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Abstract

The macroscopic configurations of various two-dimensional liquid crystal
systems are explored. Aster, vortex and spiral patterns are analyzed for
both inactive nematic and polar liquid crystals, as well as for active nematic
and polar liquid crystals. The relevance of these systems to the cellular
cytoskeleton is discussed. Differing theoretical models of the cytoskeleton are
compared and extended to include a more general description of cytoskeletal
dynamics.
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Chapter 1

Introduction

Condensed matter is a very broad subfield of physics that encompasses many
different types of physical systems. Generally speaking, condensed matter
is the study of how the microscopic details of a system lead to its overall
behavior. Whereas high-energy physicists attempt to understand elemen-
tary particles and laws governing nature on the smallest distance scales,
condensed matter physicists study how large numbers of elementary parti-
cles interact to form material substances. Condensed matter physicists are
interested in a wide range of substances, including crystals, solids, liquids,
superfluids, superconductors, semiconductors, magnets and liquid crystals,
to name just a few. Condensed matter physicists are also interested in tran-
sitions between different phases of matter, as well as transport phenomena
such as conduction, diffusion and convection.

Not only is condensed matter a very broad field, it is also very interdisci-
plinary in nature. Biologists, chemists, engineers and mathematicians often
collaborate with condensed matter physicists in order to better understand
the dynamics of such systems as the cellular cytoskeleton, biological mem-
branes, nanostructures, and electrical devices. Condensed matter is by far
the largest subfield of physics, and research can range from mathematically
abstract theoretical models to experimentation. New discoveries can also
lead to new technologies and devices. Ideally, both experimentalists and
theorists work in tandem to discover and formulate the understanding of
previously unknown phenomena.

My Capstone project has consisted of an independent study in theoreti-
cal condensed matter, during which I have investigated the patterns and
self-organization of liquid crystalline substances. A liquid crystal, as the
name suggests, is a phase of matter that exhibits properties that are char-
acteristic of both liquids and solids.
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The liquid phase is characterized by rotational and translational disorder. If
the local arrangement of the molecules in a liquid is either rotated or trans-
lated by an infinitesimal amount, then the new arrangement will also be
disordered and will be essentially indistinguishable from the original system.
Liquids are said to possess continuous rotational and translational symme-
try. In contrast, the solid phase is characterized by order. The molecules
align themselves into lattice arrangements. If the molecular arrangement
in a solid were to be locally rotated or translated, then only very specific
rotations or translations would leave the system unchanged. The continu-
ous symmetry of the liquid phase is broken in the solid phase. Solids are
rotationally and translationally ordered whereas liquids are rotationally and
translationally disordered.

Liquid crystals are like liquids in that they too are translationally disor-
dered. However, they are solid-like in that they are rotationally ordered.
Equivalently, liquid crystals possess translational symmetry but have a bro-
ken rotational symmetry. Below is a picture of the molecular arrangement
in a liquid crystal (the relevant diagram is the third from the left). As can
be seen from the picture, the molecules tend to point in the same direction.
If the arrangement was locally rotated in some direction, the material would
appear markedly different and would display different macroscopic proper-
ties. On the other hand, the arrangement is translationally disordered. If
the arrangement was locally translated in some direction, the resulting ar-
rangement would be essentially identical to the original one.

I studied four different types of liquid crystals, and all four are composed
of long, rod-like molecules. Nematic liquid crystals are the simplest liq-
uid crystals I studied. In nematic materials, the cylindrical molecules tend
to align themselves and give the material a macroscopic orientation. Po-
lar liquid crystals are similar to nematics, except that in polar systems,
the molecules align themselves in such a way so as to give the material’s
orientation a preferred direction. In nematics, opposite alignments are con-
sidered equivalent, for example, up-down is the same as down-up. In polar
liquid crystals, these two configurations are different (hence the term polar).

An additional characterization of liquid crystals involves the consumption
of energy. Generally, when one speaks of either nematic or polar liquid crys-
tals, it is assumed that the substances are in thermodynamic equilibrium,
and that energy is neither being consumed nor released. If the liquid crys-
tals are in fact consuming energy, they are said to be active. For my project
I studied both active and non-active nematic liquid crystals as well as both
active and non-active polar liquid crystals.

The patterns that liquid crystalline substances assume depends upon the
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Figure 1.1: Liquid Crystal Phase. Image courtesy of http://www.physik.tu-
berlin.de/institute/OI/lc/images/lcs thermotropic lcs.gif

geometry that the substances reside in. Are the liquid crystals confined by
some shape? Is there a 2D sheet of liquid crystal material, or a 3D sam-
ple? It is also necessary to know the boundary conditions. An example of
a boundary condition would be to stipulate that whenever a liquid crystal
molecule comes into contact with the edge of its container, the molecule must
meet the surface at some particular angle. I have studied these materials
in a variety of different boundary conditions and geometries. It is gener-
ally simpler to treat inactive rather than active liquid crystals, and nematic
rather than polar liquid crystals. Throughout my project, I have often be-
gun by analyzing the simplest system, inactive nematic liquid crystals, and
then working my way up to the more complicated active polar liquid crystals.

I have investigated a variety of liquid crystal systems, and my research
has not at all progressed in a linear and predictable fashion. Certain sys-
tems were too mathematically intractable to analyze without resorting to
numerical simulations, and some had already been investigated. The project
initially began as a study of topological defects in nematic liquid crystals.
Topological defects are closely related to certain types of patterns, and as
the project progressed, we began to use the language of thermodynamics
and energetics rather than that of topology. There are three main types of
patterns we have investigated. Asters are star-like patterns in which the liq-
uid crystals tend to arrange radially outward from some central point. In a
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vortex, the liquid crystal molecules tend to arrange themselves in concentric
circles around a central point. Spirals are intermediate between aster and
vortex patterns. In Figure 1.2 below, pictures b) through d) represent these
patterns.

As the project progressed, Professor Cristina Marchetti joined Professor
Bowick and I, and together we began to study biologically motivated liquid
crystal systems (Prof. Marchetti is a biological physicist). She is particu-
larly interested in the actin cytoskeleton, and we moved on to analyze liquid
crystal models of this cytoskeleton.

This project has principally been a learning experience for me, and I ben-
efitted tremendously from this research experience. Although my work has
not led to any new insights concerning liquid crystals or the cellular cy-
toskeleton, the importance of a thorough theoretical understanding of these
systems should be obvious. Liquid crystal displays are fast replacing cath-
ode ray tubes in electrical devices, and a great deal of modern technology
utilizes these interesting materials. Cytoskeletal networks may be found in
all cells, and they are very important in a number of cellular functions. Un-
derstanding these systems can lead to advances in technology, biology, and
medicine.

Physics generally involves a great deal of mathematics, and theoretical
physics even more so. Much of my project has consisted of doing calcu-
lations, and after reading through a few pages of math scribbled in my
handwriting, Prof. Bowick suggested that I type up my notes. LaTeX is
a typesetting program that I learned how to use in the beginning of my
project, and with it I have written up pages of annotated calculations, some
which I include here. This document was written using LaTeX.

My thesis consists of a series of calculations that I did throughout my
project. I have annotated my calculations to include descriptions and back-
ground information, and I have also tried to explain the physics behind the
math. I try to accompany every step of my calculations with an explanation
of what it is I am doing and why, and hopefully this format will allow the
mathematical lay-person to follow the general logic behind my calculations,
and to at least see the forest for the trees.

This project has been by far the singular most important activity I’ve been
involved in as an undergraduate at Syracuse University. I began this ef-
fort in complete ignorance of the field of condensed matter. Throughout
the duration of my research I have studied various kinds of liquid crystals,
the cellular cytoskeleton, and active gels. I have also been introduced to a
wide range of mathematics including group theory, topology, homotopy the-
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ory, complex analysis and Fourier Analysis. I have benefitted tremendously
from weekly (and occasional biweekly) meetings with Professors Bowick and
Marchetti. My research has also influenced my coursework; upon Bowick’s
advice I took his graduate class Phy 831: Statistical Theory of Fields during
the fall semester of my senior year. This project has not only allowed me
to learn about the physics of liquid crystals; I have also learned important
theoretical techniques that may be applied to a wide range of condensed
matter systems.

In addition to strengthening my mathematical abilities and improving my
understanding of physics, this project has also been instrumental in my ac-
ceptance into graduate school. Next year I plan to enroll in the graduate
program at the University of California at Santa Barbara. There I will
pursue a Ph.D. in theoretical condensed matter physics. I am excited to
have the opportunity to continue my education of the physical world, and I
eventually hope to be able to contribute something of my own towards our
collective understanding of the world.
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Figure 1.2: Asters, Vortices, and Spirals. Image courtesy of Kruse et al,
Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments
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Chapter 2

Spiral Patterns in Liquid
Crystals

2.1 Initial Reading and Topological Defects

The project began with Prof. Bowick describing his idea for the project
and giving me some background reading. Along with Chaikin and Luben-
sky’s standard text Principles of Condensed Matter Physics, I was given a
paper he had co-authored entitled The Cosmological Kibble Mechanism in
the Laboratory: String Formation in Liquid Crystals. Prior to this project,
I had worked on cosmology research, and I was fascinated to learn that
ideas from the physics of the very largest distance and time scales, cosmol-
ogy, could be applied to liquid crystals in the laboratory. The Cosmological
Kibble Mechanism is a (now outdated) mechanism for producing topolog-
ical line defects in the early universe. Along with his co-authors, Bowick
took this mechanism and applied it to the formation of defects in samples
of liquid crystals. In addition to introducing me to topological defects and
the field of condensed matter, this paper was doubly interesting to me be-
cause I would later work on a research project studying a related type of
cosmological strings during a summer research project at Cornell University.

I was also given the seminal paper The topological theory of defects in or-
dered media by David Mermin. In the paper’s introduction, Mermin writes
”The language, methods, and theorems of algebraic topology, particularly
homotopy theory, have been used in the study of relativistic field theories
for over a decade. Their systematic application to the study of defects in
condensed matter physics is more recent ... At a minimum, homotopy the-
ory provides the natural language for the description and classification of
defects in a large class or ordered systems.”

The aim of Mermin’s article was to summarize the results of homotopy
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theory as applied to condensed matter physics. The theory is used to clas-
sify and describe topological defects in the order parameter field. Mermin’s
paper applies to a very broad range of condensed matter systems, and it
is this generality which makes homotopy theory such a powerful tool. For
the first few weeks of my Capstone project I worked through this paper and
struggled to understand the main ideas. To do so, I had to teach myself
the basics of group theory and topology. The work was rather slow and ab-
stract, and as we moved on, our focus began to narrow. Rather than study
comprehensive but abstract theories that describe a wide range of systems,
we moved on to study specific physical systems. While I never fully under-
stood Mermin’s paper, working through it gave me an appreciation for the
ability of abstract mathematics to describe physical systems. Since then,
I have discovered that topology and group theory are crucial to an under-
standing of many different phenomena, and I hope to return to homotopy
theory during graduate school. Since I began this project, I have learned
a great deal of mathematics and physics, and hopefully when I encounter
these ideas again, I’ll be more mathematically equipped to understand them.

