ‘spike’ solutions to the
classical equations following from Sp suggests that at the critical value Q% = 4 the theory
undergoes a BKT-like phase transition [[] to a phase dominated by elongated extrusions of the
2D world sheet, since the entropy of these configurations first exceeds their action at this value
of @? [B]. Hence for Q* < @2, the typical 2D geometry would be expected to be very far from
smooth, resembling instead a multiply branched polymer. This branched polymer phase is seen
also in the DT simulations for ¢,,, > 1 [[].

The significance of the critical value, ¢,, = 1 may also be understood from a canonical
perspective on Lorentzian signature 2D manifolds. In the absence of matter the quadratic theory
specified by the anomalous action Sg,.m is overconstrained. This is clear from the fact that
the metric is a 2 x 2 symmetric matrix which has three independent components, ggo, g11 and
Jgo1 = g10- T'wo of these are isomorphic to pure gauge diffeomorphisms of the 2D worldsheet and
can be removed. This leaves one independent componen which can be taken to be the conformal
mode o, but its dynamics is constrained by the two first class constraints in the (00) and (01)
components of the Euler-Lagrange equations following from Sg;,0,. These are the 2D lapse and



shift constraints to be imposed on the phase space in the canonical treatment of a theory with
diffeomorphism invariance. Hence there are finally 3—2—2 = —1 local degrees of freedom in pure
2DQG described by the Polyakov action ([l]), or in other words the theory is overconstrained and
possesses no local degrees of freedom. When free matter fields are added the theory has ¢, — 1
local degrees of freedom and the conformal mode first can fluctuate locally when ¢,, > 1, which
coincides with the BKT phase transition critical value, Q? < Q2. = 4 In this branched polymer
phase where the conformal spike configurations become ‘liberated,” 2DQG becomes sensitive to
its UV cutoff and a smooth continuum limit at large distance scales presumably does not exist,
unless higher derivative UV relevant operators or an explicit UV cutoff are introduced.

In the DT discretized approach to 2DQG the UV cutoff is supplied by the lattice scale a,
while the IR behavior is controlled by the total 2D volume, i.e. the sum of areas of all the
triangles in the ensemble. If the interpretation of the ¢,, = 1 ‘barrier’ given above is correct we
would expect the distribution of o fields on the lattice to remain Gaussian with a well-defined
width determined by Sg in the large volume limit, even in the branched polymer phase where
the typical geometries are irregular on the lattice scale. To check this hypothesis requires finding
the conformal factor by solving the Yamabe equation () on each geometry in the DT ensemble
and reconstructing the distribution of ¢ in the ensemble. Besides casting some light on the case
¢m > 1 the construction of this Gaussian distribution in ¢ would provide explicit confirmation of
the identity of the continuum and lattice approaches, independently of any correlation functions
or expectation values of observables. Preliminary studies of this distribution were reported in
Refs. [[0,LT)].

We have an additional motivation for the construction of this distribution in ¢ from the
analysis of the conformal anomaly generated action in 4D. At the infrared fixed point of this
4D action the conformal factor distribution is again predicted to be Gaussian with a width
determined by the analogous anomaly coefficient in 4D [[J]. In the conformal parameterization
(B) the 4D action analogous to (J) is

Q2

Sglo]p=4 = (4r)? /d4z\/§ l0As0 +3(G — 20R)o] (6)

with the contribution to the coefficient from the number of massless conformal scalar (Ng), Weyl
fermion (Nwr) and vector (Ny) fields given by

Qb—y = ﬁ( s+ S Nwr + 62Ny —28) + Q2. (7)
and ngv the contribution of gravitons. In (f) G is the Gauss-Bonnet invariant and Ay =
02 + 2R®V,V, — %lez + %(V“R)Va is the unique fourth order conformally covariant operator
in 4D which has a logarithmic propagator, analogous to O in 2D. The action (f) is therefore
relevant (strictly, marginal) in the IR and leads to nontrivial scaling of the cosmological and
Newtonian ‘constants’ at large distance scales [[J]. These scaling relations become complex for
Q%_, < 8, analogous to Q? < 4 in 2D, with the important difference that additional matter
fields take us into the smooth phase in 4D but the irregular branched polymer phase in 2D, since
matter contributes positively in ([) but negatively in (B). Moreover, singular ‘spike’ solutions
also exist in this 4D conformal theory and their entropy exceeds their action at precisely the
same critical value at which the scaling relations become complex [14].



