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Abstract 

In PET and SPECT imaging, iterative reconstruction is now widely used due to its 

capability of incorporating into the reconstruction process a physics model and Bayesian 

statistics involved in photon detection. Iterative reconstruction methods rely on regularization 

terms to suppress image noise and render radiotracer distribution with good image quality. The 

choice of regularization method substantially affects the appearances of reconstructed images, 

and is thus a critical aspect of the reconstruction process. Major contributions of this work 

include implementation and evaluation of various new regularization methods. Previously, our 

group developed a preconditioned alternating projection algorithm (PAPA) to optimize the 

emission computed tomography (ECT) objective function with the non-differentiable total 

variation (TV) regularizer. The algorithm was modified to optimize the proposed reconstruction 

objective functions.  

 First, two novel TV-based regularizers—high-order total variation (HOTV) and infimal 

convolution total variation (ICTV)—were proposed as alternative choices to the customary TV 

regularizer in SPECT reconstruction, to reduce “staircase” artifacts produced by TV. We have 

evaluated both proposed reconstruction methods (HOTV-PAPA and ICTV-PAPA), and 

compared them with the TV regularized reconstruction (TV-PAPA) and the clinical standard, 

Gaussian post-filtered, expectation-maximization reconstruction method (GPF-EM) using both 

Monte Carlo-simulated data and anonymized clinical data. Model-observer studies using Monte 

Carlo-simulated data indicate that ICTV-PAPA is able to reconstruct images with similar or 

better lesion detectability, compared with clinical standard GPF-EM methods, but at lower 



 

 

 

detected count levels. This implies that switching from GPF-EM to ICTV-PAPA can reduce 

patient dose while maintaining image quality for diagnostic use. 

 Second, the 1 norm of discrete cosine transform (DCT)-induced framelet regularization 

was studied. We decomposed the image into high and low spatial-frequency components, and 

then preferentially penalized the high spatial-frequency components. The DCT-induced framelet 

transform of the natural radiotracer distribution image is sparse. By using this property, we were 

able to effectively suppress image noise without overly compromising spatial resolution or image 

contrast. 

 Finally, the fractional norm of the first-order spatial gradient was introduced as a 

regularizer. We implemented 2/3 and 1/2 norms to suppress image spatial variability. Due to the 

strong penalty of small differences between neighboring pixels, fractional-norm regularizers 

suffer from similar cartoon-like artifacts as with the TV regularizer. However, when penalty 

weights are properly selected, fractional-norm regularizers outperform TV in terms of noise 

suppression and contrast recovery. 

 

  

 

  

 

  



 

 

 

 
 

 
 

Development and Implementation of Efficient Noise Suppression Methods for 
Emission Computed Tomography 

 
 
 

 
 

By 
 

Jiahan Zhang 
 

B.S., Nankai University, 2011 
 
 
 

 
 
 

 
   Dissertation 

 
 
 

 
Submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Physics. 
 

 
 

Syracuse University 
     

   May 2016 
 
 
 
 
 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright © Jiahan Zhang 2016 

All Rights Reserved 



 

v 

 

Table of Contents 

Abstract i 

Table of Contents v 

List of Tables ix 

List of Figures x 

List of Acronyms xvi 

Acknowledgements xviii 

 Introduction 1 

1.1. SPECT imaging ..............................................................................................1 

 Anger camera .........................................................................................1 

 Tomographic imaging ............................................................................5 

 Clinical applications and radiation dose considerations ........................5 

1.2. Objectives .......................................................................................................6 

1.3. Overview of dissertation .................................................................................7 

1.4. Publications on and presentations of this dissertation work ...........................7 

 Principles of SPECT imaging 9 

 SPECT imaging model ...................................................................................9 

 Notations ................................................................................................9 

 Modeling the detection of gamma photons .........................................11 

 System matrix A ...................................................................................16 



 

vi 

 

 Iterative image reconstruction ......................................................................18 

 Maximum-likelihood reconstruction criteria .......................................18 

 Maximum-likelihood expectation-maximization (ML-EM) algorithm19 

 Maximum a posteriori (MAP) reconstruction criteria ........................23 

 Preconditioned alternating projection algorithm (PAPA) ...................24 

 Experimental design 32 

 Monte Carlo simulated projection data .........................................................32 

 Characterizing collimator-detector response function using experimental data 34 

 Experimental design ............................................................................34 

 Data analysis ........................................................................................35 

 Standard image quality metrics.....................................................................36 

 Spatial variability .................................................................................37 

 Uniformity ...........................................................................................37 

 Local NPS ............................................................................................38 

 Spatial resolution .................................................................................38 

 Bias 39 

 Contrast recovery coefficient ...............................................................40 

 Mean-squared error ..............................................................................40 

 Model observers ............................................................................................40 

 Channelized Hotelling observer ..........................................................41 

 Channel selection .................................................................................43 

 Internal noise .......................................................................................45 



 

vii 

 

 CHO lesion detectability......................................................................46 

 Implementation and evaluation of various regularization methods for 

iterative reconstruction 47 

 Post filtering ..................................................................................................47 

 Iterative regularization methods ...................................................................47 

 Total variation-based regularization methods ...............................................48 

 Total variation ......................................................................................49 

 High order total variation ....................................................................52 

 Infimal-convolution total variation ......................................................53 

 Experimental design ............................................................................55 

 Results and discussion .........................................................................58 

 Conclusions .........................................................................................76 

 DCT-induced framelet regularization ...........................................................78 

 Numerical experiment results and discussion......................................80 

 Conclusions .........................................................................................83 

 Fractional norm .............................................................................................83 

 Motivation ...........................................................................................84 

 Implementation of fractional norm regularized SPECT reconstruction85 

 Experimental design ............................................................................86 

 Results and discussion .........................................................................87 

 Conclusions .........................................................................................93 



 

viii 

 

 Conclusions and future work 95 

Appendix A. Iteration scheme of TV-PAPA, HOTV-PAPA, and ICTV-PAPA98 

Appendix B. Protocol for CDRF-modelling experiments 102 

Reference 104 

VITA 114 

 



 

ix 

 

List of Tables 

Table 3.1. Resolution response (Gaussian radius) as function of point-source distance d (cm) 

from collimator and ρ (cm) from central axis. ........................................................................... 36 

Table 3.2. Sensitivity as function of point-source distance d (cm) from collimator and ρ (cm) 

from central axis. .......................................................................................................................... 36 

Table 4.1. Regularizers TV, HOTV, and ICTV. Here ∇ represents first-order difference matrix.

....................................................................................................................................................... 54 

Table 4.2. Mean and maximum amplitudes of LNPS obtained for the simulated SPECT data 

with 120 kc/view ........................................................................................................................... 69 

 

 



 

x 

 

List of Figures 

Fig. 1.2. Schematic figure of an Anger camera. ............................................................................. 2 

Fig. 1.3. NaI scintillation crystal. [3] .............................................................................................. 3 

Fig. 1.4. Collimators with (a) parallel beam design and (b) fan beam design. [4] ......................... 4 

Fig. 2.1. Example of 1D collimator detector response functions for point sources at two distances 

from the collimator. ...................................................................................................................... 12 

Fig. 2.2. Photons emitted from patients and detected by gamma camera or absorbed by 

collimator. Trajectories of gamma photons are shown. (a) Photon passes through the collimator 

directly and is detected. (b) Photon penetrates collimator septum and is detected. (c) Photon is 

absorbed by collimator septum. (d) Photon is scattered once within patient body and is detected. 

(e) Photon is scattered once within patient body and is absorbed by collimator. (f) Photon scatters 

multiple times within patient body and is detected. [12] .............................................................. 15 

Fig. 2.3. Schematic figure of voxel j, pixel i, and system matrix element Aij. ............................. 17 

Fig. 3.1. Sample images of phantom and Monte Carlo simulated projection data. (a) Transaxial 

cross-section of a digital phantom, with six spheres of various sizes (b) Monte Carlo-simulated 

“noiseless” projection, and (c) Simulated projection with added Poisson noise. ......................... 33 

Fig. 3.2. Experiment setup for (a) Siemens e.cam dual-head camera with LEHR parallel beam 

collimators, and (b) Trionix Triad triple-head camera with LEHR fan beam collimators. Courtesy 

of SUNY Upstate University Hospital. ......................................................................................... 35 

Table 3.1. Resolution response (Gaussian radius) as function of point-source distance d (cm) 

from collimator and ρ (cm) from central axis. ........................................................................... 36 



 

xi 

 

Table 3.2. Sensitivity as function of point-source distance d (cm) from collimator and ρ (cm) 

from central axis. .......................................................................................................................... 36 

Fig. 3.3. CHO bands in frequency domain: (a) SQR (b) S-DOG (c) D-DOG. See text for 

frequency selections. ..................................................................................................................... 44 

Fig. 4.1. Comparison of TV regularization term with Huber and quadratic regularization 

functions. ....................................................................................................................................... 51 

Table 4.1. Regularizers TV, HOTV, and ICTV. Here ∇ represents first-order difference matrix.

....................................................................................................................................................... 54 

Fig. 4.2. Trans-axial cross-sections of a phantom with: (a) 6 cold (no activity) piecewise-constant 

spheres with radii of 4, 5, 6, 7, 8, and 9 mm, (b) 8 point sources with maximum-activity-to-

mean-background ratio of 100:1 at different radial distances from the central axis of the 

phantom, (c) 6 hot Gaussian blobs with radii (FWHM) of 4, 5, 6, 7, 8, and 9 mm with maximum-

activity-to-mean-background ratio of 3:1 and (d), (e), (f) reference phantom containing warm 

Gaussian blobs only. Both phantoms were of the size 128 × 128 × 128 voxels, with voxel size set 

to 2.2 × 2.2 × 2.2 mm3. ................................................................................................................. 56 

Fig. 4.3. Transaxial cross-sections of images for Monte Carlo-simulated SPECT data for 

phantom shown in Fig. 4.2, reconstructed by: (a) ICTV-PAPA for 40 kc/view data, λ1 = 0.4, λ2 = 

0.4; (b) ICTV-PAPA for 80 kc/view data, λ1 = 0.3, λ2 = 0.3; (c) ICTV-PAPA for 120 kc/view 

data, λ1 = 0.2, λ2 = 0.2;  (d) HOTV-PAPA for 120 kc/view data, λ1 = 0.1 λ2 = 0.1; (e) TV-PAPA 

for 120 kc/view data, λ = 0.2; and (f) GPF-MLEM using 120 kc/view data, FWHM = 7.3 mm. 

For all images, the reconstruction was stopped at 100 iterations. Left column: hot spheres with 

Gaussian activity distribution (see text). Right column: cold spheres with zero activity. ............ 60 



 

xii 

 

Fig. 4.4. Components of ICTV-PAPA reconstructed images obtained at 100 iterations for 

simulated SPECT data with 120 kc/view, λ1 = 0.2, and λ2= 0.2: (a) f1 component, (b) f2 

component, and (c) final combined image (f=f1+ f2). Top row: cold spheres with zero activity. 

Bottom row: hot spheres with Gaussian activity distribution (see Fig. 4.2 and text). .................. 61 

Fig. 4.5. Surface plots of: (a) ICTV-PAPA for 40k/view, λ1 = 0.4 λ2= 0.4; (b) ICTV-PAPA for 

80k/view, λ1 = 0.3 λ2= 0.3; (c) ICTV-PAPA for 120k/view, λ1 = 0.2 λ2 = 0.2; (d) HOTV-PAPA 

for 120k/view, λ1 = 0.1 λ2= 0.1; (e) TV-PAPA for 120k/view, λ = 0.2; (f) GPF-MLEM for 

120k/view, FWHM = 7.3 mm; and (g) ground truth. Left column: hot spheres with Gaussian 

activity distribution (see text). Right column: cold spheres with zero activity shown in inverted 

scale............................................................................................................................................... 64 

Fig. 4.6. (a) Mean CRC vs. background variability for hot spheres; (b) Mean CRC vs. 

background variability for cold spheres; (c) Mean CRC vs. bias for hot spheres; (d) Mean CRC 

vs. bias for cold spheres; (e) Bias vs. background variability for hot spheres; (f) Bias vs. 

background variability for cold spheres. Each point on the curves was calculated for penalty 

parameters selected in the 0.01-200 range for TV-based algorithms and Gaussian post-filter radii 

in the 1.1-7.1 mm range for GPF-EM. Only the four largest spheres were considered among cold 

spheres. The limiting background spatial variability for selected ROIs is 17.6% for the 

background in the cross-section with hot spheres, and 22.7% for the cross-section with cold 

spheres due to the lumpy background. The ideal values of background spatial variability are 

indicated by solid diamonds and dashed lines. ............................................................................. 66 

Fig. 4.7. Local noise power spectra (LNPS) obtained for the central location of small ROI: (a) 

GPF-EM; (b) TV-PAPA; (c) HOTV-PAPA; and (d) ICTV-PAPA all obtained for simulated 



 

xiii 

 

SPECT data with 120 kc/view. Noise variance values of the selected ROI and penalty parameters 

are displayed at the bottom of each image. ................................................................................... 68 

Fig. 4.8. Average radial profiles for local noise power spectra shown in Fig. 4.7. The profiles 

were obtained by averaging the data every 10°. ........................................................................... 69 

Table 4.2. Mean and maximum amplitudes of LNPS obtained for the simulated SPECT data 

with 120 kc/view ........................................................................................................................... 69 

Fig. 4.9. CHO detectability indices of: (a) hot; and (b) cold spheres vs. cross-sectional area of the 

spheres and vs. number of counts per view in the simulated SPECT data. ICTV-PAPA for 40 

kc/view data, λ1 = 0.4, λ2 = 0.4; ICTV-PAPA for 80kc/view data, λ1 = 0.3, λ2 = 0.3; ICTV-PAPA 

for 120kc/view data, λ1 = 0.2, λ2 = 0.2; HOTV-PAPA for 120kc/view data, λ1 = 0.1 λ2 = 0.1; TV-

PAPA for 120kc/view data, λ = 0.2; and GPF-MLEM using 120kc/view data, FWHM = 7.3 mm. 

The reconstructions were stopped at 100 iterations. The solid lines connecting the data points are 

provided as a visual guide only. .................................................................................................... 70 

Fig. 4.10. CHO detectability estimated (solid circles) for the fourth largest sphere (1.4 cm2 cross-

sectional area) for images reconstructed with three photon levels (40, 80 and 120 kc/view) using 

ICTV-PAPA and GPF-EM (solid squares) at 120 kc/view level. ................................................ 71 

Fig. 4.11. (a) Radial (r) full width at half maximum (FWHM) and (b) tangential (t) FWHM of 

trans-axial local point spread function (LPSF) as function of radial positions of point sources. 

