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Abstract: It is known that certain theories with extended supersymmetry can be dis-

cretized in such a way as to preserve an exact fermionic symmetry. In the simplest model

of this kind, we show that this residual supersymmetric invariance is actually a BRST sym-

metry associated with gauge fixing an underlying local shift symmetry. Furthermore, the

starting lattice action is then seen to be entirely a gauge fixing term. The corresponding

continuum theory is known to be a topological field theory. We look, in detail, at one

example - supersymmetric quantum mechanics which possesses two such BRST symme-

tries. In this case, we show that the lattice theory can be obtained by blocking out of the

continuum in a carefully chosen background metric. Such a procedure will not change the

Ward identities corresponding to the BRST symmetries since they correspond to topolog-

ical observables. Thus, at the quantum level, the continuum BRST symmetry is preserved

in the lattice theory. Similar conclusions are reached for the two-dimensional complex

Wess-Zumino model and imply that all the supersymmetric Ward identities are satisfied

exactly on the lattice. Numerical results supporting these conclusions are presented.
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1. Introduction

Supersymmetric field theories are interesting both from phenomenological and theoretical

points of view - their improved U.V behavior offers the hope of resolving the gauge hierarchy

problem and they arise naturally as low energy limits of string and M-theory. Most of the

interesting physics of such theories lies in non-perturbative regimes. Discretization on a

space-time lattice appears to provide a natural way to study such theories and considerable

effort has gone into formulating such lattice supersymmetric theories [1]. Unfortunately

supersymmetry is typically broken at the classical level in such models. At the quantum

level the absence of such a symmetry leads to an effective action containing relevant SUSY-

violating interactions. To achieve a supersymmetric continuum limit then necessitates fine

tuning the couplings to each of these operators. In most situations this is prohibitively

difficult.

In an previous paper [2] we advocated a different approach – try to preserve a subset

of the full supersymmetry in the lattice model. A similar approach has also been adopted

in [3]. Numerical simulations of two models where this idea can be implemented explicitly

lend strong support to the idea that preserving some subset of the continuum supersym-

metry transformations can indeed protect the lattice model from the dangerous radiative

corrections that generically plague discretizations of supersymmetric field theories [2, 4].

In this paper we offer a proof of this statement for the case of supersymmetric quantum

mechanics and the two-dimensional complex Wess-Zumino model. Indeed, our result is

much stronger - by careful choice of the lattice action we can show that there are no cut-off
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effects in the lattice supersymmetric Ward identities even for supersymmetries which are

broken at the classical level.

We will argue that the reason that these lattice models are well behaved is that they

are related to Witten-type continuum topological field theories [5]. Such theories are con-

structed using a nilpotent symmetry formed from elements of the original supersymmetry.

A key feature of such theories is that they contain observables whose expectation values

are independent of the metric. After the partition function itself, the simplest examples of

such observables are the Ward identities corresponding to the nilpotent symmetry. This

metric independence plays a crucial role in allowing us to establish a direct link between

the continuum and lattice theories and allows the latter to possess rather remarkable prop-

erties.

In the next section we introduce a simple lattice model which exhibits an exact

fermionic symmetry and show that this symmetry is actually a BRST symmetry following

from fixing a local topological symmetry. We then show how this topological model can

be used to describe a lattice regularized theory of supersymmetric quantum mechanics [4].

In this latter case we show that the model is naturally associated with two independent

BRST symmetries. In the continuum these two symmetries exhaust the original supersym-

metries and show that that supersymmetric quantum mechanics can indeed be viewed as

a topological field theory.

For convenience we include a brief summary of the main features of such topological

field theories. We then show how this continuum topological structure allows us to derive

the lattice theory by integrating out the continuum fields in a carefully chosen background

geometry. More precisely, we consider metrics which are continuous functions of a param-

eter β such that in the limit β → ∞ a “lattice” structure is induced in the model. For

any finite value of β we can perform an associated β-dependent change of variables in the

continuum model which preserves the topological symmetries. Hence such a procedure

ensures that any topological observable is independent of β. We show that indeed, a local,

lattice theory is approached in the limit of large β. Furthermore, our construction then

guarantees that the resulting lattice theory retains an element of supersymmetry at the

quantum level.

The same analysis applied to the complex Wess Zumino model in two dimensions allows

us to write down lattice actions with respect to which all supersymmetric Ward identities

are satisfied exactly. Numerical results confirming these conclusions are presented. Finally

we discuss the prospects for extending these ideas to more realistic models.

2. Simple Example

Consider the simple model discussed in [2]

S =
1

2α
N2

i (x) + ψi
∂Ni

∂xj
ψj (2.1)

which admits a fermionic symmetry

δxi = ψiξ
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δψi = Niξ

δψi = 0

Here, Ni(x) is an arbitrary function of the scalar field xi and ψi, ψi are real, independent

grassmann variables. Notice that this transformation is nilpotent on-shell. Indeed, if we

introduce an auxiliary (commuting) field Bi we can define a new action

S′ = −1

2
αB2

i +NiBi + ψi

∂Ni

∂xj
ψj (2.2)

If we integrate over Bi (along the imaginary axis) we just recover the original action S.

