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Abstract: We propose a discretization of two dimensional Euclidean Yang-Mills theories

with N = 2 supersymmetry which preserves exactly both gauge invariance and an element

of supersymmetry. The approach starts from the twisted form of the continuum super

Yang Mills action which we show may be written in terms of two real Kähler-Dirac fields

whose components transform into each other under the twisted supersymmetry. Once

the theory is written in this geometrical language it is straightforward to discretize by

mapping the component tensor fields to appropriate geometrical structures in the lattice

and by replacing the continuum exterior derivative and its adjoint by appropriate lattice

covariant difference operators. The lattice action is local and possesses a unique vacuum

state while the use of Kähler-Dirac fermions ensures the model does not exhibit spectrum

doubling.
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1. Introduction

Supersymmetric field theories play a central role in modern theories of particle physics.

From a phenomenological viewpoint they are attractive as providing a solution to the gauge

hierarchy problem [1]. From a theoretical perspective they are more tractable analytically

than their non-supersymmetric counterparts while still exhibiting features like confinement

and chiral symmetry breaking [2]. Super Yang-Mills theories are especially interesting

because of their possible connection to string and M-theory [3].

For these reasons a good deal of effort has gone into attempts to formulate such theories

on spacetime lattices see, for example, [4, 5] and the recent reviews by Feo and Kaplan

[6, 7]. However, until recently these efforts mostly met with only limited success. The

reasons for this are well known – generic discretizations of supersymmetric field theories

break supersymmetry at the classical level leading to the appearance of a plethora of

relevant SUSY breaking counterterms in the effective action. The couplings to all these

terms must then be fine tuned as the lattice spacing is reduced in order that the theory

approach a supersymmetric continuum limit. This problem is particularly acute in theories

with extended supersymmetry which contain scalar fields.

One might hope that this fine tuning problem might be reduced or perhaps even

eliminated by formulating the lattice models in such a way as to preserve some element of

SUSY on the lattice. An approach following this philosophy has been described in papers

by Kaplan et al.[8, 9, 10].

In [11] we proposed a different scheme, useful for theories with extended supersymme-

try, based on a reformulation of the theories using ideas drawn from topological quantum

field theory. The key to this approach is to construct a new rotation group from a com-

bination of the original rotation group and part of the R-symmetry associated with the
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extended SUSY. The supersymmetric field theory is then reformulated in terms of fields

which transform as integer spin representations of this new rotation group [12]. This pro-

cess is given the name twisting and in flat space one can think of it as merely an exotic

change of variables in the theory. In this process a scalar anticommuting field is always

produced associated with a nilpotent supercharge Q. Furthermore, as argued in [13] the

twisted superalgebra implies that the action rewritten in terms of these twisted fields is

generically Q-exact. In this case it is straightforward to construct a lattice action which is

Q-invariant provided only that we preserve the nilpotency of Q under discretization. Con-

crete examples of this construction for theories without gauge symmetries were given in

[14, 15, 16] corresponding to supersymmetric quantum mechanics, the 2D complex Wess-

Zumino model and supersymmetric sigma models.

In [17] the conditions allowing for a nilpotent supercharge were analyzed in some

detail within a conventional superspace approach. In [18] a twisted superspace formalism

was developed and used to construct models which preserved all the twisted supercharges

at the expense of introducing some non-commutativity at the scale of lattice spacing. In

[19] Sugino managed to extend the technique of latticization via twisting to the case of

models with gauge symmetry by a non-trivial modification of the twisted supersymmetry

transformations. However, the lattice models constructed this way have some difficulties –

they generically suffer from a vacuum degeneracy problem1 and the lattice actions are not

rotationally invariant. Both of these problems may be traced to the requirement that all

fields except for the gauge links transform identically under the gauge group despite their

differing spins and hence geometrical characters. We are thus motivated to seek a more

geometrical approach to discretization of the continuum twisted theory.