The SPECT data were simulated for 120 kc/view. Reconstructions were performed with the 

following penalty parameters: ICTV-PAPA for 40 kc/view data, λ1 = 0.4, λ2 = 0.4; ICTV-PAPA 

for 80kc/view data, λ1 = 0.3, λ2 = 0.3; ICTV-PAPA for 120kc/view data, λ1 = 0.2, λ2 = 0.2; 

HOTV-PAPA for 120kc/view data, λ1 = 0.1 λ2 = 0.1; TV-PAPA for 120kc/view data, λ = 0.2; and 



 

xiv 

 

GPF-EM using 120kc/view data, FWHM = 7.3 mm. Reconstructions were stopped at 100 

iterations. The solid lines are linear regression fits. ...................................................................... 72 

Fig. 4.12. Trans-axial views of reconstructed images obtained for clinical Tc-99m Sestamibi 

SPECT parathyroid, late-phase study: Clinical Hermes HOSEM algorithm (a); EM-GPF (b); TV 

(c, d); HOTV-PAPA (e, f); and ICTV-PAPA (g, h), each with two sets of penalty parameters. . 74 

Fig. 4.13. Coronal views of reconstructed images obtained for clinical Tc-99m Sestamibi SPECT 

parathyroid late-phase study: Clinical Hermes HOSEM algorithm (a); EM-GPF (b); TV (c, d); 

HOTV-PAPA (e, f); and ICTV-PAPA (g, h), each with two sets of penalty parameters. ............ 75 

Fig. 4.14. One-channel-wide line profiles through reconstructed transaxial images from the 

clinical Tc-99m Sestamibi parathyroid scan image shown in Fig. 4.12. The location of the profile 

is shown in the inset. Penalty weights were set as: TV-PAPA λ = 2, HOTV-PAPA λ1 = 1 λ2 = 1, 

ICTV-PAPA: λ1 = 2 λ2 = 2. ........................................................................................................... 76 

Fig. 4.15. Transaxial cross-section through the synthetic phantom with warm lumpy background 

and Gaussian blobs as hot lesions (σ = 4, 5, 6, 7, 8, and 9 mm; 4:1 activity ratio). ..................... 80 

Fig. 4.16. Transaxial cross-section through the reconstructed images with various parameters 

obtained at 100 iterations. Top four rows are images reconstructed using PAPA-DCT; bottom 

row are images reconstructed using EM with Gaussian post-filters. ............................................ 82 

Fig. 4.17. Mean squared error (MSE) curves obtained for images reconstructed using proposed 

DCT-PAPA method and EM Gaussian post filter (GPF-EM). ..................................................... 82 

Fig. 4.18. Comparison of φ(z) for 0, 1/2, 2/3, and 1 norm (TV). ............................................... 84 



 

xv 

 

Fig. 4.19. 2D Phantoms used for evaluation of fractional norm-regularized SPECT 

reconstruction methods: (a) Hoffman brain phantom, (b) Cylindrical phantom with lumpy 

background and hot spherical “lesions”. ....................................................................................... 87 

Fig. 4.20. Transaxial cross-section of Hoffman phantom reconstructed by PAPA with 1/2 norm, 

2/3 norm, and 1-norm (TV). ........................................................................................................ 89 

Fig. 4.21. Image profiles of the phantom and reconstructed images with optimal penalty weights. 

The image profiles were taken horizontally through the center of the image, as indicated by the 

yellow line in the figure. ............................................................................................................... 90 

Fig. 4.22. (a) RMSE and (b) bias of reconstructed images of the lumpy phantom with optimal 

penalty weights selected for each reconstruction methods. .......................................................... 91 

Fig. 4.23. Contrast recovery coefficients of reconstructed hot spheres in the lumpy phantom with 

optimal penalty weights selected for each reconstruction methods. ............................................. 91 

Fig. 4.24. Transaxial cross-section of Hoffman phantom reconstructed by PAPA with 1/2 norm, 

2/3 norm, and 1 norm (TV). ......................................................................................................... 93 

 



 

xvi 

 

List of Acronyms 

SPECT   single photon emission computed tomography 

PMT    photomultiplier tube 

LEHR    low energy high resolution 

DRF    detector response function 

GRF    geometry response function 

CDRF    collimator-detector response function 

TEW    triple energy window 

FBP    filtered backprojection 

ML    maximum likelihood 

EM    expectation maximization 

MAP    maximum a posteriori 

PL    penalized maximum likelihood 

PAPA    preconditioned alternating projection algorithm 

TV    total variation 

ICTV    infimal convolution total variation 

HOTV    high-order total variation 

DCT    discrete cosine transform 

MPI    message passing interface 

CPU    central processing unit 

GPU    graphical processing unit 



 

xvii 

 

SNR    signal-to-noise ratio 

FWHM   full width at half maximum 

NPS    noise power spectrum 

CRC    contrast recovery coefficient 

CHO    channelized Hotelling observer 

ROC    receiver operating characteristic 

AUC    area under the ROC curve 

ESF    edge spread function 

PSF    point spread function 

ROR    radius of rotation 

RMSE    root mean square error 

VOI    volume of interest 

 

 

 



 

xviii 

 

Acknowledgements 

First of all, I would like to thank my two advisors, Dr. Edward Lipson and Dr. Andrzej 

Krol, for their continuous guidance and encouragement during the course of this work. 

Dr. Lipson has not only given me great mentorship in my research, but also inspired me to be a 

better person in life. Dr. Krol has worked with me on daily basis in the past few years, and his 

experience and leadership are indispensable to our work. I would also like to express my 

appreciation for Dr. Yuesheng Xu and Dr. Lixin Shen for their mathematics expertise and 

creativity, which inspired our research projects.  

Thank you to my friends and colleagues for their tremendous help in the past five years: 

Dr. Si Li for his outstanding work on developing the reconstruction algorithm; Dr. Levon 

Vogelsang for his SPECT reconstruction program, which introduced me to the world of 

tomographic imaging; Dr. Hongwei Ye and Dr. Russell Kincaid for their career advice that 

helped me design my career path; and Zhifeng Wu and Wei Zheng for our many thoughtful 

discussions throughout the years. 

I would also like to take this opportunity to thank my defense committee for their time 

devoted to helping me improve my work: Dr. Lixin Shen, Dr. Liviu Movileanu, Dr. Jennifer 

Schwarz, and Dr. John Laiho. 

Finally, I would like to thank my parents, Shaoyan Liu and Ge Zhang, for their faith in 

me. I would also like to thank my fiancé, Wenli Tang, for her unconditional love and optimism. 

Without all your support throughout these years, getting a PhD would have been an 

insurmountable task.



1 

    

 

 

 Introduction 

1.1. SPECT imaging 

Single photon emission computed tomography (SPECT) is a commonly used nuclear 

medicine imaging modality [1, 2]. In SPECT imaging, a radioactive tracer, often a surrogate of a 

substance involved in biological processes of clinical interest, is administered to the patient. 

After uptake time, to allow the radiotracer to be absorbed and distributed, the patent is placed on 

the bed of a SPECT scanner. Gamma cameras are used to detect gamma photons emitted by the 

radiotracer within the patient’s body. In the imaging process, one or more gamma cameras orbit 

around the patient and acquire a sequence of gamma-ray projection images. The process of 

image reconstruction produces an estimate of 3D activity distribution in the patient from a set of 

2D projections detected from a large number of angles. The 3D image, reflecting the function of 

certain organs or tissues, is used by radiologists to examine if there are functional abnormalities. 

 Anger camera 

Initially introduced by Anger in the 1950s [3], scintillation cameras, also known as Anger 

cameras, have seen significant improvements in recent decades [4]. As shown in Fig.1.2, a 

conventional Anger camera consists of a collimator, a large continuous crystal scintillator, an 

array of photomultiplier tubes (PMTs), and a logic circuit behind the PMTs.  
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Fig. 1.1. Schematic figure of an Anger camera. 

 

The process of detecting a gamma photon is as follows. First, the photon with an 

appropriate incident angle passes through collimator. The photon then deposits its energy in the 

scintillation crystal, after which visible light photons are emitted in the crystal. The light pulse 

passes through the light guide and reaches the photocathode of photomultiplier tubes (PMTs), in 

which photon pulses are converted to electric current. The magnitude of photocurrent generated 

in the PMTs is proportional to the number of visible photons, and thus proportional to the energy 

deposited in scintillation crystal by the incident gamma photon. The electronic circuitry behind 

the PMTs estimates the incident energy and position of the photon. The location of the photon is 

binned into an imaginary detector element, the index of which is recorded. After the acquisition, 

the number of gamma photon counts within the selected energy window detected by each 

detector element is stored in the computer system of the SPECT scanner. 
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Fig. 1.2. NaI scintillation crystal. [5] 

 

A sodium iodide (NaI) crystal (Fig. 1.2), is often used as the scintillator; its many 

advantages include high light output and relatively low cost. Compared with semiconductor 

detectors, its key weaknesses are longer dead time and lower energy resolution. For use in 

SPECT gamma cameras, the cost effectiveness outweighs those disadvantages. 
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a 

 
b 

Fig. 1.3. Collimators with (a) parallel beam design and (b) fan beam design. [6] 

 

Collimators are used to retain photons from a region of interest with defined incident 

angles and absorb photons from other directions. Proper collimators must be selected for gamma 

rays of different energies in order to optimize the sensitivity and spatial resolution tradeoff. 

There are two types of collimators widely used in clinical settings: parallel-beam and fan-

beam (Fig. 1.3). Other types of collimators, including cone-beam and pinhole collimators, are 

also used for small animal studies. Fan-beam and cone-beam collimators are also known as 

converging collimators. The advantage of converging collimators over parallel-beam collimators 

is improved sensitivity, by effective use of a larger scintillator area. Considering that sensitivity 

is correlated with the number of photons detected by the gamma camera, the use of converging 

collimators can lead to better reconstructed images if the radiotracer activity within the patient 

and the acquisition time both remain unchanged. It has been shown that converging collimators 

have better image lesion detectability in certain cases [7, 8]. 
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In our simulation and experimental studies, we used a Siemens E.Cam dual-head camera 

with low-energy high-resolution (LEHR) parallel-beam collimators, and a Trionix Triad triple-

head camera with LEHR fan-beam collimators. 

 Tomographic imaging 

A sequence of 2D projection sets are obtained in the SPECT imaging process. Three-

dimensional functional information can be recovered through image reconstruction. 

Tomographic image reconstruction by definition is an inverse problem [9]. Carefully solving this 

problem and thereby accurately recovering radiotracer distribution within a patient’s body is a 

crucial process in SPECT imaging.  

As an inverse problem, image reconstruction is ill-posed, in that fluctuations of detected 

photon counts may significantly affect the quality of reconstructed images. Therefore, image 

regularization, which serves as a stabilizer of the otherwise unstable solution, is often required. 

Regularization methods will be discussed in Chapter 5. 

 Clinical applications and radiation dose considerations 

Due to the nature of the imaging process, SPECT images yield 3D functional 

information, differentiating SPECT from traditional structural imaging modalities like CT. 

SPECT is currently widely used for thyroid studies, ventilation/perfusion studies, and whole-

body-bone studies [2].  

Gamma rays, as ionizing radiation, are likely to increase the stochastic risks of patients 

getting cancer even at low dose. According to the “linear-no-threshold” (LNT) risk model, which 
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is supported by recent studies [10], the cancer risk is linearly proportional to radiation dose 

without a threshold, and even a small radiation dose is likely to cause a slight increase in risk to 

the patient. The effective dose per individual in the U.S. population has increased from 3.6 mSv 

in the early 1980s to 6.2 mSv in 2006 [11]. The increase is mainly due to the wide use of 

ionizing radiation in medical exams, including fluoroscopy, x-ray computed tomography (CT), 

positron emission tomography (PET), and SPECT. Therefore, it is important to aggressively 

reduce unnecessary radiation dose to patients to assure the best patient care quality. There are 

increasing efforts in the medical physics community to control and reduce patient dose. 

Radiation dose reduction in SPECT reconstruction is the main motivation of this study. 

We hope to achieve dose reduction for patients in SPECT imaging through effective noise 

suppression in the iterative image-reconstruction process.  

1.2. Objectives 

The main objective of this study is to investigate the possibility of reducing radiation 

dose to patients in SPECT imaging while maintaining image quality for diagnostic use. In 

SPECT, the photon counts detected by gamma cameras obey Poisson statistics. Therefore, lower 

dose, with the same image acquisition time (and same SPECT machine), corresponds to lower 

counts and higher noise in projection data. Effective noise suppression in an iterative 

reconstruction process without significantly compromising resolution or contrast recovery is our 

approach to achieve the objective above. Specifically, by introducing several regularization 

methods to SPECT image reconstruction and thoroughly evaluating their performances, we aim 

to prove they are viable solutions to low-dose SPECT reconstruction. 
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1.3. Overview of dissertation 

Chapter 2 provides a brief review of the SPECT imaging model and the theoretical basis 

of iterative image reconstruction. In Chapter 3, we discuss numerical experiment design, and 

image quality metrics, followed in Chapter 4 by qualitative comparison of images reconstructed 

using several regularization methods. In Chapter 5, we summarize the contributions of our study, 

and discuss possible future work. 

1.4. Publications on and presentations of this dissertation work 

1.  J. Zhang, S. Li, E. Lipson, D. Feiglin, Y. Xu, and A. Krol, Infimal convolution-based 
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 Principles of SPECT imaging 

The key strength of SPECT as a tomographic imaging modality is the ability to reveal 

functional information within the patient body by estimating radiotracer distribution. To 

accurately recover the radiotracer distribution from acquired raw data, there are two crucial 

aspects to be considered: the physics processes involved in image acquisitions and the methods 

used to solve the inverse problem known as image reconstruction. 

 SPECT imaging model 

In this section, we briefly discuss the notations used in this dissertation, several image 

degrading factors involved in SPECT imaging, and the methods we use to correct and/or 

compensate for these factors. 

 Notations 

In commonly used reconstruction models, the imaging space is discretized as small cubic 

volumes (voxels). Tracer distribution in the human body is then denoted as vector f, with its 

components representing radiotracer activity contained in voxels of imaging space, i.e. f j 

represents the radiation activity contained in voxel j. Similarly, a projection set is represented as 

a vector g, and its component gi represents the number of photons detected in detector element i. 

The detection process is characterized as system matrix A, whose elements Aij represent the 

response of detector element i to voxel j. Note that the system matrix A, albeit large (~1012), is 

very sparse by nature. Typically, only around 1% of its elements are non-zero. In this 
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dissertation, for symbolic consistency, we reserve letter j for indexing voxels, and letter i for 

indexing detector elements. 

In our SPECT imaging system with reconstruction space of size p × p × q and projection 

space of size p × q × s, the relation of detector element index i and row number v, column 

number u, and projection angle number m is: 

.i u v p m p q= + × + × ×       (2.1) 

Similarly, the relation of voxel index j and row number y, column number x, and slice number z 

is:   

z .j x y p p p= + × + × ×       (2.2) 

The Kronecker tensor product, denoted by ⨂, is used to transfer a linear operation on 1D 

data to 3D vectorized data. Linear operators of the 3D imaging space can be described by a 

combination of Kronecker tensor products of unit matrices and 1D linear operators. For instance, 

we define a 1D convolution operation as Fp acting on a vector of size p, and it is a circulant p x p 

matrix. Then, the operation in the x direction of a reconstructed image can be represented by  

 x q p pB I I F= ⊗ ⊗   

where Ip and Iq are p × p and q × q unit matrices, respectively.   
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 Modeling the detection of gamma photons 

2.1.2.1 Sensitivity 

The sensitivity of a gamma camera is defined as the total amount of photons detected per 

unit activity located at a given posistion in unit time without photon-attenuating medium. 

Sensitivity depends strongly on collimator geometry: it is positively correlated with collimator 

hole diameter, and negatively correlated with collimator thickness and septum thickness [12]. 

For a gamma camera with a parallel beam collimator, sensitivity is approximately uniform across 

the field-of-view; for a gamma camera with a converging beam collimator (fan beam and cone 

beam), sensitivity depends on the distances from the source to the collimator and to the center of 

the mid plane (the plane that passes through the isocenter of the gantry and is perpendicular to 

the collimator). 

2.1.2.2 Spatial resolution 

The response of a gamma camera to a pencil beam perpendicular to the surface of the 

scintillation crystal without collimation is defined as the intrinsic detector response function 

(DRF), which is modeled as a Gaussian function. The FWHM of this function is determined 

mainly by the properties of the scintillation crystal. 
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Fig. 2.1. Example of 1D collimator detector response functions for point sources at two distances from 

the collimator. 

