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Abbreviations 

pR, proteorhodopsin; bR, baceriorhodopsin; OG, β-octyl-D-glucoside; PMSF, 

phenylmethylsulphonyl fluoride; AMP, ampicillin; SDS-PAGE, sodium dodecyl 

sulfate polyacrylamide 

 

 

Introduction 

Proteorhodopsin (pR), a homologue of archaeal bacteriorhodopsin (bR), is a 249-

amino-acid, seven-helix, transmembrane protein bound to a retinal molecule that 

functions as a light-driven proton pump.  The retinal chromophore of pR absorbs 

a photon and isomerizes, which induces conformational changes in the protein 

structure [1].  Proteorhodopsin was discovered in the year 2000 from the DNA 

sequences of several uncultured species of marine γ-proteobacteria, which is a 

component of marine planktons present in ocean surface water [2, 3].  Since the 

discovery of pR, additional studies have found that pR is widely distributed in the 

world.  In fact, it has been projected that 10
28

 light-driven pR expressing bacteria 

exist in the world [4, 5].  Proteorhodopsin is believed to play an important role in 

the energy balance of the Earth due the large marine biomass of bacterioplanktons 

[6].   

 

Understanding the structure of pR, along with the major active site amino acid 

residues, will help us explore the important functions of this protein.  The 

majority of active site amino acid residues as well as the amino acid residues that 
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form retinal binding pockets in archaeal bacteriorhodopsin are also highly 

conserved in pR [2].  Like bacteriorhodopsin, pR has conserved arginine, 

aspartate, and lysine residues, which are important in the proton transport 

mechanism.  Specifically, the active site residues Arg
82

, Asp
85

, Asp
212

, and Lys
216

 

in bR are conserved as Arg
94

, Asp
97

, Asp
227

, and Lys
231

 in pR [7].  Furthermore, 

the retinal chromophore of pR covalently binds as a protonated Schiff’s base at 

Lys
231

, while Asp
97

 plays a significant role in proton transfer from the 

photoactivated retinal as it is the primary proton acceptor [2, 7]. 

 

The ultimate goal of this project is to form a crystallized pR in order to obtain a 

well-defined three-dimensional structure, which is essential to enhance and 

facilitate a greater understanding between the structure of pR and its function.  

Furthermore, an understanding of the purification procedures of pR could provide 

better methods for purifying and crystallizing other transmembrane proteins, in 

particular G protein-coupled receptors.  Crystallization requires a high protein 

purity of approximately 95% or greater.   

 

Proteorhodopsin had been previously purified with affinity chromatography using 

Phenylsepharose™, hydroxyapatite and/or Ni-NTA resin [8, 9].  However, the 

last technique requires pR to be cloned into the pBAD-TOPO vector with a 6xHig 

-tag at the C-terminus [2].  The use of columns also requires substantial cost and 

time, especially for purifying quantities of more than ~ 1-5 mg.  Previously, it was 

shown that proteorhodopsin (pR) is selectively precipitated using 100mM citrate 
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pH 5.5 containing 3% octyl-glucoside [6].  Applying this method, we have been 

able to precipitate pR selectively from a detergent extract of E. coli cells.  In fact, 

this method alone yields a pR purity typically approaching 32%.  The current 

experiments mainly concentrate on establishing an optimized purification pR 

yield by controlling specific conditions such as concentration, solubility, pH, and 

pR-specific precipitating agent.  Most important, we determined that phosphate 

helps with selectively precipitating the impurities from pR, and its use thereby can 

increase the purity of pR.  We systematically explored the optimal concentrations 

of phosphate, citrate, and octylglucoside to obtain with the most favorable higher 

pR purity than has ever previously been obtained without the use of column 

purification methods, i.e. in excess of 50% purity.   