In this paper we propose an alternative lattice regularization scheme for two-dimensional

N = 2 (Euclidean) super Yang-Mills theory. Our jumping off point is again the continuum

twisted theory. First, to show that these twisted models are completely equivalent in flat

space to the conventional formulations, we show how to reconstruct the usual super Yang-

Mills theory written in terms of spinor fields from the twisted model. Next we introduce

the notion of a Kähler-Dirac field and recall the relationship between the Kähler-Dirac

equation and the usual Dirac equation. We show that the anticommuting twisted fermion

fields arising in the super Yang-Mills model are nothing more than components of a single

real Kähler-Dirac field. The usual flavor index of the Kähler-Dirac field is now naturally

associated with an index describing the behavior of the field under additional R-symmetries

associated with the extended supersymmetry. This construction yields an explicit example

of the connection between twisting and the Kähler-Dirac fermion mechanism emphasized

in recent papers [21, 22, 18]. The connection to Kähler-Dirac fermions is important as it

has been known for some time how to discretize the latter equation without encountering

spectrum doubling [23, 24, 25, 26]. Indeed, we show that the twisted lattice fermion action

we propose is nothing more than a latticized, gauged Kähler-Dirac action for fields in the

adjoint representation of the gauge group.

Furthermore, we can show that the entire theory can be recast as one involving a

1this problem was circumvented in the case of N = 2 SYM in two dimensions [20]
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single Kähler-Dirac field with grassmann components representing the twisted fermions,

together with another Kähler-Dirac field with commuting component fields representing the

scalars, auxiliary field and gauge field. The twisted supersymmetry operator then induces

transformations between corresponding components of these Kähler-Dirac fields. This fully

geometric representation of the continuum theory can then be naturally discretized while

preserving gauge invariance, supersymmetry and without inducing fermion doubles. The

discretization prescription we use was first proposed in [27] and maps continuum fields

which transform differently under the (twisted) rotation group to different geometrical

features in the hypercubic lattice. Specifically we assign scalar fields to sites, vector fields

to links, rank 2 antisymmetric tensor fields to plaquettes etc. These fields will then be taken

to transform differently at finite lattice spacing under gauge transformations. In addition

we will introduce two covariant finite difference operators which are compatible with these

differing gauge transformation properties of the fields. They will represent the lattice

analogs of the exterior derivative and its adjoint. Using these ingredients we will show that

it is rather straightforward to latticize the continuum twisted theory while maintaining

both invariance under lattice gauge transformations and a single twisted supersymmetry.

The resultant action is moreover local, has a unique vacuum state and is free of doubler

modes.

2. Two dimensional continuum N = 2 SYM

Our starting point will be the continuum twisted form of the two dimensional N = 2 SYM

model which possesses two scalar fields φ, φ, a vector Aµ and another commuting field B12

corresponding to the single independent component of a rank 2 antisymmetric tensor field

in two dimensions. The fermions of the theory appear as an anticommuting scalar field

η, a vector ψµ and a field χ12 conjugate to B12. All these fields are taken in the adjoint

representation of some gauge group C =
∑

a T
aCa where the T a’s will be taken to be

anti-hermitian generators of the group and the component fields Ca are real. The twisted

action takes the form

S = βQTr

∫

d2x

(

1

4
η[φ, φ] + 2χ12F12 + χ12B12 + ψµDµφ

)

(2.1)

where the object inside the Q-variation we shall refer to as the twisted gauge fermion in

analogy with usual BRST terminology. The twisted supersymmetry acts on the fields as

QAµ = ψµ

Qψµ = Dµφ

Qφ = 0

Qχ12 = B12

QB12 = [φ, χ12]

Qφ = η

Qη = [φ, φ] (2.2)
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Notice that the square of twisted supersymmetry operator yields an infinitesimal gauge

transformation Q2 = δ
φ
G with parameter φ. Carrying out the Q-variation and integrating

out the multiplier field B12 leads to the form

S = βTr

∫

d2x

(

1

4
[φ, φ]2 − 1

4
η[φ, η] − F 2

12 +DµφDµφ

− χ12[φ, χ12] − 2χ12 (D1ψ2 −D2ψ1) − ψµDµη + ψµ[φ,ψµ]
)