 

The collimator-detector response function (CDRF), which describes the response of a 

gamma camera to a point source, is the convolution of the geometry response function (GRF) 

and DRF. Here, GRF, defined as the response of a gamma camera with “perfect” spatial 

resolution to a point source, is considered as a geometric blurring factor. Since both GRF and 

DRF can be approximately modeled as Gaussian functions, the Gaussian radius of CDRF can be 

simply modeled as: 

 2 2 2
DRFCDRF GRFσ σ σ= +   
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Note that the GRF and CDRF are not isotropic for converging collimators (fan-beam and 

cone-beam). CDRF is also highly depth dependent: the farther away from the collimator, the 

larger CDRFσ is (Fig.2.1). Therefore, to achieve the best reconstruction results, CDRF needs to be 

carefully modeled and corrected. The depth dependence of CDRF contributes to the non-

stationary nature of SPECT reconstruction. In our reconstruction program, the Gaussian radius of 

CDRF was obtained as a function of the distances from the source to the collimator and to the 

mid-plane of the collimator. We used Monte Carlo simulated point sources and experimental 

data to configure the function as described in detail in Chapter 3. 

2.1.2.3 Attenuation and scatter 

Attenuation refers to gamma photons scattered or absorbed before reaching the gamma 

camera. The linear attenuation coefficient µ is defined as the fraction of photons that interact 

with matter and are thereby removed from the beam: 

( )x dxdn nµ= − ， 

where dn represents the change of photon counts after passing through distance dx. Hence, the 

number of photons traveling through a certain path will be attenuated exponentially as:  

 ( )x

0 ,
dxn n e µ−∫=  

where dx is an infinitesimal distance along the path and ( )xµ is the attenuation coefficient at that 

location.    
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In the photon energy range of nuclear medicine imaging (100-511 keV), photoelectric 

effects and Compton scattering are the two main mechanisms of photon interactions with matter. 

Therefore, µ can be written as: 

 ,µ σ τ= +   

whereτ represents the photoelectric-effect contribution, andσ represents the Compton-scatter 

contribution. 

Some Compton scattered photons can still reach the detector. As shown in Fig. 2.2, 

scattered photons are detected a random distance away from the expected detection position. The 

results of scatter in SPECT imaging are reduced spatial resolution and reduced image contrast. 

Therefore, it is important to model and correct for scattered photons. The majority of scattered 

photons are discriminated by the energy deposited in the scintillator: only photons within a 

selected energy range (energy window) are recorded. Ideally, all scattered photons lose enough 

energy to electrons, and would not be recorded. However, due to the limited energy resolution of 

the gamma camera, a 10-20% energy window is often used to collect more primary photons, and 

scattered photons still contribute significantly to that energy window. 
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Fig. 2.2. Photons emitted from patients 

and detected by gamma camera or 

absorbed by collimator. Trajectories of 

gamma photons are shown. (a) Photon 

passes through the collimator directly 

and is detected. (b) Photon penetrates 

collimator septum and is detected. (c) 

Photon is absorbed by collimator 

septum. (d) Photon is scattered once 

within patient body and is detected. (e) 

Photon is scattered once within patient 

body and is absorbed by collimator. (f) 

Photon scatters multiple times within 

patient body and is detected. [13] 

 

One popular method of scatter correction in SPECT is triple energy window (TEW) 

scatter correction [14]. It uses photon counts that falls in two narrow energy windows above and 

below the photopeak window to estimate the counts contributed by scattered photons. The scatter 

estimate for detector element i is: 

 
( ) ( )

+
2

highlow pi i
i

low high

gg W
s

W W

 
 
 
 

= × ，  

where ( )low i
g and ( )high i

g are the number of photons recorded in the predefined lower and higher 

energy windows lowW  and highW , respectively; and pW  is the width of the photopeak 

window. 
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The TEW method is commonly used to distinguish the desirable photon peak for radio 

isotopes with multiple photopeaks or multiple radiotracers. Our simulations and experiments 

were done using Tc-99m, the decay scheme of which only involves one photopeak, so we only 

used dual energy window (DEW) with a lower energy window for estimating scattered photon 

counts.  

We added the scatter estimate obtained in the lower energy window to the estimated 

projection data in the iterative reconstruction process to avoid negative values. It has been shown 

that this method can reduce the root mean square error (RMSE) of reconstructed images, 

compared with the direct subtraction method [15].  

It has been argued that this method is problematic in theory because at 140keV (the 

energy of photons emitted by Tc-99m, the most commonly used isotope in SPECT), even a 10% 

energy difference means a scatter angle of 53˚. More sophisticated model-based methods have 

been proposed, including transmission dependent convolution subtraction (TDCS) [16], effective 

scatter source estimation (ESSE) [17], and full Monte Carlo-based scatter correction methods 

with variance reduction techniques [18-20]. These methods have shown some advantages 

compared with traditional energy-window based methods.  

 System matrix A  

In this dissertation, we use Aij to denote the response of detector element i to a point 

source with unit activity in voxel j (Fig. 2.3.). The so-called system matrix A contains 

information necessary for image reconstruction, including sensitivity, spatial resolution, scatter, 

and attenuation. A row of matrix A represents the response of one detector element to all voxels 
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in the reconstruction space; a column of A represents the expected number of photons 

contributed by one voxel with unit activity to all detector elements. Therefore, the deterministic 

(noise-free) approximation of the detection process is: 

A .=g f       (2.3) 

 

Fig. 2.3. Schematic figure of voxel j, pixel i, and system matrix element Aij. 

 

When acting on the current estimate f, the system matrix converts it to the projection 

domain, which, in turn, can be compared to the measured data g. Note that AT is known as the 

back projection operation used in iterative reconstruction to convert projection data back to 

reconstruction space. 
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 Iterative image reconstruction 

It used to be common practice to reconstruct SPECT images using analytical methods 

known as filtered back projection (FBP) [21]. FBP is based on the central-slice theorem (or 

projection slice theorem), which states that the 1D Fourier transform (FT) of a line of pixel 

values is equal to the 2D FT of the central line of voxels facing the same direction. Therefore, 

with good angle sampling, the full 2D Fourier domain information can be obtained, and the 

reconstruction images can simply be obtained by an inverse Fourier transform. This process is 

known as the backprojection. The backprojected images are blurry, and high-pass filters are used 

to reduce blurring. 

FBP can produce images with decent quality at very low computational cost. However, it 

does not allow incorporation of a sophisticated collimator-detector response function (CDRF), 

model-based attenuation correction, or statistical modeling. As a result, FBP-reconstructed 

images are often degraded by artifacts, and do not preserve spatial resolution well. Therefore, 

iterative reconstruction methods have been developed. 

 Maximum-likelihood reconstruction criteria 

Maximum likelihood (ML) [22, 23] is a reconstruction criterion commonly used in 

emission tomography image reconstruction. It is based on the assumption that the numbers of 

radiotracer photons emitted from voxels are independent Poisson random variables, and thus 

photon counts at detector elements are independent Poisson random variables as well. 
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Subsequently, the objective is to maximize the likelihood of measured projection data g with 

radiotracer distribution f. The likelihood function can be written as: 

 
( )

( | )
!

i
ij jj

g A f
ij jj

i
i

A f
P

g

e− ∑ 
 = Π

∑
，g f     (2.4) 

where fj is the total activity of voxel j in reconstruction space; and gi is the photon count at 

pixel i. This function is very complicated and hard to evaluate. Fortunately, we can maximize the 

natural logarithm of this function instead, since logarithm is a monotonic function. The log-

likelihood function is then: 

 ( ) ( ) ( )ln | ln ln ! .i ij j ij j ii j j
P g A f A f g = − −    ∑ ∑ ∑g f   (2.5) 

Therefore, the maximum likelihood criterion is: 

( )

( ) ( )

( )

ˆ arg max ln |

arg max ln ln !

arg max ln

ML f

i ij j ij j ii j i jf

i ij j ij ji j i jf

P

g A f A f g

g A f A f

=   

     = − −
 
     = −
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

f g f

  (2.6) 

 Maximum-likelihood expectation-maximization (ML-EM) algorithm 

The expectation maximization (EM) algorithm was first proposed as a general algorithm 

by Dempster [24], and later was used in tomographic image reconstruction by Lange and Carson 

[23], and Shepp and Vardi [22]. The EM algorithm and its variants have since been the most 

popular algorithms of image reconstruction in emission tomography. 
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The idea of ML-EM is to convert the optimization problem (2.4) to an easier one, and 

solve it via iteration. Assuming cij is the number of photons emitted within voxel j and detected 

by detector element i, we have 

 i ij
j

g c= ∑        (2.7) 

 

( )

( ) ( )
( )

ˆ arg max ln |

| , |
arg max ln

| ,

P

P P
P

=   

    =

f

f

f g f

g c f c f
c g f

     (2.8) 

Since P ( g | c, f ) = 1, the equation above reduces to: 

( ) ( ){ }ˆ arg max ln | ln | ,P P= −      f
f c f c g f    (2.9) 

Next, take the expectation of cij conditioned on the current estimate of radiotracer distribution f n, 

and detected data g: 

( ) ( ){ }ˆ arg max | |n nQ H= + ，
f

f f f f f     (2.10) 

where 

( ) ( ){ }| ln | , | ,n nH E P= −   f f c g f g f      (2.11) 

( ) ( ){ }| ln | | ,n nQ E P=   f f c f f g     (2.12) 

Due to Jensen’s inequality and the fact that the natural logarithm is a concave function, 

H ( f | f n ) achieves its minimum when f = f n. Additionally, assuming the cij elements are 

independent Poisson random variables, 

( ) ( )
,

|
!

ij ij j
c A f

ij j

i j ij

A f e
P

c

−

= ∏c f        (2.13) 
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where Aijfj is the expected value of cij. Therefore, 

( ) ( ) ( )
,

ln | ln ln !ij ij j ij j ij
i j

P c A f A f c = − −    ∑c f       (2.14) 

Then the maximization problem can be formularized as: 

( )
( ){ }

( ) ( )

( )

,

,

,

ˆ arg max |

arg max ln | | ,

arg max ln ln ! | ,

arg max ln | ,

arg max | , ln

n

n

n
ij ij j ij j ij

i j

n
ij j ij j

i j

n
ij j ij j

i j

Q

E P

E c A f A f c

E c f A f

E c f g f A f

=

    =   

      = − −   
 

     = −  
 
     = − 

∑

∑

∑

f

f

f

f

f

f f f

c f f g

f g

f g

  (2.15) 

where 

( )
' '

'

| ,
n

ij j in
ij n

ij j
j

A f g
E c

A f
=

∑
f g     (2.16) 

After taking the partial derivative of Q ( f | f n ) with respect to f j, we have 

( )
' '

'

| 1n n
ij j i

ijn
ij ij j j

j

Q A f g
A

f A f f

 
∂  = − ∂  

 

∑ ∑
f f

    (2.17) 

It is easy to verify that the second order derivative is negative, hence the solution to the equation 

is the maximizer of Q ( f | f n ) with respect to f. We set the first order derivative to zero and let f j 

be the (n+1)th iteration. 

' '1

' ' ' '
'

n
j i j in

j n
iij i j j

i j

f A g
f

A A f
+ = ∑∑ ∑     (2.18) 
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This iteration scheme ensures that the value of log likelihood increases monotonically 

with the number of iterations. It has also been pointed out that the EM algorithm can be simply 

viewed from an optimization-transfer perspective [25]: a properly selected surrogate function can 

reduce the difficulty of solving the original problem directly. 

Accelerated versions of ML-EM have been developed to speed up the reconstruction 

process. The most popular one is the ordered-subset variant of EM algorithm (OS-EM) [26], 

which is the most widely used iterative reconstruction algorithm in clinical settings. The idea of 

OS-EM is to divide the projection data g into several subsets based-on the projection views, and 

use only one subset during the forward/backward projection routine in the ML-EM algorithm to 

update the radiotracer estimate f. Note that the most computationally heavy step of 

reconstruction is the projection/backprojection routine. The OS version requires a lot less time 

per image update. The convergence of OS-EM has not been proven, and the reconstructed results 

tend to oscillate with subsets after a number of iterations. In contrast, rescaled block iterative-EM 

(RBI-EM) [27] has proven full convergence. When the views are “balanced” in subsets of OS-

EM, then RBI-EM would reduce to OS-EM. Therefore, OS-EM converges well under such 

conditions.  

In practice, however, reconstructions without iterative regularization are often stopped 

before full convergence to avoid excessive noise, and OS-EM often provides reliable image 

quality when stopped early. 
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 Maximum a posteriori (MAP) reconstruction criteria 

Reconstruction as an inverse problem is ill-conditioned, which means the photon count 

fluctuations often translate to significant noise variance in reconstructed images. In clinical 

practice, this problem is usually avoided by stopping before full convergence, and applying post 

reconstruction smoothing. 

In comparison, iterative regularization methods incorporate regularization methods in the 

reconstruction criterion and solve the modified problem via iterations. Compared with common 

clinical practice, iterative regularization methods are usually advantageous because they allow 

incorporation of prior knowledge of activity distribution, such as low spatial gradient and 

anatomical boundary information. 

According to Bayesian statistics, the a posteriori probability is related to likelihood as 

follows: 

( | ) ( )( | ) .
( )

P PP
P

=
g f ff g

g
       (2.19) 

The maximum a posteriori (MAP) reconstruction criterion uses the natural log of a posteriori 

probability ln P ( f | g ) as the objective function instead of the log-likelihood ln P ( g | f ). The 

MAP criterion can thus be written as: 

[ ]
[ ]

ˆ arg max ln ( | )

arg max ln ( | ) ln ( ) ln ( )

arg max ln ( | ) ln ( )

MAP f

f

f

P

P P P

P P

=

        = + −

        = +

f f g

g f f g

g f f

  (2.20) 

where P ( f ) represents prior knowledge of radiotracer distribution within human body. The 

Gibbs prior [28, 29] is commonly used: 
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 ( ) ( )UP Ce λ−= ff         (2.21) 

With the Gibbs prior, the MAP reconstruction can be re-formularized as: 

 ( ) ( )
,

ˆ arg max ln .MAP i ij j ij jf i j
g A f A f Uλ

  = − −   
∑f f    (2.22) 

Alternatively, this objective function can be interpreted as the Kullback-Leibler (KL)-

divergence [30] term which is derived from the Poisson model, plus a noise-suppressing penalty 

term [31]. Solutions with noise fluctuations are penalized, resulting in smooth reconstructed 

images. Therefore, the MAP reconstruction criterion is also called the penalized maximum 

likelihood (PL) criterion.  

There have been many methods proposed for solving the PL model, including EM-type 

methods [32-34], projected quasi-Newton methods [35-37], primal-dual methods [38-40], and 

fixed-point proximity methods [41, 42]. The selection of the regularization term U( f ) greatly 

affects the appearances of reconstructed images. Detailed discussion regarding this topic can be 

found in Chapter 5. 

 Preconditioned alternating projection algorithm (PAPA) 

PAPA was developed by Krol et al [41] on the basis of an earlier study [43], with an 

added EM-inspired preconditioning matrix [44, 45]. The basic idea of PAPA is to utilize a 

subdifferential operator to represent the optimal condition of the reconstruction problem, and 

then characterize the problem using proximity operators, which is subsequently used to derive 

fixed point iterative reconstruction algorithm.  
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Other alternative algorithms for solving the MAP model include the one-step-late 

method (OSL) [46], and the forward-backward splitting method (FB-EM) [33]. Compared with 

other methods, the advantages of PAPA are its solid convergence proof and its versatility. The 

convergence proof given in [41] applies for any regularization function that can be written as a 

composite function of convex function φ and a linear operator B. Therefore, PAPA can be easily 

modified to solve other regularization models as long as the proximity operator of φ can be 

written in closed form. 