The aim of Mermin’s paper is to describe the use homotopy theory in the
study of defects in ordered media, as the title suggests. An ordered media
is a substance which may be described by an order parameter field. At any
given point within the substance, the order parameter is a quantity which
describes some important local property. A classic example is magnetiza-
tion. Throughout the interior of a magnet, one may draw little arrows, or
vectors, which describe the local alignment of the magnetic dipoles. The lo-
cal alignment of polar liquid crystal molecules are also described by a vector
field. The order parameter field of nematic liquid crystals is similar to both
magnets and polar liquid crystals, however for nematic materials the vectors
are headless and do not point in a particular direction. For all materials, if
the order parameter is everywhere the same, than the material is said to be
uniform.

A defect is a region where it is impossible to assign an order parameter.
A defect may be a point, a line or a plane where the order parameter can-
not be defined. Defects are generally the cause of very interesting physics,
and as Mermin says, homotopy theory provides the natural language for the
study of defects.

From Mermin’s pedagogical paper I moved on to study a research paper by
Michael Deem entitled Disclination asymmetry in two-dimensional nematic
liquid crystals with unequal Frank constants. Papers in physics will gener-
ally contain a series of relevant equations, and there is often a rather large
gap between consecutive equations. My first task was to reproduce Deem’s
calculations and to re-derive some of his equations as I worked through his
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paper. From there I moved on to study spiral patterns in two-dimensional
liquid crystal systems on my own.

2.2 Patterns in Nematic Liquid Crystals Obtained
from Thermodynamic Considerations

Below is a great deal of math aimed at discovering the possible macroscopic
configurations that a nematic liquid crystal may assume. I begin by repro-
ducing some of Deem’s equations, and then I move on to study the patterns
formed by a sheet of nematic liquid crystal. In order to relay the logic be-
hind the calculations, I’ll briefly describe some of the general ideas. A liquid
crystal is composed of an incredibly large number (around 1023) of liquid
crystal molecules. Because this system exists at some finite temperature,
the individual molecules have thermal energy that causes them to vibrate
and jiggle. The amount of vibrating and jiggling that occurs is related to
the temperature of the system; at higher temperatures the jiggling becomes
more violent, while at lower temperatures, the molecules are more tame and
don’t fidget as much. If the temperature is really extreme, thermal fluctua-
tions will destroy any ordering of the molecules. Then the system will look
like the liquid pictured in Figure 1.1. This phase is called the isotropic phase
because all directions look the same. If the temperature is more reasonable,
though, the molecules may order themselves as depicted in the third pic-
ture in Figure 1.1. They will still vibrate, but the vibrations will be gentle
enough to preserve the molecule’s order, and this is called the nematic phase.

In the nematic phase, the liquid crystals can be ordered. If one were to
zoom in on a liquid crystal material in the nematic phase, one would find
that, on average, a significant portion of the molecules were aligned along
the same direction. This ”zooming-in” process may be done throughout
the whole material, and at any given point, the molecules should be fairly
aligned. The alignment will not be perfect due to thermal fluctuations, but
it wouldn’t be too hard to see which direction most of the molecules were
pointing in.

Suppose we may zoom in at any given point in the liquid crystal material
enough to see which direction the majority of liquid crystals are pointing,
but that we do not zoom in far enough to resolve individual molecules. This
range is called mesoscopic, and is intermediate between the microscopic and
macroscopic scales. At each ”mesoscopic” point in the material, we may
put an arrow pointing in the same direction as the local arrangement of the
liquid crystal molecules. This is just a vector field–an arrow at each point.
Keep in mind that each ”mesoscopic” point actually contains a large num-
ber of liquid crystal molecules. We just agree not to zoom-in any further.

10



There is also a subtlety when dealing with nematic liquid crystals. Since the
molecules have no distinguishable head or tail, the little arrows don’t either.
Our vector field is not a true vector field. It is called an orientation field.

In order to fully specify the state of a liquid crystal system, it is necessary
to know the position and speed of each individual molecule. However, even
if it were possible to have such detailed information, what sense could we
possibly make of it? If there are 1023 molecules, and 3 position coordinates
and 3 velocity coordinates for each molecule (3 because there is 1 coordinate
for each dimension), then there are 6∗1023 numbers to process! However, by
examining the system from the mesoscopic scale and constructing an orien-
tational field, we have enough information to describe the interesting details
of the system, and we have also avoided a ridiculous overflow of information.
This approach is called field theory, because the arrangement of a system is
described by a field (in our case, an orientational field).

It should not be too much of a leap to suggest that the energy of a liquid
crystal system depends upon the arrangement of liquid crystal molecules. If
the molecules interact with one-another, certain configurations will be more
energetically favorable than others. Rather than considering 1023 molecules
and figuring out the energy-cost of different configurations, we can use our
orientational field to calculate the energy of a given configuration. Let’s
denote our orientational field by ~n(x, y, z). At each point (x,y,z) in three
dimensions, ~n(x,y,z) returns three numbers which describe the little arrow
that points along the local arrangement of molecules. ~n(x, y, z) returns three
numbers because three numbers are needed to describe an arrow in three
dimensions. The arrow sign is used to denoted a vector quantity.

At this point I should point out that the configuration of the liquid crystal
is the same thing as our orientation field ~n(x, y, z). If we know ~n(x, y, z)
for all points (x,y,z), then we know where, on average, the liquid crystal
molecules are pointing. Based on symmetry considerations, one can write
down an expression, called the Frank Free Energy (denoted below by the
letter F), which describes the energy of a particular configuration. F is a
function of ~n(x, y, z) (which is itself a function of the regular variables x, y,
and z). Functions of this nature are called functionals.

In the calculation that follows, I find the particular orientation field ~n(x, y, z)
(the liquid crystal configuration) that minimizes this free energy cost. It is
a general physical principle that physical systems try to minimize their free
energy–the same is true for liquid crystals. Therefore, what I am doing is
finding the ”energetically-cheapest” configuration, ~n(x, y, z). It is this con-
figuration that we’d expect to find in nature.
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Throughout my project, I have assumed that the liquid crystal sample is
only two-dimensional. Our system consists of a thin sheet of liquid crystal
material. In what follows, I examine the possible states for such a sample
of liquid crystal material confined to a disk of radius R, as in a petri dish.

2.2.1 The Frank Free Energy

The Frank free energy for a three-dimensional sample of liquid crystal (LC)
material is given by:

F =
1
2

∫
d2x
{
k1(~∇ · ~n)2 + k2(~n · (~∇× ~n))2 + k3(~n× (~∇× ~n))2

}
(2.1)

where the integral is over the physical region of liquid crystalline material.
The three elastic constants, k1, k2, k3, represent the LC’s resistance to splay,
twist, and bend distortions, respectively. There are essentially three ways
to distort a nematic liquid crystal, and each way has a different energy cost
associated with it. These 3 constants describe this energy cost. Actually,
the second constant, k2 describes deformations that are only possible in 3
dimensions. Throughout my project I have restricted myself to only two
dimensions, so I’ll neglect the k2 term. These deformations are pictured in
below in Figure 2.1.

Here I would like to point out a correspondence between splay and bend
deformations and aster and vortex patterns. In an aster, the liquid crystal
orientation splays radially outward. An aster is a purely splay-type of de-
formation. Conversely, a vortex is a pure bend-type of deformation because
the orientation bends around the vortex center without splaying outwards
at all. Therefore, the two main patterns I deal with in my thesis are intrin-
sically related to the two main types of ways a 2D liquid crystal material
may be deformed.

To describe the configuration of a nematic liquid crystal in two dimensions, a
two-valued orientation field ~n(x, y) is needed. If we demand that the length
of the orientation field is constant everywhere, and that this constant value
is 1, than our field becomes a scalar field. To describe a vector in two dimen-
sions, two numbers are needed, one that describes the length of the vector,
and one number to give the angle that the vector makes with an arbitrary
axis (we’ll use the positive x-axis). By demanding that the length of vectors
is constant, we only need to know the angle in order to specify the vector
field throughout the liquid crystal material. We may replace the order pa-
rameter ~n(x, y) with an scalar field, θ(x, y). The orthogonal components of
~n(x, y) are related to θ(x, y) by: nx = |~n| cos θ = cos θ, ny = |~n| sin θ = sin θ.

Now that I have made the assumption that the orientation field has constant
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Figure 2.1: The three principal deformations in a liquid crystal. Image cour-
tesy of S. Chandrasekhar and G. S. Ranganath, The structure and energetics
of defects in liquid crystals.

length everywhere, I need to reformulate the Frank free energy in terms of
θ, which I do term-by-term.

The Splay Term The splay term in the free energy may be written in
terms of the θ field as:(

∇ · ~n
)2

=
(∂nx
∂x

+
∂ny
∂y

)2
= θ2

y cos2 θ + θ2
x sin2 θ − θxθy sin 2θ

The Twist Term The twist term in the free energy always vanishes in two
dimensions, that is, ~n · (~∇× ~n) = 0. To explicitly show this, first calculate
the curl of ~n:

~∇× ~n = det

 î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

nx ny nz

 =
(∂ny
∂x
− ∂nx

∂y

)
k̂.

The order parameter is restricted to the XY plane, ~n = (nx, ny, 0), ~n and
its curl are orthogonal, and their dot product will always vanish:

~n · (~∇× ~n) = 0

Therefore, LC materials restricted to thin planes are not subject to twist
stresses.

The Bend Term(
~n×

(
~∇× ~n

))2
= θ2

x cos2 θ + θ2
y sin2 θ + θxθy sin 2θ
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2.2.2 Reformulating the Free Energy in Terms of the Angu-
lar Order Parameter Field

First, we introduce two new constants, J ≡ (k1+k3)
2 , and ∆ ≡ (k1−k3)

2 . For
two-dimensional samples, ∆ represents a measure of the material’s elastic
anisotropy. Noting that k1 = (J + ∆), k2 = (J −∆), We now rearrange the
terms of the Frank free energy:

F =
1
2

∫
d2x
{

(J + ∆)(~∇ · ~n)2 + (J −∆)
[
~n× (~∇× ~n)

]2} (2.2)

Substituting our results for the splay and bend terms, we obtain Deem’s
second equation:

F =
J

2

∫
d2x(θ2

x + θ2
y) +

∆
2

∫
d2x(cos 2θ)(θ2

y − θ2
x)−∆

∫
d2x(sin 2θ)θxθy

(2.3)

2.2.3 Logarithmic Dependence of the Free Energy as r →∞

So far I have done my calculations in Cartesian coordinates. I’m free to use
whichever coordinate system I like, but polar coordinates are a more natural
coordinate system because of the geometry of the system. In the Appendix
I perform the conversion from Cartesian to polar coordinates.

Rewrite ~n, the order parameter field, in terms of the vectors r̂ and φ̂.