Since the DT program in 4D has not met with the same level of success as in 2D, it would
be an important check on the model to construct the distribution of the conformal factors gen-
erated by the DT algorithm to determine if it is consistent with the continuum trace anomaly
and action (f]) in 4D. A positive result would provide a method of determining the contribution
of the gravitons @Q7,,, to the Gaussian width as well. Clearly the situation is quite a bit more
complicated in 4D and will require a careful disentangling of the graviton degrees of freedom in
addition to o, but the basic idea of the reconstruction of the metric of each member of the DT
ensemble is similar in higher dimensions, and the method should be tested first in the 2D case
which is the most complete and best understood model of QG which we have at the present time.

Dynamical Triangulations. In the dynamical triangulation approach to 2DQG one constructs
an ensemble of discretized geometries, each one of which consists of regular two-simplices, i.e.
equilateral triangles, glued together at their edges. If the length of any side of one of the triangles
is a then its area is Ay = v/3a?/4. If Ny = N is the total number of vertices in the lattice then
the total number of links is N7 = 3(N — x,,) and the total number of triangles is Ny = 2(N —x,,),
where

Xe = - /d%fRﬁZ(l——) NO—? (8)

is the Euler character of the triangulation and ¢; is the coordination number of the vertex ¢, i.e.
the number of neighoring vertices to which it is connected by a single link. Hence Y, ¢; = 2V,
since each link is counted twice in this sum. In the following we restrict ourselves to spherical
topology S? for which y, = 2.

In the dual lattice the area of the cell associated with the vertex i is

(Payg) — A= 5 Aa | (9)

and the scalar curvature concentrated at the vertex 7 is
2T
¢GiAA

RZ’ — (6 - qi) y (10)
which together are consistent with (§). When ¢; = 6 the vertex has no curvature associated with
it, since 6 equilateral triangles joined at the vertex tile a local region of flat space.

The scalar Laplacian on the lattice site ¢ can be represented as a sum over its ¢; nearest

neighbors j(i) as [[L]

2V3
Z YR ;@i% — Cij)oj (11)

qZAA i@)

(—00);

where Cj; is the coordination or adjacency matrix, equal to one if ¢ and j are connected by a
single link and zero otherwise. Hence the Yamabe equation (f]) on the lattice becomes

2w Eqi
= (6—g¢q)—
5 6—a)——

2Mijaj = AA 6_20i (12)
after multiplication through by A;. Here, we have defined the matrix,
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Mij = % (%‘52‘]‘ - Ci') (13)

The left side of Eq. ([3) vanishes when summed over ¢. Hence we obtain the constraint,

RA _
8T = — 23 ge > =RAAN, , (14)

)

where the last relation follows from the lattice version of [ ,/ge™?7 = [ /g — AaN,. Thus if R
is held constant in the continuum limit, Ny — oo and Ax ~ 1/Ny — 0. This implies that we
scale the lattice spacing to zero like the inverse square root of the number of triangles.

The ensemble of configurations for the fixed area partition function is generated by a Monte
Carlo simulation which updates the geometry at fixed large Ny using link flips with unit proba-
bility, 7.e. no gravitational action is used to weight the configurations. To couple matter we just
dress the vertices with ¢, free scalar fields coupled by the usual Gaussian action using the scalar
Laplacian ([). A combined heat bath and overrelaxation algorithm was used to simulate the
scalars. For each of the runs we generated 10,000 configurations separated by 100 Monte Carlo
sweeps. Lattices of size with Ny = 100, 200, 400, 800, and 1600 triangles were used.