 

 

Methods 

 

Enriched Luria-Bertani (LB) Media 

We added 10 g of Bacto Tryptone, 5 g of Yeast Extract, 6 g of sodium 

phosphate monobasic (NaH2PO4⋅H2O), 8.7 g of potassium phosphate dibasic 

(K2HPO4) and 10 mL of glycerol per 1-liter of distilled water into a beaker.  After 

dissolving, concentrated NaOH was used to adjust the pH to 7.  Once made, the 

solution was sterilized by autoclaving (15 min) and then stored in a cold room 

(approximately 4°C).   
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Protein Expression 

Proteorhodopsin was expressed in E. coli strain UT5600 using a pBAD TOPO 

plasmid [6].  1 mL of LB media was transferred into a small tube along with 50 

µg/mL of ampicillin.  Then, an average-size transfected E. coli colony was 

collected with a sterile pipette tip and transferred into the 1 mL of LB/Amp 

media, which was then incubated overnight at 37°C.  This starter culture was 

transferred into a flask that contains 500 mL enriched LB media containing 50 

µg/mL ampicillin.  The flask was placed in the shaker bath at 37°C for 

approximately 4-5 hours.  After 4-5 hours of growth, the heater was turned off 

and the flask was cooled quickly to room temperature, using a bucket of ice added 

to the shaker bath.  Once the temperature reached ~20°C, 1/100 volume of 20% 

L-arabionose was added, along with ~10 µg/liter of all trans-retinal dissolved in 

acetone.  The flask remained shaking (~30 rpm) in the shaker bath overnight in a 

dark room at 15-20°C.  The flask was then moved to the cold room and left 

overnight (without shaking).   

 

Cell Harvest 

The cells were collected by 30 min of centrifugation at 6000 rpm (Beckman JA-

10 rotor).  The supernatant usually immediately separated from the pellet.  We 

determined the wet weight of the pellet by taring an empty centrifuge tube, then 

weighing it along with the pellet formed by centrifugation. 
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Cell Lysis  

The pellet was completely resuspended in approximately 5x volume of lysis 

buffer (10 mM HEPES pH 7.1 containing 1 mM PMSF protease inhibitor, 3% β-

octyl-D-glucoside, 0.08% lysozyme and 0.01 mg/mL DNAse).  The lysed cells in 

lysis buffer were centrifuged at 3900 rpm in Beckman tabletop centrifuge at 

4°C using GA-6 rotor.  The reddish colored supernatant was immediately 

separated from the pellets.  If the pellets were still colored pinkish, then the pellets 

were re-extracted in lysis buffer.  Ultimately, the grayish pellet containing 

impurities, i.e. undesired proteins, was discarded, and colored supernatants were 

combined.  This combined solution is referred to as raw detergent extract of E. 

coli.   

 

pR Purification  

1/3 volume of 100 mM sodium citrate pH 5.5 was added to the raw detergent 

extract and then left to sit for 15 minutes.  The solution was then spun down for 

15-30 minutes at 3900 rpm at 4°C.  If any white pellet was obtained at this time, 

these impurities were discarded; the colored supernatant was separated from the 

impurities, and another 1/3 volume of 100 mM sodium citrate was added to the 

colored supernatant. The centrifugation was repeated, and any colored pellets 

were saved; the supernatant was further diluted each time until the supernatant 

became nearly colorless.   All the pink-colored pellets obtained from the previous 
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citrate steps were recombined by solubilizing into a minimal (~50µL) volume of 

50 mM Tris-Cl pH 9.0 containing 3% OG.  Once the pellets were completely 

resuspended, they were centrifuged (15 min, 3900 rpm).  The supernatants were 

then transferred to a new tube and any pelleted impurities were discarded.  A 

UV/Visible spectrometry measurement determined the degree of purity at this 

particular stage. 

 

The colored supernatant was then repelleted using the citrate precipitation 

methods described above.  Any remaining colored supernatant was repeatedly 

precipitated by further addition of 100 mM citrate, until all the color was 

transferred from the supernatant to pellets.  We made sure to save any colored 

pellets while removing impurities.  Once the supernatant became clear in color, 

we recombined all the colored pellets by solubilizing them into a small volume of 

50 mM Tris-Cl pH 9.0 containing 3% OG, and spun it down.  Again separating 

the pink-colored pR-containing supernatant from impurities in the colorless pellet.  

Afterwards, we saved 50 µl of pR solubilized in Tris-Cl for additional UV/Visible 

spectrometry measurements.   