~n = cos θx̂+ sin θŷ = cos(θ − φ)r̂ + sin(θ − φ)φ̂ = cosψr̂ + sinψφ̂

Where ψ(r, φ) ≡ θ(r, φ) + φ

We express the above free energy in terms of polar coordinates. This will
allow me to easily exploit the fact that as sample sizes grow (R →∞), the
θ-field must go to a constant for large r if the Frank free energy is to be
both non-zero and non-singular. I now use polar coordinates to easily show
that for large r the free energy has a logarithmic dependence on the sys-
tem radius, R. Using the results contained in the Appendix, we may rewrite
Deem’s free energy in polar coordinates:

F =
J

2

∫
dx2(θ2

x + θ2
y) +

∆
2

∫
dx2(cos 2θ)(θ2

y − θ2
x)−∆

∫
dx2(sin 2θ)θxθy

F =
J

2

∫
rdrdφ(θ2

r +
θ2
φ

r2
)

+
∆
2

∫
rdrdφ(cos 2θ)

[
− (cos 2φ)θ2

r +
(cos 2φ)
r2

θ2
φ +

2(sin 2φ)θrθφ
r

]

− ∆
∫
rdrdφ(sin 2θ)

[
(sin 2φ)

2
θ2
r −

(sin 2φ)
2r2

θ2
φ +

(cos 2φ)
r

θrθφ

]
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Now we impose the condition that θ(r, φ) ∼ θ(φ). We should expect this to
hold for large r; at distances far from the origin, the θ-field should only vary
with φ. This condition requires that θr → 0 as r →∞.

F ∼
∫
rdrdφ

{
J
θ2
φ

2r2
+ ∆ cos 2θ

cos 2φ
2r2

θ2
φ + ∆ sin 2θ

sin 2φ
2r2

θ2
φ

}
We may now integrate with respect to r. What are the limits of integration?
The upper limit should represent the sample size, call it R. We would like
to use 0 as our lower limit of r, but we risk extending beyond the regime
where the order parameter is defined. The order parameter field describes
the local orientation of the molecules at a given point, and so there is some
cutoff distance of the molecular scale. Let us call this minimal distance a0.

F ∼
∫ R

a0

dr

r

∫ 2π

0

dφ

2

{
Jθ2

φ + ∆ cos 2θ cos 2φθ2
φ + ∆ sin 2θ sin 2φθ2

φ

}

= ln
R

a0

∫ 2π

0

(
dφ

2

)
θ2
φ

{
J + ∆ cos 2θ cos 2φ+ ∆ sin 2θ sin 2φ

}

Making use of the angle addition formula cos(α±β) = cosα cosβ∓sinα sinβ,
and the fact that cosine is an even function, we obtain Deem’s equations (3)
and (4):

F ∼

(
ln
R

a0

)∫ 2π

0

(
dφ

2

)
θ2
φ

{
J + ∆ cos

[
2φ− 2θ(φ)

]}
(2.4)

2.2.4 The Search for Physical Solutions

Minimization of the Free Energy Functional (Cartesian)

We have succeeded in writing down the Free Energy in polar coordinates for
the two-dimensional nematic system. Systems will naturally seek out states
of minimal energy. Our next step is to compute the functional derivative of
the Free Energy with respect to the order parameter field and set the result-
ing equation equal to 0. Functional differentiation may be defined in a few
different ways. One is in terms of a limit and the Dirac delta function. For
a functional, F, of a single-variable function, θ(x), the Functional derivative
is defined as:

δF [θ(x)]
δθ(y)

≡ lim
ε→0

F [θ(x) + εδ(x− y)]− F [θ(x)]
ε

(2.5)

Extended to functions of two variables, the functional derivative is defined:

δF [θ(x, y)]
δθ(x′, y′)

≡ lim
ε→0

F [θ(x, y) + εδ(x− x′)δ(y − y′)]− F [θ(x, y)]
ε

(2.6)

15



An equivalent way of computing the functional derivative involves the use
of infinitesimal variations and δ notation. δ represents an infinitesimal vari-
ation of a function. The variation is constrained to be zero at the endpoints
of a function. Barring a rigorous and dry mathematical definition, the vari-
ation can be a somewhat vague concept so I’ll use an analogy to describe
it. Think of a function, f, as a piece of string lying on the ground. The
string has some sort of a configuration–it will have some particular curvy
shape. If we use thumbtacks to pin down the ends of the string, and then
gently tug on the string, the pattern will be slightly distorted. This new
string configuration is the variation. Using the what is called the calculus
of variations, the functional derivative bears great similarity to the ordinary
derivative. Let f(x) be a function of the variable x, and let G[f(x)] be a
functional of the function f. The derivative of f with respect to x is defined
as:

df(x)
dx

≡ lim
h→0

f(x+ h)− f(x)
h

And the functional derivative can be loosely defined as:

δG[f ]
δf

≡ lim
δf→0

G[f + δf ]−G[f ]
δf

Here the limit is taking the variation (which is itself a function) to the zero
function.

Below I calculate the functional derivative of the free energy using this
method of variations, which will allow me to find the configurations that
minimize the system’s energy. I first perform the calculation for Cartesian
coordinates, and then I convert it into polar coordinates.

In Cartesian coordinates:

F [θ] =
J

2

∫
d2x(θ2

x + θ2
y) +

∆
2

∫
d2x(cos 2θ)(θ2

y − θ2
x)−∆

∫
d2x(sin 2θ)θxθy

F [θ + δθ]− F [θ] =
J

2

∫
d2x

[
2θxδθx + (δθx)2 + 2θyδθy + (δθy)2

]
+

∆
2

∫
d2x cos 2θ

[
2θyδθy + (δθy)2 − 2θxδθx − (δθx)2

]
− ∆

∫
d2x sin 2θ

[
θ2
y + 2θyδθy + (δθy)2 − θ2

x − 2θxδθx − (δθx)2

]
δθ

− ∆
∫
d2x sin 2θ

[
θxδθy + θyδθx + δθxδθy

]
− 2∆

∫
d2x cos 2θ

[
θxθy + θxδθy + θyδθx + δθxδθy

]
δθ
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To first order in δθ,

F [θ + δθ]− F [θ] =
J

2

∫
d2x

[
2θxδθx + 2θyδθy

]
+ ∆

∫
d2x cos(2θ)

[
θyδθy − θxδθx − 2θxθyδθ

]
− ∆

∫
d2x sin(2θ)

[
θ2
yδθ − θ2

xδθ + θxδθy + θyδθx

]

Now we will use integration by parts to transfer the partial derivative acting
on the δ-variation to instead act upon the whole term. In performing this
step it is important to bring the derivative to the very forefront of the expres-
sion. It is also important to remember that integration by parts introduces
a sign change.

F [θ + δθ]− F [θ] =
∫
d2x

{
− J

[
∂

∂x
θx +

∂

∂y
θy

]
+ ∆

[
− ∂

∂y
cos(2θ)θy +

∂

∂x
cos(2θ)θx − 2 cos(2θ)θxθy

− sin(2θ)θ2
y + sin(2θ)θ2

x +
∂

∂y
sin(2θ)θx +

∂

∂x
sin(2θ)θy

]}
δθ

We therefore arrive at Deem’s equation number 6:

δF

δθ
= −J

(
θxx+ θyy

)
+ ∆ sin 2θ

(
θ2
y− θ2

x+ 2θxy
)

+ ∆ cos 2θ
(
θxx− θyy + 2θxθy

)
(2.7)

From this equation, one can see that the function θ = constant is a solution,
since all the derivatives would then vanish. This constant solution corre-
sponds to a uniform configuration of the liquid crystal – the liquid crystal
molecules are on average all pointing in the same direction, and there is no
spatial variation or interesting pattern. This solution is trivial and rather
dull, and we would like to search for more complicated configurations that
also minimize the free energy. Since we are using a disk geometry, our search
would be made easier if we were to use polar coordinates. In the Appendix, I
carry out the calculations necessary to convert this functional derivative into
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2D polar coordinates. In polar coordinates, Deem’s equation (6) becomes:

δF

δθ
= −J

(
ψrr + ψφφ +

ψr
r

)
+∆ sin(2sφ+ 2ψ)

[
− cos 2φ(ψr)2 +

2 sin 2φ
r

(s+ ψφ)ψr +
cos 2φ
r2

(s+ ψφ)2

+ sin 2φψrr −
2 cos 2φ
r2

(s+ ψφ)− sin 2φ
r2

ψφφ +
2 cos 2φ

r
ψrφ −

sin 2φ
r

ψr

]
+∆ cos(2sφ+ 2ψ)

[
cos 2φ(ψrr) +

2 sinφ
r2

(s+ ψφ)− cos 2φ
r2

(ψφφ)

−2 sin 2φ
r

(ψrφ)− cos 2φ
r

(ψr) + sin 2φ(ψr)2 +
2 cos 2φ

r
(s+ ψφ)ψr

−sin 2φ
r2

(s+ ψφ)2

]
Where I have chosen to write θ as sφ + ψ(r, φ). If we further specify the
director field to have s=1, i.e. θ(r, φ) = φ+ ψ(r, φ) we obtain:

δF

δθ
= −J

(
ψrr + ψφφ +

ψr
r

)
+ ∆ cos(2ψ)

[2(1 + ψφ)ψr
r

+ ψrr −
ψφφ
r2
− ψr

r

]
− ∆ sin(2ψ)

[
ψ2
r +

(1 + ψφ)
r2

−
2ψrφ
r

]
(2.8)

If ψ has no angular dependence, ψφ = 0, and we obtain:

δF

δθ
= −

[
J −∆ cos(2ψ)

][ψr
r

+ ψrr

]
−∆ sin(2ψ)

[
ψ2
r +

1
r2

]
(2.9)

This is the equation we’ve been looking for. It is the functional derivative
of the free energy with respect to the order parameter field. We expect that
the configurations that the liquid crystal system should form in nature are
ones that minimize this free energy, i.e, solutions of δF/δθ = 0. We therefore
search for functions (configurations) such that the above functional deriva-
tive vanishes.

Two obvious solutions are the constant solutions ψ = 0, π. Since these solu-
tions are constant, the derivatives ψr all vanish, as well as the sin 2ψ term.
What does it mean that ψ is constant with the above values? ψ = 0, π cor-
responds to θ = φ, φ+π, respectively. This implies that ~n = (cosφ, sinφ) or
−(cosφ, sinφ). These are aster patterns, and are depicted in Figure 1.2(b).
At all points in the material, the liquid crystal orientation points radially
outward (ψ = 0) or inward (ψ = π) from the center (remember that we are
dealing with a disk geometry).

Another set of easy solutions is ψ = ±π/2. This implies that θ = ±π/2 +φ,
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and that ~n = (sinφ,− cosφ), or (sinφ, cosφ). These solutions represent
clockwise and counter-clockwise vortices, as depicted in Figure 1.2(c). At
all points, the orientation points tangential to the circle of radius r centered
at the origin.

We have therefore succeeded in discovering two interesting, non-uniform
classes of solutions–that of asters and vortices.