(2.3)

The coefficient of F 2
12 appears negative but this is an illusion. With our representation

of the generators Tr{Ta, Tb} = −δab and the gauge action written in terms of component

fields is positive semidefinite. To show that this twisted model is nothing more than the

usual SYM theory, in which the fermions are represented by spinor fields, we construct a

Dirac spinor out the four (real) anticommuting twisted fields

Ψ =

(

1
2η − iχ12

ψ1 − iψ2

)

(2.4)

It is straightforward to see that the kinetic terms in 2.3 can be rewritten in the Dirac form

Ψ†γ.DΨ (2.5)

where the gamma matrices are taken in the Euclidean chiral representation

γ1 =

(

0 1

1 0

)

γ2 =

(

0 i

−i 0

)

(2.6)

In the same way the Yukawa interactions with the scalar fields can be written

Ψ† (1 + γ5)

2
[φ,Ψ] − Ψ† (1 − γ5)

2
[φ,Ψ] (2.7)

where γ5 in this representation is

γ5 =

(

1 0

0 −1

)

(2.8)

Thus the on-shell twisted action is nothing more than the usual N = 2 SYM action in

two dimensions. Notice that to make this correspondence and obtain a bounded Euclidean

action it is necessary to think of φ and φ as complex conjugates rather than real independent

fields. In the continuum theory this complexification is a little mysterious but we will see

that it is natural within a lattice framework. Finally with φ and φ complex conjugates it

is easy to show that γ1M
∗γ1 = M where M is the fermion operator which implies that the

fermion determinant is (generically) positive definite.

3. Interpretation in terms Kähler-Dirac fields

The fact that the fermions of the twisted model are represented by (antisymmetric) tensor

fields is reminiscent of the component fields entering into the Kähler-Dirac equation. In
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this section we verify this connection by showing how to write the original twisted SYM

theory entirely in terms of such Kähler-Dirac fields. We start by recalling the properties of

the Kähler-Dirac equation and its connection to spinor fields and the usual Dirac equation

[23, 25, 26]

In D dimensions we introduce a Kähler-Dirac field ω whose components are antisym-

metric tensor fields or p-forms where p = 0 . . . D. Thus

ω = (f, fµ, fµν , . . .) (3.1)

We can define the action of the exterior derivative d on such a field by the action on its

components

dω = (0, ∂µf, ∂µfν − ∂νfµ, . . .) (3.2)

A natural dot product between two such Kähler-Dirac fields A and B is given by

< A|B >=

∫

dDx
√
g
∑

p

Aµ1...µpBµ1...µp (3.3)

The adjoint of the exterior derivative d† can then be defined in terms of the component

fields as

−d†ω =
(

f ν, f ν
µ , . . . , 0

)

;ν
(3.4)

If we form the matrix (from now on we will assume flat Euclidean space)

Ψ
(ω)
αβ (x) =

D
∑

p=0

(γµ1 . . . γµp)αβ fµ1...µp (3.5)

it is straightforward to show that that the following equation

γ
µ
αα′∂µΨ

(ω)
α′β = 0 (3.6)

is equivalent to the Kähler-Dirac equation

(d− d†)ω = 0 (3.7)

Furthermore we can interpret eqn. 3.6 as the usual Dirac operator acting on a multiplet of

2
D
2 identical flavors of Dirac fermions labeled by the index β. This statement is unaffected if

gauge interactions are introduced and the derivative operator d replaced by an appropriate

gauge covariant exterior derivative D. Furthermore, the Kähler-Dirac equation can be

derived from an action which can be written in two equivalent ways

S =
1

2
TrΨ†γµ∂µΨ

=
〈

ω†|
(

d− d†
)

