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Reconstructing the conformal mode in simplicial gravity

S. Catterallaand E. Mottola b

aPhysics Department, Syracuse University,
Syracuse, NY 13244

bTheoretical Division T-8, Mail Stop B285,
Los Alamos National Laboratory, Los Alamos, NM 87545

We verify that summing 2D DT geometries correctly reproduces the Polyakov action for the conformal mode,

including all ghost contributions, at large volumes. The Gaussian action is reproduced even for central charges

greater than one lending strong support to the hypothesis that the space of all possible dyamical triangulations

approximates well the space of physically distinct metrics independent of the precise nature of the matter coupling.

1. Quick Review of 2DQG

For 2DQG coupled to matter fields φ with cen-
tral charge cm the path integral is:

Z =

∫

DgDφ

Vol (Diffs)
e−S(g,φ) (1)

It is important to include only physically distinct
metrics. This can be accomplished by fixing the
gauge g = ge2σ. This yields

Z ∼
∫

Dσe−SL(σ) (2)

The Liouville action SL (σ) is given by

SL (σ) =
25 − cm

24π

∫

√

g
(

−σ2σ + Rσ
)

(3)

Equivalently the same result can be derived from
the trace anomaly of massless fields in a curved
background [1]

T =
(25 − cm)

24π
R

=
(25 − cm)

24π
e−2σ

(

R − 2
−
2 σ

)

=
1√
g

δ

δσ
SL (σ)

Thus the quantum effective action is the sum of
this anomaly-induced action and the classical ac-
tion.

2. Consequences of SL (σ)

Notice that the quantum action contains non-
trivial dynamics. Specifically it ensures that 2D
quantum gravity has the following properties:

• Nontrivial scaling of correlation functions
〈O1 . . .ON 〉 ∼ Ap1+···+p2 .

• Geometries are fractal eg dH = 4 for pure
2D gravity.

• Baby Universe substructure (γ < 0).

3. Branched Polymers

For cm > 1 we find that, although the action
remains well-defined the scaling dimensions be-
come complex. At this point a BKT-like argu-
ment due to Cates [2] indicates that spike config-
urations dominate where σspike ∼ − log r. Such
configurations have a free energy which is sensi-
tive to the U.V cut-off. It is presently unknown
whether the dominance of these configurations in-
dicates a complete breakdown of Liouville theory
or is simply a signal that it is merely incomplete -
perhaps the action should be augmented by more
terms whose couplings must be tuned to approach
a continuum limit.

4. Dynamical Triangulations

DTs furnish another approach to 2DQG - finite
simplicial meshes are used to approximate con-
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tinuum geometries. It is a fundamental postulate
of this approach that summing over lattices gen-
erates the correct measure on the space of physi-
cally distinct metrics

Z =
∑

T,φ

eS(T,φ) (4)

where

S =
∑

〈ij〉ǫT

φiφj + · · · (5)

The strongest evidence for this comes from the
startling agreement of correlation functions com-
puted using Liouville theory or via the DT ap-
proach [3].

5. Lattice conformal mode

Given the observed agreement between the cor-
relaton functions we would like to demonstrate
explicitly the equivalence of the two formalisms.
We shall assume that every DT geometry can be
thought of as approximating a continuum metric
which can be conformally mapped to the round
sphere with constant curvature R. The conformal
factor needed is given by

R = e−2σ
(

R − 2
−
2 σ

)

(6)

Since e−2σ −
2= 2 this can be rewritten as a non-

linear lattice equation:

2Mijσj =
2π

3
(6 − qi) −

Rqi

3
A∆e−2σi (7)

where

Mij =
2√
3

(qiδij − Cij) (8)

6. Gaussian distribution

For each DT triangulation generated in the
Monte Carlo simulation we solve this equation.
This yields a distribution of the lattice conformal
mode. To check against Liouville we then decom-

pose the lattice field on eigenmodes of
−
2. On the

lattice we have

Lij =
3

A∆

eσi+σj

√
qiqj

Mij (9)

where

Liju
ℓ
j = λℓuℓ

i (10)

The amplitude of each mode σℓ =
∑

i
qi

3 e−2σiuℓ
iσi

should then be distributed according to

exp− (25 − cm)

24π

∑

l

λℓ
(

σℓ
)2

(11)

7. Results
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Figure 1. Distribution of l = 10 mode with gaus-
sian fit for cm = 1 and V = 1600

First we rescale amplitudes σℓ → σℓ
√

λℓ. Each
mode ℓ should now be distributed with equal
width depending only on the central charge.
Gaussian fits are then performed to extract these
widths ωℓ. Results for cm = 1 and cm = 10 are
shown in figures 1 and 2. The widths of the fits
agree well with Liouville theory. The mode de-
pendence of the width is shown in fig.3 and fig.4
as a function of lattice volume V . The lattice
eigenvalue A∆λℓ is plotted along the x-axis. In
the continuum limit A∆ → 0 and V → ∞ we see
good agreement with the Liouville prediction for
all cm (for a more complete discussion see [4])

Furthermore, the same arguments can be used
to analyze the zero mode distribution

P
(

σ0
)

∼ exp− (25 − cm)

12πV
σ0 (12)
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Figure 2. Distribution of l = 8 mode with gaus-
sisan fit for cm = 10 and V = 1600

We have observed that the distribution of the zero
mode follows this theoretical prediction for large
argument (where the fixed area constraint plays
no role) and allows for an independent measure-
ment of the central charge. As for the nonzero
modes this yields values that are statistically con-
sistent with the continuum value.
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Figure 3. Width versus lattice eigenvalue for
cm = 1
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Figure 4. Width versus lattice eigenvalue for
cm = 10

8. Conclusions

It is possible to recover the conformal mode
in 2D simplicial QG. It is distributed according
to Polyakov-Liouville action with the correct cen-
tral charge including all ghost contributions. For
cm < 1 this amounts to anothing convincing test
of the equivalance of DT approach to continuum
aproaches to 2D quantum gravity. Our results
for cm > 1 would further support the conclusion
that the DT measure is an appropriate measure
for sampling the physical space of geometries even
when there are truly propagating matter degrees
of freedom.
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