2.3 Stability of Physical Solutions

2.3.1 Stability and Higher Functional Derivative

Systems naturally tend toward configurations of lower free energy, and we
have found two configurations (asters and vortices) which minimize the free
energy. But for a solution to be physical, we would expect that it is also
stable. If a particular solution minimizes the free energy but quickly decays
into a different configuration, than we might not ever see such a configuration
in nature. We would therefore like to analyze the temporal stability of
these solutions–will the system settle into a given configuration as time
progresses? If a system starts out near an equilibrium point and survives
small perturbations, then it is said to be stable. If the perturbations push the
system away from the equilibrium point, then the configuration is unstable.
The stability is analyzed by assuming that if θ were to be displaced from its
equilibrium value, it would relax according to:

γ
∂θ

∂t
= −δF

δθ

Here γ is a positive phenomenological constant representing friction.

Solutions that minimize the free energy cause the first functional deriva-
tive to vanish. To evaluate perturbed equilibrium solutions, we introduce
a time-dependent infinitesimal variation and Taylor expand the functional
derivative around the equilibrium solution, that is, around θ = θs + δθ
where θs is the equilibrium solution. If the perturbation grows in time,
then the configuration will be unstable. If the perturbation diminishes with
time, then the system will naturally relax back into the equilibrium solution,
which will be stable.

γ
∂θ

∂t
=

[
− δF

δθ

∣∣∣∣
θs

− 1
1!
δ2F

δθ2

∣∣∣∣
θs

[δθ]− 1
2!
δ3F

δθ3

∣∣∣∣
θs

[δθ]2 − ...

]

Assuming that the second derivative term is non-zero and large enough to
dominate the higher derivative terms, we can truncate the series there. By
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definition, the first term vanishes at the static solution, so we end up with:

γ
∂δθ

∂t
= −δ

2F

δθ2

∣∣∣∣
θs

δθ

Therefore, we need to find the second functional derivative of the free energy.
To calculate the second derivative, we will simply use the same technique as
before. Note that ∂tθ = ∂t(θs + δθ) = ∂tδψ, and that δθ = δ(φ+ψ) = δψ. I
will therefore use δθ and δψ interchangeably.

δF

δθ
[ψ + δψ] = −J

(ψr
r

+
δψr
r

+ ψrr + δψrr

)
+ ∆ cos(2ψ)

(ψr
r

+
δψr
r

+ ψrr + δψrr

)
−2∆δψ sin(2ψ)

(ψr
r

+ ψrr

)
−∆ sin(2ψ)

(
ψ2
r + 2ψrδψr +

1
r2

)
−2∆δψ cos(2ψ)

(
ψ2
r +

1
r2

)
δF

δθ
[ψ + δψ]− δF

δθ
[ψ] = −J

(δψr
r

+ δψrr

)
+ ∆ cos(2ψ)

(δψr
r

+ δψrr

)
−2∆δψ sin(2ψ)

(ψr
r

+ ψrr

)
− 2∆ sin(2ψ)

(
ψrδψr

)
−2∆δψ cos(2ψ)

(
ψ2
r +

1
r2

)
δ2F

δθ2
δψ = lim

δψ→0

1
δψ

(δH
δθ

[ψ + δψ]− δH

δθ
[ψ]
)
δψ

And we obtain an expression for the second functional derivative to first
order in δψ:

−δ
2F

δθ2
δψ = J

(δψr
r

+ δψrr

)
−∆ cos(2ψ)

(δψr
r

+ δψrr

)
+ 2∆δψ sin(2ψ)

(ψr
r

+ ψrr

)
+ 2∆ sin(2ψ)

(
ψrδψr

)
(2.10)

+ 2∆δψ cos(2ψ)
(
ψ2
r +

1
r2

)
2.3.2 Global Perturbations to Aster and Vortex Solution

Let us study the stability of two simple solutions, Asters and Vortices (s = 1)
to global perturbations. Global perturbations are uniform throughout the
material–at each point the orientation is shifted by some small angle, δψ.
The director field takes the form θ(r, φ) = φ+ ψ, where ψ = 0, π for asters
and = ±π

2 for vortices. Using these conditions, we arrive at the stability
equations for asters and vortices, respectively:

γ
∂δψ

∂t
= (J −∆)

[
δψrr +

δψr
r

+
2∆

(J −∆)
δψ

r2

]
(2.11)
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γ
∂δψ

∂t
= (J + ∆)

[
δψrr +

δψr
r
− 2∆

(J + ∆)
δψ

r2

]
(2.12)

If we only consider global perturbations, that is δψr = 0, the problem be-
comes substantially easier to solve.

γ
∂δψ

∂t
=

2∆δψ
r2

(Aster)

γ
∂δψ

∂t
= −2∆δψ

r2
(Vortex)

These differential equations are easily solved, yielding exponential solutions.
The stability of the Aster/Vortex solutions simply depends upon the expo-
nent’s coefficients.

δψ(r, t) = δψ0 exp
(2∆δψ
γr2

)
(Aster)

δψ(r, t) = δψ0 exp
(−2∆δψ

γr2

)
(Vortex)

We have analyzed the stability of aster and vortex solutions to global pertur-
bations. We began by assuming that the perturbation, δψ was independent
of r and φ, and we ended up with δψ as a function of both r and t. There-
fore, we cannot place any faith in our analysis to global perturbations–our
solution violates our initial assumptions.

Let us instead investigate the stability to global perturbations in the limit
of a one dimensional system. We will fix the radius at a particular value,
R, and study the stability of 1D asters and vortices. This system simply
consists of a ring of liquid crystal material. A simple cartoon depicting
this circular liquid crystal system is given below in Figure 2.2. Our above
equations then become:

δψ(r, t) = δψ0 exp
(2∆δψ
γR2

)
(Aster)

δψ(r, t) = δψ0 exp
(−2∆δψ

γR2

)
(Vortex)

∆ negative implies that asters are stable and vortices are not. ∆ positive
implies that asters are not stable, and vortices are. These results makes
sense since ∆ < 0 means that k1 < k3, and splay deformations are ener-
getically favored, and we should expect asters to form. Conversely, ∆ > 0
means that k1 > k3, and bend deformations are energetically favored and
we should expect vortices to form.

We now move on to study the more general case of local perturbations.
The differential equation becomes much more complicated in this case since
the spatial derivatives are no longer zero, and we turn to the famous Bessel
functions in search of a solution.
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Figure 2.2: Asters and Vortices in a 1D Circular System

2.3.3 Local Perturbations to Aster and Vortex Solutions

To study stability against local perturbations, we will make use of a class
of functions that are ubiquitous in the physical sciences. Bessel functions
appear in heat conduction, modes of vibration on circular membranes, and
diffusion problems.

Bessel Functions

Bessel functions arise when considering separable solutions to Laplace’s
equation in spherical coordinates:

∇2ψ = 0 =
∂2ψ

∂s2
+

1
s

∂ψ

∂s
+

1
s2

∂2ψ

∂φ2
+
∂2ψ

∂z2

If ψ(s, φ, z) = S(s)Φ(φ)Z(z), then plugging in and dividing by SΦZ yields,

∇2ψ = 0 =
1
S

(∂2S

∂s2
+

1
s

∂S

∂s

)
+

1
s2Φ

∂2Φ
∂φ2

+
1
Z

∂2Z

∂z2

Because each term except the last is independent of z, the last term must
equal a constant, implying that ∂2Z

∂z2
= CZ, where C is some constant. The

third term is the only one dependent on φ, so it too must equal a constant:
∂2Φ
∂φ2 = DΦ Therefore,

0 =
d2S

ds2
+

1
s

dS

ds
+
(D
s2

+ C
)
S

Letting D = −ν2 and C = κ2,

0 =
d2S

ds2
+

1
s

dS

ds
+
(
κ2 − ν2

s2

)
S

Changing variables so that s = s′

κ , we finally obtain Bessel’s differential
equation:

0 =
d2S

ds′2
+

1
s

dS

ds′
+
(

1− ν2

s′2

)
S
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Rewriting this equation to suite our current choice of notation, using primes
to denote differentiation with respect to r:

ψ′′ +
1
r
ψ′ +

(
1− ν2

r2

)
ψ = 0 (2.13)

Local Perturbations

These next few sections heavily follow notes made by Professor Marchetti.

In considering the more general case of local perturbations, we note that
ψ may vary spatially. We have already assumed azimuthal symmetry, so
the perturbations can only depend on r. Our goal is to solve the differential
equations given by (13) and (14). Except for 2 exceptions, these equations
resemble the Bessel Differential equation. The first difference is that these
equations are not set equal to zero; they are equivalent to a time derivative.
Secondly, they are missing the linear ψ term. However, let us ignore these
obstacles for the moment and attempt to find solutions to the Bessel Differ-
ential equation that satisfy the boundary conditions of our current problem.

Bessel’s Differential equation is solved by Bessel functions. There are many
Bessel functions, each characterized by the constant ν. When ν is an integer,
it is known as the order of the Bessel function. We write Jν to represent
the ν-th Bessel function, each of which contains an infinite number of ze-
roes which depend on the particular Bessel function in question. Let ανm
represent the m-th zero to the ν-th order Bessel function. We only consider
solutions that have δψ(R) = 0 for some R representing the radius of a two-
dimensional circular sample of nematic material. We will modify the argu-
ment of the Bessel functions to represent this condition: Jν(r)→ Jν(ανm r

R).

We will make use of the orthogonality of Bessel functions of the same order:∫ R

0
rdrJν(ανm

r

R
)Jν(ανn

r

R
) =

{
0 if m 6= n

R2

2

[
Jν(ανm r

R)
]2

if m = n
(2.14)

We must solve a complicated differential equation, and we will make use of
an important property of Bessel functions. The Bessel functions form a com-
plete orthogonal set: any function can be represented as a linear combination
of Bessel functions as long as they share the same boundary conditions. We
hope to exploit the properties of Bessel functions to find an analytic solu-
tion to the coefficients; if we do so, then we will have arrived at an analytic
solution to the differential equation.