For each configuration in the ensemble the conformal mode was constructed by solving ([3)
by a modified Newton-Raphson iteration scheme. In order to compare the results with the
anomalous action Sy, the conformal mode is decomposed into eigenmodes of the round sphere

Laplacian, —0O = —%D = —e??[0. A symmetrized version of this operator on the lattice can
be defined by

3 e7itai
An /TG
The spectrum {\*} and eigenmodes {ut} of this operator were computed,
Liju§ =N Uf ] (16)

with the modes taken to be orthonormal with respect to a measure which is just the lattice
version of /g = %6_2‘” Aa. Finally the overlap of o; on this set of modes uf was computed, using
the expression,

Ué:/dzzc yuéaﬁz&e_%i ut o . (17)

It is often convenient in numerical calculations to work with dimensionless quantities of,,, =
AA_%UZ and Agiate = Aa)e corresponding to the operator AxL;; and lattice measure %6_2‘”.

According to the Polyakov-Liouville action S,,,m, the amplitude of each mode should be
distributed as

exp —Q—2 PRy (Ué)z (18)
4 =
To check this we rescaled each amplitude ¢ by multiplying by ()\g)% and calculated the frequency

distribution for this rescaled (dimensionless) amplitude. All rescaled mode distributions should
fit to a Gaussian with constant width determined only by Q?



In addition one can examine the zero mode amplitude ¢°. This should be governed by just
the linear term in the action Su,om (eqn. 5). This distribution is predicted to be (ignoring the
fixed area constraint)

P (Uloatt) ~ exXp {_%Uloatt} (19)

The inclusion of the fixed area constraint (eqn. 14) leads to a more complicated distribution for
the zero mode. However this constraint has little effect for large amplitudes where we expect a
simple exponential behavior.

Numerical Results. We show data for both pure 2DQG (c¢,, = 0) below the critical value of
¢m = 1 and for 2DQG coupled to ten free massless scalar fields (¢, = 10) - well above the critical
value. The fits to a Gaussian distribution in ¢ are shown in Fig. 1 and Fig. 2 respectively.
For ¢,, = 0 the fitted width using (rescaled) mode ¢ = 10 is w = 1.735(10) and corresponds

very closely to the value expected from the Liouville action w(c, = 0) = ‘/% ~ 1.7368.
Similarly the fitted width for (rescaled) mode ¢ = 8 at ¢, = 10 is w = 2.195(15) which lies just
3 standard deviations away from its predicted value w”(c,, = 10) = 2.2420. We attribute the
small discrepancy in the latter to the presence of finite size effects which appear somewhat larger
for more scalar degrees of freedom.

To examine both the finite size and mode dependence effects more closely we have plotted
in Figs. 3 and 4 the dependence of the rescaled width on lattice eigenvalue Aj., for volumes
Ny = 500 through N, = 1600. All points correspond to x? per d.o.f. of unity or less. Errors on
histograms were obtained using a bootstrap technique. Notice first that the (rescaled) widths
are relatively insensitive to the eigenvalue of the lattice Laplacian and within 10 per cent of so
of the Liouville prediction, which is indicated by the solid horizontal extending away from the
y-axis. If we focus attention on any curve corresponding to a single volume, we notice that for
small eigenvalue it climbs steeply to reach a broad peak (close to the continuum prediction as
indicated by the solid line). Thereafter it falls very slowly with increasing eigenvalue. Clearly
both lattice cut-off effects and finite size effects play a role in determining the precise shape
of the curve. This is especially true deep into the branched polymer phase with ¢,, = 10 in
Fig. 4, where the typical geometries are very irregular on the lattice scale a. We should expect
the lattice Laplacian to depart significantly from the continuum there, with the higher modes
suffering systematic deviations.