This new action also has an invariance

δ(1)xi = ψiξ

δ(1)ψi = Biξ

δ(1)ψi = 0

δ(1)Bi = 0

The significance of the subscript labeling the action and symmetry variation will be become

apparent later. It is easy to see that this new transformation is nilpotent off-shell δ2(1)Φ = 0

for any of the fields Φ = {ψ,ψ, x,B}. More importantly it is clear that the new action S′

is nothing but the variation of another function

S′ξ = δ(1)

(

ψi

(

Ni −
1

2
αBi

))

Thus we recognize our original invariance as a BRST invariance and our original action

as nothing but a gauge fixing term! The topological origins of the lattice theory are

made more manifest when it is realized that the local gauge symmetry which is being

fixed to generate the BRST invariance is nothing but an arbitrary shift in the scalar field

xi. Imagine a classical theory depending on a scalar field xi with trivial classical action

S(x) = 0. Clearly this theory is invariant under a huge local symmetry - namely arbitrary

shifts in the scalar field

xi → xi + ǫi

To quantize we need to pick a gauge. One simple way to do is is to impose Ni(x) = 0

where Ni(x) is some arbitrary function of the field xi. Then the partition function will be

Z =

∫

dxi δ(Ni)det

(

∂Ni

∂xj

)

If we represent the determinant using anticommuting ghosts and introduce a multiplier field

Bi for the delta function we recover our simple model eqn. 2.1 in α = 0 gauge. The usual

theorem associated with quantization of gauge theories allows us to relax this Landau-like

gauge to a Feynman-like gauge with α non-zero without changing the expectation values

of gauge invariant quantities. Notice that the physical ‘fermions’ of the SUSY theory are

to be identified with the ghosts of the gauge fixed scalar field theory.
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There is another simple way to see the the model written down in eqn. 2.1 exhibits

an unusual symmetry. If we imagine performing a change of variables in the path integral

defining this theory according to ηi = Ni(x) the Jacobian of this transformation cancels

the fermionic determinant and the partition function factorizes into a product of gaussians

[6]

Z =
∏

i

dηie
−

η2

2α

This resultant partition function is trivially invariant under the same local shift symmetry

discussed earlier. A transformation of this type which cancels off the fermion determinant

is called a Nicolai map and it should now be clear that the existence of a local Nicolai map

can be attributed to the presence of a topological symmetry [5].

We now turn to the simplest application of these ideas - supersymmetric quantum

mechanics

3. Supersymmetric Quantum Mechanics

Imagine now choosing the function Ni(x) = N
(1)
i (x) corresponding to an action S′ = S(1)

where

N
(1)
i (x) = DS

ijxj + P ′

i (x)

In this expression DS represents the symmetric difference operator and P ′

i (x) is some

arbitrary polynomial in the lattice field xi. To be concrete we can imagine a model with a

single interaction coupling g of the form

P ′ = mxi +mW
ij xj + gx3

i (3.1)

Notice that we are also free to add a Wilson mass term mW to the potential to eliminate

lattice doubles associated with the choice of lattice derivative operator DS.

In this case we recognize our simple model as a lattice regularized version of super-

symmetric quantum mechanics - a model well known to possess a topological field theory

interpretation [5]. We discuss some of the generic features of such theories in the next

section but suffice it to say here that such theories possess observables whose expectation

values are metric independent. Clearly, on the lattice, there is no notion of continuum

metric and so in a strict sense the lattice model cannot be said to be topological. However,

the fact that the action is a BRST variation of a local function of the lattice fields clearly

imposes strong restrictions on the quantum theory. Indeed we shall see that in this model

certain symmetries which are broken at the level of the classical lattice action are restored

in the full quantum theory.

Notice also that the partition function of this model (in α = 0 gauge) just reduces to

an integral over the set of field configurations satisfying the gauge condition. In the case of

supersymmetric quantum mechanics this is just the moduli space of classical solutions to

the equation of motion. On a circle these classical solutions are just a finite set of points

xi = xc where P ′(xc) = 0. Thus the partition function just reduces to a sum over the

critical points of the potential P (x). Notice that this solution is independent of the lattice
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cut-off – indeed it is the same result one would have gotten for the analogous continuum

model.

Furthermore we can consider another gauge condition which corresponds to the same

classical moduli space Ni(x) = N
(2)
i (x) with

N
(2)
i (x) = DS

ijxj − P ′(x)

We can construct the action S(2) following from this gauge condition by the same procedure

and furthermore after exchanging the roles of ghost ψ and antighost ψ we can easily see it

only differs from S(1) by the addition of a simple operator C(g)

S(2) = S(1) − 2C

The operator C = DS
ijxjP

′

i (x) and corresponds to the integral of a total derivative term in

the continuum. On the lattice it will be non-zero if P ′(x) contains nonlinear powers of the

field x which is the case for an interacting model with g 6= 0.