The time dependence of the perturbation is manifested by allowing the
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Bessel coefficients to vary with time. Our solution is of the form:

δψ(r, t) =
∞∑
m=1

Cνm(t)Jν(ανm
r

R
) (2.15)

Next, we multiply by Jν and integrate (in polar coordinates, so we pick up
a rdr term) and exploit the orthogonality of the Bessel functions.∫

δψ(r, t)Jν(ανm
r

R
)rdr =

∫ [ ∞∑
m=1

Cνm(t)Jν(ανm
r

R
)Jν(ανn

r

R
)
]
rdr

=
∞∑
m=1

[ ∫
Cνm(t)Jν(ανm

r

R
)Jν(ανn

r

R
)rdr

]
= Cνm(t)

R2

2

[
Jν(αν+1m)

]2

Therefore, the coefficients Cνm are given by:

Cνm(t) =
2

R2
[
Jν(αν+1m)

]2 ∫ δψ(r, t)Jν(ανm
r

R
)rdr (2.16)

Let us first consider Aster solutions. Going back to equation (20) and plug-
ging in the expression for δψ:

γ
∂δψ

∂t
=
∞∑
m=1

Ċνm(t)Jν(ανm
r

R
) = (J −∆)

[
δψrr +

δψr
r

+
2∆

(J −∆)
δψ

r2

]
Now the Bessel functions, Jν(ανm r

R) are solutions to the differential equa-
tion:

d2ψ

dr′2
+

1
r′
dψ

dr′
+ (1− ν2

r′2
)ψ = 0

where r′ = ανm
r
R . Changing the variable back to r, and noting that dr′ =

ανm
R dr we may rewrite the above equation as:

d2ψ

dr2
+

1
r

dψ

dr
+ (

α2
νm

R2
− ν2

r2
)ψ = 0

With ν2 = − 2∆
J−∆ = 2∆

∆−J = k3−k1
k3

we obtain a differential equation for the
Bessel coefficients:
∞∑
m=1

Ċνm(t)Jν(ανm
r

R
) = (J −∆)

∞∑
m=1

[ ∂2

∂r2
+

1
r

∂

∂r
+

2∆
(J −∆)

1
r2

]
Jν(ανm

r

R
)

= −(J −∆)
α2
νm

R2

∞∑
m=1

Cνm(t)Jν(ανm
r

R
)
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We can use the same orthogonality trick as before, multiplying each side of
the equation by Jν(ανn rR) and integrating with respect to r. We then find:

Ċνm(t) = −(J −∆)
α2
νm

R2
Cνm(t)

This rather simple differential equation is solved by an exponential function:

Cνm(t) = Cνm(0) exp[(∆− J)
α2
νm

R2
t]

where Cνm(0) represents the coefficient of the Bessel function Jν(ανm r
R) at

time t = 0. ∆ − J is the simply negative of the Frank constant for bend
distortions, k3, and our final expression for the local perturbation of an Aster
pattern is:

δψ(r, t) =
∞∑
m=1

Cνm(0) exp
(
− k3

α2
νm

R2
t
)
Jν(ανm

r

R
) (2.17)

The vortex case is very similar. Here, ν2 = 2∆
J+∆ = k1−k3

k3
and the −(J −∆)

factor in the exponential is replaced by −(J + ∆) = −k1.

δψ(r, t) =
∞∑
m=1

Cνm(0) exp
(
− k1

α2
νm

R2
t
)
Jν(ανm

r

R
) (2.18)

The Bessel roots, the α2
νm are real when ν2 > 0 Therefore, we again obtain

the intuitive stability conditions: Aster solutions are stable for k3 > k1 and
Vortex solutions are stable for k1 > k3. Having ν2 < 0 entails that some of
the Bessel roots will be imaginary. An imaginary Bessel root will cause that
particular coefficient to not exponentially decay, but to exponentially grow
instead. Thus, a single imaginary root cause the perturbation to destroy
the initial aster/vortex solution. Our final results in the anisotropic case
k1 6= k3 are as follows:

Aster solutions stable for k3 > k1,
and unstable for k1 > k3.

Vortex solutions stable for k1 > k3,
and unstable for k3 > k1.

2.4 Spiral Solutions in the Isotropic Approxima-
tion

We consider strength s=1 solutions that minimize the system’s free energy
when the two Frank constants are equal, k1 = k3 = K. This is known as
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the isotropic approximation because it implies that the liquid crystal resists
bend and splay deformations equally. This section follows entirely from
Professor Marchetti’s notes. When ∆ = 0, J = K, and my equation (16)
for the first functional derivative of the free energy is:

γ
δH

δθ
= −K∇2θ

For order parameter fields of the form θ(r, φ) = φ+ ψ(r, φ), we have:

γ
∂ψ

∂t
= −δH

δθ
= K∇2ψ

If we search for stationary solutions, ∂ψ
∂t = 0, we have

0 = K
[∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂ψ

]
We may obtain an interesting set of solutions by making a variable change

∂

∂r
=

1
r

∂

∂ ln r

Our equation then takes the form:

∇2ψ =
∂ψ2

∂ ln2 r
+
∂2ψ

∂2φ
= 0

Making the variable change x =
ln( r

r0
)

φ , we find that(∂ψ
∂r

)
φ

= f ′
∂x

∂r
=

1
rφ
f ′

(∂2ψ

∂r2

)
φ

= − 1
r2φ

f ′ + (
1
rφ

)2f ′′(∂ψ
∂φ

)
r

= −x
φ
f ′

(∂2ψ

∂φ2

)
r

=
2x
φ2
f ′ +

x2

φ2
f ′′

substituting we find:

2x
r2φ2

f ′ +
x2

r2φ2
f ′′ − 1

r2φ
f ′ +

1
r2φ2

f ′′ +
1
r2φ

f ′ = 0

(1 + x2)f ′′ + 2xf ′ = 0

Letting u = (1 + x2)f ′,

du

dx
= (1 + x2)f ′′ + 2xf ′ = 0
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Since du
dx = 0, we know that u(x) must be a constant, call it C1.

f ′ =
u(x)

1 + x2
=

C1

1 + x2

which gives us a solution for f(x):

f(x) = C0 + C1arccot(x)

We therefore obtain the following solution

ψ(r, φ) = C0 + C1arccot
( ln(r/r0)

φ

)
C0 is an arbitrary angle, which we set equal to zero. C1 specifies ψ(r = r0, φ)
at the molecular cut-off distance. If we look for solutions that begin as
vortices with ψ = ±π

2 near the center, then we may set C1 = ±1 because
ψ(r0, φ) = ±π

2 . Noting that as r → ∞, ψ → 0, we see that these solutions
asymptotically become asters. Our order parameter field takes the form

θ(r, φ) = φ± arccot
( ln(r/r0)

φ

)
(2.19)

With C1 set to ±π
2 , these solutions take the form of vortices at the cut-off

distance r0, and asters as r � r0. The constant C0 here merely represents
an overall rotation of the system, and does not affect the structure of the
solutions. C1 controls the order parameter orientation at r = r0. For ψ(r =
r0, φ) = 0, the solution is exactly that of an aster. For all other values of
C1, our solution represents a pattern that begins as a vortex near the cut-off
distance, and spirals into an aster solution at larger values of r. We have
therefore found a steady-state spiral pattern for the isotropic approximation.

2.5 Spiral Patterns induced by Boundary Condi-
tions

2.5.1 Review of D. R. M. Williams’ Work

In Nematic liquid crystals between antagonistic cylinders: Spirals
with bend-splay director undulations, Phys. Rev. E 50 1686(1994), D.
Williams examines spiral patterns that arise when the director is constrained
to certain boundary conditions. The LC is constrained to lie between two
concentric cylinders, and the director field is additionally constrained to be
perpendicular to the cylindrical axis. Following our earlier convention and
letting ψ denote the angle between the radial unit vector and the orientation
of the director, we may write the order parameter field in cylindrical coor-
dinates as ~n(r, φ, z) = (cosψ, sinψ, 0). Therefore, a value of ψ = 0, π will
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yield a radial orientation, while ψ = ±π
2 will yield a tangential orientation.

We consider a setup such that ψ is radial along the surface of the inner
cylindrical wall, and makes some non-zero angle α with the outer wall. We
will also assume cylindrical symmetry. Letting r1, r2 denote the inner and
outer cylindrical radii, respectively, our free energy looks like:

H =
∫ 2π

0
dφ

∫ r2

r1

rdr
[
(J −∆)ψ2

r − 2∆
ψ2

r2

]
We then make the useful variable change t = ln(r/r1). Noting that

dψ

dr
=
dψ

dt

dt

dr
=

1
r

dψ

dt

dr = rdt

We may use the chain rule and integrate over φ to obtain:

H ∝
∫ ln r2

ln r1

dt
[
ψ̇2 − 2∆

J −∆
ψ2
]

=
∫ ln r2

ln r1

dt
[
ψ̇2 − k1 − k3

k3
ψ2
]

(2.20)

Where the dot indicates differentiation with respect to time, as usual. This
equation is similar to the action of a particle in a parabolic potential well.
The action S is a functional of the Lagrangian L for a system with general-
ized coordinates qi:

S[qi(t)] ≡
∫ t2

t1

L[qi(t), q̇i(t), t]dt

where L ≡ T − V , with T and V the kinetic and potential energy terms,
respectively. If we consider a particle with one generalized coordinate, ψ,
subject to a potential of the form V (ψ) = mk

2 ψ
2, k being a positive constant

and m being the particle’s mass, then we find that:

L =
1
2
mψ̇2 − mk

2
ψ2

We then minimize the free energy and search for solutions to the Euler-
Lagrange equation:

∂L
∂ψ

=
d

dt

∂L
∂ψ̇

=⇒ −kψ = ψ̈

Letting k = k1−k3
k3

, we note that the expression for the action of a particle
trapped in a parabolic potential well is the same as (29). Therefore, we
search for solutions for ψ that satisfy

ψ̈ = −kψ = −
(k1 − k3

k3

)
ψ
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The solution depends on the relative strengths of the Frank constants. We
have three cases to consider.
Case 1: k1 = k3, the isotropic case We have the easy differential equation
to solve:

ψ̈ = 0 =⇒ ψ(t) = C1t+ C2

where the C’s are constants of integration. Changing variables back to r, we
find

ψ(r) = C1 ln(r/r1) + C2

Dropping the constant rotation term C2, and fixing C1 so that ψ fits our
boundary conditions, ψ(r1) = 0, ψ(r2) = α,

ψ(r) = α
ln(r/r1)
ln(r2/r1)

(2.21)

Case 2: k1 > k3 Here k is a positive constant, and our differential equation
is solved by sinusoidal solutions:

ψ(t) = C1 cos(
√
kt) + C2 sin(

√
kt)

Noting that t = 0 and t = ln(r2/r1) correspond to r = r1 and r = r2,
respectively, we may solve for the constants

ψ(t = 0) = 0 =⇒ C1 = 0

ψ
(
t = ln(r2/r1)

)
= C2 sin

(√
k ln(r2/r1)

)
= α =⇒ C2 =

α

sin
(√
k ln(r2/r1)

)
Then our final solution is of the form:

ψ(r) = α
sin
(√
k ln(r/r1)

)
sin
(√
k ln(r2/r1)

) (2.22)

Case 3: k3 > k1 Now k is negative, and our solution will be comprised of
exponentials:

ψ(t) = C1 exp(
√
−kt) + C2 exp(−

√
−kt)

ψ(t = 0) = C1 + C2 = 0 =⇒ C1 = −C2

ψ
(
t = ln(r2/r1)

)
= C1

(
exp

[√
−k ln(r2/r1)

]
− exp

[
−
√
−k ln(r2/r1)

])
= 2C1 sinh

[√
−k ln(r2/r1)

]
= α =⇒

C1 =
α

2 sinh
[√
−k ln(r2/r1)

]
And we find

ψ(r) = α
sinh

[√
−k ln(r/r1)

]
sinh

[√
−k ln(r2/r1)

] (2.23)
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The argument of the sine function for the second case is:
√
k ln(r/r1). If

we consider t-space, then these solutions have an angular frequencies
√
k

which only depend on the relative strengths of the bend and splay Frank
constants. If the maximum value of the argument,

√
k ln(r2/r1), exceeds 2π,

then the director will have made one or more complete oscillations. Letting
bxc denote the floor function, also known as the greatest integer function,
then the number of complete oscillations, n, made by the director field is
given by:

n =
⌊√

k ln(r2/r1)
2π

⌋
With the ansatz that the angles made by the director at the boundary of
each cylindrical wall are non-equal, ψ(r1) 6= ψ(r2), we have ensured that

n =
⌊√

k ln(r2/r1)
2π

⌋
6=
√
k ln(r2/r1)

2π

that is, the director is prevented from integral number of oscillations.
The director orientation in the two cases of unequal Frank constants is de-
picted below in Figure 2.2.

