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A Two-Dimensional Lattice Model with Exact Supersymmetry

S. Catteralla ∗,S. Karamova

aDepartment of Physics, Syracuse University, Syracuse, NY 13244

Starting from a simple discrete model which exhibits a supersymmetric invariance we construct a local, in-

teracting, two-dimensional Euclidean lattice theory which also admits an exact supersymmetry. This model is

shown to correspond to the Wess-Zumino model with extended N = 2 supersymmetry in the continuum. We

have performed dynamical fermion simulations to check the spectrum and supersymmetric Ward identities and

find good agreement with theory.

1. Introduction

Supersymmetry is thought to be a crucial in-
gredient in any theory which attempts to unify
the separate interactions contained in the stan-
dard model of particle physics. On rather gen-
eral grounds we expect that supersymmetry must
be broken non-perturbatively in any such theory.
This has led to attempts to formulate such theo-
ries on lattices [2].

However, most lattice models break supersym-
metry explicitly and lead generically to the ap-
pearance of relevant, SUSY violating interactions
in the lattice effective action. The continuum
limit will not then correspond to a supersymmet-
ric theory without fine tuning.

In this talk we show that models exist which
may be discretized in such a way as to preserve
a subset of the continuum SUSY transformations
exactly. Such models may evade this fine tuning
problem.

2. Simple Model

Consider a set of discrete, real, commuting
fields xi and real, anticommuting fields ψi, ψi

where i = 1 . . .K with action

S =
1

2
N2

i (x) + ψi

∂Ni

∂xj

ψj

which admits a ‘supersymmetry’

δxi = ψiξ

∗Corresponding author: smc@physics.syr.edu

δψi = Niξ

δψi = 0

Corresponding to this symmetry the quantum
theory exhibits Ward identities eg.
〈

ψiψj

〉

+
〈

N ixj

〉

= 0

If we choose the fields x, ψ, ψ to lie on a spatial
lattice equipped with periodic boundary condi-
tions and take the fermion matrix Mij = ∂Ni

∂xj
to

be of the form

Mij = DS
ij + P ′′

ij(x)

we recover a Euclidean lattice version of SUSY
QM

S =
1

2
(DS

ijxj + P ′

i )
2 + ψi(D

S
ij + P ′′

ij)ψj

Notice that if we include a Wilson term in P ′′

we can eliminate double modes in both fermionic
and bosonic sectors. Notice also that the lattice
action contains a term which behaves as a total
derivative in the naive continuum limit. However,
on the lattice it is non-zero for an interacting the-
ory and its inclusion is necessary if the theory is
to possess an exact SUSY invariance.

3. Mean Action

For P ′ = mx + gxQ we can show using a sim-
ple scaling argument and a supersymmetric Ward
identity that the mean action < S >= K, the
number of degrees of freedom, which we recog-
nize as a Euclidean analog of the vanishing of the

http://arXiv.org/abs/hep-lat/0110071v1
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vacuum energyEvac = 0 in a supersymmetric the-
ory. Notice also that S is approximately invariant
under 2nd SUSY

δ′xi = ψiξ

δ′ψi = (Dijxj − P ′

i )ξ

δ′ψi = 0

where

δ′S = δ′
(

2DS
ijxjP

′

i

)

Since QM is a finite theory we hence expect
the continuum model to have the full N = 2
SUSY. Fig 1 shows a plot of the massgap in the
model where P ′ = mx + gx3 for m = 10 and
g = 100, as a function of the lattice spacing which
clearly exhibits the degeneracy between bosonic
and fermionic degrees of freedom at finite lattice
spacing.

Figure 1. Massgaps vs a at m = 10, g = 100
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4. Wess Zumino Model

Imagine promoting the indices i→ (i, α) where
i labels the spacetime point and α = 1, 2 a spinor
component for a theory in two dimensions. Notice
immediately that the target theory will contain
two real scalars. We take a fermion matrix of the
form

Mαβ
ij = γµ

αβD
µ
ij +Aijδαβ +Bijiγ

5
αβ

We find that this matrix can only be obtained
by differentiating some vector field if the bosons
possess a complex structure φi = x1

i + ix2
i and

S =
1

2
η(1)η(1) + ψMψ

where

η
(1)
i = Dzφi +W ′

i (φ)

and W (φ) is an arbitrary analytic function.
We can also write down three other complex

fields which yield the same continuum bosonic ac-
tion

η(2) = Dzφ−W ′(φ)

η(3) = Dzφ−W ′(φ)

η(4) = Dzφ+W ′(φ)

All these lead to same value for detM and gener-
ate approximate symmetries on the lattice δS ∼

ga2 eg.

δ2xi = iγαβ
5 ψβ

i ξ

δ2ψ
α

i = iγαβ
5 N

β

i ξ

δ2ψ
α
i = 0

with

η
(2)
i = (N

1

i + iN
2

i )

We can also derive Ward identities corresponding
to all these exact and approximate supersymme-
tries.

5. Simulations

We have checked these conclusions by explicit
dynamical fermion simulations for the case W =
mφ+gφ2 with m = 10 and g = 0, 3. We employed
a HMC algorithm [3] in which the fermions were
replaced by (real) pseudofermions χ with action

SF = χ(MTM)−1χ

We obtained substantial improvement by use of
Fourier acceleration techniques described in [4,5].
Using these ideas we amassed data for lattices
from L = 4 through L = 32 (1 million and 2×104

trajectories respectively) both for g = 0 and g = 3
[6]. Table 1 illustrates the mean action obtained
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Table 1
Mean action vs L
< S > L
4 31.93(6)
8 127.97(7)
16 512.0(3)
32 2046(3)

at g = 3 as a function of lattice size By fitting
the zero-momentum correlation functions we ob-
tained the following massgaps as a function of
lattice spacing a = 1/L. Fig 2 shows a plot show-

Table 2
Boson and fermion massgaps vs L

Lattice size mB mF

4 5.09(2) 4.95(8)
8 6.52(2) 6.44(5)
16 7.76(4) 7.75(6)
32 8.29(19) 8.33(30)

ing the bosonic and fermionic contributions to the
Ward identity in eqn.1. If the Ward identity is
satisfied these two curves should sum to zero as
the figure confirms.

6. Conclusion and Discussion

We have shown that it is possible to write
down a local lattice action for the 2D Wess Zu-
mino model with extended (N = 2) supersymme-
try which admits an exact, local supersymmetry.
The presence of an exact SUSY-like symmetry
together with the finiteness of the theory then
guarantees that the full N = 2 supersymmetry
will be regained in the continuum limit without
fine tuning. We have tested these ideas by explicit
dynamical fermion simulations.
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