 The PAPA algorithm is used for most reconstructions done in this dissertation. Detailed 

pseudo code of this algorithm applied to multiple regularization functions can be found in 

Appendix A. 

2.2.4.1 Notations and concepts involved in PAPA 

Before introducing PAPA, we shall introduce several concepts and notations involved in 

the derivation and the iteration scheme. First, the proximity operator is defined as: 

  ( ) ( )2

2

1arg min :
2

+prox Hϕ ϕ = − ∈ 
 

，x u x u u           (2.23) 

where 
2

 ⋅ is the 2 norm, and H denotes an Euclidian space. Basically, for a convex functionϕ , 

the function ( )proxϕ x moves from x in the direction of ( )ϕ−∇ x , provided ( )ϕ x exists, and is 

differentiable in that region.  

Second, the subdifferential of a function ( )ϕ x is defined as: 

 ( ) ( ) ( ){ }= : and ,H Hϕ ϕ ϕ∂ ∈   ≥ + −  ∀ ∈， ，x y y z x y z x z      (2.24) 
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The elements of the subdifferential are called subgradients. The concept of subgradient is 

considered an extension of gradient, and it is often implemented to deal with functions that 

cannot be directly differentiated. If the function ( )ϕ x is differentiable at x, then the only 

subgradient of ( )ϕ x is the gradient itself. For x in the domain of ( )ϕ x and H∈y , the 

subgradient ( )ϕ∂ x can be related to the proximity operator: 

 ( ) ( ).proxϕϕ∈∂ ⇔ = +y x x x y         (2.25) 

 Finally, the indicator function of a closed convex set C in H is defined as: 

 ( )
0,

,C

u C
u

u C
ι

      ∈
=  . +∞   ∉

     (2.26) 

2.2.4.2 Re-formulation of 1 norm and hybrid norm regularization terms 

With the use of inner product, denoted as ,⋅ ⋅ , the negative MAP objective function 

(2.22) can be rewritten as: 

( ) ( ) ( ),1 ln , +F A A Bγ λϕ= − + ，f f f g f      (2.27) 

where f is a vector of size M p p q= × × that denotes the radiotracer distribution within M 

voxels; g is a vector of size N p q o= × × that denotes the measured counts in N total detector 

elements; B is a matrix of size KM M× that exploits certain features of true radiotracer 

distribution f* (e.g. difference of neighbor voxels in certain directions);γ is a vector with a very 

small constant value that represents the expected number of counts due to background scattering. 

Usually, the vector Bf is expected to be sparse, and thus penalizing ( )Bfϕ is effectively 
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penalizing reconstructions with unlikely features produced by fluctuations of measured data. In 

SPECT imaging, the radiotracer is expected to have a mostly continuous distribution with some 

edges at anatomical boundaries, and it can be approximately characterized as local spatial 

variability. The regularization term is thus usually used to represent noise in reconstructed 

images and can be easily penalized.   

In this dissertation, the penalty terms involved are mainly 1 norm of Bf, or 1 norm 

combined with 2 norm locally at each voxel. The 1 norm of Bf is defined as: 

( ) ( ) ( ) ( ) ( ) ( )

T

1 + +2 + 1
1 1

= , , ,...,
M

l m m M m M m K M
m

Bf Bf Bf Bf Bfϕ
− ×

=

 
 ∑ ,   (2.28) 

and the hybrid norm of Bf is defined as: 

( ) ( ) ( ) ( ) ( ) ( )

T

+ +2 + 1
1 2

= , , ,..., .
M

hybrid m m M m M m K M
m

Bf Bf Bf Bf Bfϕ
− ×

=

 
 ∑     (2.29) 

Considering
1 1
= max ,

∞ ≤b
a b a and

2
2 1
= max ,

≤b
a b a , the functions ( )1l Bfϕ and ( )hybrid Bfϕ in 

equation (2.28) and (2.29) can be re-written as: 

( )1 1
= max ,l B Bϕ

∞ ≤b
f b f      (2.30) 

and 

( )
2 1

= max ,hybrid B Bϕ
≤

，
b

f b f     (2.31) 

where b is a vector of the size of KM. Since hybridϕ  is a convex function, we have  

( ) ( ) ( )1 2 1 2

1 2 2
, 1

hybrid hybrid hybridB B B B

B B

ϕ ϕ ϕ− ≥ −

                                        ≥ − ;             ≤ ，

f f f f

b f f b
  (2.32) 
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which can then be rearranged as 

( ) ( )1 2 1 2 2
+ , 1.hybrid hybridB B B Bϕ ϕ≥ − ;          ≤f f b f f b   (2.33) 

Based on the definition of subgradient (Eq. 2.24), the maximizer b for equations (2.31) is 

a subgradient of ( )hybrid Bfϕ . Similarly, it can be shown that the maximizer b for equations (2.30) 

is a subgradient of ( )1l Bfϕ . Therefore, in both cases, we have 

( ).Bϕ∈∂ fb f      (2.34) 

We now define function ( ),H f b  as follows: 

 ( ) ( ), ,1 ln , , .H A A Bγ λµ= − + +f b f f g f b        (2.35) 

( ),H f b  is concave with respect to b, and convex with respect to f, and its saddle point

( )
0

min max ,H
≥f b

f b is the solution to the original objective function (2.27). Note that ( ),H f b is 

differentiable with respect to both b and f. The gradient of ( ),H f b with respect to f and b are:   

 
( )

( )

, 1

,

T TH A B
A

H B

λµ
γ

λµ

 
∇ = − + + 
∇ =

f

b

gf b b
f

f b f
  .     (2.36) 

The optimization problem is now: 

( ) ( )min max , + MR
H ι

+

 
 ，f b

f b f        (2.37) 

where the indicator function ( )MR
fι

+
is used to keep the solution f nonnegative in the 

minimization process. 
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2.2.4.3 Derivation of PAPA 

First, applying Fermat’s theorem with respect to f to (2.35) yields 

( )0 1 .M
T T

R
A B

A
λµ ι

γ +

 
∈ − + + ∂ + 

f
g b f

f
     (2.38) 

To rewrite (2.37) more simply, 

( ) ( ), .MR
H ι

+
−∇ ∈∂f ff b f         (2.39) 

Based on (2.25) and (2.38), we have that 

( )( ),prox Hϒ= − ∇ ，ff f f b        (2.40) 

where ϒ is used to replace MRι +
for simplicity. 

Next, applying (2.25) to (2.34) and (2.36), we obtain 

( ) ( )( ),I prox Hϕ= − + ∇bb b f b     (2.41) 

According to [41], there exists a pair (b, f), which is the unique solution to the coupled 

fixed point equations (2.40) and (2.41).  

Finally, we introduce a preconditioner S inspired by the ML-EM algorithm [23] to 

accelerate convergence. S is a diagonal matrix of size M M× defined as: 

 
T .
1

kfS diag
A

 
=  

 
  

S is multiplied into ( ),H∇ f f b in (2.40), as expressed below. The preconditioner 

effectively allows the algorithm to search for the solution in the same direction as EM. The 

solution can then be characterized by the following coupled equations (For simplicity, 

parametersλ and µ are omitted during the derivation.): 
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 ( ) ( )

( )( )

1

1 ,

,

I prox H

prox S H

µ ϕ λµ−

ϒ

 
= − + ∇ 

 

= − ∇

b

f

b b f b

f f f b
 .    (2.42) 

2.2.4.4 Iteration scheme 

Plugging Eq. (2.26) into (2.27), we obtain:  

 ( ) ( )( )( )
( )( )

1

1 , ,

,

I prox H prox S H

prox S H

µ ϕ λµ− ϒ

ϒ

 
= − + ∇ − ∇ 

 

= − ∇

b f

f

b b f f b b

f f f b
  (2.43) 

Then, fixed-point iterations are derived based on (2.28): 

( )( )
( ) ( )

( )

1
2

1
2

1

1 1
2 2

1
2

1

1 1

,

1 ,

,

n

n

n n n n

nn n n

n nn n

prox S H

I prox H

prox S H

µ ϕ λµ−

+

+

++

+ + +

ϒ

ϒ
+

= − ∇

 
= − + ∇ 

 
 = − ∇ 
 

f

b

f

f f f b

b b f b

f f f b

   (2.44) 

The proximity operators for functions involved in iteration scheme (2.44) are: 

 ( ) { }max ,0prox x xϒ =     (2.45)  

( )( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

[ ]

1

T

+ +2 + 1
2

+
T

+ +2 + 1
2

1,max ,0

0,

, ,...,

, , ,...,
1

hybrid m m M m Mm kM m K M

m M

m m M m M

k

m K M

prox x

k

Bf Bf Bf Bf

Bf

Bf Bf Bf B
K

f

µ ϕ µ− − ×

− ×

+

 
=  

 

                

  − 

 
 

                    •       ∈ −，
  

  (2.46) 

( )( ) ( )1
1 + 1

max 1 ,0
l km kM m M

pro Bfx x
µ ϕ µ−

+

 
= 


− 


    (2.47) 
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Because of computational-cost considerations, the second step is usually iterated several 

steps in between step 1 and step 3. Note that µb is a subgradient of ( )Bϕ f , and the backward first 

order difference of it, TBµ b is subtracted from the current iteration of f. Therefore, it can be 

interpreted that ( )Bϕ f is minimized through driving its subgradient to zero. 
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 Experimental design 

In order to evaluate the performance of our proposed reconstruction algorithms, we need 

an accurate system model, i.e. system matrix A, reproducible and quantifiable projection data, 

and image-quality quantification tools. First, we developed our degrading factor correction 

routines to model collimator-detector response function (CDRF), attenuation, and scatter. CDRF 

of gamma cameras were modeled based on experimental data. Second, to obtain realistic 

estimation of image quality, both Monte Carlo simulated data and clinical data were used in 

image reconstruction. Third, images reconstructed using various methods were later evaluated 

using both conventional quantitative image-quality metrics and task-based model observers. 

 Monte Carlo simulated projection data 

Monte Carlo simulation is an important tool for evaluating image reconstruction methods 

in nuclear medicine. Commonly used Monte Carlo simulation packages in SPECT imaging 

include: SimSET [47], SIMIND [48], and GATE [49]. In Monte Carlo simulation, a large 

number of random photon trajectories are simulated based on probabilities of interactions. For 

our purpose, Monte Carlo simulation essentially describes the averaged behavior of radiotracer-

emitted photons during image acquisition.  

In the present work, we have used the SIMIND Monte Carlo simulation package [50] for 

generating SPECT projection data sets. SIMIND was developed by Professor Michael Ljungberg 

from Lund University, Sweden. It takes two discrete 3D matrices that represent gamma photon 
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attenuation and activity concentration information at each voxel, respectively. Other inputs 

include: energy window selection, collimator and detector information, and dimensions of voxels 

and detector elements. Voxelized phantoms (e.g. Fig.4.1a) are created to simulate the radiotracer 

spatial distribution in certain materials. 

 
  

a b c 
Fig. 3.1. Sample images of phantom and Monte Carlo simulated projection data. (a) Transaxial 
cross-section of a digital phantom, with six spheres of various sizes (b) Monte Carlo-simulated 
“noiseless” projection, and (c) Simulated projection with added Poisson noise. 

 

To obtain a large number of noisy projection sets for better statistics, we simulated a 

sufficiently large number of photon histories (~109) to make the projection data 

“noiseless” (e.g. Fig. 3.1b). We then added Poisson noise to the photon counts of each detector 

element to create noise realizations (e.g. Fig. 3.1c). In our numerical experiments in the 

following chapter, one hundred noise realizations were created for each noise level and each 

phantom projection.  
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 Characterizing collimator-detector response function using experimental 

data 

Experimental data were acquired for estimation of the collimator-detector response 

function (CDRF) of two SPECT machines. These CDRFs were later used for reconstruction of 

simulated data (with same configurations as these two machines) and anonymized clinical 

SPECT data.  

 Experimental design 

A plastic phantom with 14 long grooves (10 cm length) for line sources and 7 short 

grooves for point sources, as shown in Fig. 3.2, was used to model CDRF of two SPECT 

machines in the Radiology Department of SUNY Upstate Medical University: a Siemens E.Cam 

and a Trionix Triad. In our experiments, both machines were modeled with their most commonly 

used collimators installed: low-energy high-resolution (LEHR) parallel-beam collimators for 

E.Cam, and low-energy high-resolution (LEHR) fan-beam collimators for Triad. Detailed 

protocols for the experiments are in Appendix B. 
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a 

 
b 

Fig. 3.2. Experiment setup for (a) Siemens e.cam dual-head camera with LEHR parallel beam 

collimators, and (b) Trionix Triad triple-head camera with LEHR fan beam collimators. Courtesy of 

SUNY Upstate University Hospital. 

 

 Data analysis 

We characterized the CDRF as a combination of a normalized resolution-response 

function and a sensitivity function that determines the scaling factor at a given location. 

Resolution response (Table 3.1) is characterized by Gaussian functions, and the size of the 

Gaussian radius depends on the distances from a given point source to collimator d, and to the 

central axis ρ . The farther away the point source of activity lies from the detector, the worse is 

the spatial resolution. The sensitivity function (Table 3.2) represents the total number of photons 

detected by the gamma camera per unit activity at a given location. The sensitivity factor is shift 

dependent for a fan-beam collimator, and is modeled as a parabolic function of the distance to 

collimator d and the distance to the central axis ρ . For a parallel beam collimator, the sensitivity 



36 

    

 

 

of the gamma camera does not vary significantly with position. Therefore, the value is calculated 

as the average of all sensitivity measurements. 

 

Table 3.1. Resolution response (Gaussian radius) as function of point-source distance d (cm) from 

collimator and ρ (cm) from central axis.  

Gamma camera Resolution function (mm) R2 

Siemens E.Cam with LEHR 
parallel-beam collimator 

21.86 0.124 0.00124u d dσ = +  +    
21.96 0.127 0.00130v d dσ = +  +    

0.999 
0.999 

Trionix Triad with LEHR 
fan-beam collimator 

2

2

2.13 0.245 0.0819 0.0328
0.00970 0.00831

u d d
d

σ ρ

ρ ρ

= −  −  +  

        +  +  
21.79 0.101 0.00129v d dσ = +  +   

0.976 
0.998 

 

 
Table 3.2. Sensitivity as function of point-source distance d (cm) from collimator and ρ (cm) from 

central axis. 

Gamma camera Sensitivity (counts˖MBq-1˖s-1)) R2 
Siemens E.Cam with LEHR 
parallel-beam collimator 

91.85 0.44±   

Trionix Triad with LEHR 
fan-beam collimator 

2 251.14 0.536 0.393 0.0963 0.0060d dρ ρ−  +  +  +   0.94 

 
 

 Standard image quality metrics 

In order to quantitatively evaluate the performance of various regularization methods, we 

implemented both standard image quality measures, and task-based model observers. Note that 

image quality usually cannot be fully represented by a single metric. Therefore, we carefully 
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took into consideration many aspects of image quality, including noise, spatial resolution, 

contrast, and bias. 

 Spatial variability 

Spatial variability is defined as  

 ( )2

1

1 100%,
N

j
j

f f
N

σ
=

= − ×∑      (3.1) 

where N is the number of voxels inside the regions of interest, jf is the voxel value for voxel 

number j, and f is the mean value of jf .   

 Uniformity 

Uniformity is defined as   

 
{ } { }
{ } { }

max min
100%

max min
j j

j j

f f
Uniformity

f f
−

= ×
+

 ,     (3.2) 

where j spans a subset of indices of voxels within the volume of interest. The value of uniformity 

is highly dependent on the original radiotracer distribution. If the voxel values within the volume 

of interest are supposed to be piecewise constant, then the ideal value of uniformity is zero. 