ω
〉

where the (anticommuting) matrix valued fields Ψ and Ψ† (and correspondingly the Kähler-

Dirac fields ω, ω†) are to be treated as independent fields. To make contact with the twisted

SYM model discussed earlier let us examine in detail the case of two dimensions. Choosing

ω =
(η

2
, ψµ, χ12

)

(3.8)
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we find the the continuum Kähler-Dirac action when expanded on the component fields

yields

S =

∫

d2x

(

1

2
η†Dµψµ +

1

2
ψ†

µDµη + ψ
†
2D1χ12 − ψ

†
1D2χ12 + χ

†
12 (D1ψ2 −D2ψ1)

)

(3.9)

If we now impose the condition that the component fields are purely anti-hermitian (or

hermitian) we obtain the continuum twisted N = 2 action examined earlier (up to an

unimportant factor of minus two). Notice that in this case the total number of real fields

needed to write down the Kähler-Dirac model (four) exactly matches the number of real

supercharges of the N = 2 theory in two dimensions. We thus see that the fermionic sector

of the N = 2 model in two dimensions is naturally given in terms of a single real Kähler-

Dirac fermion. It is clear that the bosonic sector of the model contains a similar set of four

real fields φ, Aµ and B12 together with the gauge degree of freedom φ. Therefore let us

introduce another Kähler-Dirac field Φ = (φ − φ,Aµ, B12) with commuting components.

Consider the following expression

〈Ψ| (dAΦ +QΨ)〉 (3.10)

where dA denotes the covariant form of d. Writing out components yields

∫

d2x

(

ψµDµφ+ χ122F12 +
1

4
η[φ, φ] + χ12B12

)

(3.11)

This is nothing more than the gauge fermion used in the continuum twisted SYM model.

Actually we should be a little careful here – to derive the correct fermionic Kähler-Dirac

action we should really introduce two independent Kähler-Dirac fields Ψ and Ψ†. This

necessitates using a gauge fermion of the form

1

2

〈

Ψ†| (dAΦ +QΨ)
〉

+
1

2

〈

(dAΦ +QΨ)† |Ψ
〉

(3.12)

There are two ways to reduce this theory to the usual Yang-Mills model. We have already

seen one simple method – assume we can impose a reality condition on the fields after Q-

variation. This is what we shall do later in the lattice theory. However, in the continuum

there is another way to proceed by requiring that the fields Ψ and Ψ† appearing in the

gauge fermion eqn. 3.12 be replaced by self-dual fields Ψ+ and Ψ†
+ where

Ψ+ = P+Ψ (3.13)

and the projection operator is given by P+ = I+∗
2 . The ∗ symbol denotes a duality operation

(related to the Hodge dual) taking p forms into (D−p) forms. For a p-form A the associated

dual (D − p)-form has components

Aν1...νD−p
= i(−1)

1
2
(D−p)(D−p+1)ǫµ1...µp|ν1...νD−p|Aµ1...µp (3.14)

where the notation |µ1 . . . µp| means only terms with µ1 < µ2 < · · ·µp are included in

the sum. The tensor ǫ is the completely antisymmetric symbol in D dimensions. In the
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matrix language the projection corresponds to right multiplication by the matrix (1+γ5)
2 .

The resulting Kähler-Dirac matrices contain a single non-zero column corresponding to a

single Dirac spinor and the reduction is complete.

The above analysis shows that the usual twisted SYM theory can be elegantly rewritten

in the language of Kähler-Dirac fields. This rewriting of the theory in terms of differential

forms has two primary advantages – it allows us to formulate the theory on a curved space

and also gives a natural starting point for discretization. Indeed it has been shown [23, 25,

24] that any non-gauge theory formulated in such geometrical terms may be discretized on

a hypercubic lattice without inducing fermion doubling by replacing the exterior derivative

d by a forward difference operator D+
µ and its adjoint d† by a backward difference −D−

µ .