The variation of the fields under this second (nilpotent) BRST symmetry is

δ(2)xi = ξψi

δ(2)ψi = ξ
(

Bi − 2P ′

i (x)
)

δ(2)ψi = 0

δ(2)Bi = 2ξP ′′

i ψ

In the continuum where S(1) = S(2) the action of supersymmetric quantum mechanics would

then possess two BRST invariances. On the lattice if we choose S(1) as action we no longer

have δ(2) as a symmetry (except for a free theory) and vice versa. Thus at the classical level

discretization on a lattice necessarily breaks one of the continuum symmetries. However,

we will see that this symmetry is restored at the quantum level with lattice Ward identities

corresponding to both δ(1) and δ(2) being satisfied exactly for arbitrary lattice spacing.

Indeed we will prove that there exists a one parameter family of lattice actions in which all

of the BRST Ward identities are satisfied with no cut-off effects. This feature is crucially

dependent on the existence of this topological symmetry.

4. Continuum Topological Field Theories

In this section we give a brief review of some of the general features of continuum topological

field theories [5, 7]. Such theories are formulated on a n-dimensional manifold equipped

with a metric gµν . On this space there exists a set of fields Φ and an action S (Φ). Typically

these theories contain operators or topological observables Oβ (Φ) with the property that

their expectation values are metric independent

δ

δgµν
〈Oβ1

. . . Oβ2
〉 = 0

One way to guarantee this corresponds to the case in which there exists a nilpotent sym-

metry δ such that

δOβ = 0, Tµν = δGµν
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The energy-momentum tensor Tµν = δ
δgµν S(Φ). These conditions lead to the following

expressions for the expectation values of topological variables.

δ

δgµν
〈Oβ1

. . . Oβ2
〉 = −

∫

DΦδ
(

Oβ1
. . . Oβ2

Gµνe
−S(Φ)

)

= 0

Here we have also assumed that the measure is invariant under the nilpotent symmetry and

that the observables themselves do not contain the metric explicitly. Theories constructed

in this way are called Witten type or cohomological topological quantum field theories.

Typically the nilpotent symmetry δ is realized as a BRST symmetry arising from gauge

fixing some underlying local shift symmetry. In such theories

S (Φ) = δΛ(Φ)

This latter result is very important as it guarantees that topological observables and the

partition function itself can be computed exactly in the semi-classical limit. To see this

introduce a parameter ǫ playing the role of Planck’s constant in the definition of a topolog-

ical expectation value and examine the variation of that expectation value under variation

of ǫ
∂

∂ǫ
〈Oβ1

. . . Oβ2
〉 =

1

ǫ2

∫

DΦδ (Oβ1
. . . Oβ2

Λ(Φ)) e−
1
ǫ
S = 0

Thus topological observables may be computed exactly in the semi-classical approximation

ǫ→ 0. This semi-classical exactness may be translated into an independence of topological

observables on coupling. To see this consider an action of the form

S = S0 (Φ) + gΦn

where the quadratic terms are contained in S0 (Φ) and we allow for a generic interaction

term. If we rescale the fields using Φ → √
ǫΦ it is easy to see that topological observables

computed in an ensemble with Planck constant ǫ and coupling g is equivalent to the same

observable computed in the ensemble ǫ = 1 and g′ = gǫn/2−1 The limit ǫ → 0 now corre-

sponds to g′ → 0 in the latter ensemble and hence the expectation value can be computed

in the free field limit. For the case O = 1 this implies that the partition function itself

is independent of g. This, of course, is also the property enjoyed by models with a local

Nicolai map and makes plausible the conjecture that models possessing a local Nicolai map

contain within them a topological symmetry.

A trivial set of topological observables correspond to operators of the form

O = δO′

While trivial in a true topological sense (their expectation value vanishes trivially on ac-

count of the nilpotent nature of δ) they will be of crucial importance in the parent super-

symmetric theory since they yield the supersymmetric Ward identities.
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5. Relation Between Lattice and Continuum Theories

In section 3 we discussed a lattice theory of supersymmetric quantum mechanics and showed

that it was possible to choose an action which reproduced the continuum partition function

exactly (up to a parameter independent multiplicative constant). The simplest way to see

this utilizes the gauge α = 0 in which the partition function reduces to a sum over the

critical points of the potential P ′(x) = 0. The solution of this equation is identical in both

lattice and continuum theories. Actually, the gauge α = 0 can be used for an arbitrary

topological observable and implies that the expectation values for all such observables only

depend on the properties of the classical solution to the field equations. This prompts us

to guess that it should be possible to forge an explicit connection between the lattice and

continuum theories useful for the computation of such observables. We will now show that

indeed this is the case.