Uniformity is usually evaluated in a piecewise constant background region as an indicator of 

maximum noise fluctuation. 
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 Local NPS 

In this dissertation, noise power spectrum (NPS) is defined as the squared magnitude of 

the Fourier transform of 2D pure image noise; specifically, we follow the approach described in 

the relevant ICRU report [51]. A total number of K independent realizations of the same data 

acquisition process are used to produce K reconstructed images. For these images, the power 

spectrum of the image averaged over K realizations is subtracted from the mean power spectrum 

of all K realizations to remove deterministic artifacts resulting from the shape of the original 

image:  

 
s t aW W W= − ，      (3.3) 

where 
tW is the measured average power spectrum of the n images,

aW is the power spectrum of 

the averaged image, and the resulting 
sW is the NPS of the measured images.    

SPECT reconstructed images are known to be non-stationary. Therefore, NPS’s are 

measured in regions of interest instead of the whole cross-section. We characterized the noise 

performance by means of the normalized LNPS. It has been used to evaluate background noise 

properties in SPECT [52] [53] and PET [54] iterative reconstruction methods, as well as in the 

context of CT reconstruction [55, 56]. 

 Spatial resolution 

Point spread functions (PSF) have been estimated using reconstructed images of point 

source projection data. PSF in both radial and tangential directions are evaluated for various 

algorithms. Due to the non-stationary nature of the reconstructed images, the PSF is position-

dependent. Following well-established methods [52, 54, 57], we have introduced a number of 
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point sources—located in the same transaxial cross-section of the cylinder, but at different radial 

distances from its central axis—as a perturbation to the background (i.e., target absent) object. 

We have assumed that the reconstruction operation on such objects is approximately linear. After 

reconstruction of the perturbed image, the reconstruction of noiseless lumpy background 

projection data was subtracted to provide the LPSF. Then the FWHMs of LPSFs were calculated, 

providing an estimate of the local spatial resolution for each SPECT reconstruction method. 

 

 Bias  

Bias is the average value of percent difference between reconstructed images and the 

ground truth image. Specifically, it is defined as the 1 norm of the difference image: 

 
1

1

ˆ
100%ˆ

N
j j

j
j j

f f
Bias

f=

−
= ×∑ ，     (3.4) 

where N is the total number of voxels within a defined volume. An alternative definition of bias 

is as follows [58]: 

1 1

1

ˆ

100%.
ˆ

N N

j j
j j

j N

j
j

f f
Bias

f

= =

=

 
− 

 = ×
∑ ∑

∑
    (3.5) 

This definition is usually employed for quantification tasks, with the region set to be a 

specific volume of interest (e.g. lesions). For our purpose of evaluating the fidelity of 

reconstructed images globally, the former definition is more appropriate. 
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 Contrast recovery coefficient 

The contrast recovery coefficient (CRC) is defined as: 

CRC = Crecon
Cground truth

, ,     (3.6) 

where  C = L�−B�

B�
, L� and B� represent ensemble averaged values of selected “lesion” and 

background region, respectively. The ideal CRC value is 1 for both hot and cold lesions.  

 

 Mean-squared error 

The mean-squared error (MSE) is a global image-quality metric. It quantifies the 

difference between the activity reconstruction f and the phantom (the ground truth activity) f̂ in 

the whole object. It is defined by  

     2

1

1 ˆMSE ( )
N

j j
j

f f
N =

= −∑ ,    (3.7)

 where jf and ˆ
jf are activities of voxel j in the reconstructed image and the ground truth 

image (the phantom), respectively, and N is the total number of voxels in the reconstruction 

space. 

  

 Model observers 

The image metrics above have been widely used to quantify image quality. However, the 

ultimate task of medical imaging is to present images for diagnostic use, and those metrics do not 



41 

    

 

 

always reflect the quality of reconstructed images in terms of lesion conspicuity. Instead, the 

effectiveness of human observers (radiologists) in detecting and/or quantifying lesions is the 

ultimate evaluation criterion of image quality. However, it is often unrealistic to obtain 

statistically solid data from radiologists, due to time and cost considerations. Fortunately, model 

observers have been proposed to solve this issue. Lesion detection is essentially a classification 

task. In a nutshell, model observers produce a scalar result, known as the decision variable, for 

each detection task after being trained with known positive (lesion present) and negative (lesion 

absent) cases,. Classification is then achieved through thresholding. 

 Channelized Hotelling observer 

Channelized Hotelling observer (CHO) [59-61] has been shown to correlate well with 

human observer performance in numerous studies [62-65] by simulating the response of the 

human visual system at various spatial frequencies. The rationale for non-uniform spatial 

frequency channels is that human visual perception system have different responses to different 

spatial frequencies [66, 67]. 

We define the channel vector elements as integrated values of the two-dimensional 

Fourier-transformed reconstructed images of the signal-absent and signal-present classes within 

predefined rotationally symmetric band-pass filters (channels). The total number of channels is 

K, typically between 3 and 16. We define the channeling operator (U) as: 

,f=c U       (3.8) 

and the output c is vector with components corresponding to various spatial-frequency channels.  
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Applying the channel model involves taking the Fourier transform of the image, 

multiplying by each frequency channel, and computing the power. Let c0 and c1 be the channel 

vectors of the known signal-absent and signal-present classes, respectively. Then we have: 

0 0 0
0 1 2

1 1 1
1 1 2

, ,...,

, ,...,

T

K

T

K

c c c

c c c

 =  

 =  

c

c
.      (3.9) 

All channels are designed to have positive values on an L×L pixel window centered at the 

lesion location and are normalized. The zero-frequency component of the resulting spatial 

domain template is explicitly zeroed by subtracting the mean pixel value. The decision variable 

of the CHO is the prewhitened inner product of a channel vector c and an observer vector T
CHOo .  

( )
( )

1
0 1

1
0 1( )

C

C

T
CHO

TT
CHOλ

−

−

= −

= ⋅ = −

o c c S

c o c c c S c
      (3.10) 

where  denotes the ensemble mean across all realizations in one class. 

 Prewhitening is performed using the inverse of the average of the intra-class channel 

covariance matrix Sc: 

( ) ( )0 1 0 0 0 0 1 1 1 1
1 1 ,
2 2

T T
C C C= + = − − + − −S S S c c c c c c c c   (3.11) 

where  is the ensemble average and µ0 is mean value of channel vector over ensemble, 

N is the number of noise realizations of channel vectors. In our studies, sub-images in the 

location of possible lesions were chosen, and assessed using CHO for lesion detectability 

analysis. Due to the limitations of computational load, our ensemble size was set to 100, i.e. we 
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reconstructed images from 100 noisy projection data sets for each class (lesion-present and 

lesion-absent). 

 Channel selection 

Various channel selections were used in our studies, as shown in Fig.4.3, including 

square response (SQR), sparse difference of Gaussians (S-DOG), and dense difference of 

Gaussians (D-DOG). We implemented three channel selection models in a similar fashion to the 

study by Abbey and Barrett [61]. 
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a b c 

Fig. 3.3. CHO bands in frequency domain: (a) SQR (b) S-DOG (c) D-DOG. 

See text for frequency selections.  

 

Square channels (Fig.3.3a) are rotationally symmetrical, non-overlapping band-pass 

filters, described by: 

( ) ( 1
0 01          ,

0                        otherwise

k k

kC
ρ ρ α ρ α

ρ
− ∈ = 


    (3.12) 

where ρ is the spatial frequency,α >1 defines the channel width, [ ]1,k K∈ represents the 

channel index, and K is the total number of channels. 

Difference-of-Gaussian (DOG) channel selection (Fig. 3.3b,c) is another commonly used 

model. It incorporates overlapping, radially symmetric functions into channel response functions. 

The kth DOG channel is characterized by: 

( ) [ ]
0 0

1 1exp exp 1,
2 2k k kC k K

Q
ρ ρρ

ρ α ρ α
      

= − − − ∈      
      

，      (3.13)  

where ρ ,α , and k are spatial frequency, channel width, and index of this channel. Q>1 denotes 

the bandwidth of the channel. We used the same configuration for these parameters as in [61]. 

We implemented a sparse difference-of-Gaussian (S-DOG) model and a dense difference-of-
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Gaussian (D-DOG) model. Specifically, for S-DOG, 0ρ = 0.015,α = 2.0, Q = 2.0, and K = 3; 

and for D-DOG, 0ρ = 0.005,α = 1.4, Q = 1.67, and K = 10. 

 

 Internal noise 

The responses of CHO to lesions are usually more accurate than those of well-trained 

radiologists, resulting in high lesion detectability results. Therefore, internal noise was 

introduced to model the other factors involved in evaluating images. When tuned properly, it 

allows quantitative comparison between human observer and CHO. It has also been pointed out 

that although internal noise is only one term, it is an approximate model for all the factors that 

may contribute to the fluctuation of human observer outputs. There are several ways to introduce 

internal noise to model observers. It can be introduced to channel output or added directly to 

decision variables.   

When the CHO is used for evaluating performance of different regularization methods, 

the addition of internal noise usually does not change the ranking; it only changes the relative 

scale of lesion detectability to approximate human observer output.  
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 CHO lesion detectability 

The image quality metric of CHO is called CHO detectability dA, and if
1( )cλ and

1( )cλ

are independent and Gaussian distributed, then dA is simply the SNR of CHO decision variables

1( )cλ and
2( )cλ . The CHO lesion detectability index dA is thus calculated as 

( ) ( )( )
1 0

2 2
1 0

( ) ( )
1 ( ) ( )
2

A

c c
d

c c

λ λ

σ λ σ λ

< > − < >
=

+
       (3.14) 

where σ2 denotes sample variance across all noise realizations. Note that in this scenario, only a 

fraction of the data are used to train the observer, and the rest are used for decision-variable 

calculations. Alternatively, if no decision variable output is necessary, the SNR of CHO observer 

can also be calculated using the whole dataset: 

 ( ) ( )1
1 0 1 0

T
A Cd c c S c c−= − ⋅ ⋅ − ， (3.15) 

where 1c and 0c are the mean channel output of known positive cases and known negative 

cases, respectively. Sc, as defined in equation (4.5), is the intra-class covariance matrix.  

The standard error estimation for the lesion detectability is given by Abbey et al [68] in 

the following form: 

( ) ( )

( ) ( )
( ) ( )

( ) ( )

2
2 2

1 0

2

2 2 4 4
1 0 1 0

2 2
1 0 1 0 1 0

2
( ) ( )

( ) ( ) ( ) ( )2
( ) ( ) 1 1

Ad

A

c c

d
c c c c

N N c c N N

σ
σ λ σ λ

σ λ σ λ σ λ σ λ
σ λ σ λ

=
+

       + + +  + − −  
  

 (3.16) 

where N1 and N0 are the number of realizations for the positive and negative cases, respectively. 
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 Implementation and evaluation of various regularization methods 

for iterative reconstruction  

 Post filtering 

A convenient way of resolving the problem of increased noise caused by the EM 

algorithm is to apply post-reconstruction low-pass filters, such as Butterworth and Gaussian 

filters. In effect, reduction of spatial variability in reconstructed images in achieved by taking 

weighted averages in the spatial domain. The filtered results can be interpreted intuitively—the 

larger the filter size, the smoother the image. Another key advantage of this method is its 

flexibility: the post-filtering process does not require much computation time, and one can vary 

filter parameters to get optimal results within reasonable time. However, this method fails to take 

advantage of prior knowledge of the image smoothness in the iterative reconstruction process. As 

a result, this method does not have the best noise-spatial resolution tradeoff. 

 Iterative regularization methods 

As discussed in Chapter 2, maximum a posteriori (MAP), (or penalized maximum 

likelihood, equivalently), reconstruction criterion relies on penalizing unlikely solutions to the 

reconstruction problem by imposing prior knowledge of radiotracer distribution. Various 

regularizers deal with each voxel independent of neighboring voxels. The advantage of this 

approach is that algorithms can be easily derived in closed form based on the EM algorithm. It 



48 

    

 

 

has been shown that these methods can perform better than a pure EM algorithm in terms of 

convergence speed and stability. 

A Gaussian regularizer is proposed on the assumption that the radiotracer distribution 

obeys Gaussian statistics and the mean value of every voxel is known [69, 70]. The regularizer 

has the form: 

( ) ( )* *1 ,  H ,
2

U f f f f f= − −    (4) 

where H is a diagonal matrix with its non-zero elements representing relative weighting factor 

for individual voxels. Gamma prior [44] and maximum entropy [71-73] have also been proposed 

to achieve similar goals. 

While these spatially independent regularization methods demonstrate better noise-

resolution tradeoff, compared with post-reconstruction filters, their uses are limited by two key 

disadvantages. First, prior knowledge of the image is required, which is often unfeasible. Second, 

penalizing individual voxels with an inaccurate estimate often results in increased image bias. 

Therefore, spatially dependent regularizers are now more commonly used instead. 

 

 Total variation-based regularization methods 

Total variation (TV), introduced by Rudin, Osher and Fatemi [74] for noise removal, 

shows great properties as a regularizer, by providing strong noise suppression while preserving 

edges. It has been established as a popular choice for regularizing ill-posed inverse problems in 

general. 
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 Total variation 

TV regularization was introduced to SPECT reconstruction by Panin et al [32]. The TV 

regularizer can be written as: 

f dxλ
Ω

∇∫      (4.1) 

where∇ denotes the discrete spatial gradient, and the integral is actually a simple summation. 

TV can also be denoted as ( )zϕ , as in equation (2.27) with  

( ) [ ]2
1

= , ,
d

T
i d i d i

i

z z z zϕ + +
=
∑        (4.2) 

and 

 =
q p p

q p p

q p p

I I D
B I D I

D I I

 
 
 
 

⊗
⊗
⊗ 

⊗
⊗
⊗

,       (4.3) 

where d = p × p × q is the total number of voxels in the reconstruction domain. 
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The components of the vector ( )1=y prox z
µ ϕ− can then be calculated by: 
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 The proximity operator of the indicator function also has closed form expression: 
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 ( )( ) { }Υ max ,0ii
prox x x=  .      (4.6) 

 
Besides TV, there are two other commonly used regularization terms in SPECT 

reconstruction: quadratic and Huber function. Quadratic regularization, as first proposed by 

Tikhonov, is a classic regularization methods, with the form of: 

( ) [ ]
2

2
1

= , , .
d

T
i d i d i

i

z z z zϕ + +
=
∑     (4.7) 

The Huber function was proposed to solve a spatial resolution problem of the quadratic 

regularizer [75]. This function, represented by equation (5.8), is quadratic when the differences 

between neighboring voxels are lower than a given threshold. 
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Huber function-regularized ML reconstruction images demonstrate some improvements over a 

quadratic function in terms of avoiding loss of spatial resolution near edges. However, both of 

these functions have been shown to be inferior in terms of noise suppression capability, 

compared with TV [76]. 
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Fig. 4.1. Comparison of TV regularization term with Huber and quadratic 

regularization functions. 

 

The reason for the desirable properties of TV can be explained by looking at the function

( )zϕ . In the objective function (2.27), we minimize KL divergence and ( )zϕ at the same time. 

The slope of ( )zϕ at z reflects the strength of the regularization at a certain neighborhood 

difference values. Fig. 4.1 shows that the quadratic regularizer penalizes heavily when z is large, 

or when the difference between neighboring voxels is large. Therefore, sharp edges, 

corresponding to large z values are strongly discouraged. In contrast, the TV regularizer 

penalizes edges much less than quadratic regularizer does. Huber regularization is a compromise 

between TV and quadratic regularizers. It is capable of retaining the edge-preserving properties 

of TV but unlike TV, it is differentiable. However, the threshold valueδ needs to be optimized for 
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each image to achieve a good balance between TV and quadratic. Moreover, the relatively steep 

slope near zero for TV, although it contributes to staircase artifacts, is effective in reducing small 

noise fluctuations. 