Furthermore, in [27], it was shown how to construct covariant versions of these difference

operators for fields taking their values in the adjoint representation of a gauge group. It is

hence natural to try to use Kähler-Dirac fields to formulate lattice supersymmetric actions.

Attempts were made to construct such theories in a Hamiltonian formalism in [28, 29]. A

similar approach was used in [30] to construct a SYM model in Euclidean space using only

some of the component Kähler-Dirac fields. However it is only in the context of twisted

supersymmetry that the full power of the Kähler-Dirac approach can be realized.

4. General prescription for discretization

We list here for reference the essential ingredients in our discretization prescription. Notice

they do not depend on dimension.

• A continuum p-form field fµ1...µp(x) will be mapped to a corresponding lattice p-form

field associated with the p-dimensional hypercube at lattice site x spanned by the

(positively directed) unit vectors {µ1 . . . µp}.

• Such a lattice field will transform under gauge transformations2 in the following way

fµ1...µp(x) → G(x)fµ1...µp(x)G
−1(x+ eµ1...µp) (4.1)

where the vector eµ1...µp =
∑p

j=1 µj.

• To construct gauge invariant quantities we will need to introduce both fµ1...µp and

its hermitian conjugate f †µ1...µp(x). The latter transforms as

f †µ1...µp
(x) → G(x+ eµ1...µp)fµ1...µp(x)G

−1(x) (4.2)

This differing transformation law for the field and its adjoint requires that the com-

ponent fields fa
µ1...µp

be treated as complex. This complexification of the degrees of

freedom can be extended to scalar fields provided they are required to be (anti)self-

conjugate f † = −f . Notice that such a definition departs from the usual notion of

hermitian conjugation but is natural if we want to consider a theory with a complex-

ified gauge invariance.

2we use G
−1 rather than G

† to allow us to consider complexified gauge transformations later – we thank

Joel Giedt for this suggestion
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• For a continuum gauge field we introduce lattice link fields Uµ(x) = eAµ(x) and its

conjugate U †
µ = eA

†
µ(x).

• A covariant forward difference operator can be defined which acts on a field fµ1...µp(x)

as follows

D+
µ fµ1...µp(x) = Uµ(x)fµ1...µp(x+ µ) − fµ1...µp(x)Uµ(x+ eµ1...µp) (4.3)

This operator acts like a lattice exterior derivative with respect to gauge transforma-

tions in mapping a p-form lattice field to a (p+ 1)-form lattice field.

• Similarly we can define an adjoint operator D−
µ whose action on some field fµ1...µp is

given by

D−
µ fµ1...µp(x) = fµ1...µp(x)U

†
µ(x+ eµ1...µp − µ) − U †

µ(x− µ)fµ1...µp(x− µ) (4.4)

• To discretize the continuum theory formulated in geometrical language simply map

all p-form fields to lattice fields as described above and replace all instances of d by

D+ and d† by D−.

• In the final path integral we choose a contour along on which the imaginary part of

the gauge field is zero and such that the action is real, positive definite.

5. Two dimensional lattice N = 2 SYM

We start from an expression for the lattice gauge fermion which is identical to the continuum

one eqn. 3.12
1

2

〈

Ψ†| (DΦ +QΨ)
〉

+
1

2

〈

(DΦ +QΨ)† |Ψ
〉

(5.1)

where, following our discretization prescription, a lattice Kähler-Dirac field is composed of

(complex-valued) p-form fields defined on p-dimensional hypercubes in the lattice

Φ =
(

φ− φ,Uµ, B12

)