 

Use of Phosphate as a Citrate competitor in Purification 

After two full cycles of citrate-induced precipitation and resolubilization in 3% 

OG Tris pH 9.0, we added 1/3 volume of 600 mM phosphate, 30 mM sodium 

citrate pH 5.5, containing 0.4% OG, and incubated for 15 minutes at room 

temperature.  Then, we spun it down for 15 minutes at 3900 rpm at 4°C.  If any 
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impurities were precipitated, they were discarded.  Then a similar volume of 30 

mM citrate/ 600 mM phosphate pH 5.5, containing 0.4% OG, was added, 

followed by centrifugation.  The addition citrate/phosphate/OG solution, followed 

by centrifugation, was repeated until the pR precipitated out of solution as a 

colored pellet.  Once a pR pellet was obtained, the supernatant was further diluted 

with 10 mM citrate pH 5.5 containing 0.4% OG alone (without phosphate), until 

the supernatant became nearly colorless.  All the colored pellets were recombined 

by solubilizing them into a small volume of 50 mM Tris-Cl pH 9.0 with 3% OG 

and was again spun down.  The pink-colored supernatant was separated and 

collected from any impurities.  50 µl of pR solubilized in Tris-Cl was saved for 

UV/Visible spectrometry measurements.  pR was reproduced from the colored 

supernatant using a combination of citrate and phosphate precipitation method 

described above.  

 

Absorption Spectroscopy 

Absorption spectra were measured on a Shimadzu UV-265 spectrophotometer at 

2nm resolution over the range 700-250 nm.  A sample volume of 0.6ml was used 

in a masked quartz micro cuvette for all measurements.  An absorbance ratio 

A280:A520 of ~2.0 indicates 100% pure pR, as shown previously [9]. 
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Result and Discussion 

Purification of pR with Citrate Precipitation 

 

Figure 1.  UV/Visible Absorption Spectra of pR in 50 mM Tris-Cl pH 9.1 containing 3% 

octylglucoside solution at three rounds of purification.  All spectra were measured in the 

presence of OG at pH 9.1.   Green Spectra indicates the preliminary purification of pR using 100 

mM citrate pH 5.5; Purple Spectra indicates the second round of the same method; Red, spectra 

for the first pellet treated with 30 mM citrate pH 5.5 resuspended in Tris; Blue, the same method – 

30 mM citrate pH 5.5 – was applied. 

 

As shown in Figure 1, the preliminary purification of pR using 100 mM citrate pH 

5.5 yielded approximately 11:1 ratio of A280:A520.  The same method of 

purification with 100 mM citrate was repeated for the second round resulting in 

approximately 6:1 absorbance ratio.  Within two rounds of 100 mM citrate 

precipitation, we were able to purify pR and reduce the ratio from 11:1 to 6:1.  

After two full cycles of citrate, pR was treated with 30 mM citrate pH 5.5 
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containing 0.4% OG, in which we measured the UV spectra of pellets separately, 

instead of combining them, at each addition of citrate.  The ratio of the first pellet 

in Tris was nearly 3:1 while the second pellet in Tris was 4:1 (Figure 1).  The 

color of pellets at this stage was very bright with high intensity in pR pellets.  The 

result indicates that a high concentration of citrate already had precipitated the 

impurities as well as other undesired proteins by citrate binding to numerous 

proteins.  The color also indicates that pR has one or more binding sites for 

citrate; thus, a lower concentration of citrate is enough to specifically bind pR to 

precipitate more effectively once the impurities are removed.  

 

Finding a Better Concentration of Citrate in the Presence of 600mM Phosphate  

After a few rounds of citrate precipitation including both 100 mM concentration 

and a lower concentration, pR was treated with 30 mM citrate and 600 mM 

phosphate pH 5.5 containing 0.4% OG.  This particular concentration of 

phosphate along with citrate brings down more impurities, while leaving pR 

solubilitzed.  We believe that phosphate prevents precipitation by competing for 

the citrate binding site, thereby blocking citrate-induced aggregation.  This 

particular method could be a good transition in purification as it removes more 

impurities and increases the purity of pR.  In the presence at constant 600 mM 

concentration of phosphate, we attempted to explore a better concentration of 

citrate.  The goal was to find the lowest citrate concentration that can induce 

aggregation in the presence of phosphate.   
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Figure 2.  UV/Visible Absorption Spectra of pR resuspended in Tris-Cl pH 9.1 with 3% OG 

after treated with different concentrations of citrate at pH 5.5 while have the same 600 mM 
phosphate present.  Purple Spectra indicates pR treated with 65 mM citrate; Green, 30 mM 

citrate; Red, 15 mM citrate. 