 High order total variation 

The potential disadvantage for TV is that it tends to force smooth images into piecewise 

constant images with edges, resulting in cartoon-like image features commonly known in image 

processing field as “staircase” artifacts. High-order regularization terms have been introduced to 

reduce that artifact. 

The straight forward way is to directly add a high-order term into the regularization 

function. This approach will be referred to as HOTV in the rest of the dissertation. HOTV has 

been proved effective in various image processing tasks, for example in studies of Benning et al 

[77], and Chan et al [78]. 

( )1 2f dx f dxλ λ
Ω Ω

∇ + ∇⋅ ∇∫ ∫     (4.9) 

We used HOTV as a regularizer, and thoroughly evaluated its performance in terms of noise 

suppression, artifact reduction, and lesion detectability [79]. 

In the case of the HOTV regularizer, minimization of both first- and second-order 

derivatives of an image forces a compromise between piecewise-constant and piecewise-linear 

solutions. Consequently, it results in solutions with substantially reduced staircase artifacts, 

compared with the first order TV regularizer alone.  

For the ICTV functional, the philosophy is different. The first term is small if f1 is 

piecewise constant, while the second term is small when f2 is piecewise linear. Thus, f1 images 
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have the appearance of TV-regularized reconstructions, with sharp edges and piecewise-constant 

regions, while f2 images resemble HOTV reconstructed images, with smoother estimated 

radiotracer distribution. Accordingly, the application of infimal convolution to the ECT inverse 

problem regularization is equivalent to the decomposition of the solution image f into a linear 

combination f = αf1 + (1-α)f2 of two images, where image f1 captures the piecewise-constant 

components with sharp edges, and image f2 captures smoother, piecewise-linear regions. Further, 

both f1 and f2 are non-negative.  

In the present study, for the purpose of simplification of the evaluation process, we fixed 

the ratio of penalty weights, λ1/ λ2 =1.  

 

 Infimal-convolution total variation 

Another approach of reducing staircase artifacts due to TV regularization is to combine 

first order TV with higher order TV via infimal convolution. This approach, which we denote by 

ICTV, was first introduced as a regularizer in [80]. We introduced and evaluated its 

performance [81] in SPECT image reconstruction.  

In the case of the HOTV regularizer, minimization of both first- and second-order 

derivatives of an image forces a compromise between piecewise-constant and piecewise-linear 

solutions. Consequently, it results in solutions with substantially reduced staircase artifacts, 

compared with the first-order TV regularizer only.  
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Table 4.1. Regularizers TV, HOTV, and ICTV. 

Here ∇ represents first-order difference matrix. 

 ϕ  B  f  

TV 1 norm ∇    f   
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For the ICTV functional, the philosophy is different. The first term has a small value if f1 

is piecewise constant, while second term is small when f2 is piecewise linear. Thus, f1 images 

have the appearance of TV-regularized reconstructions, with sharp edges and piecewise-constant 

regions, while f2 images resemble HOTV reconstructed images, with smoother estimated 

radiotracer distribution. Accordingly, the application of infimal convolution to the emission CT 

(ECT) inverse problem regularization is equivalent to the decomposition of the solution image f 

into a linear combination f = αf1 + (1-α)f2 of two images, where image f1 captures the piecewise-
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constant components with sharp edges, and image f2 captures smoother, piecewise-linear regions. 

Further, both f1 and f2 are non-negative.  

The main justification for using ICTV functional as a regularizer for SPECT 

reconstruction is its flexibility and adaptiveness. ICTV allows an image to have both piecewise 

linear components and piecewise constant components. Instead of enforcing a single penalty 

criterion, e.g. piecewise constant, on the whole image f, only a fraction of the f that fits the 

piecewise constant criterion better is subject to this penalty term, and the other component of the 

image is penalized by a criterion that requires smoothness. The decomposition of activity 

distribution estimate f into f1 and f2 is decided locally. Hence, in theory, this regularization works 

better in images with regions of very different characteristics, e.g. parts of the image are very 

smooth while other parts of the image have sharp edges. Moreover, the ICTV functional is 

convex, so the uniqueness of the solution is preserved.  

 Experimental design 

In this study, we used numerous Monte Carlo-simulated projection sets to evaluate the 

performance of these regularization methods. We also tested our reconstruction algorithms using 

anonymized clinical data. 

4.3.4.1 Numerical phantom 

We created a numerical cylinder (Fig. 4.2a,c,e) with diameter 20.8 cm and length 14.1 

cm, containing two sets of Gaussian spheres with standard deviation varying from 4 to 9 mm 

(FWHM ranging from 9.4 to 21.15 mm). The six Gaussian spheres in the same set share the 
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same maximum activity. One set of spheres has more activity than the other set (1.5:1). The 

background of the cylinder is produced by Gaussian-blurring point sources generated by random 

vector generator (Fig. 4.2b,d,f), as described in [79]. In addition, we created a reference cylinder 

with the same lumpy background activity, but without any spheres or point sources. 

   

a b c 

   

d e f 

Fig. 4.2. Trans-axial cross-sections of a phantom with: (a) 6 cold (no 

activity) piecewise-constant spheres with radii of 4, 5, 6, 7, 8, and 9 

mm, (b) 8 point sources with maximum-activity-to-mean-background 

ratio of 100:1 at different radial distances from the central axis of the 

phantom, (c) 6 hot Gaussian blobs with radii (FWHM) of 4, 5, 6, 7, 8, 

and 9 mm with maximum-activity-to-mean-background ratio of 3:1 

and (d), (e), (f) reference phantom containing warm Gaussian blobs 

only. Both phantoms were of the size 128 × 128 × 128 voxels, with 

voxel size set to 2.2 × 2.2 × 2.2 mm3. 
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4.3.4.2 Simulated SPECT data 

We simulated fan-beam SPECT data using SIMIND Monte Carlo simulation 

package [50]. The focal length of the collimator is set to 43.1 cm. A total of 120 projection views 

are simulated, each with 128 by 64 detector elements. The detector element size is 

2.2 × 2.2 mm2. The radius of rotation is set to be 13.0 cm. We use an 18% energy window 

centered at 140 keV. In the Monte Carlo simulation, only primary photons and first order 

scattered photons within this energy window are considered. We simulated a total of 9.8 × 108 

photon histories to avoid Poisson noise. The Monte Carlo simulated projection images so 

obtained are multiplied by appropriate constants to reach the total number of counts in 120 views 

equal to 8.4 × 106. Based on these data, we use a Poisson random number generator to create 100 

different noise realizations for each numerical phantom. 

4.3.4.3 Patient data 

To test the performance of the reconstruction methods in real clinical applications, we 

reconstructed anonymized patient projection data. The data consisted of 128 projection views in 

a 128 × 100-dimensional detector matrix with 3.9 × 3.9 mm2 pixels. The imaging was performed 

on a Siemens e.cam SPECT gamma camera with LEHR collimators. Imaging time was set at 

20 s per view. A total number of 2.2 × 108 photons were recorded within the selected (20%) 

energy window. Reconstruction space voxel size was set to 3.9 × 3.9 × 3.9 mm3. 
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4.3.4.4 Parameter selection 

The optimal penalty weight value is obtained by performing sets of trial reconstructions 

with λ ranging from 10-4 to 1 and by analyzing the dependence of spatial resolution and image 

noise on λ. Spatial resolution can be quantified at the slice with point sources, where the FWHM 

of the point spread function (PSF) can be easily obtained. We first determine the EMTV 

hyperparameter λ to be 0.018 by balancing the tradeoff between resolution and image noise. 

Then we use the same hyperparameter for PAPA, since both methods share very similar 

objective functions. For PAPA with high-order TV, we keep the λ1 the same as λ used in first-

order TV, and select 0.007 for λ2. We also run EM reconstruction with Gaussian post filter as a 

reference; we select the standard deviation of the Gaussian to be 2.5 mm to achieve similar 

spatial resolution as in PAPA reconstruction. 

 Results and discussion 

4.3.5.1 Reconstructed images 

Figure 2 shows images reconstructed for Monte Carlo-simulated SPECT projection data 

described in Section III.A. All four algorithms were used to reconstruct the simulated 120,000 

counts/view (120 kc/view) SPECT projection data. Additionally, the ICTV-PAPA algorithm was 

used to reconstruct the simulated 40 and 80 kc/view SPECT projection sets. 
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(a) ICTV-PAPA, 40 kc/view, λ1 = 0.4, λ2 = 0.4 

   

(b) ICTV-PAPA, 80 kc/view, λ1 = 0.3, λ2 = 0.3 

   

(c) ICTV-PAPA, 120 kc/view, λ1 = 0.2, λ2 = 0.2 

   

(d) HOTV-PAPA, 120 kc/view, λ1 = 0.1 λ2 = 0.1 
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(e) TV-PAPA, 120 kc/view, λ = 0.2 

   

(f) GPF-MLEM, 120 kc/view, FWHM = 7.3 mm 

Fig. 4.3. Transaxial cross-sections of images for Monte 

Carlo-simulated SPECT data for phantom shown in 

Fig. 4.2, reconstructed by: (a) ICTV-PAPA for 40 

kc/view data, λ1 = 0.4, λ2 = 0.4; (b) ICTV-PAPA for 80 

kc/view data, λ1 = 0.3, λ2 = 0.3; (c) ICTV-PAPA for 

120 kc/view data, λ1 = 0.2, λ2 = 0.2;  (d) HOTV-PAPA 

for 120 kc/view data, λ1 = 0.1 λ2 = 0.1; (e) TV-PAPA 

for 120 kc/view data, λ = 0.2; and (f) GPF-MLEM using 

120 kc/view data, FWHM = 7.3 mm. For all images, the 

reconstruction was stopped at 100 iterations. Left 

column: hot spheres with Gaussian activity distribution 

(see text). Right column: cold spheres with zero 

activity. 
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(a) f1 component (b) f2 component (c) f=f1+ f2 

Fig. 4.4. Components of ICTV-PAPA reconstructed images obtained at 100 iterations for 

simulated SPECT data with 120 kc/view, λ1 = 0.2, and λ2= 0.2: (a) f1 component, (b) f2 

component, and (c) final combined image (f=f1+ f2). Top row: cold spheres with zero activity. 

Bottom row: hot spheres with Gaussian activity distribution (see Fig. 4.2 and text). 

 

 

 

 

 

 

 

(a) ICTV-PAPA, 40kc/view, λ1 = 0.4 λ2= 0.4 
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(b) ICTV-PAPA, 80 kc/view, λ1 = 0.3 λ2= 0.3 

 

 

 
 

(c) ICTV-PAPA, 120 kc/view, λ1 = 0.2 λ2 = 0.2 

 

 

 
 

(d) HOTV-PAPA, 120 kc/view, λ1 = 0.1 λ2= 0.1 
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(e) TV-PAPA, 120 kc/view, λ = 0.2 

 
 

 
 

(f) GPF-MLEM, 120 kc/view, FWHM = 7.3 mm 

 
 

 
 

(g) ground truth 
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Fig. 4.5. Surface plots of: (a) ICTV-PAPA for 40k/view, λ1 = 0.4 λ2= 0.4; (b) ICTV-PAPA 

for 80k/view, λ1 = 0.3 λ2= 0.3; (c) ICTV-PAPA for 120k/view, λ1 = 0.2 λ2 = 0.2; (d) HOTV-

PAPA for 120k/view, λ1 = 0.1 λ2= 0.1; (e) TV-PAPA for 120k/view, λ = 0.2; (f) GPF-MLEM 

for 120k/view, FWHM = 7.3 mm; and (g) ground truth. Left column: hot spheres with 

Gaussian activity distribution (see text). Right column: cold spheres with zero activity shown 

in inverted scale. 

4.3.5.2 Contrast recovery coefficient (CRC), background variability and bias 

Reconstructions of 10 noise realizations for 120 kc/view simulated SPECT data were 

performed. Six hot-sphere ROIs and the four largest cold-sphere ROIs were used to estimate 

mean values of CRC, background variability, and bias (Fig. 4.6). Each point on the curves was 

calculated for penalty parameters selected in the 0.01–200 range for TV-based algorithms and 

Gaussian post-filter radii in the 1.1–7.1 mm range for GPF-EM. Only parameters that resulted in 

reasonable images were selected.   
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Fig. 4.6. (a) Mean CRC vs. background variability for hot spheres; (b) Mean CRC vs. background 

variability for cold spheres; (c) Mean CRC vs. bias for hot spheres; (d) Mean CRC vs. bias for cold 

spheres; (e) Bias vs. background variability for hot spheres; (f) Bias vs. background variability for 

cold spheres. Each point on the curves was calculated for penalty parameters selected in the 0.01-

200 range for TV-based algorithms and Gaussian post-filter radii in the 1.1-7.1 mm range for GPF-

EM. Only the four largest spheres were considered among cold spheres. The limiting background 

spatial variability for selected ROIs is 17.6% for the background in the cross-section with hot 

spheres, and 22.7% for the cross-section with cold spheres due to the lumpy background. The ideal 

values of background spatial variability are indicated by solid diamonds and dashed lines. 

 
Spatial variability is estimated as the standard deviation of reconstructed activity in the 

selected background regions averaged over the whole ensemble reconstructions. For the 

phantoms investigated, the lowest values for spatial variability were 0.0110 (22.7%) and 0.0087 

(17.6%) for cold (hot) lesion and background, respectively. The non-zero lowest values of spatial 

variability were due to background lumpiness. Analysis of Fig. 4.6 shows that all TV-based 

methods outperform the GPF-EM algorithm in terms of (i) preserving contrast recovery 

coefficient while reducing the background spatial variability (Fig. 4.6a,b), and (ii) bias-
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background variability tradeoff (Fig. 4.6c,d). When penalty parameters or post-filter sizes are 

reduced to zero, all methods are equivalent to the MLEM algorithm. Therefore, all curves 

converge to the same points in the plots. Note that ICTV-PAPA-reconstructed images exhibit 

somewhat anomalous behavior for larger penalty parameters. They never reach the background 

spatial variability below a particular threshold (17% for hot and 21% for cold spheres, 

respectively), even when a large smoothing parameter is used and the CRC is decreasing. 

Further, they never cross certain maximum levels of bias (0.027 for hot and 0.048 for cold 

spheres, respectively). In contrast, CRC (bias) of TV-PAPA, HOTV-PAPA and GPF-EM 

decreases (increases) when the background spatial variability decreases.  

4.3.5.3 Local noise power spectra (LNPS) 

We analyzed LNPS using a small ROI located at the isocenter for simulated SPECT data 

with 120 kc/view. Examples of LNPS are shown in Fig. 4.7 We observe similar “donut” shapes 

of LNPS for all investigated algorithms. However, the corresponding maximum and sum values 

are an order of magnitude higher for GPF-MLEM, compared to TV-based algorithms. Examples 

of average radial profiles though LNPS are shown in Fig. 4.8.  

ICTV-PAPA performs somewhat worse than HOTV-PAPA and better than TV-PAPA. 

The differences can probably be explained by the choice of penalty parameters (Table 1). The 

full width at half maximum (FWHM) of LNPS for GPF-EM is larger than the FWHM for TV-

based algorithms, and does not depend on radial location. 
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(a) GPF-EM (FWHM=7.3 mm) (b) TV-PAPA (λ = 0.2) 

  

(c) HOTV-PAPA (λ1 = 0.1, λ2 = 0.1) (d) ICTV-PAPA (λ1 = 0.2, λ2 = 0.2) 

Fig. 4.7. Local noise power spectra (LNPS) obtained for the central 

location of small ROI: (a) GPF-EM; (b) TV-PAPA; (c) HOTV-PAPA; 

and (d) ICTV-PAPA all obtained for simulated SPECT data with 120 

kc/view. Noise variance values of the selected ROI and penalty 

parameters are displayed at the bottom of each image.  

