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Abstract: We construct a lattice action for N = 4 super Yang-Mills theory in four

dimensions which is local, gauge invariant, free of spectrum doubling and possesses a single

exact supersymmetry. Our construction starts from the observation that the fermions of the

continuum theory can be mapped into the component fields of a single real anticommuting

Kähler-Dirac field. The original supersymmetry algebra then implies the existence of a

nilpotent scalar supercharge Q and a corresponding set of bosonic superpartners. Using

this field content we write down a Q-exact action and show that, with an appropriate

change of variables, it reduces to a well-known twist of N = 4 super Yang-Mills theory

due to Marcus. Using the discretization prescription developed earlier [1] we are able to

translate this geometrical action to the lattice.
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1. Introduction

Attempts to formulate lattice supersymmetric theories have a long history (see [2] and the

recent reviews by Feo and Kaplan [3, 4]). Recently there has been renewed interest in this

problem stemming from the realization that in certain classes of theory it may be possible

to preserve at least some of the supersymmetry exactly at finite lattice spacing. It is hoped

that this residual supersymmetry may protect the lattice theory from dangerous SUSY-

violating radiative corrections. In the case of extended supersymmetry two approaches

have been followed1; in the first the lattice theory is constructed by orbifolding a certain

supersymmetric matrix model [5, 6]. The second approach relies on reformulating the

supersymmetric theory in terms of a new set of variables – the twisted fields. In this

procedure a scalar nilpotent supercharge is exposed and it is the algebra of this charge

that one may hope to preserve under discretization [9]. This approach was initially used

to construct lattice formulations of a variety of low dimensional theories without gauge

symmetry [10, 11, 12]. A possible generalization to lattice gauge theories was given by

Sugino [13]. However, Sugino’s models in four dimensions suffer from the presence of

additional states which do not appear to decouple in the limit of vanishing lattice spacing.

In this paper we introduce a new discretization of the N = 4 twisted Yang-Mills

action which is a generalization of the procedure used earlier to construct a lattice theory

of N = 2 super Yang-Mills theory in two dimensions [1]. The approach emphasizes the

geometrical character of the twisted theory – the twist of N = 4 that we consider contains

1For examples of N = 1 models with exact SUSY see the recent work [7] and [8]
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only integer spin fields and the fermion content is naturally embedded in a (real) Kähler-

Dirac field. The connection between twisting and the Kähler-Dirac fermion mechanism has

been emphasized in recent papers by Kawamoto et al.[14]. The idea of using Kähler-Dirac

fermions in order to formulate lattice supersymmetry was first proposed in [15]. In this

way a scalar supercharge Q is produced and the bosonic field content of the model may be

embedded in another Kähler-Dirac field. Using this field content we write down a Q-exact

geometrical action which, after a simple change of variables, we show is nothing more but

a well-known twist of N = 4 super Yang-Mills. We further show explicitly how to recover

the conventional formulation involving spinor fields from the twisted action showing the

complete equivalence of the twisted and untwisted theories.2

Finally, using a discretization prescription developed earlier, we are able to translate

this geometrical theory to a hypercubic lattice while preserving gauge invariance and the

twisted supersymmetry and without inducing any spurious zeroes in the spectrum of the

lattice fermion operator. The price we pay for this is that the lattice theory requires a

complexification of the degrees of freedom. We conjecture that we can restrict the path

integrals needed to define the Euclidean theory to the real line while preserving the Ward

identities associated to the Q-symmetry.

2. Twisting and Kähler-Dirac fields

Consider the field content of N = 4 super Yang-Mills. It can be written in terms of 4

Majorana spinors Ψi
α where the index α labels the spinor degrees of freedom and the index

i = 1 . . . 4 and is associated with an SO(4)R R-symmetry of the fermionic action. The

twisting procedure consists of constructing a new rotation group which is the diagonal

subgroup of the original Euclidean rotation group SO(4) and this R-symmetry [14, 16, 17,

15].