 

We tested three different citrate concentrations – 65 mM, 30 mM and 15 mM – at 

pH 5.5 with the presence of 600 mM phosphate.  Among different concentrations, 

the ratio of A280:A520 of 30 mM citrate along with 600 mM phosphate gave 

approximately 3:1, one of the best purity levels we have ever obtained in the 

laboratory without columns, while 65 mM and 15 mM both yielded 

approximately 4:1 ratio (Figure 2).  It was interesting to note that 30 mM, which 

is neither the lowest nor the highest concentration of citrate, could bring down the 

pR to the highest purity level so far achieved.   
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Based on these results we investigated the most favorable conditions that would 

increase the degree of purity of pR and have the ability to recover pR in high 

yield.  We examined several different ways of purification of pR after a few 

rounds of purification steps with both 100 mM and 30 mM citrate pH 5.5.   

 

Use of Phosphate in pR Purification 

We tried using 600 mM phosphate with 30 mM citrate pH 5.5 containing 0.4% 

OG, only without switching back to citrate alone after 2-3 citrate precipitation 

rounds.  Using a mixture of citrate and phosphate, we were able to remove more 

impurities, and then precipitated pR.  The pellets were resuspended in Tris for the 

UV spectra measurements.  The first pellet in Tris resulted approximately 7:1 

ratio of purity, whereas a ratio of the second and third pellets in Tris diminished to 

4:1 and 3:1 respectively (Figure 3).  As more volume of phosphate along with 

citrate was added, we were able to obtain purer pellets.  However, one problem 

that occurred in this particular method was that it was difficult to recover the pR 

completely, meaning there was still color left in the supernatant and we were not 

able to completely bring the color down into a pellet.  This might suggest that 600 

mM phosphate may be too high in pR precipitation, as the binding sites may have 

been occupied by phosphate; thus, phosphate blocks citrate-induced aggregation. 
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Figure 3.  UV/Visible Absorption Spectra of pR in 50 mM Tris-Cl pH 9.1 containing 3% OG 
at 30 mM citrate and 600 mM phosphate pH 5.5 w/ 0.4% OG purification.  Blue, first 

precipitated pR pellet in Tris; Green, second pR pellet obtained; Red, third precipitation of pR 

pellet resuspended in Tris for spectrum.  There was still color left in the supernatant even after 

third precipitation and could not complete reproducing pR.   

 

Use of a Lower Concentration of Citrate Alone 

After the preliminary citrate precipitation procedures including both 100 mM and 

30 mM citrate at pH 5.5, we tried an even lower concentration of citrate, 10 mM 

citrate pH 5.5 containing 0.4% OG, in a small amount of pR in Tris and repeated 

the same addition/centrifugation procedure steps.  The low concentration of 

citrate precipitation without any phosphate maintained approximately a 4:1 ratio 

of pR purity at the first addition of 10 mM citrate.  In the second addition, we 

brought all the color down from the solution into a pellet; the purity of the pellet 

was increased to 6:1 due to a precipitation of pR, even with other undesired 

proteins (Figure 4).    
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Figure 4.  UV Spectra of pR resuspended in Tris-Cl pH 9.1 w/ 3% OG after 10 mM citrate 

pH 5.5 containing 0.4% precipitation.  Red, first precipitation; Purple, second precipitation of 

pR that had precipitated all color into a pallet from the supernatant. 

 

Alternating Treatment with Citrate Alone and with both Citrate and Phosphate 

The results from applications of 30 mM citrate and 600 mM phosphate and 10 

mM citrate alone has led us to treat pR with 30 mM citrate and 600 mM 

phosphate pH 5.5 contaning 0.4% OG first after the preliminary citrate 

precipitation, and then switching to 10 mM citrate pH 5.5 containing 0.4% OG, 

and vice versa.  

pR that was initially treated with a mixture of citrate and phosphate resulted in 

approximately 7:1 A280:A520 ratio.  Once the first pR pellet was obtained from 

citrate and phosphate solution, we treated pR with 10 mM citrate alone without 

having phosphate in the solution.  The second pellet obtained from addition of 10 
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mM citrate pH 5.5 containing 0.4% OG reduced the purity down to 5:1.  Finally, 

the third pR pellet treated with 10 mM citrate pH 5.5 was the last pellet 

precipitated, which brought all the color from the supernatant down; the purity of 

third pR pellet decreased as the ratio rose to 6:1 ratio of purity (Figure 5). 