One standard way to relate a lattice theory to an underlying continuum theory derives

from the renormalization group. The lattice field at some point is constructed by averaging

the continuum field over a neighborhood of that point. This averaging or blocking procedure

may be accomplished by convolving the continuum field with a blocking function. Typically,

the precise shape of the blocking function is not important for long distance physics. The

lattice or block field which results from this operation is usually a non-local function of

the continuum fields. However, this need not be the case for a topological field theory. If

we are only concerned with the computation of topological observables we are at liberty

to block the continuum fields in an arbitrary background metric. If this metric is then

chosen carefully we can arrange for the block fields to be related to the continuum fields

in a completely local manner.

Let us examine this in the case of supersymmetric quantum mechanics. The bosonic

part of the continuum action for an arbitrary one-dimensional metric written in terms of

the einbein e(t) takes the form (we have integrated out the auxiliary field B(t))

S =

∫

dt e(t)

[

1

e(t)

dx

dt
+ P ′(x)

]2

Define now a scalar block field xB(t) in the continuum as a convolution over the original

field x(t) using a blocking function B−

β (t)

xB(t) =

∫

dt′ e(t′)B−

β

(

t− t′
)

x(t′) (5.1)

We will choose the blocking function B−

β (t) to be

B−

β (t) =
1

2a
[Lβ (t+ δ) − Lβ (t− a+ δ)]

We require that the function Lβ(t) tend to the step function for large β

lim
β→∞

Lβ(t) = θ(t)
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This choice of B−

β (t) ensures that for large β the blocked field at point t contains contri-

butions from all points within a cell defined by −δ ≤ t ≤ (a − δ). Furthermore, we will

require the parameter δ → 0+ at the end of the calculation. A concrete example of such a

function is given by Lβ(t) = tanhβt. To capture the structure of the lattice theory we will

choose an associated “lattice” metric given by e(t) = eβ(t) where

eβ(t) =

N
∑

n=1

a

A(β)
L′

β(t− na)

where the sum runs over a finite set of N points with “lattice spacing” a. The constant

A(β) is chosen so that
∫

dteβ(t) = Na

and we assume the continuum theory is defined over a circle with circumference Na. Notice

that

lim
β→∞

L′

β = lim
β→∞

dLβ

dt
= ALδ(t)

where AL = A(∞) is just some numerical coefficient. Returning to eqn. 5.1 we can now

compute the block field explicitly

xB(t) ≃
N
∑

n=1

a

A(β)
x(na)B−

β (t− na) for large β

In the limit β → ∞ this relation yields the result

lim
β→∞

xB(t) =

N
∑

n=1

x(na)
1

2AL
[θ(t− na+ δ) − θ(t− (n+ 1)a+ δ)]

That is, the continuum block field xB(t) is constant within each unit cell of the lattice

changing its value only on passing from one cell to the next. To proceed further it is

necessary to compute its derivative.

dxB(t)

dt
≃

N
∑

n=1

a

A(β)
x(na)

dB−

β

dt
(t− na)

≃ 1

2A(β)

N
∑

n=1

x(na)
[

L′

β(t− na+ δ) − L′

β(t− (n+ 1)a+ δ)
]

Notice that this derivative does indeed vanish in the limit β → ∞ for any point within a

cell. To compute the action evaluated on a block configuration in this background we need

to compute 1
eβ

dxB

dt . For any point within the cell −δ + na ≤ t ≤ (n + 1)a − δ the leading

contribution at large β is seen to be

1

eβ

dxB

dt
≃ 1

2aA(β)
(fβ(z) [2x(na) − x((n+ 1)a) − x((n− 1)a)] + [x((n+ 1)a) − x((n − 1)a)])
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where

fβ(z) =

(

L′

β(a− z) − L′

β(z)

L′

β(z) + L′

β(a− z)

)

with z = t− na and we have set δ to zero for simplicity. This in turn reduces to

lim
β→∞

1

eβ(t)

dxB

dt
=

N
∑

n=1

1

2aAL
[x(na) − x((n − 1)a)] [θ(t− (n− 1/2)a) − θ(t− (n+ 1/2)a)]

Thus the derivative of a block function in such a background geometry at large β is constant

now within a unit cell of the dual lattice. These properties allow us to compute the integral

of an arbitrary function of the block field xB(t) and its first derivatives. An example is the

bosonic part of the continuum action SB . This becomes

lim
β→∞

SB =
N
∑

n=1

a

[

1

2ALa
D−

nmx
B
m + P ′

n(xB)

]2

(5.2)

where the bosonic action now only depends on the blocked fields at the lattice points and

we use the obvious notation xB(na) ≡ xB
n . The most striking thing about this block action

SB is that it coincides with the bosonic part of the lattice action S(1) discussed earlier if

we identify the lattice field as the blocked continuum field evaluated on a lattice point1.