For the lower eigenvalues the fixed volume constraint which we have neglected to this point
must also be taken into account. In the continuum partition function this amounts to the
insertion of the delta function constraint, § (A — [ /ge®?) into the functional integral governed
by the action (f). In the DT simulation this constraint enters through ([4) for the background
area. Clearly this constraint couples all the modes nonlinearly and causes their distribution to
depart from a Gaussian, although it is natural to expect its effects will be larger on modes with
the longest wavelengths. In the continuum limit, defined by the process of taking the average
triangle size Ay — 0 while holding R and the continuum eigenvalue fixed, the effect of the
constraint becomes unimportant. In this limit we should examine the behavior of the eigenvalue
curves for small lattice eigenvalue. The finite size effects enforced by the constraint ([[4) prevent
us from going literally to zero lattice eigenvalue, and are responsible for the rapid turn over



of the curves at the smallest eigenvalues in Figs. 3 and 4. It is clear that for small enough
(lattice) eigenvalue the wavelength of a mode saturates at the typical linear size and hence the
rescaled width goes to zero like the square root of the lattice eigenvalue. Thus any extrapolation
procedure should utilize the smallest eigenmodes with long wavelengths that are still significantly
smaller than the lattice size. The trend of the curves in Figs. 3 and 4 with increasing volume
indicates that the modes whose widths lie close to the peak are candidates for such ‘continuum-
like’ eigenmodes. Indeed the heights of these peaks show a convergence to the value expected
from the continuum Gaussian theory.

One way to check this conclusion (and the self-consistency of the numerical calculations) is
to consider the effect of using massive rather than massless scalar fields. Fig. 5 shows a plot
of the width versus eigenvalue for a lattice with volume Ny = 1600 as a function of scalar field
mass M. The (lattice) mass parameter was set at 1.0, 0.1 and finally 0.01. We see that for
lattice eigenvalues apA > 1 all the curves are statistically similar and compatible with the data
for M = 0.0 (Fig. 4). In this region of the spectrum the lattice cannot distinguish massless from
massive, and the lattice cut-off effects dominate. However, at smaller eigenvalues apA < 1 we
see very different behavior for different masses. The widths for M = 1.0 start to differ markedly
from M = 0.1 and M = 0.01, the latter two curves themselves splitting apart for small enough
eigenvalue ap A < 0.25. We can understand this behavior by realizing that the scalar fields will
look effectively massless when their correlation length 1/M is larger than the typical linear extent
of the geometries (determined by the fixed volume). Hence the M = 0.01 curve is statistically
consistent with the exactly massless data (Fig. 4) over the entire spectrum. Its peak sits close
to the value expected for ten massless scalars ¢,, = 10. In contrast the data for M = 0.1
shows a small but significant deviation from the massless case at the smaller eigenvalues near
the peak, which is consistent with the continuum correlation length 1/M being slightly smaller
than the typical linear extent of the geometries. In this region of the spectrum the modes have
a wavelength greater than M ~! but less than the linear extent of a typical geometry in the
DT ensemble. The smaller width of the Gaussian fit for these modes is consistent with the
expectation that the massive modes should begin to decouple from the trace anomaly in the
infrared large volume limit, yielding an effective value of ¢,, smaller than that for 10 massless
scalars. For M = 1.0 the continuum peak is not observed at all for small eigenvalues, the effects
of lattice cut-off and finite volume apparently contaminating the signal even at intermediate
wavelengths. Although at this mass the lattice is a bit too crude to be completely convincing,
the data for M = 1.0 is more consistent with the width expected for pure gravity rather than for
gravity coupled to ten massless scalars, suggesting the complete decoupling of these very massive
fields from the continuum anomalous effective action ([l) at this volume. For all masses at the
largest wavelengths (smallest eigenvalues) where finite size effects should dominate, the curves
eventually turn over and head towards zero.