Ψ =

(

1

2
η, ψµ, χ12

)

together with the conjugate fields Φ† and Ψ†. The fields possess the gauge transformation

properties listed in the previous section. Thus a site, link and plaquette field transform

under a gauge transformation G(x) = eφ(x) as

f(x) → G(x)f(x)G−1(x)

fµ(x) → G(x)fµ(x)G−1(x+ µ)

fµν(x) → G(x)fµν(x)G−1(x+ µ+ ν)

while their conjugates transform in the complementary way

f †(x) → G(x)f(x)G−1(x)

f †µ(x) → G(x+ µ)fµ(x)G−1(x)

f †µν(x) → G(x+ µ+ ν)fµν(x)G
−1(x)
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While we are free to regard the site fields φ, φ and η as complex-valued the above trans-

formations require them to satisfy an (anti)self-conjugacy condition eg. φ
†

= −φ. Notice

that this requirement is consistent with the promotion of the original gauge invariance to

invariance under the complexified group – the lattice gauge transformation G† = G−1 if

φ† = −φ. It is clear that these transformations reduce to the usual ones for connections

and fields in the adjoint of the gauge group in the naive continuum limit. As usual we

regard the gauge link as the exponential of some matrix Uµ(x) = eAµ(x) where Aµ(x) and

indeed all other lattice fields may be expanded on a basis of (anti-hermitian) traceless

generators of the gauge group f(x) =
∑

a f
a(x)T a. The doubling of degrees of freedom

in the lattice theory is, at first sight, a little puzzling – clearly in the fermionic sector it

is nothing more than the usual statement that the spinors ψ and ψ are to considered as

independent in Euclidean space. However, in a model with twisted supersymmetry this

necessarily seems to imply a corresponding doubling of bosonic states. Another way to un-

derstand this doubling of p-form fields is to recognize that it can be taken to represent the

two possible orientations of the underlying p-dimensional hypercube. The complexification

of the vector potential Aa
µ(x) has the benefit of allowing the fields U(x) and U †(x) to vary

independently under the twisted supersymmetry. In the end we will require the final path

integral be taken along a contour where U †U = I and the imaginary parts of the gauge

field and the fermion fields vanish. This reality condition will allow contact to be made

with the usual twisted continuum theory.

Returning now to the expression for the lattice gauge fermion in Kähler-Dirac language

we define the lattice covariant exterior derivative D acting on Kähler-Dirac fields in terms

of the action of D+
µ on the component fields

DΦ =
(

0,D+
µ

(

φ− φ
)

, 2F12

)

(5.2)

where, from our discretization rules the action of the covariant finite difference operator

D+
µ on a site field f(x) and a link field fµ(x) are given explicitly by

D+
µ f(x) = Uµ(x)f(x+ µ) − f(x)Uµ(x)

D+
µ fν(x) = Uµ(x)fν(x+ µ) − fν(x)Uµ(x+ ν)

The plaquette field F12 is thus given by

F12(x) = D+
1 U2(x) = U1(x)U2(x+ 1) − U2(x)U1(x+ 2) (5.3)

Notice that it is automatically antisymmetric in its indices and reduces to the usual Yang-

Mills field strength in the continuum limit a → 0. Using these rules we can now write

down the form of the lattice gauge fermion in terms of component fields. The result, which

is explicitly gauge invariant and reduces to the continuum expression eqn. 2.1 in the naive

continuum limit, is

SL = βQTr
∑

x

(

1

4
η†(x)[φ(x), φ(x)] + χ

†
12(x)F12(x) + χ12(x)F12(x)

†

+
1

2
χ
†
12(x)B12(x) +

1

2
χ12(x)B

†
12(x) +

1

2
ψ†

µ(x)D+
µ φ(x) +

1

2
ψµ(x)(D+

µ φ(x))†
)

(5.4)
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This expression will also be Q-invariant if we can generalize the continuum twisted super-

symmetry transformations in such a way that we preserve the property Q2 = δ
φ
G. The

following transformations do the job

QUµ = ψµ

Qψµ = D+
µ φ

Qφ = 0

Qχ12 = B12

QB12 = [φ, χ12]
(12)

Qφ = η

Qη = [φ, φ] (5.5)

where the superscript notation indicates a shifted commutator

[φ, χµν ](µν) = φ(x)χµν(x) − χµν(x)φ(x + µ+ ν) (5.6)

These arise naturally when we consider the infinitesimal form of the gauge transformation

property of the plaquette field. Notice that gauge invariance also dictates that we must use

the covariant forward difference operator D+
µ on the right-hand side of the Uµ variation.