Notice also that the lattice theory we arrive at in this manner automatically incorporates

an r = 1 Wilson mass term to remove potential lattice doublers (since DS −mW = D−).

Notice that the backward difference operator D− arises directly from our choice of

blocking function B−

β . If we had made the equally valid choice

B+
β =

1

2a
[Lβ (x+ a− δ) − Lβ (x− δ)]

we would have arrived at a block action of the same form as in eqn. 5.2 but with D−

replaced by the forward derivative D+.

Generalization to include the fermionic sector is straightforward and leads to the con-

clusion that the total action when evaluated on block configurations as defined by eqn. 5.1

goes over into the full lattice action S(1) described in section 3.

This similarity between the blocked continuum theory at large β and the lattice model

described in section 3 is intriguing but by itself does not yet guarantee the exact equivalence

of continuum and lattice theories. To complete the correspondence between continuum and

lattice theories, and to show that for topological observables the continuum expectation

values are just equal to their lattice counterparts, we still need to argue that only block

fields need to be taken into account inside continuum path integrals as β → ∞. We offer

two arguments for this.

First consider the continuum boson kinetic term in terms of the original fields

SK =

∫

dt
1

eβ

(

dx

dt

)2

1a finite rescaling of the field is also needed to make the correspondence exact - but this in turn is

equivalent to a rescaling of the coupling which will not affect topological observables
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As β → ∞ it is clear that away from the lattice points t = na the action starts to diverge

due to the presence of eβ(t) in the denominator. Furthermore, it is clear that this effect

yields an exponential suppression of any field configuration x(t) in which the field changes

rapidly within a cell. Indeed, we can argue that that the only configurations that survive

in the path integral are those in which dx
dt ∼ e−βδt/2 for δt away from a lattice point. Thus,

in the limit β → ∞ only the block boson fields survive in the path integral. The relations

δ(1)x = ψ and δ(2)x = ψ then ensure that, in the absence of topological symmetry breaking,

only block fermion fields need to be considered for large β.

Our second argument is formal but more general. We are at liberty to consider the

blocking transformation given in eqn. 5.1 for any finite β as corresponding to a simple

change of variables in the continuum partition function. Let us write this transformation

for a generic field Φ = {x,B,ψ, ψ} using a compact notation

ΦB = KβΦ

where the kernel Kβ is shorthand for

Kβ

(

t, t′
)

= eβ(t)B−

β

(

t− t′
)

and we leave implicit the integrals defining the convolution of Kβ with any field Φ. In

terms of these new variables the partition function becomes

Z =

∫

DΦBJ(β)e−S(K−1
β

ΦB)

where the Jacobian J(β) is independent of the fields since the transformation is linear.

Indeed, the linearity of this mapping implies that each of the BRST transformations for the

original continuum fields yields identical transformations of the block fields. For example,

δ(1)x
B = ψBξ

δ(1)ψ
B

= BBξ

δ(1)ψ
B = 0

δ(1)B
B = 0

Thus the BRST operators remain nilpotent on the block fields. We assume that the inverse

operator K−1
β exists. For generic values of β the resulting action S

(

K−1
β ΦB

)

will be a

complicated and non-local function of the block fields. However, it has one crucial property

– it will still be invariant under a BRST variation of the block fields. Indeed, we can

construct topological observables from the block fields just as before

OB
top. obs. = δ(i)T

B(ΦB) (5.3)

for any function T (ΦB) and either of the symmetries i = 1, 2. Now imagine taking the

limit β → ∞. By examining the form of the kernel it is easy to see that in this limit the

block field becomes an eigenvector of the kernel

lim
β→∞

KΦB =
1

2AL
ΦB
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Actually we must be careful here – as β → ∞ it is clear that the operator K develops a set

of zero modes fl where Kfl = 0 corresponding to functions which are zero at the lattice

points but are otherwise unrestricted. These can be safely ignored only by considering the

form of the boson kinetic term which ensures that they are wholly suppressed in the limit

β → ∞ as we argued above. Ignoring these modes (which are not present at finite β) leads

us to conclude that K−1
β ΦB → 2ALΦB and thus the action need only be evaluated for the

block fields

lim
β→∞

S
(

K−1
β ΦB

)

= S
(

2ALΦB
)

Thus in this limit the partition function factorizes into a piece determined by the block

fields at a finite set of “lattice” points labeled by an integer n together with an integral

over all points lying in cells of the “lattice”

lim
β→∞

Z = J(∞)

∫

DΦB
cells

∫

DΦB
n e

−S(2ALΦB
n )

Throwing away this irrelevant (infinite) multiplicative constant we see that we have arrived

at our original lattice action determined by a finite set of variables! It is not hard to show

that in the large β limit the observables given in eqn. 5.3 go over into the lattice Ward

identities. Since our lattice theory has been obtained by a process of continuous deformation

of the continuum theory we expect the resultant lattice theory to preserve the values of

all continuum topological observables. Notice though that at β = ∞ the continuum block

fields are discontinuous functions. Thus we should not be surprised if the Leibniz rule fails

when applied to functions of such fields and seeming total derivative terms do not vanish

in the block action.