 

124.45 24.58 

14.11 
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Fig. 4.8. Average radial profiles for local noise power spectra shown in 

Fig. 4.7. The profiles were obtained by averaging the data every 10°. 

 
 

Table 4.2. Mean and maximum amplitudes of LNPS obtained for the simulated SPECT 

data with 120 kc/view 

 Mean value of 

LNPS 

 Maximum value of 

LNPS 

FWHM 

GPF-EM 1.90 x 10-3 0.0557 at 0.28 cm-1 0.48 cm-1 

TV-PAPA 3.75 x 10-4 0.0182 at 0.27 cm-1 0.37 cm-1 

HOTV-PAPA 2.15 x 10-4 0.0144 at 0.27 cm-1 0.37 cm-1 

ICTV-PAPA 3.07 x 10-4 0.0192 at 0.27 cm-1 0.32 cm-1 
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4.3.5.4 Channelized Hotelling observer 

CHO detectability indices, shown in Figs.4.9 and 4.10, indicate that ICTV-PAPA is capable 

of providing images with higher conspicuity of hot and cold “lesions,” compared to the GPF-EM 

algorithm. The CHO signal-to-noise ratio (SNR) obtained for simulated “lesions” at 80 kc/view 

using ICTV-PAPA is better than CHO SNR obtained for 120 kc/view data using GPF-EM. 

  

(a) hot spheres (b) cold spheres 

Fig. 4.9. CHO detectability indices of: (a) hot; and (b) cold spheres vs. cross-sectional area of the 

spheres and vs. number of counts per view in the simulated SPECT data. ICTV-PAPA for 40 kc/view 

data, λ1 = 0.4, λ2 = 0.4; ICTV-PAPA for 80kc/view data, λ1 = 0.3, λ2 = 0.3; ICTV-PAPA for 

120kc/view data, λ1 = 0.2, λ2 = 0.2; HOTV-PAPA for 120kc/view data, λ1 = 0.1 λ2 = 0.1; TV-PAPA for 

120kc/view data, λ = 0.2; and GPF-MLEM using 120kc/view data, FWHM = 7.3 mm. The 

reconstructions were stopped at 100 iterations. The solid lines connecting the data points are provided 

as a visual guide only. 
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(a) hot spheres (b) cold spheres 

Fig. 4.10. CHO detectability estimated (solid circles) for the fourth largest sphere (1.4 cm2 

cross-sectional area) for images reconstructed with three photon levels (40, 80 and 120 

kc/view) using ICTV-PAPA and GPF-EM (solid squares) at 120 kc/view level.  

4.3.5.5 Local point spread function 

Plots of local PSF components vs. radial distance are shown in Fig 4.11. The transaxial 

local spatial resolution improves approximately monotonically with increasing radial distance 

from the center of the cylindrical phantom towards the edges. The GPF-EM reconstructed 

images have better spatial resolution near the center of the phantom, while images reconstructed 

using TV-based methods have better spatial resolution near the edge of the phantom. GPF-EM 

reconstructed images have more uniform (less steep slope) local spatial resolution throughout the 

reconstruction space, compared with TV-based algorithms. The tangential LPSF is better than 

radial LPSF. The actual LPSF strongly depends on selected penalty parameters.  
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(a) radial LPSF (b) ) tangential LPSF 

Fig. 4.11. (a) Radial (r) full width at half maximum (FWHM) and (b) tangential (t) FWHM of trans-

axial local point spread function (LPSF) as function of radial positions of point sources. The SPECT 

data were simulated for 120 kc/view. Reconstructions were performed with the following penalty 

parameters: ICTV-PAPA for 40 kc/view data, λ1 = 0.4, λ2 = 0.4; ICTV-PAPA for 80kc/view data, λ1 = 

0.3, λ2 = 0.3; ICTV-PAPA for 120kc/view data, λ1 = 0.2, λ2 = 0.2; HOTV-PAPA for 120kc/view data, 

λ1 = 0.1 λ2 = 0.1; TV-PAPA for 120kc/view data, λ = 0.2; and GPF-EM using 120kc/view data, 

FWHM = 7.3 mm. Reconstructions were stopped at 100 iterations. The solid lines are linear regression 

fits.  

4.3.5.6 Reconstruction of clinical data 

To evaluate the performance of the algorithms in a realistic setting, a projection set for a 

SPECT Tc-99m clinical parathyroid study [82] was reconstructed using all the methods. 

Analysis of Fig. 4.12 and Fig. 4.13 shows that images reconstructed using TV-PAPA, HOTV-

PAPA, and ICTV-PAPA algorithms with optimized penalty parameters all have better local 

spatial resolution and lower background variability, compared with GPF-EM and clinical OSEM 
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method (HOSEM, by Hermes [83, 84]). Both HOTV-PAPA and ICTV-PAPA reduce staircase 

artifacts, compared with TV-PAPA. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Hermes OS-EM, 

16 OS, 5 iterations 

(b) GPF –EM: Gaussian 

radius: 3.9mm 

  

(c) TV-PAPA λ = 0.1 (d) TV-PAPA λ = 0.2 

  

(e) HOTV-PAPA  

λ1 = 1, λ2 = 1  

(f) HOTV-PAPA  

λ1 = 2, λ2 = 2 
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(g) ICTV-PAPA  

λ1 = 2, λ2 = 2 

(h) ICTV-PAPA  

λ1 = 4, λ2 = 4 

Fig. 4.12. Trans-axial views of reconstructed images 

obtained for clinical Tc-99m Sestamibi SPECT 

parathyroid, late-phase study: Clinical Hermes HOSEM 

algorithm (a); EM-GPF (b); TV (c, d); HOTV-PAPA (e, 

f); and ICTV-PAPA (g, h), each with two sets of penalty 

parameters. 
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(a). Hermes OS-EM 16 OS, 5 iterations (b) GPF-EM: Gaussian radius: 3.9 mm 

  

(c) TV-PAPA λ = 0.1 (d) TV-PAPA λ = 0.2 

  

(e) HOTV-PAPA λ1 = 1, λ2 = 1 (f) HOTV-PAPA λ1 = 2, λ2 = 2 

  

g. ICTV-PAPA λ1 = 2, λ2 = 2 h. ICTV-PAPA λ1 = 4, λ2 = 4 

 

Fig. 4.13. Coronal views of reconstructed images obtained for clinical Tc-99m Sestamibi 

SPECT parathyroid late-phase study: Clinical Hermes HOSEM algorithm (a); EM-GPF 

(b); TV (c, d); HOTV-PAPA (e, f); and ICTV-PAPA (g, h), each with two sets of penalty 

parameters. 
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Fig. 4.14. One-channel-wide line profiles through reconstructed transaxial images from the 

clinical Tc-99m Sestamibi parathyroid scan image shown in Fig. 4.12. The location of the 

profile is shown in the inset. Penalty weights were set as: TV-PAPA λ = 2, HOTV-PAPA λ1 = 1 

λ2 = 1, ICTV-PAPA: λ1 = 2 λ2 = 2. 

 

 Conclusions 

In our pursuit for a superior regularizer for ECT image reconstruction, we implemented 

infimal convolution of the first- and second-order gradient TV (ICTV) regularization, using our 

PAPA algorithm. We investigated the quality of SPECT images reconstructed using ICTV-
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PAPA and compared it with quality of images reconstructed with HOTV-PAPA, TV-PAPA, and 

conventional EM with GPF.  

Numerical experiments and initial clinical data reconstructions and analyses indicate that 

HOTV-PAPA and our new ICTV-PAPA algorithm attained very similar reconstruction 

performance. Most of the small differences can be explained by the strong dependence of both 

algorithms on the penalty parameters. Comparing the local noise power spectra (LNPS) showed 

that both algorithms efficiently suppress the noise, while preserving edges without creating 

staircase artifacts. The maximum and mean amplitudes of LNPS for TV-based methods for 

120 kc/view SPECT data are 5–8 times lower than for GPF-EM. Both HOTV-PAPA and ICTV-

PAPA algorithms permit better tradeoff of contrast recovery vs. background variability. Thus, 

with properly selected parameters, ICTV-PAPA and HOTV-PAPA reconstructed images can 

simultaneously achieve higher contrast and lower noise (without creating staircase artifacts), 

compared with GPF-EM or clinical HOSEM. We also found that TV-based methods exhibit 

better CHO detectability for hot and cold simulated “lesions” of various sizes, compared with 

GPF-EM. These findings are also confirmed by quantitative analysis of the reconstructed clinical 

images. 

Imaging performance of simulated lower count (higher noise) SPECT data reconstruction 

using ICTV-PAPA was also investigated. Even with only 67% of the number of photons used in 

GPF-EM reconstruction, the hot and cold “lesions” CHO detectability in ICTV-PAPA 

reconstructed images still surpassed GPF-EM CHO detectability, indicating that a 33% radiation 

dose reduction per patient might be possible.  
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We conclude that ICTV-PAPA with optimized penalty parameters exhibits noise 

suppression, local spatial resolution, contrast recovery and lesion detectability comparable to that 

of HOTV-PAPA and better than that of GPF-EM and clinical OSEM. Consequently, replacing 

clinical standard reconstruction methods with ICTV-PAPA or HOTV-PAPA could allow 

reduction of the radiation dose to patients in clinical SPECT studies. 

 

 DCT-induced framelet regularization 

Wavelet transforms have been successfully applied to many fields of image processing. Yet, to 

our knowledge, they have never been directly incorporated in the objective function in emission 

computed tomography (ECT) image reconstruction before. Our aim was to investigate if the 1 

norm of discrete cosine transform (DCT) wavelet frame transform of the estimated radiotracer 

distribution could be effectively used as the regularization term in the penalized-likelihood (PL) 

reconstruction, where a regularizer is used to enforce the smoothness of reconstructed images. 

In our initial studies, the 1 norm of 2D DCT wavelet decompositions was used as a 

regularization term. Our preconditioned alternating projection algorithm (PAPA), proposed in 

earlier work to solve PL reconstruction with non-differentiable regularizers, was used to solve 

the optimization problem. The DCT wavelet decompositions were performed on the transaxial 

reconstructed images and the auxiliary vector b. We reconstructed Monte Carlo-simulated 

SPECT data obtained for a phantom with Gaussian blobs as hot lesions and with warm random 

lumpy background. DCT-induced tight framelet  
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Framelets have been applied in image deblurring, inpainting, among others [85-88]. Li et 

al first introduced DCT-induced framelets [89] in the context of image deblurring. Here we 

implemented it as a regularization term in SPECT reconstruction and evaluated its performance 

[90]. 

DCT-2 [91, 92] filters were used in this work. Two-dimensional DCT decompositions 

were calculated on transaxial cross-sections to obtain the regularization term. The elements of 

the DCT-2 matrix are defined as: 

 ( )( )

1,

,

1 , 1,2,..., N
N

1 2 12 cos , 2,3,..., , 1,2,..., N.
N 2 N

n

m n

C n

m n
C m N n

π

=                                                  =

− − 
=             =  = 
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  (4.10) 

Dm is the matrix representation of the mth row of DCT-2 matrix Cm under the Dirichlet boundary 

condition. The DCT induced tight framelet transform matrix is formed as: 

 
[ ]1 2 N N, ,..., ,

, , 1,2,..., N

T

i N j i j

B B B B
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×

× +

=

= ⊗ ⊗           =
        (4.11) 

The regularization term is then formed as: 

 ( ) 1
U B=f f       (4.12) 

The PAPA algorithm is subsequently used to solve the optimization problem with the DCT 

regularization term (DCT-PAPA) [90].   
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 Numerical experiment results and discussion 

The 1 norm of DCT-based wavelet frame transform used as penalty term in (1) is 

promising as a regularizer in PAPA algorithm. A critical and difficult aspect this method is 

selection of optimal parameters. As shown in Fig. 4.16, different parameter selections result in 

very different reconstructed images. 

 

 

Fig. 4.15. Transaxial cross-section through the synthetic 

phantom with warm lumpy background and Gaussian blobs as 

hot lesions (σ = 4, 5, 6, 7, 8, and 9 mm; 4:1 activity ratio). 
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N=5, =0.20 N=5, =0.25 N=5, =0.30 N=5, =0.35 

    

N=7, =0.15 N=7, =0.20 N=7, =0.25 N=7, =0.30 

    

N=9, =0.10 N=9, =0.15 N=9, =0.20 N=9, =0.25 

    

σ=2.1 mm σ=2.7 mm σ=3.3 mm σ=3.9 mm 

λ λ λ λ

λ λ λ λ

λ λ λ λ
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Fig. 4.17. Mean squared error (MSE) curves obtained for 

images reconstructed using proposed DCT-PAPA method 

and EM Gaussian post filter (GPF-EM). 
 

 

Fig. 4.16. Transaxial cross-section through the reconstructed images with various parameters obtained 

at 100 iterations. Top four rows are images reconstructed using PAPA-DCT; bottom row are images 

reconstructed using EM with Gaussian post-filters. 

 

We evaluated the performance of the proposed reconstruction algorithm in comparison 

with the expectation-maximization (EM) algorithm with Gaussian post-reconstruction filters 

(EM-GPF). The mean squared error (MSE) values of images reconstructed with these two 

methods are obtained for various penalty weights.  
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 Conclusions 

Reconstructed images using the proposed method exhibited better noise suppression and 

improved lesion conspicuity, compared with images reconstructed using expectation 

maximization (EM) algorithm with Gaussian post filter (GPF). Also the mean squared error 

(MSE) was smaller than for EM-GPF. A critical but difficult aspect this method is selection of 

optimal parameters. In summary, our numerical experiments demonstrated that the 1 norm of 

discrete cosine transform (DCT) wavelet frame transform DCT regularizer shows promise for 

SPECT image reconstruction using the PAPA method. To fully exploit the potential of PAPA-

DCT method, we are working on improvements of this regularization term, including changing 

the relative weights of different frequency components, and incorporating 3D instead of 2D 

regularization. 

 Fractional norm 

In this dissertation, we also implemented and studied fractional norm-regularized SPECT 

reconstruction. The algorithm for solving this new optimization problem was closely based on 

PAPA, with only minor changes to the proximity operators. The fractional norm regularization 

method was implemented in a 2D MATLAB reconstruction program. Preliminary numerical 

experiments were conducted for this regularization methods.  
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 Motivation 

The 1 norm regularizer (TV) penalizes the absolute value of the intensity difference 

between neighbor voxels. At “bright” regions, even when the neighboring voxels have low 

percentage difference, the absolute difference can still be large and thus will be heavily 

penalized. In comparison, the 0 norm does not take into account the absolute value of the 

difference, and penalizes equally any differences between neighboring pixels. In Fig. 4.18, it is 

clear that for the p norm where 0<p<1, the regularization functions are expected to behave as a 

compromise between 0 norm and 1 norm.  

 
Fig. 4.18. Comparison of φ(z) for 0, 1/2, 2/3, and 1 norm (TV). 
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 Implementation of fractional norm regularized SPECT reconstruction 

The closed forms of proximity operator for 1/2 norm and 2/3 norm, as given in [93], are: 
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The PAPA algorithm can then be modified accordingly by replacing the proximity 

operator of 1-norm with the proximity operators above. Note that the objective function is no 

longer necessarily convex. Therefore, the results are not guaranteed to converge to a global 

maximum. However, when the penalty weight is selected properly, we have observed good 

consistency in reconstructed images in numerical experiments.  
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 Experimental design 

Two numerical phantoms were used to assess the performance of the proposed 

reconstruction method in comparison to TV-PAPA. The first one, known as Hoffman brain 

phantom (Fig. 4.19a), is widely used in PET and SPECT studies. The activity ratios of the 

simulated white/gray matter, ventricles, and background regions in the phantom are 4:1:0. The 

second phantom is cylindrical with hot spherical “lesions” and lumpy background (Fig. 4.19b). 