Thus the massive simulations support our preliminary conclusion that continuum physics is
obtained at small eigenvalue close to the peak in the width vs. eigenvalue plots, where both
lattice and finite volume effects are minimized. However it would be fair to say that we do not
have a completely satisfactory quantitative understanding of these lattice and finite size effects,
in the absence of which one may question the complete exclusion of the larger eigenvalue region of
the plots. If the shape of curve is dominated by lattice effects at all but the longest wavelengths it
is reasonable to consider the ratio of widths between ¢,,, = 0 and ¢,,, = 10 theories over the entire
eigenvalue range, expecting the leading systematic lattice effects to drop out of this ratio. A plot



of this ratio is shown in Fig. 6 which supports this idea. The fluctuations in the measured ratio
vary by only a few percent over all eigenvalues excluding the very lowest. Moreover, the ratio of

Gaussian widths is consistent with that expected from the continuum action, 252_510 ~ (.7746.

Finally the action ([)) also predicts the asymptotic form of the zero mode distribution to
be a simple exponential, controlled by the linear term in (f}), again if the effects of the finite
volume constraint ([4) is ignored. From ([4) we expect that the distribution of oy should be-
come exponentially insensitive to the constraint for large oy. A fit for large values of the zero
mode amplitude o of the logarithm of its distribution for ¢,, = 0 is shown in Fig. 7. The data
corresponds to a simulation with Ny = 800 simplices. The slope of 0.304(10) compares well with
the expected value from the continuum, 0.295. The same mode for ¢,, = 10 is also shown in Fig.
8. Here there are fewer points and their errors are substantially larger, consistent with larger
finite size effects, but again the slope of 0.24(2) does not differ too badly from the continuum

prediction of 0.177, lying approximately three standard deviations away from it.

In conclusion, we have shown that is is possible to reconstruct a lattice conformal mode
from the ensemble of DT geometries, even for ¢,, > 1. We have shown that the distribution
of this conformal mode is bounded and Gaussian with a width corresponding to that expected
from the anomalous action ([l]), even well into the branched polymer phase. This provides an
explicit connection between the ensemble of geometries generated by the DT method and the
continuum quantization of 2D gravity. The correspondence between the DT lattice and contin-
uum approaches demonstrates that the DT measure generates automatically the correct anomaly
coefficient @Q? including the Faddeev-Popov ghost contributions in the continuum. This is a non-
trivial result since it implies DT's can be used to study 2D gravity even in the regime where the
KPZ exponents become complex, and the theory becomes sensitive to its UV cut-off. Finally,
the massive scalar simulations support the proposition that the anomaly generated action ([l])
is indeed the correct effective Wilsonian action in the continuum large volume (infrared) limit,
where massive states should decouple.

Acknowledgments The authors would like to thank Tanmoy Bhattacharya for useful discussion.
This work was supported in part by DOE grant DE-FG02-85ER40237. Simon Catterall would
like to thank the T-8 group at Los Alamos National Laboratory where much of this work was
carried out.