In the language of the renormalization group we have found that the lattice action

of section 3 is a perfect lattice action for the computation of topological observables – it

yields cut-off independent predictions for the corresponding expectation values. Thus the

lattice theory should contain a set of exact Ward identities corresponding to any combina-

tion of supersymmetries which yields a continuum topological symmetry. The arguments

presented above, while not rigorous, are well supported by the numerical results, as we will

show in the next section.

6. Ward Identities in Supersymmetric Quantum Mechanics

We have tested these ideas by simulating the model given by the action S(1) using a potential

of the form given in eqn. 3.1 which contains a mass term m plus single coupling g. Details

of our accelerated HMC algorithm are given in [8]. The results were obtained for lattice

parametersm = 0.25, g = 0.0625 on an L = 4 site lattice and utilized 108 HMC trajectories.

Since the dimensionless interaction strength is given by the parameter g/m2 = 1 this choice

of parameters corresponds to a strongly coupled theory on a coarse lattice. As such it should

easily reveal any symmetry breaking in the lattice theory. We examined the first non-trivial

Ward identities corresponding to the expectation values < δ(1)O1 > and < δ(2)O2 > for
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O1 = xiψj and O2 = xiψj . These take the form

〈

xiN
(1)
j

〉

+
〈

ψiψj

〉

= 0
〈

xiN
(2)
j

〉

+
〈

ψiψj

〉

= 0

The results are shown in tables 1 and 2. For an exact Ward identity the sum of the bosonic

and fermionic contributions across any row should cancel. Since the action S(1) is invariant

t < x(0)N (1)(t) > < ψ(0)ψ(t) >

0 0.8895(11) −0.8898(3)

1 0.6152(10) −0.6155(3)

2 0.4294(11) −0.4295(3)

3 0.3024(11) −0.3028(3)

t < x(0)N (2)(t) > < ψ(0)ψ(t) >

0 −0.8895(11) 0.8898(3)

1 −0.3016(11) 0.3028(3)

2 −0.4294(11) 0.4295(3)

3 −0.6160(10) 0.6155(3)

Table 1: Ward identity for δ(1)-symmetry

at g = 0.0625, m = 0.25 and L = 4

Table 2: Ward identity for δ(2)-symmetry

at g = 0.0625, m = 0.25 and L = 4

under the δ(1)-symmetry it should be no surprise that the corresponding Ward identity

is satisfied. What is, on the surface, much more surprising is that the Ward identity

corresponding to the δ(2)-symmetry is also satisfied to within the (small) statistical errors.

This despite the fact that the lattice action is not invariant under this symmetry. Of course

this is just the result one would expect on the basis of the arguments of the last section

since δ(2) generates an independent topological symmetry of the continuum theory.

Since the lattice actions S(1) and S(2) differ only by the cross term
γ < S >

0 3.9997(41)

1 4.0003(39)

2 4.0003(40)

Table 3: < S > vs

γ for g = 6.25, m =

2.5 and L = 4

C(g) and both correspond to theories which retain all the continuum

topological symmetry for any coupling g we are led to conclude that

perturbations about either lattice theory via such a term will not affect

topological observables. The simplest such observable is the partition

function itself. To check this we simulated the same model as before

except we added the cross term C(g) to the action with arbitrary

coupling γ.

S = S(1) − γC(g)

Table 3. shows the mean value of the action < S > on an L = 4 site lattice using now

g = 6.25, m = 2.5 for three values of the coupling γ. Notice the data we show here

corresponds to even coarser lattices than before with the same value for the interaction

parameter g/m2. Here, the measured action includes contributions from the scalars and

pseudofermions and, as detailed in [2], can be shown to take the value

〈S〉 = L+ g
∂

∂g
Z (g)

Thus, a partition function constructed from a BRST invariant theory which is independent

of the coupling g should yield < S >= L. At γ = 0 and γ = 2 (corresponding to lattice
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action S(2)) this is indeed the case. What is more surprising is that it appears to be also

true at γ = 1 where the classical lattice action is not invariant under either the δ(1) or δ(2)
symmetries. We have checked this result for other values of γ and for different masses and

couplings with identical results. To reinforce this point we show in tables 4 and 5 the same

two Ward identities as before computed in the γ = 1 ensemble. Again both Ward identities

t < x(0)N (1)(t) > < ψ(0)ψ(t) >

0 0.23102(37) −0.23110(6)

1 0.05367(15) −0.05334(3)

2 0.01251(14) −0.01232(1)