The Q-transformations of the conjugate fields are similar

QU †
µ = ψ†

µ

Qψ†
µ = (D+

µ φ)†

Qχ
†
12 = B

†
12

QB
†
12 =

(

[φ, χ12]
(12)
)†

(5.7)

Carrying out the Q-variation leads to the following expression for the lattice action

SL = βTr
∑

x

(

1

4
[φ(x), φ(x)]2 − 1

4
η†(x)[φ(x), η(x)] − χ

†
12(x)[φ(x), χ12(x)]

(12) +B
†
12(x)B12(x)

+ B
†
12(x)F12(x) +B12(x)F12(x)

† +
1

2
(D+

µ φ(x))†D+
µ φ(x) +

1

2
D+

µ φ(x)(D+
µ φ(x))†

− χ
†
12(x)D

+
1 ψ2(x) + χ

†
12(x)D

+
2 ψ1(x)) − ψ

†
2(x)D

−
1 χ12(x) + ψ

†
1(x)D

−
2 χ12(x)

− 1

2
ψ†

µ(x)D+
µ η(x) −

1

2
η†(x)D−

µ ψµ(x) + ψ†
µ(x)[φ(x), ψµ(x)](µ)

)

(5.8)

Notice in this expression the appearance of the covariant backward difference operator D−
µ

whose action on a plaquette field fµν is given explicitly by

D−
µ fµν(x) = fµν(x)U

†
µ(x+ ν) − U †

µ(x− µ)fµν(x− µ) (5.9)

the resulting object transforming as a link field under gauge transformations. Similarly,

following our discretization prescription, the lattice covariant difference operator D−
µ acting

on a link field yields

D−
µ fµ(x) = fµ(x)U †

µ(x) − U †
µ(x− µ)fµ(x− µ) (5.10)
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and transforms as a site field under gauge transformations. Notice that the Q-variation of

F12(x) yields a derivative term on the anticommuting fields completely analogous to that

seen in the continuum. In addition the (link) shifted commutator term ψ
†
µ[φ,ψµ] appears

naturally from the variation of the last terms in the lattice gauge fermion. Finally we must

integrate out the multiplier fields B12 and B†
12 resulting in the term

βTr
∑

x

F12(x)
†F12(x) (5.11)

This can be written

βTr
∑

x

(

2I − UP − U
†
P

)

+ βTr
∑

x

(M12 +M21 − 2I) (5.12)

where

UP = Tr
(

U1(x)U2(x+ 1)U †
1 (x+ 2)U †

2 (x)
)

(5.13)

resembles the usual Wilson plaquette operator and

M12(x) = U1(x)U
†
1 (x)U2(x+ 1)U †

2 (x+ 1) (5.14)

Notice that the second term vanishes when the gauge field is restricted to be unitary which

is equivalent to requiring ImAµ(x) = 0. In this case the action is nothing more than

the usual Wilson gauge action and does not suffer from the vacuum degeneracy problem

inherent in the models constructed in [19].

Having constructed the lattice action we must now discuss the path integral we will

use to define the quantum theory. Initially this path integral will include integrations over

both fields and their conjugates. To make contact with the continuum theory we would

like to integrate along a contour on which the imaginary parts of all fields bar the scalars

vanish (and the scalars are taken to be hermitian conjugates of each other). It is clear that

the Yang-Mills action, the scalar action and the determinant resulting from integration

over the twisted fermions are still gauge invariant when so restricted. Furthermore it

is clear that the resulting action is real and positive definite (at least for small lattice

spacing when the lattice action approaches the continuum action) for such a choice of

contour. The only remaining question relates to the Q-symmetry - specifically do the the

twisted supersymmetric Ward identities still hold when the lattice theory is restricted in

this way ? To see that this is the case remember that the action is Q-exact and hence any

supersymmetric Ward identity can be computed exactly in the limit β → ∞. But in such

a limit I can expand the gauge links to leading order in Aµ and recover the (complexified)

continuum action and Q-transformations. Furthermore, it is known that the continuum

theory can be consistently restricted to the contour we have described [12] and so we infer

that the lattice Ward identities should also be satisfied on this contour.