REFERENCES

[1] A. M. Polyakov, Phys. Lett. B103 (1981) 207, 211; Gauge Fields and Strings (Harwood,
Chur 1987).
[2] V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys. Lett. A3 (1988)
819.
[3] F. David, Mod. Phys. Lett. A3 (1988) 1651;
J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 5009.
[4] J. Ambjgrn, B. Durhuus, J. Frohlich and P. Orland, Nucl. Phys. B270 (1986) 457;
A. Billoire and F. David, Nucl. Phys. B275 (1986) 617;
D. V. Boulatov, V. A. Kazakov, I. K. Kostov and A. A. Migdal, Nucl. Phys. B275 (1986)
641.
[5] For a review see J. Ambjgrn, Nucl. Phys. Proc. Suppl. 42 (1995) 3.
S. Catterall Nucl. Phys. Proc. Suppl. 47 (1996) 59.
[6] H. Yamabe, Osaka Math. J. 12 (1960) 21;
T. Aubin, Jour. Diff. Geom. 4 (1970) 383; Jour. Math. Pure & Appl. 55 (1976) 269;
Nonlinear Analysis on Manifolds: Monge-Ampeére Equations (Springer, New York 1982);
M. S. Berger, Jour. Diff. Geom. 5 (1971) 325;
R. Schoen, Jour. Diff. Geom. 20 (1984) 479.
[7] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59 (1970) 907 [Soviet Physics, JETP 32 (1971) 493];
M. Kosterlitz and D. Thouless, J. Phys. C6 (1973) 1181.
[8] M.E. Cates, Europhys. Lett. 8 (1988) 719; A. Krzywicki, Phys. Rev. D41 (1990) 3086; F.
David, Nucl. Phys. B368 (1992) 671;B487 (1997) 633.
[9] J. Ambjorn, S. Jain and G. Thorleifsson Phys. Lett. B307 (1993)
E. Gregory, S. Catterall and G. Thorleifsson, Nucl. Phys. 451 (1999) 285.
[10] M. E. Agishtein and A. A. Migdal, Mod. Phys. Lett. A7 (1992) 1039; Nucl. Phys. B385
(1992) 395.
[11] “Dynamics of the Conformal Mode and Simplicial Gravity,” S. Catterall, E. Mottola, T.
Bhattacharya, hep-Tat/9809114, LATTICE98 Nucl. Phys. Proc. Suppl. (1999) in press.
[12] I. Antoniadis and E. Mottola, Phys. Rev. D45 (1992) 2013;
[. Antoniadis, P. O. Mazur, and E. Mottola, Nucl. Phys. B 388 (1992) 627;
S. D. Odintsov, Z. Phys. C54 (1992) 531;
I. Antoniadis and S. D. Odintsov, Phys. Lett. B343 (1995) 76.
[13] I. Antoniadis, P. O. Mazur, and E. Mottola, Phys. Lett. B444 (1998) 284.
[14] I. Antoniadis, P. O. Mazur, and E. Mottola, Phys. Lett. B394 (1997) 49.
[15] C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, Cambridge Univ. Press
(Cambridge, 1989).



http://arXiv.org/abs/hep-lat/9809114

FIGURES

0.20
0.15 - ¢,=0 i
V=1600
© 010 - Fit: i
e w=1.735(10)
X=0.8
0.05 + .
0.00
-5.0 0.0 5.0 10.0
k
o

-10.0
= 10) for pure 2DQG ¢, = 0 in the

FIG. 1. Gaussian distribution for (rescaled) amplitude o (¢

case of Ny = 1600 simplices.
1
0.20
015 ¢,=10 .
V=1600
— Fit:
L 010 - w=2.195(15) .
o x°=0.8
0.05 B
0.00
-5.0 0.0 5.0 10.0
[3
o

-10.0

FIG. 2. Gaussian distribution for the (rescaled) amplitude o (¢ = 8) for 2DQG coupled to ten free

scalar fields (¢, = 10) in the case of Ny = 1600 simplices.

10



2.0

0.0

0.0

FIG. 3. The rescaled width of the Gaussian distribution in o vs. lattice eigenvalue A for pure

2DQG (¢, = 0) in the case of Ny = 1600.

1.0
AN

2.0

25
2.0
Saasihd
-"zema;l
1.5 | P .
/
3 i
7
1.0 H .
——— V=100
_- —-— V=200
-——- V=400
05 | T e— V=800 .
€,=10 — V=1600
0.0 Il Il Il
0.0 0.5 1.0 1.5
A

FIG. 4. The rescaled width of the Gaussian distribution in o vs. lattice eigenvalue A, for 2DQG
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coupled to ten massless scalar fields (¢, = 10) in the case of Ny = 1600 simplices.
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FIG. 6. The ratio of Gaussian
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expected continuum ratio of \/g is indicated by the solid horizontal line.
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FIG. 7. Logarithm of the zero mode distribution in o, vs. amplitude for pure 2DQG (¢, = 0).

_28 - -
_30 - -
G5
9&-, Fit:
- 32 slope=0.24(2) |
X=0.47
c,=10
—3.4r V=800 i
_36 1 1 1 1
12.0 13.0 14.0 15.0 16.0 17.0

FIG. 8. The logarithm of the zero mode distribution in aloatt vs. amplitude for gravity coupled to
¢m = 10 matter for No = 800 simplices.
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