Figure 2.3: The three principal deformations in a liquid crystal. Image
and caption courtesy of D.R.M. Williams, Nematic liquid crystals between
antagonistic cylinders: Spirals with bend-splay director undulations.
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2.5.2 Extension of Williams’ work to Polar Liquid Crystals

We are interested in examining the behavior of polar liquid crystals when
subjected to the same conditions as in Williams’ work on nematic liquid
crystals. The free energy per length functional for a polar substance in two
dimensions is the same as that of a nematic material with the exception of
an additional term representing spontaneous splay. To emphasize the fact
that our order parameter now describes polar materials, we use p̂ to describe
the director field:

H =
1
2

∫
d2x
{
k1(∇ · p̂)2 + k3[p̂× (∇× p̂)]2 + k(∇ · p̂)

}
(2.24)

We will use the same order parameter formulation used in the nematic case.
The cylindrical symmetry of the problem naturally suggests the use of cylin-
drical coordinates: p̂ = r̂ cosψ + φ̂ sinψ. We also note that ∂ψ

∂φ = ψφ, the
angular derivative of ψ, must be zero if the configuration is to exhibit cylin-
drical symmetry. We also make the assumption that ψ << 1. Let us now
search for solutions which minimize the free energy.

∇ · p̂ =
1
r

∂

∂r
(r cosψ) +

1
r

∂

∂φ
(sinψ)

=
1
r

∂

∂r
(rψr cosψ)

(∇ · p̂)2 =
cos2 ψ

r2
+ ψ2

r sin2 ψ − ψr
r

sin 2ψ

∇× p̂ =
ẑ

r

[ ∂
∂r

(r sinψ)− ∂

∂φ
(cosψ)

]
=
ẑ

r

[
sinψ + r cosψ

]

p̂× (∇× p̂) = det

 r̂ φ̂ ẑ
cosψ sinψ 0

0 0 sinψ
r + ψr cosψ


= r̂
[sin2 ψ

r
+ ψr sinψ cosψ

]
− φ̂

[sinψ cosψ
r

+ ψr cos2 ψ
]

=
[sinψ

r
+ ψr cosψ

](
r̂ sinψ − θ̂ cosψ

)
[
p̂× (∇× p̂)

]2 =
sin2 ψ

r2
+
ψr
r

sin 2ψ + ψ2
r cos2 ψ

We may now write a general expression for the free energy using the scalar
field ψ and it’s first derivatives:

H[ψ] =
1
2

∫
drdφ

{
k1

[
cos2 ψ

r
+ rψ2

r sin2 ψ − ψr sin 2ψ
]

+ k
∂

∂r

[
r cosψ

]

+ k3

[
sin2 ψ

r
+ ψr sin 2ψ + rψ2

r cos2 ψ

]}
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We may integrate out the spontaneous splay term since it is a total deriva-
tive:

H[ψ] = π

∫
dr

{
k1

[
cos2 ψ

r
+ rψ2

r sin2 ψ − ψr sin 2ψ
]

+ k3

[
sin2 ψ

r
+ ψr sin 2ψ + rψ2

r cos2 ψ

]}
+ πk

[
r2 cosα− r1

]
We now compute the functional derivative:

δH[ψ] =
1
2

∫
drdφ

{
k1

[
− sin 2ψδψ

r
+ 2rψr sin2 ψδψr + rψ2

r sin 2ψδψ

− 2ψr cos 2ψδψ − sin 2ψδψr

]
+ k3

[
sin 2ψδψ

r
+ 2ψr cos 2ψδψ + sin 2ψδψr

+ 2rψr cos2 ψδψr − rψ2
r sin 2ψδψ

]}
Integrating by parts, we find:

δH

δψ
= k1

[
− sin 2ψ

r
− 2rψrr sin2 ψ − 2ψr sin2 ψ − rψ2

r sin 2ψ
]

+ k3

[
sin 2ψ
r
− 2ψr cos2 ψ − 2rψrr cos2 ψ + rψ2

r sin 2ψ
]

We are interested in solutions that minimize the free energy, that is, func-
tions ψ(r) that satisfy the following differential equation:

0 = k1

[
− sin 2ψ

r
− 2rψrr sin2 ψ − 2ψr sin2 ψ − rψ2

r sin 2ψ
]

+ k3

[
sin 2ψ
r
− 2ψr cos2 ψ − 2rψrr cos2 ψ +

rψ2
r

2
sin 2ψ

]
If we make the assumption that both ψ << 1, and rψr << 1, then to O(ψ3):(k3 − k1

k3

)ψ
r
−
(
ψr + rψrr

)
= 0 (2.25)

With boundary conditions, ψ(r1) = 0, ψ(r2) = α.

Divergence Theorem

This problem may be analyzed from a different perspective. The sponta-
neous splay term may be manipulated through the use of the divergence
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theorem. I will show that the additional term does not affect the form of
the free energy functional. Therefore, the minimization of the nematic and
polar free energies will be equivalent. Letting Hss denote the free energy
due solely to the spontaneous splay term, we have:

Hss =
k

2

∫
S

(
∇ · ~p

)
da =

k

2

∫
∂S
~p · d~s (Divergence Theorem)

where S is the region enclosed by the annulus, and ∂S is the region’s bound-
ary, the circles centered at the origin of radius r1 and r2, and d~s = r̂rdφ is
a radial line element pointing to the normal of the bounding lines.

Hss =
k

2

∫
S

(
∇ · ~p

)
da =

[
k

2

∫ 2π

0
rdφ cosψ

]∣∣∣∣∣
r2

−

[
k

2

∫ 2π

0
rdφ cosψ

]∣∣∣∣∣
r1

= kπ
[
r2 cosψ(r2)− r1 cosψ(r1)

]
= kπ

[
r2 cosα− r1

]
Therefore, the spontaneous splay contribution to the free energy is simply
a constant. Since the zero of free energy is arbitrary, translating the free
energy by a constant does not affect the physics of the system, and we
find that both nematic and polar liquid crystals obey the same differential
equation when constrained to lie in the plane of an annulus.

2.6 Active Systems

2.6.1 Active Asters and Vortices

We now move into the more complicated physical realm of non-equilibrium
processes. Outside of thermal equilibrium, it does not make sense to de-
fine a Hamiltonian, so to be precise we must technically start from scratch.
However if we consider systems relatively close to equilibrium, we would
expect that the general form of the behavior would be very similar to equi-
librium behavior. We propose that the order parameter obeys the following
equation, substituting our earlier result from the functional derivative of the
Hamiltonian, even though the Hamiltonian no longer exists.

γ
∂~n

∂t
= −δH

δ~n
− β

(
~n · ∇

)
~n (2.26)

Here ~n is the order parameter in vector form. The new term distinguishes
the equilibrium system from the active one, and effectively describes con-
vection. I have already reformulated the original equation in terms of the
angular order parameters, θ(r, φ) and ψ(r, φ), and I wish to do the same
thing for the new convective term. For now, let’s only consider this new
term, adding on the old functional derivative term at the end. We really
have two equations, one for each of the vector components. After playing
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around with each separately and then recombining them, we can reduce
these two equations into one useful one. We’re about to enter a jungle of
trigonometry, so beware...

~n = x̂ cos θ + ŷ sin θ = r̂ cos(θ − φ) + φ̂ sin(θ − φ)

~n · ∇ = cos θ∂x + sin θ∂y(
~n · ∇

)
~n = −x̂

(
θx cos θ sin θ + θy sin2 θ

)
+ ŷ
(
θx cos2 θ + θy sin θ cos θ

)
Earlier in these notes I wrote out expressions for converting unit vectors and
derivatives in Cartesian coordinates into polar coordinates, and here I make
use of these conversions:

(
~n · ∇

)
~n = −

(
r̂ cosφ− φ̂ sinφ

)(
θr cos θ sin θ cosφ+ θr sin2 θ sinφ

+
θφ
r

sin2 θ cosφ−
θφ
r

cos θ sin θ sinφ

)

+
(
r̂ sinφ+ φ̂ cosφ

)(
θr cos2 θ cosφ+ θr sin θ cos θ sinφ

+
θφ
r

sin θ cos θ cosφ−
θφ
r

cos2 θ sinφ

)

We can split the above vector equation into R- and Φ-component equations,
which we can manipulate separately.[(

~n ·∇
)
~n
]
r

= θr

(
− cos θ sin θ cos2 φ− sin2 θ sinφ cosφ+ cos2 θ cosφ sinφ+ sin θ cos θ sin2 φ

)

+
θφ
r

(
sin θ cos θ cosφ sinφ+ cos θ sin θ sinφ cosφ− sin2 θ cos2 φ− cos2 θ sin2 φ

)

= −θr sin(θ − φ)

(
cos θ cosφ− sin θ sinφ

)
+
θφ
r

sin(θ − φ)

(
sinφ cos θ − sin θ cosφ

)

= −θr sin(θ − φ) cos(θ − φ)−
θφ
r

sin2(θ − φ)
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Similarly for φ,[(
~n ·∇

)
~n
]
φ

= θr

(
cos θ sin θ cosφ sinφ+ cos θ sin θ cosφ sinφ+ sin2 θ sin2 φ+ cos2 θ cos2 φ

)

+
θφ
r

(
− sin θ cos θ sin2 φ+ sin2 θ sinφ cosφ− cos2 θ cosφ sinφ+ cos θ sin θ cos2 φ

)

= θr cos(θ − φ)

(
cos θ cosφ+ sin θ sinφ

)
+
θφ
r

sin(θ − φ)

(
cos θ cosφ+ sin θ sinφ

)

= θr cos2(θ − φ) +
θφ
r

sin(θ − φ) cos(θ − φ)

Finally we come back to our original vector equation, which we have now
separated into two parts

γ
∂~n

∂t
= −β

(
~n · ∇

)
~n

R: γ
∂

∂t
cos(θ − φ) = β

[
cos(θ − φ) sin(θ − φ)θr +

sin2(θ − φ)
r

θφ

]
Φ: γ

∂

∂t
sin(θ − φ) = −β

[
cos2(θ − φ)θr +

sin(θ − φ) cos(θ − φ)
r

θφ

]
Next multiply the R-equation by − sin(θ−φ), the Φ-equation by cos(θ−φ),
and add them together. The θ̇ trig terms combine to just 1, leaving

γθ̇ = −β
[

cos(θ − φ) sin2(θ − φ)θr +
sin3(θ − φ)

r
θφ

]
− β

[
cos3(θ − φ)θr +

sin(θ − φ) cos2(θ − φ)
r

θφ

]
and

γθ̇ = −β
[

cos(θ − φ)θr +
sin(θ − φ)

r
θφ

]
Then substituting ψ = θ − sφ, and also that s = 1,

γψ̇ = −β
[

cosψ(ψr) +
sinψ
r

(ψφ + 1)
]
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Now we combine this result for the convective term with our earlier equation
for the minimization of the first functional derivative (setting ψφ = 0):

γ
∂~n

∂t
= −δH

δ~n
− β

(
~n · ∇

)
~n =⇒

γ
∂ψ

∂t
=

[
J −∆ cos(2ψ)

][ψr
r

+ ψrr

]
+ ∆ sin(2ψ)

[
ψ2
r +

1
r2

]
− β

[
cosψ(ψr) +

sinψ
r

]
(2.27)

Let’s check to see if Asters and Vortices, which have ψ = 0, π or ±π/2 and
ψr = 0, are still steady-state solutions. Plugging these numbers in, Asters
are still solutions satisfying ψ̇ = 0, but Vortices are not! The new term
causes Vortices to not be steady state solutions. Asters are steady-state
solutions, Vortices are not!