 

 

Figure 5.  UV spectra of pR, which was initially treated with 30 mM citrate along with 600 

mM phosphate then switched to 10 mM citrate alone, resuspended in 50 mM Tris-Cl pH 9.1 

containing 3% OG.  Red, spectra of pR precipitated from use of citrate and phosphate; Green, pR 

pellet precipitated from 10 mM citrate after switched from citrate and phosphate solution; Purple, 

second pR pellet obtained from 10 mM citrate precipitation.  

 

Moreover, we tried reversing the order of steps.  We initially treated with 10 mM 

citrate pH 5.5 containing 0.4% OG, and then switched to 30 mM citrate and 600 

mM phosphate pH 5.5 with 0.4% OG.  This method was problematic because it 

was difficult to precipitate pR completely in the presence of phosphate.  We tested 

the idea of raising the concentration of citrate, which would allow to compete 
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with phosphate as it would precipitate pR.  The difficulty in recovering pR was 

finally solved by gradually reducing the citrate and phosphate concentrations, 

while keeping OG concentration constant.  We added 400 mM citrate and 600 

mM phosphate pH 5.5 containing 0.4% OG.  Then we added an equal volume of 

0.4% OG solution itself and let it sit over a long period of time (~10 days).  The 

constant OG concentration, with a high concentration of citrate, selectively 

precipitated pR.  The UV absorption spectrum indicated that the ratio of purity 

was nearly 5:2, which was the best result obtained to date (Figure 6), and likely 

indicative of a final pR purity level of ~50% of protein by weight.   

Overall, the use of phosphate along with citrate is promising in pR purification.  

This particular purification procedure has brought us a step closer in achieving 

crystallization through efficient use of inexpensive materials.   
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Figure 6.  UV/Visible Spectrum of pR, which has been precipitated from 400 mM citrate and 

600 mM phosphate pH 5.5 containing >0.4% OG, dissolved in 50 mM Tris-Cl pH 9.1 w/ 3% 

OG.  The spectrum indicates a purity of pR after the pR purification in alternating 10 mM citrate 

pH 5.5 w/ 0.4% OG and 400 mM citrate and 600 mM phosphate pH 5.5 w/ > 0.4% OG.  

 

Phosphate and pKa value 

During this whole project, I have noticed one very interesting result.  When I 

added 30 mM citrate and 600 mM phosphate pH 5.5 containing 0.4% OG into pR 

resuspended in 50mM Tris-Cl pH 9.1 with 3% OG, the color clearly changes from 

reddish to purple (Figure 7). 
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Figure 7.  The color shift in pR depends on the presence of phosphate.  Left, 10 mM citrate pH 

5.5 containing 0.4% OG added into pR dissolved in 50 mM Tris-Cl pH 9.1 containing 3% OG; 

Right, 30 mM citrate and 600 mM phosphate pH 5.5 containing 0.4% OG added into pR 

resuspended in 50 mM Tris-Cl pH 9.1 containing 3% OG. 

 

 

That is, the color of pR is red at basic pH (Tris-Cl pH 9.1 containing 3% OG).  

When we added citrate, pH 5.5 to such a pH 9 solution, there was no notable 

change in the color of pR.  However, a different result was obtained when 30 mM 

citrate and 600 mM phosphate pH 5.5 was added into the same pR sample, 

originally at pH 9.  When the mixture of citrate and phosphate was added into pR, 

the color consistently turned into an intense purple and was clearly 

distinguishable from the color of pR that was phosphate-free though they were at 

similar pH levels (Figure 8 Left).  Then, subsequent switching of the solutions, 

i.e. addition of phosphate into the solution that originally had citrate only, yielded 

the same intense purple color (Figure 8 Right).  This indicates that phosphate 

could raise the pKa value of pR, which is due to the titration of Asp
97

 the 

chromophore’s counter ion. 
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Figure 8.  Comparison in color of pR with the presence of phosphate and without phosphate.  
Left, 10 mM citrate pH 5.5 containing 0.4% OG is added into pR dissolved in 50 mM Tris-Cl pH 