Returing to the lattice action given in eqn. 5.8 we may rewrite the fermionic pieces in

the form

ΨMΨ (5.15)
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where M the matrix operator can be written in block form

M =

(

−[φ, ](p) K

−K† [φ, ](p)

)

(5.16)

and the kinetic operator K is given by

K =

(

D+
2 −D+

1

−D−
1 −D−

2

)

(5.17)

with the spinors defined as

Ψ =
(

χ
†
12, η

†, ψ
†
1, ψ

†
2

)

Ψ =











χ12

η

ψ1

ψ2











(5.18)

Notice that the form of the kinetic operator K ensures that the lattice theory does not

exhibit spectrum doubling. The absence of doubles is not an accident but, as advertised, is

a consequence of discretizing a purely geometrical action written in terms of Kähler-Dirac

fields. Finally it is not possible at non-zero lattice spacing to cast the theory in terms of

a single Dirac spinor. One easy way to see this is to recall that the components of the

continuum Dirac spinor contain objects like (1
2η + iχ12). In the language of Kähler-Dirac

fields such quantities arise after the self-dual projection. They are problematic on the lattice

since they do not transform simply at finite lattice spacing under gauge transformations.

Thus a reduction to a single Dirac spinor is not possible in the lattice theory. Instead after

integrating out the anticommuting degrees of freedom along the contour ImΨa = 0 we will

be left with a factor

Pf(M) (5.19)

In the continuum limit we know that this Pfaffian is equivalent to a real, positive definite

determinant. Thus from the point of view of simulations it should be possible to replace

the Pfaffian by the expression

Pf(m) = det
1
2M (5.20)

without encountering a sign problem for small enough lattice spacing.

6. Conclusions

In this paper we have derived a lattice action for N = 2 super Yang-Mills theory in two

dimensions. We first show that the continuum form of the action can be written succinctly

in the language of differential forms and Kähler-Dirac fields. This manifestly geometric

starting point allows us to discretize the theory without inducing spectrum doubling and

maintaining both gauge invariance and a single twisted supersymmetry. The lattice theory

naturally contains complex fields – to access the correct continuum limit requires that

an appropriate contour be chosen when evaluating the path integral. We argue that both

– 12 –



gauge invariance and the twisted supersymmetry can be maintained if this contour is chosen

such that the imaginary parts of all component field bar the scalars are taken to vanish.

The scalars φa(x) and φ
a
(x) can be taken to be (minus) the complex conjugate of each

other. The resulting fermion operator can be shown to be positive definite at least for

small enough lattice spacing.

There are several directions for further work. The most obvious is the need for numer-

ical simulations to check some of the conclusions of this work, perhaps most importantly,

the claim that the twisted Ward identities are maintained along the contour required to

define the path integral. It is also possible to generalize these ideas to four dimensions.

The N = 4 theory contains 16 real supercharges which, with an appropriate twist, can be

represented using a four dimensional (real) Kähler-Dirac field. Furthermore, it is possi-

ble to embed the bosonic degrees of freedom of this theory in another real Kähler-Dirac

field with commuting components just as for the two dimensional theory. Derivation of

the appropriate gauge fermion and corresponding twisted supersymmetry will be presented

elsewhere [31]. Such a formulation should allow for discretization using the prescription

described here. Secondly, the geometric nature of these theories should allow them to be

formulated on arbitrary simplicial lattices [32, 33]. This would allow study of twisted super

Yang-Mills theories on curved spaces. Summing over such simplicial lattices may provide

a connection to (lattice regulated) supergravity theories.
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