2.6.2 The Stability of 1D Asters Against Global Perturba-
tions

Before investigating the more general case of local perturbations, we first
study stability of 1D solutions to global perturbations. Again, we make our
system one dimensional by fixing the radius to some particular value, R, and
only consider a ring geometry. To derive the equation governing the growth
of small perturbations, we can simply add a new convective term to the old
equilibrium equation. I’ll calculate the new convective term and then tack
on the results to our old equations. For small perturbations, the convective
term contributes the following:

−β
(
n̂ · ∇

)
n̂

∣∣∣∣∣
ψ+δψ

− β
(
n̂ · ∇

)
n̂

∣∣∣∣∣
ψ

= −β
[

cos(ψ + δψ)(ψr + δψr) +
sin(ψ + δψ)

r
(ψφ + δψφ + 1)

−
(

cosψψr +
sinψ
r

(ψφ + 1)
)]

= −β
[

cosψ cos δψ(ψr + δψr)− sinψ sin δψ(ψr + δψr)
]

− β

[
sinψ cos δψ

r
(ψφ + δψφ + 1) +

sin δψ cosψ
r

(ψφ + δψφ + 1)
]

+ β

[
cosψψr +

sinψ
r

(ψφ + 1)
]

= −β
[

cosψ
(

(δψr) +
δψ(ψφ + 1)

r

)
+ sinψ

((δψφ)
r
− (δψ)ψr

)]
+O(δψ2)
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Considering only radially-dependent perturbations, we impose that δψφ = 0:

= −β
[

cosψ
(
δψr +

δψ

r

)
− sinψ(δψ)ψr

]
Tacking on this new term to our previous stability equation for asters (13),
and evaluating the expression at the ring radius R, we arrive at the stability
equations for asters in 1D active polar liquid crystal systems:

γ
∂δψ

∂t
= (J −∆)

[
δψrr +

δψr
R

+
2∆

(J −∆)
δψ

R2

]
∓ β

[
δψr +

δψ

R

]
(Asters)

The treatment of convection introduces a new term which may be either
positive or negative. The negative β sign comes from evaluating the above
new term with ψ = 0, and the positive β sign comes from evaluating the
expression with ψ = π. The sign signifies whether asters are pointing ra-
dially outward or inward. ψ = 0 corresponds to outward-pointing asters
while ψ = π corresponds to inward-pointing asters. Since the β term began
with a negative sign, note that in the above equation, a negative β term
corresponds to outward-pointing asters.

For global perturbations, the radial derivatives vanish:

γ
∂δψ

∂t
= 2∆

δψ

R2
± β δψ

R
= δψ

(2∆± βR
R2

)
This equation is solved by:

δψ(t) = δψ0 exp
(2∆± βR

γR2

)
Compared to the case of ordinary polar and nematic liquid crystals, in order
to analyze the stability of one-dimensional asters in active liquid crystals,
we need to know the sign and magnitude of β in addition to the sign of δ.
Remembering that ∆ is negative for k3 > k1, the sign of β can have some
interesting consequences. If it is negative, it can allow asters to be stable
beyond some minimal radius, even if the ratio of Frank constants are not
favorable to aster patterns. If β is positive, it can destroy the stability of
asters beyond some minimal radius. In these two cases, this special radius
is given by:

R∗ =
2|∆|
β

2.6.3 Stability of Asters against Local Perturbations

Let’s consider the stability of asters against local perturbations, while still
restricting ourselves to only radial perturbations (δψφ = 0).

γ
∂δψ

∂t
= (J −∆)

[
δψrr +

δψr
r

+
2∆

(J −∆)
δψ

r2

]
∓ β

[
δψr +

δψ

r

]
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This is a partial differential equation for a function describing the time and
space dependence of a perturbation to the initial aster pattern, and we begin
by searching for separable solutions: δψ(r, t) = R(r) · T (t) Denoting spacial
and temporal differentiation by primes and dots, respectively:

γRṪ = (J −∆)T
[
R′′ +

R′

r
+

2∆
(J −∆)

R

r2

]
∓ βT

[
R′ +

R

r

]
Then divide by R(r)T (t):

γ
Ṫ

T
= (J −∆)

R′′

R
+
(J −∆

r
∓ β

)R′
R

+
(2∆
r2
∓ β

r

)
Since each side of the equation is a function or either only t or only r, we can
be sure that they are independent of each other and must equal a constant,
which we denote as -E. Then solve each ODE separately. The time-equation
is particularly simple:

γ
Ṫ

T
= −E =⇒ T (t) = A exp

(
− Et

γ

)
Now the spatial equation is a bit tougher:

(J −∆)
R′′

R
+
(J −∆

r
∓ β

)R′
R

+
(2∆
r2
∓ β

r

)
= −E

(J −∆)R′′ +
(J −∆

r
∓ β

)
R′ +

(
E +

2∆
r2
∓ β

r

)
R = 0

Let us now pause and examine the constants and dimensionality involved in
this equation. Denote length by l, time by t, energy by e:

[J ] = [∆] = e, [γ] = e · t · l−2, [β] = e · l−1, [E] = e · l−2

I am free to measure time in units of γ/E and length in units of (J −∆)/β.
Then the previously solved equation for T(t) becomes under t −→ t′ (I’ll
just drop the prime and use the original variable, t):

T (t) = A exp
(
− t
)

And as r −→ r′, our differential equation for R(r) becomes :

β2

J −∆
R′′ +

β2

J −∆

(
1
r
∓ 1

)
R′ +

(
E +

2∆β2

(J −∆)2r2
∓ β2

(J −∆)r

)
R = 0

Now let β2/(J −∆) ≡ k:

R′′ +
(1
r
∓ 1
)
R′ +

(E
k
∓ 1
r

+
2∆

(J −∆)r2

)
R = 0
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At this point let’s note that this is a linear 2nd order homogenous ODE for
R(r) of the form R′′ + f(r)R′ + g(r)R = 0. Avoiding for now the task of
finding an exact solution, let’s explore the solution in the asymptotic limit
r >> 1, r2 >> 2∆/(J −∆). In this limit our equation becomes:

R′′ ∓R′ + E

k
R = 0

Even in this simplified case, our solution depends on whether the aster is
pointing inwards or outwards, and upon the ratio E/k. E originally appeared
in the argument of the exponential solution for T(t). Firstly, note that if E
is negative, then the perturbations do not decay in time and are therefore
not stable. So we may restrict ourselves to positive values of E. As E →∞
the perturbation decays away very rapidly. As E → 0, the perturbation
does not decay and remains constant. Of course, E does not appear alone in
the exponential argument, γ is also present, but I propose that with these
redefined units, the ratio E/k is something of a measure of how ”stiff” the
system is. Also note that the sign of E/k depends on the relative strength
of the Frank constants.

This equation is simply that of the damped, undriven harmonic oscillator.

2.7 Modeling the Cellular Cytoskeleton as a Liq-
uid Crystal

The cellular cytoskeleton is an important structure that is present in all cells.
In Eukaryotic cells it is composed of networks of three different kinds of
protein filaments–actin filaments, intermediate filaments, and microtubules.
The cytoskeleton is responsible for the physical shape and structural sta-
bility of the cell, and is also important in crucial cellular functions such as
motility and intracellular transport. The protein filaments that constitute
the cytoskeleton bear a resemblance to liquid crystals; they are long, rod-like
molecules. Inert protein filaments may be modeled as nematic liquid crys-
tals. Chemically active protein filaments may be modeled as active polar
liquid crystals. Protein filaments are polymers, long molecules composed of
smaller molecular building blocks called monomers.

These protein filaments are very active players within the cellular environ-
ment. The move throughout the cell, and they form dynamic networks with
each other through smaller molecules known as molecular motors. These
motors may attach themselves to protein filaments and ”walk” along their
length. They may also move the filaments relative to one another. Net-
works of protein filaments attached through molecular motors are known as
active gels. The protein filaments are also dynamic in another sense; they

39



grow. The filaments are composed of monomers, and these monomer build-
ing blocks are diffused throughout the cell. During a phenomena known as
treadmilling, the monomers spontaneously detach from one end of the fil-
ament, and spontaneously attach at the opposite end. Treadmilling causes
the filaments to have a preferred orientation (the growing end behaves dif-
ferently than the disintegrating end), and therefore treadmilling filaments
may be modeled as active liquid crystals. A complete description of the
cellular cytoskeleton would necessarily include all three types of filaments,
molecular motors, and the tremendous variety of chemical components that
exist within the cell. However, simplified liquid crystal models of the cy-
toskeleton can be very useful in capturing the relevant physics, and can lead
to a more thorough understanding of cytoskeleton dynamics.

In the sections that follow, I describe our most recent line of investigation. I
have analyzed and compared the approaches of two different groups of physi-
cists in modeling the cytoskeleton as a liquid crystal. Each group makes
different simplifying assumptions, and after I analyze the two, I attempt
to extend their work into a more accurate description of the cytoskeleton.
Below I’ve borrowed two figures (and their captions) from Thomas Risler’s
Cytoskeleton and Cell Motility.

Figure 2.4: Cytoskeleton, courtesy of T. Risler
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Figure 2.5: Treadmilling, courtesy of T. Risler

2.7.1 Aranson and Tsimring

In their paper Theory of self-assembly of microtubules and motors
[Physical Review E 74 031915 (2006)], Aranson and Tsimring (henceforth
AT) study the formation of aster and vortex patterns in systems of micro-
tubules and molecular motors. It would be interesting to compare their work
on asters and vortices with our own analysis, as well as with the approach
taken by Voituriez et al (done in the following section). AT model the mi-
crotubule network as a polar liquid crystal.