9.1 w/ 0.4% OG on the left, whereas 30 mM citrate and 600 mM phosphate pH 5.5 containg 0.4% 

OG is added into pR dissolved in Tris on the right; Right, a solution of citrate and phosphate is 

added into pR on the left while 10 mM citrate is added into pR instead of a mixture of phosphate 

and citrate on the right. 
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Summary 

 

Proteorhodopsin (pR) is a transmembrane protein bound to a retinal molecule that 

function as light-driven proton pump.  In other words, when proteorhodopsin is 

bound to a retinal molecule and is exposed to light, a conformational change 

occurs as it generates energy.  Retinal is a derivative of vitamin A.  

Proteorhodsopin is believed to serve as a possible alternative energy source that 

could play an important role in the energy balance of the Earth.  Proteorhodopsin 

is widely distributed, and the bacteria containing it are some of the most prevalent 

organisms on Earth.  Proteorhodopsin has many potential uses and benefits in 

commercial biotechnological applications and other industries.  Also, 

understanding the roles of pR in the oceanic food chain might help us to study 

some significant impacts of global changes on marine communities and in the 

ecosystem. 

 

Unfortunately, ever since this particular protein has been discovered in 2000, it 

has been difficult and challenging to obtain a well-defined three-dimensional 

structure.  Knowing the 3-D crystal structure of proteorhodopsin would 

tremendously enhance a greater understanding in its functions and specific 

physiological roles. 

 

In order to obtain a well-defined three-dimensional structure, we have to form a 

crystallized pR to perform x-ray crystallography – a method of determining the 
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arrangement of atoms within a crystal – and crystallization requires a high pR 

purity approximately 95% or greater.   

 

Therefore, this project focused on establishing an optimized purification pR yield 

by controlling specific conditions such as concentration, solubility, pH, and pR-

specific precipitating agents.  An understanding of the purification procedures of 

proteorhodopsin could provide a better understanding in other various 

transmembrane proteins, in particular the G protein-coupled receptors, which 

constitute a large protein family of seven transmembrane receptors that activate 

signal transduction pathways and cellular responses to pharmaceuticals. 

 

Proteorhodopsin had been previously purified with columns and with other 

materials that require both time and high cost.  Professor Braiman and his 

laboratory developed and established an invention for purifying pR using a simple 

salt, sodium citrate, to precipitate pR selectively from a detergent extract of E. 

coli cells.  This particular method gave approximately 20-30% purity in a single 

step, and is suitable for the preliminary purification. 

 

In this project, we continued to explore a method that would increase the purity as 

well as have the ability to reproduce a large quantity of pR.  We expected that 

another simple salt, phosphate, could help with selectively precipitating the 

impurities from pR, which may increase the purity of pR.  We have obtained 

evidence that alternating treatment between citrate alone, and with citrate along 
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with phosphate, may be a useful set of purification steps throughout this project. 

The pR obtained from this purification procedure using citrate and phosphate 

yields adequate quantity and purity of proteins that are suitable in techniques such 

as SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) and 

UV/Visible absorption spectrum.  This purification procedure of proteorhodopsin 

is simple; it includes adding solution then centrifugation in order to selectively 

precipitate impurities or pR.  Purple pellets contain pR, and should be saved for 

UV/Visible Spectroscopy for the examination of the degree of pR purity. The 

advantage of using citrate and phosphate in pR purification is that they are 

inexpensive materials, which reduce cost tremendously as it eliminates the use of 

a column, but still has the ability to provide the same level of purity.  This simple 

purification method to purify pR proved less costly and more efficient.  Also, this 

method could possibly purify other transmembrane proteins (G protein-coupled 

receptors), which would be enormously significant for pharmaceutical purposes. 

 

This project should be continued to seek better conditions that would increase the 

quantity of pR as well as purity.  The pR purification procedure described in the 

Capstone Project has shown potential, but needs further work.  The ultimate goal 

of the project is a well-defined three-dimensional structure of proteorhodopsin 

and this work has brought us a step closer in achieving crystallization through 

citrate and phosphate precipitation of pR.   
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