3 0.00263(11) −0.002848(3)

t < x(0)N (2)(t) > < ψ(0)ψ(t) >

0 −0.23102(38) 0.23110(6)

1 −0.00265(11) 0.002848(3)

2 −0.01251(14) 0.01232(1)

3 −0.05365(15) 0.05334(3)

Table 4: Ward identity for δ(1)-symmetry

at g = 6.25, m = 2.5 L = 4 and γ = 1.0

Table 5: Ward identity for δ(2)-symmetry

at g = 6.25, m = 2.5 L = 4 and γ = 1.0

are satisfied within statistical errors. Thus our numerical results lend strong support to

the results of section 5

7. Complex Wess-Zumino Model in Two Dimensions

These arguments can be extended to the complex Wess Zumino model with N = 2 super-

symmetry in two dimensions. A lattice formulation of this model based on a discretization

of the Nicolai map was studied in [9] and [10]. More recently the Nicolai map was ex-

tended to Ginsparg-Wilson fermions in [11]. In [12] a Hamiltonian approach was used to

investigate the same model.

In [2] we showed that this model can be derived from the simple model eqn. 2.1 if

one allows the original index to represent both a lattice coordinate in two dimensional

Euclidean space and a two-component internal degree of freedom. The resulting theory

contains Dirac fermions coupled to a complex scalar field φ and in the continuum possesses

N = 2 supersymmetry. This formulation of the model has the merit of exhibiting clearly

its topological character (the topological nature of this model in the continuum is discussed

in [5] and references therein)

In [2] we showed that there were four possible choices for the scalar lattice action

S (φ) =
1

2
η(a)η(a)

each of which exhibited an exact fermionic symmetry and corresponded to four inequivalent

local Nicolai maps η(a) (φ) with a = 1 . . . 4. Each of these fermionic symmetries is now seen

to be a BRST symmetry corresponding to four different quantizations of an underlying

complex scalar field theory possessing a local shift symmetry. The distinct Nicolai maps

simply correspond to different gauge choices for the scalars possessing the same Fadeev-

Popov determinant. The explicit forms of these maps are (see [2])

η(1) = DS
z φ+W ′(φ)

η(2) = DS
z φ−W ′(φ)
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η(3) = DS
z φ−W ′(φ)

η(4) = DS
z φ+W ′(φ)

They come in two groups of two corresponding to complex conjugation of the scalar field

φ. Notice that here we are again using the notation of section 3 in which kinetic terms are

written in terms of symmetric difference operators and wilson masses are added into the

potential terms. Since r = 1 this is entirely equivalent to the block language of forward

and backward derivatives and local potential terms. The actions corresponding to the first

two of these maps differ only by a cross term of the form

C1 = 2Re
(

DS
z φW

′(φ)
)

Similarly the actions corresponding to the third and fourth Nicolai maps would differ only

by another cross term of the same form but with φ→ φ

C2 = 2Re
(

DS
z φW

′(φ)
)

As before we can attempt to derive these lattice models by blocking the continuum

field theory. To do this we need generalizations to two dimensions of the lattice metric and

blocking functions. The following choices appear to suffice (for simplicity we parametrize

the bosons in terms of two real fields here)

g(σ1, σ2) = diag
(

e2β(σ1), e
2
β(σ2)

)

The components of this diagonal matrix are just the squares of the functions eβ(t) intro-

duced in section 5, each now being a function of the corresponding coordinate σi. Similarly

the two-dimensional blocking function B2d
β (x) can be taken to be just the product of one-

dimensional blocking functions, for example,

B2d
β (σ1, σ2) = B−

β (σ1)B
−

β (σ2)

By following the same procedure as for supersymmetric quantum mechanics we can

derive a lattice action by blocking out of the continuum a topological theory built from any

of the Nicolai maps detailed above. Furthermore, topological observables such as the Ward

identities associated with any of these continuum BRST symmetries should not depend on

the couplings to any cross terms of the form of C1 or C2 since such operators interpolate

between equivalent topological field theories. Thus we predict that the following simple

lattice action will yield exact Ward identities for all four symmetries at the quantum level

even though it possesses none of these symmetries at the classical level

S =
∑

z

1

2

(

DS
z φD

S
z φ+W ′(φ)W ′(φ)

)

+ ln detM (7.1)

where M is the fermion operator corresponding to, for example, the choice η(1) (the deter-

minant of M is independent of which map is used). Notice

We have checked these conclusions by measuring the four simplest non-trivial Ward

identities corresponding to these BRST symmetries for the action given by eqn. 7.1 on an
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t

−0.05

−0.03

−0.01

0.01

0.03

Bosonic correlator
Fermionic correlator
W

(1)

11(t)

Figure 1: Ward identity corresponding to δ(1)-symmetry with m = 0.625, g = 0.625 and L = 8