The most relevant equation in their paper is (62). This equation assumes
uniform density and describes the time-evolution of the amplitude of the
orientation vector for microtubules in solution. Rather than working with a
two-dimensional vector, they have chosen to write their equations in terms
of a complex scalar. After rescaling, their equation (62) is:

∂tA = D1

(
∂2
r + r−1∂r − r−2

)
A+D2

(
∂2
r + r−1∂r − r−2

)
A∗ (2.28)

+ (1− |A|2)A+H

[
a1ARe(∂r + r−1)A+ a2∂rAReA+

ia2AImA

r

]
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They then chose to write A(r) as A(r) = Φ(r) exp(iϕ(r)). Plugging this into
the above equation, we find:

∂t ln Φ + i∂tϕ = D1

[Φ′′

Φ
+ iϕ′

Φ′

Φ
+ iϕ′′ − (ϕ′)2 +

Φ′

Φr
+ i

ϕ′

r
− 1
r2

]
(2.29)

+ D2

[Φ′′

Φ
− iϕ′Φ

′

Φ
− iϕ′′ − (ϕ′)2 +

Φ′

Φr
− iϕ

′

r
− 1
r2

]
exp(−2iϕ) +

[
1− Φ2

]
Φ

+ H

{
a1

[
Φ′ cosϕ− ϕ′Φ sinϕ+

Φ cosϕ
r

]
+ a2

[
Φ′ + iΦϕ′

]
cosϕ+

ia2 sinϕ
r

}

Because the above equation is complex, we can reduce it into a imaginary
and a real part.

Im: ϕ̇ =
[
D1 −D2 cos 2ϕ

][ϕ′Φ′
Φ

+ ϕ′′ +
ϕ′

r

]
(2.30)

+ D2 sin 2ϕ
[
(ϕ′)2 +

1
r2
− Φ′′

Φ
− Φ′

r

]
+Ha2Φ

(
ϕ′ cosϕ+

sinϕ
r

)

Re: ∂t ln Φ =
[
D1 +D2 cos 2ϕ

][
(ϕ′)2 +

1
r2
− Φ′′

Φ
− Φ′

Φr

]
+ D2 sin 2ϕ

[ϕ′Φ′
Φ

+ ϕ′′ +
ϕ′

r

]
+
[
Φ2 − 1

]
(2.31)

+ H

{
a1

[
Φϕ′ sinϕ− Φ′ cosϕ− Φ cosϕ

r

]
− a2Φ′ cosϕ

}

If Φ(r) = const., then the imaginary equation reduces to our earlier equa-
tion (29), which for reference I’ve included immediately below the reduced
Aranson and Tsimring (AT) equation:

ϕ̇ =
[
D1−D2 cos 2ϕ

][
ϕ′′+

ϕ′

r

]
+D2 sin 2ϕ

[
(ϕ′)2+

1
r2

]
+Ha2

(
ϕ′ cosϕ+

sinϕ
r

)
(AT)

γψ̇ =
[
J−∆ cos(2ψ)

][
ψrr+

ψr
r

]
+∆ sin(2ψ)

[
ψ2
r+

1
r2

]
−β
[

cosψ(ψr)+
sinψ
r

]
(our eq. 29)

However, the real AT equation constrains the possible solutions, and we
find that in AT’s formulation, steady-state, uniform aster solutions are not
permitted. For constant polarization amplitude Φ and ϕ = 0, π, the real
equation becomes:

0 =
[
D1 +D2

] 1
r2
∓Ha1

Φ
r

+
[
Φ2 − 1

]
From our initial assumption of constant polarization amplitude Φ and ϕ =
0, π, the fact that this equation is not satisfied by a range of r values implies
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that no such solutions exist.

AT analyzed the full equation for complex amplitude A numerically, and
found aster and vortex-like patterns with spatially varying polarization am-
plitude. They also investigated the dynamics of such solutions.

2.7.2 Voituriez et al

In their paper Spontaneous flow transition in active polar gels [Eu-
rophysics Letters 70 404 (2005)], Voituriez, Joanny, and Prost (henceforth
Voituriez et al) model the cytoskeleton as an polar liquid crystal immersed
in a liquid capable of flowing. The active dynamics lead to a flow velocity
field, while the filamentary nature of the cytoskeleton proteins lead to an
orientation field similar to my earlier approaches.

Voituriez et al deal with a quasi-1D geometry and neglect the effects of
activity on the orientation of the rods, and only treat activity in terms of
the velocity flow field. In my analysis, I have switched to polar coordinates
and have incorporated the effect of activity on the polarization (hence the
β-term in the below equation). We start with two main equations, one for
the polarization vector p (in the beginning of this paper I called the same
vector field n), and one for the hydrodynamic stress tensor.

Dpi
Dt
≡
(
∂t + vj∂j

)
pi + ωijpj =

1
γ
hi + λ∆µpi − νuijpj − β

(
~p · ∇

)
~p (2.32)

2ηuij = σij + ζ∆µpipj −
ν

2

(
pihj + pjhi

)
+

1
2

(
pihj − pjhi

)
+ ζ̄∆µδij (2.33)

Here ∆µ is the chemical potential difference between ATP and its hydrolysis
products, ~p = x̂ cos θ+ ŷ sin θ, D/DT is the corotational time derivative. uij
and ωij are the strain rate tensor and vorticity tensor, respectively, and are
given below. hi is the molecular field, and is also given below. h|| is a La-
grange multiplier, which is invoked in order to constrain p to be of constant
magnitude.

hi ≡

(
δF

δpi

)
= h||pi +K1∂i

(
∇ · ~p

)
+K3

(
∇2pi − ∂i∇ · ~p

)
+ w∇ρ (2.34)

uij =
1
2

(
∂ivj + ∂jvi

)
, ωij =

1
2

(
∂ivj − ∂jvi

)
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I will only consider order parameter fields of the form θ(r, φ) = φ + ψ(r).
I will assume constant density ρ, and velocity fields of the form ~v(r, φ) =
φ̂v(r), which follows directly from incompressibility. After imposing these
assumptions and converting to polar coordinates, we then obtain two equa-
tions, one determining ∂tψ and one that determines the velocity field.

γ∂tψ =
[
J −∆ cos 2ψ

][
ψ′′ +

ψ′

r

]
+ ∆ sin 2ψ

[
ψ′2 +

1
r2

]
−βγ

[
ψ′ cosψ +

sinψ
r

]
+
γ

2

[dv(r)
dr
− v(r)

r

][
1− ν cos 2ψ

]
(2.35)

This equation is very similar to my earlier eq. (29).

2.8 Conclusions and Future Directions

The previous section is incomplete, and I am still in the process of deriving
the relevant equations and analyzing this system. I plan to continue work-
ing on this project until graduation, as well as during the summer (after a
well deserved break, of course). I have spent a great deal of time and effort
learning about liquid crystal physics, and our eventual goal is to obtain a
significant research result of our own, and to publish the result in a scientific
journal.

This research has been the most influential academic experience of my un-
dergraduate career, and I am deeply indebted to Professors Bowick and
Marchetti for the tremendous amount of time and effort they have devoted
towards my education. This project has benefitted me far more than other
individual, and I am very lucky to have worked so closely with two such
excellent physicists. I would like to end this Capstone project with an ex-
pression of my deepest gratitude for their guidance and instruction.
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Chapter 3

Appendix

3.1 Conversion to Polar Coordinates

There are a few different ways to calculate the free energy in polar coordi-
nates. One would be to functionally differentiate the polar free energy, as
we did with the Cartesian free energy. Or, we could simply take the result
we have already calculated and convert it to polar coordinates. I’ll chose the
second method. First, we need to know how the partial derivatives involved
in the above expression translate to polar coordinates.

∂θ

∂x
=
∂θ

∂r

∂r

∂x
+
∂θ

∂φ

∂φ

∂x

∂θ

∂y
=
∂θ

∂r

∂r

∂y
+
∂θ

∂φ

∂φ

∂y

We can use the identities r2 = x2 +y2 and φ = arctan( yx) to determine what
θx and θy are in terms of θr and θφ

∂r

∂x
= cosφ,

∂r

∂y
= sinφ

∂φ

∂x
= −sinφ

r
,

∂φ

∂y
=

cosφ
r

We obtain the conversion from Cartesian to Polar partial derivatives:

∂

∂x
= (cosφ)

∂

∂r
− (

sinφ
r

)
∂

∂φ

∂

∂y
= (sinφ)

∂

∂r
+ (

cosφ
r

)
∂

∂φ

Operating on θ(x, y), we have:

θx = (cosφ)θr − (
sinφ
r

)θφ (3.1)
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θy = (sinφ)θr + (
cosφ
r

)θφ (3.2)

Using the above results we can solve for various expressions that we will
later use:

θ2
x = (cos2 φ)θ2

r + (
sin2 φ

r2
)θ2
φ −

sin 2(φ)
r

θrθφ

θ2
y = (sin2 φ)θ2

r + (
cos2 φ

r2
)θ2
φ +

sin 2(φ)
r

θrθφ

(θ2
x + θ2

y) = (cos2 φ+ sin2 φ)θ2
r + (

cos2 φ+ sin2 φ

r2
)θ2
φ

(θ2
x + θ2

y) = θ2
r +

θ2
φ

r2

(θ2
y − θ2

x) = −(cos2 φ− sin2 φ)θ2
r +

(cos2 φ− sin2 φ)
r2

θ2
φ +

2(sin 2φ)θrθφ
r

(θ2
y − θ2

x) = −(cos 2φ)θ2
r +

(cos 2φ)
r2

θ2
φ +

2(sin 2φ)θrθφ
r

θxθy = cosφ sinφθ2
r +

cos2φ

r
θrθφ −

sin2φ

r
θrθφ −

cosφ sinφ
r2

θ2
φ

θxθy =
(sin 2φ)

2
θ2
r −

(sin 2φ)
2r2

θ2
φ +

(cos 2φ)
r

θrθφ

Now if our director field happens to be of the form, θ(r, φ) = sφ+ψ(r, φ),
then we may find a more specific expression for the above derivates. These
are used in the :

θx = cosφ(ψr)−
sinφ
r

(s+ ψφ)

θy = sinφ(ψr) +
cosφ
r

(s+ ψφ)

θ2
x = cos2 φ(ψ2

r )−
2 sinφ cosφ

r
(s+ ψφ)ψr +

sin2 φ

r2
(s+ ψφ)2

θ2
y = sin2 φ(ψ2

r ) +
2 sinφ cosφ

r
(s+ ψφ)ψr +

cos2 φ

r2
(s+ ψφ)2

θxθy =
sin 2φ

2
(ψ2

r ) +
cos 2φ
r

(s+ ψφ)ψr −
sin 2φ
2r2

(s+ ψφ)2

θxx = cos2 φ(ψrr)+
2 sinφ cosφ

r2
(s+ψφ)+

sin2 φ

r2
(ψφφ)−2 cosφ sinφ

r
(ψrφ)+

sin2 φ

r
(ψr)

θyy = sin2 φ(ψrr)−
2 cosφ sinφ

r2
(s+ψφ)+

cos2 φ

r2
(ψφφ)+

2 cosφ sinφ
r

(ψrφ)+
cos2 φ

r
(ψr)

θxy =
sin 2φ

2
(ψrr)−

cos 2φ
r2

(s+ψφ)− sin 2φ
2r2

(ψφφ)+
cos 2φ
r

(ψrφ)− sin 2φ
2r

(ψr)
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