The lumpy background was generated using Gaussian convolved, randomly placed point 

sources. The hot spheres were also created using Gaussian functions. The peak activities of the 

hot spheres were the same, and the ratio of peak activity in the spheres to the mean background 

activity is 2:1.  

Both acquisition of projection data and image reconstruction were done using a 

MATLAB 2D reconstruction program. For both we simulated projections at 128 angles, and the 

count levels were set to 180,000, corresponding to around 90,000 counts per view in the clinical 

128 × 64 detector elements setting for a 3D phantom. 

 

 
a 

 
b 
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Fig. 4.19. 2D Phantoms used for evaluation of fractional norm-

regularized SPECT reconstruction methods: (a) Hoffman brain 

phantom, (b) Cylindrical phantom with lumpy background and hot 

spherical “lesions”. 

 

 Results and discussion 

The reconstructed images from a projection set obtained using the lumpy phantom are 

shown in Fig. 4.20. Based on the number of visible hot lesions. We selected the optimal penalty 

weights for 1/2, 2/3, and 1 norm (TV) to be 0.6, 0.8, and 1.0, respectively. It is evident that both 

1/2 norm and 2/3 norm regularized reconstructions exhibit similar performance to TV in terms of 

noise suppression and edge preservation. As expected, both fractional norm-regularized 

reconstruction methods created more pronounced staircase artifacts, (see image profile in Fig. 

4.21). Staircase artifacts start to show up in fractional norm-regularized images at lower penalty 

weight, and the artifacts show up in smaller regions, compared with TV-regularized images. 

   

 
 1/2 norm λ=0.2 2/3 norm λ=0.2  1 norm (TV) λ=0.2 
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1/2 norm λ=0.4  2/3 norm λ=0.4  1 norm (TV) λ=0.4 

 1/2 norm λ=0.6  2/3 norm λ=0.6  1 norm (TV) λ=0.6 

 1/2 norm λ=0.8  2/3 norm λ=0.8  1 norm (TV) λ=0.8 
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1/2 norm λ=1.0  2/3 norm λ=1.0  1 norm (TV) λ=1.0 

Fig. 4.20. Transaxial cross-section of Hoffman phantom reconstructed by PAPA with 1/2 norm, 2/3 

norm, and 1-norm (TV). 

 

We selected the penalty weights based on the visibility of the hot spheres in reconstructed 

images. With optimal penalty weights, we observed best image contrast in 1/2 norm regularized 

images, followed by 2/3 norm regularized images (Fig. 4.21). As shown in Fig. 4.22 and 

Fig. 4.23, 2/3 norm performed better than 1/2 norm and TV in terms of RMSE, bias, and 1/2 

norm produces the best contrast recovery coefficient. However, the quality measures depend on 

penalty-weight selection. Further studies are necessary to take into account the noise-contrast 

tradeoff with varying penalty weights. 
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Fig. 4.21. Image profiles of the phantom and reconstructed images with 
optimal penalty weights. The image profiles were taken horizontally 
through the center of the image, as indicated by the yellow line in the 
figure. 

 

 
a 

 
b 
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Fig. 4.22. (a) RMSE and (b) bias of reconstructed images of the lumpy phantom with optimal penalty 

weights selected for each reconstruction methods. 

 

 

 

 
Fig. 4.23. Contrast recovery coefficients of reconstructed hot 

spheres in the lumpy phantom with optimal penalty weights 

selected for each reconstruction methods. 

 

To evaluate the performance of these regularization methods in more realistic situations, 

we performed simulation and reconstruction using the Hoffman brain phantom. Fig. 4.24 shows 

that reconstructions done with these three methods share similar characteristics. Fractional-norm 

regularizers require lower penalty weights to reduce the amount of noise variance in 

reconstructed images, compared with TV. 
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 1/2 norm λ=0.2  2/3 norm λ=0.2  1 norm (TV) λ=0.2 

 
1/2 norm λ=0.4  2/3 norm λ=0.4  1 norm (TV) λ=0.4 

 1/2 norm λ=0.6  2/3 norm λ=0.6  1 norm (TV) λ=0.6 
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 1/2 norm λ=0.8  2/3 norm λ=0.8  1 norm (TV) λ=0.8 

 
1/2 norm λ=1.0  2/3 norm λ=1.0  1 norm (TV) λ=1.0 

Fig. 4.24. Transaxial cross-section of Hoffman phantom reconstructed by PAPA with 1/2 norm, 2/3 

norm, and 1 norm (TV). 

 Conclusions 

Our preliminary experiments indicate that both fractional-norm regularizers perform 

similarly to TV in many respects. They suppress local spatial fluctuation very well, while 

maintaining good image contrast and sharp edges. However, the staircase artifacts are even more 

pronounced than TV-regularized reconstructions, and are more likely to show up as small 

piecewise-constant regions.  
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A potential application for fractional-norm regularization is in studies involving regions 

known, or likely to be piecewise constant.
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 Conclusions and future work 

In SPECT projection data, noise variance correlates negatively with patient dose and with 

imaging time. In order for lower patient dose with a given image acquisition time to be viable 

without sacrificing lesion detectability, we need to effectively suppress image noise during 

image reconstruction. Therefore, we have proposed and developed various novel regularization 

methods. To study the performance of the proposed methods, we used Monte Carlo simulations, 

and anonymized clinical data. Reconstructed images were analyzed with standard image quality 

measures including contrast-recovery coefficient, background variability, image bias, root-mean-

squared error, and noise power spectra. In addition, we assessed the lesion conspicuity of 

reconstructed images with the signal-to-noise ratio of a channelized Hotelling observer. Several 

proposed regularizers are shown to be capable of suppressing noise while maintaining good 

spatial resolution and image contrast. Briefly, the main contributions of this dissertation are as 

follows: 

• We introduced a high-order gradient into the regularization term in SPECT image 

reconstruction. While TV-PAPA outperformed GPF-EM, the clinical-standard 

image reconstruction method, in terms of contrast-noise tradeoff, spatial 

resolution, and CHO lesion detectability, it produced piecewise-constant artifacts, 

resulting in cartoon-like reconstructed images. Both proposed reconstruction 

methods—ICTV-PAPA and HOTV-PAPA—were shown to have the same noise-

suppression, spatial resolution-preserving capability of TV-PAPA. Further, the 
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introduction of a high-order gradient in both methods greatly diminished staircase 

artifacts. The performance of ICTV-PAPA and HOTV-PAPA were very similar, 

even though the methodologies are very different. 

• A DCT-induced framelet was proposed as a regularization term (DCT-PAPA), 

motivated by the sparsity of the framelet transform of natural smooth images. In 

our preliminary assessment, the reconstructed images had lower optimal MSE 

values compared with GPF-EM reconstructed images, meaning that, when penalty 

weight is selected properly, DCT-PAPA reconstructed images were closer to 

ground truth. Also, unlike a lot of penalized maximum likelihood reconstruction 

methods, the reconstructed images have minimal artifacts. 

• We incorporated fractional norms of the first-order spatial gradient into the 

objective function of SPECT image reconstruction. Fractional-norm regularizers 

penalize low spatial-gradient values more than 1 norm (TV) does, and they 

penalize high spatial-gradient value less. Fractional norm-regularized 

reconstructions exhibit similarities to TV-regularized reconstructions. 

Future work could be done in the following areas: 

• Penalty-weight selection has great impact on image quality. It determines the 

spatial variation, spatial resolution, and contrast of the reconstructed images. 

Currently, there is no practical parameter-selection strategy other than trial-and-

error. It should be possible to develop an adaptive parameter-selection strategy, 

based on certain image measures of the current image iteration. 
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• Infimal convolution of other types of convex functions could be implemented as 

regularization methods. The flexibility of fitting in image components with 

various features is important for avoiding image artifacts. A possible choice for 

the functions within the infimal convolution is the DCT-induced framelet 

decomposition of radiotracer-density estimation. 

• Our current DCT-framelet regularization is done on transaxial cross-sections. To 

fully exploit the sparsity of high spatial-frequency components in the 3D 

reconstruction space, it may be possible to obtain better reconstructed images by 

expanding this regularization term to a 3D “volumelet.” 

• One challenge for implementing DCT-framelet regularization is selection of 

penalty weights associated with various spatial-frequency components. It should 

be possible to select parameters locally, based on the current estimation of 

radiotracer density, in a similar fashion to [89].  
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Appendix A. Iteration scheme of TV-PAPA, HOTV-PAPA, and ICTV-

PAPA 

Table A.1 Pseudo-code of TV-PAPA 

1. Set maximum iteration number N and regularization hyperparameter λ; 

2. Allocate memory for vectors: f(0), h(0), and b(0). Initialize f(0)=1, b(0)=0 (Note that 

b has 3 times the size of f), and set γ=0.000001, K=10; 

3. Backproject 1 to reconstruction space, get AT1; 

4. for n=0 to N-1, do 

    EM step: 

5.      calculate preconditioner S=f(n)./(AT1) 

6.      backproject g./(Af(n) + γ) and get update U=AT[g./(Af(n) + γ)] 

7.      f(n+1/2) = S.*U 

    TV step 

8.      update reconstruction parameters: β=16* λ*max(Si) 

9.      for k = 1 to K, do  

10.         h = f(n+1/2) – λ/β||BTb||1.* S; 

11.         update b: b = b + Bh 

                    b = b – max( b – λβ, 0 )*b/||b||, 

12.     f(n+1) = h – λ/β||BTb||1.* S; 

13. Return image estimate f(N). 
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Table A.2 Pseudo-code of HOTV-PAPA 

1. Set maximum iteration number N and regularization hyperparameter λ; 

2. Allocate memory for four vectors: f(0), h(0), b1(0), and b2(0). Initialize f(0)=1, b1(0)=0, 

b2(0)=0 (Note that b1 has 3 times the size of f, and b2 has 9 times the size of f), and 

set γ=0.000001, K=10; 

3. Backproject 1 to reconstruction space, get AT1; 

4. for n=0 to N-1, do 

    EM step: 

5.      calculate preconditioner S=f(n)./(AT1) 

6.      backproject g./(Af(n) + γ) and get update U=AT[g./(Af(n) + γ)] 

7.      f(n+1/2) = S.*U 

    TV step 

8.      update reconstruction parameters: β1=16* λ1*max(Si), β2=64* λ2*max(Si) 

9.      for k = 1 to K, do  

10.         h = f(n+1/2) – ( λ1/β1||BTb1||1 + λ2/β2||BTBb2||1 ) .* S; 

11.         update b1, b2: b1 = b1 + Bh, b2 = b2 - BTBh; 

                       b1 = b1 – max( b1 – λ1β1, 0 )*b1/||b1||, 

                       b2 = b2 – max( b2 – λ2β2, 0 )*b2/||b2||; 

12.     f(n+1) = h – ( λ1/β1||BTb1||1 + λ2/β2||BTBb2||1 ) .* S; 

13. Return image estimate f(N). 

 

In ICTV, the regularizer can be formularized as:  
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Φ(z) ≔ min�λ1φ1(B1f1) + λ2φ2(B2f2)�          

(A1) 

where B1 and B2 denote first order TV, and second order discrete derivative, respectively. 

f̂ = argmin
f≥0

�〈Af, 1〉 − 〈ln(Af + γ), g〉 + min �λ1φ1(B1f1) + λ2φ2(B2f2)��   (A2) 

Assuming both f1 and f2 are non-negative components of f, (17) becomes: 

[f1� , f2�] = argmin
f1≥0,f2≥0

�〈A(f1 + f2), 1〉 − 〈ln(A(f1 + f2) + γ), g〉 + λ1φ1(B1f1) + λ2φ2(B2f2)� (A3) 

 

Table A.3 Pseudo-code of ICTV-PAPA 

1. Set maximum iteration number N and regularization 

hyperparameter λ; 

2. Allocate memory for six vectors: f1(0), f2(0) h1(0), h2(0), b1(0), and 

b2(0). Initialize f(0)=1, b1(0)=0, b2(0)=0 (Note that b1 has 3 times the 

size of f, and b2 has 9 times the size of f), and set γ=0.000001, K=10; 

3. Backproject 1 to reconstruction space, get AT1; 

4. for n=0 to N-1, do 

    EM step: 

5.      calculate preconditioner S1=f1(n)./(AT1), S2=f2(n)./(AT1); 

6.      backproject g./(Af(n) + γ) and get update U=AT[g./(A(f1(n) + 

f2(n))+ γ)]; 

7.       f1(n+1/2) = S1.*U, f2(n+1/2) = S2.*U; 

    TV step 
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8.      update reconstruction parameters: β1=16* λ1*max(S1), 

β2=64* λ2*max(S2) 

9.      for k = 1 to K, do  

10.         h1 = f1(n+1/2) – λ1/β1||BTb1||1 .* S1; 

           h2 = f2(n+1/2) – λ2/β2||BTb1||1 .* S2; 

11.         update b1, b2: b1 = b1 + Bh, b2 = b2 - BTBh; 

                       b1 = b1 – max( b1 – λ1β1, 0 )*b1/||b1||, 

                       b2 = b2 – max( b2 – λ2β2, 0 )*b2/||b2||; 

12.     f1(n+1) = h1 – λ1/β1||BTb1||1 .* S1, 

       f2(n+1) = h2 – λ2/β2||BTBb2||1 .* S2; 

13. Return image estimate f(N) = f1(N) + f2(N). 
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Appendix B. Protocol for CDRF-modelling experiments 

 
B.1. Preparation 

14 line sources (10 cm length each): Fill 14 x 40µL micropipettes with with~300 µCi 

each of Tc-99m such that liquid fills 10 cm length of each. Record the time and exact activity of 

each of them. Place them in slots #1-7 and 15–21 of the phantom. 

7 point sources (5 mm length each):Prepare 7 x 0.5” 40µL micropipettes and fill them 

with a ~300 µCi each of Tc-99m such that liquid fills 1 mm length of each. Record the time and 

exact activity of each of them. Place them in slots #8-14 of the phantom. 

 

B.2. Experiment 1 

Use e.cam LEHR parallel-hole (e.cam1).  

Place the phantom directly on the collimator.  

Align it with the center of the phantom.  

Verify positioning using persistence scope.  

Acquire planar image using head #1 in 512x512 matrix for 5 min.  

Record start time, count rate and total number of counts.  

Use clinical energy window size.  

Save the image. 

Repeat at 3 cm increments of the collimator-face-phantom-distance until you reach 40 

cm. d=0, 3, 6, 9,……, 40 cm 
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B.3. Experiment 2 

Use Triad LEUR fan-beam collimator.  

Place the phantom directly on the collimator.  

Align it with the center of the phantom.  

Verify positioning using persistence scope.  

Acquire planar image using head #1 in 512x512 matrix for 10 min.  

Record start time, count rate and total number of counts.  

Use clinical energy window size. 

Save the image with ID: Krol triad 0 cm. 

Repeat at 2 cm increments of the collimator-face-phantom-distance until you reach 40 

cm. d=0, 2, 4, 6,……, 40 cm.  

If 2 cm is not possible then start from the shortest possible distance. 

Save the image with ID: Krol triad LEUR fan 2 cm, Krol triad LEUR fan 4 cm, etc. 

Transfer images from both experiments to Hermes workstation.
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