8×8 site lattice with g/m = 1 and lattice mass m = 0.625. The detailed form of these was

derived in [2]. For completeness we list them again here

0 =
〈

ψα
i ψ

β
j

〉

+
〈

Nβ
j x

α
i

〉

0 =
〈

iγαγ
3 ψγ

i ψ
β
j

〉

+
〈

iγβγ
3 N

γ
jx

α
i

〉

0 =
〈

γαγ
1 ψ

γ
i ψ

β
j

〉

+
〈

Qβ
j x

α
i

〉

0 =
〈

γαγ
2 ψ

γ
i ψ

β
j

〉

+
〈

iγβγ
3 Q

γ
jx

α
i

〉

Notice that these expressions involve not the original complex boson fields φ, η(i) but

their real counterparts eg. φ = x1 + ix2 and η(1) = N1 + iN2 with similar expressions for

η(2), η(3) and η(4) in terms of Nα, Qα and Qα respectively where α = 1, 2. Fig. 1 shows a

plot of the (11)-component of the first Ward identity corresponding to the δ(1)-symmetry.

For simplicity all the correlators we exhibit correspond to timeslice averaged fields. Both

bosonic and fermionic contributions are shown together with the combination yielding the

Ward identity. It is clear that the latter is satisfied within statistical errors even though

the starting lattice action given by eqn. 7.1 does not possess this symmetry exactly. We

find this situation to be true for all the Ward identities – as a further example, fig. 2 shows

the (12)-component of the 2nd Ward identity. Again, we have checked these conclusions

for a variety of lattice parameters and sizes with the same result.
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12(t)

Figure 2: Ward identity corresponding to δ(2)-symmetry with m = 0.625, g = 0.625 and L = 8

In [13] it was argued that the presence of a local Nicolai map in the lattice model played

no essential role in determining the renormalization properties of the theory. However, the

existence of a local Nicolai map can now be viewed as a consequence of the topological

character of the continuum theory. Thus we would claim that the benign U.V behavior of

the lattice model in eqn. 7.1 is intimately connected to the existence of an exact Nicolai

map in the associated continuum model.

8. Discussion

It is well known that certain low dimensional non-gauge models can be discretized in such

a way as to preserve a single parameter fermionic symmetry. In two cases - supersymmetric

quantum mechanics and the complex Wess-Zumino model in two dimensions we show that

this lattice invariance (and the associated existence of a local Nicolai map) follow from

an underlying topological structure in the continuum field theories. Indeed certain Ward

identities of the supersymmetric model just correspond to trivial topological observables in

the topological field theory. Furthermore, we argue that these lattice models can be arrived

at by blocking out of the continuum in a carefully chosen background geometry. Such a

procedure will generate a perfect lattice action for the computation of topological observ-

ables and hence guarantees an absence of cut-off effects in the lattice Ward identities. For

the models considered here which contain two and four topological symmetries respectively

this connection of the lattice model to the continuum guarantees that all the supersym-

metric Ward identities are satisfied exactly on the lattice. This may even be true for lattice
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actions which are not classically invariant under the some of the supersymmetries.

The crucial ingredient in topological field theories of this type is that they contain a

scalar nilpotent charge arising from BRST quantizing an underlying bosonic theory. In

terms of the original supersymmetry this charge is obtained by taking particular linear

combinations of the supercharges. This latter procedure requires that the original theory

possess extended supersymmetry. The question that remains is how much of this structure

survives in higher dimensions and in the presence of gauge symmetry. The procedure to

obtain a nilpotent charge from a set of supercharges is termed twisting and is a well known

method to obtain topological field theories from theories with extended supersymmetry in

higher dimensions [14]. Indeed, Donaldson-Witten theory was the first topological field

theory to be constructed and corresponds to twisting N = 2 super Yang Mills theory.

In general, in higher dimensions, only a fraction of the original supersymmetries can be

reinterpreted as yielding BRST charges and it is only this fraction that we can hope to

preserve on the lattice. Nevertheless, it is tempting to try and use this topological field

theory interpretation to construct lattice models containing a residual element of super-

symmetry. The procedure of blocking out of the continuum in the presence of a carefully

chosen “lattice” metric may prove very fruitful in this regard.

While we think that this approach deserves further study it will clearly be problematic

- the lattice theory, to duplicate the structure of the continuum theories, must contain non-

compact fields, and so such theories will necessarily break gauge invariance at the classical

level. To utilize this formalism it will then be necessary to show that the existence of this

residual supersymmetry can constrain the radiative corrections sufficiently to eliminate

dangerous gauge-violating counterterms. Notice additionally, that the presence of more

than one topological symmetry may be necessary in order to establish an explicit connection

between the lattice and continuum theories.

Additionally, local Nicolai maps are known to exist for a number of other models [15]

not all of which have N = 2 supersymmetry. This is intriguing as it points to a possible

hidden topological structure in those models which, if elucidated, may itself help with the

problem of studying such models on lattices.
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