SO(4)′ = diag (SO(4) × SO(4)R) (2.1)

This implies that the two indices (α, i) should be taken as equivalent and the fermion field

is to be regarded as a matrix Ψi
α → Ψβα. It is then natural to expand this matrix on a

basis of products of γ-matrices

Ψ = ηI + ψµγµ +
1

2!
χµνγµγν +

1

3!
θµνλγµγνγλ +

1

4!
κµνλργµγνγλγρ (2.2)

The coefficients η, ψµ etc are the twisted fields and clearly correspond to grassman valued

tensors antisymmetric under the exchange of any two indices. There are exactly 16 in-

dependent fields in this decomposition and thus it is natural to take all these tensors (or

p-forms) as real to match the 16 real supercharges of the original theory.

We can then assemble the component fields into a single so-called Kähler-Dirac field

Ψ = (η, ψµ, χµν , θµνλ, κµνλρ) It is then straightforward to show that solutions of the Dirac

equation for four degenerate fermions (corresponding to the four columns of the matrix Ψ)

2In this paper we only consider theories in flat spacetime and there is thus no distinction between upper

and lower indices for tensors
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can be gotten by solving the Kähler-Dirac equation [18, 19, 20, 21]

(

d− d†
)

Ψ = 0 (2.3)

where the action of the exterior derivative operator d on a p-form α yields a (p + 1)-form

β whose components are given by

βµ1...µp+1
= ∂[µp+1

αµ1...µp] (2.4)

and the square bracket notation for the subscripts indicates an antisymmetrization with

respect to all pairs of indices. The dot product of two such p-forms is defined by

< α.β >=

∫

dV
1

p!
αµ1...µpβµ1...µp (2.5)

With respect to this dot product we can then define the adjoint operator −d† whose action

on a p-form α yields a (p− 1)-form β with components

βµ2...µp = ∂µ1
αµ1...µp (2.6)

These results also hold when the usual derivative is replaced by a gauge covariant derivative

and all fields take values in the adjoint representation of some U(N) gauge group. It is also

straightforward to verify that the Kähler-Dirac equation can be obtained from a Kähler-

Dirac action of the form

SKD =< Ψ†.
(

d− d†
)

Ψ > (2.7)

or equivalently in matrix language

SKD =
1

2
TrΨ†γ.DΨ (2.8)

This representation of fermions in terms of p-forms is very natural from the lattice

perspective as the latter may be associated with lattice p-cochains – functions defined on

p-dimensional simplices in the lattice. Lattice analogs of the exterior derivative and its

adjoint exist and allow us to discretize continuum actions formulated in geometric terms in

a well-defined way. One of the most important consequences of such discretizations is that

they prohibit spectrum doubling – the appearance of spurious zeroes of the fermion operator

associated with lattice modes which do not appear in the continuum theory [19, 20, 21].

Notice that this twisting procedure will yield a scalar supercharge Q which implies that

the twisted theory will also contain a set of corresponding commuting p-form fields Φ =
(

φ,Aµ, Bµν ,Wµνλ, Cµνλρ

)

. The fields Bµν and Cµνλρ will turn out to be multiplier fields

which are integrated out of the final theory, leaving the bosonic fields to be represented by

the gauge field Aµ, the scalar φ, another scalar gauge parameter φ and the four independent

degrees of freedom carried by Wµνλ. It is clear that in the twisting process the original 6

scalar fields have decomposed into a 4 + 1 + 1 of SO(4)′. The appropriate action of Q on
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these fields is a simple generalization of the two dimensional N = 2 case3

Qφ = η Qη = [φ, φ]

QAµ = ψµ Qψµ = −Dµφ

QBµν = [φ, χµν ] Qχµν = Bµν

QWµνλ = θµνλ Qθµνλ = [φ,Wµνλ]

QCµνλρ = [φ, κµνλρ] Qκµνλρ = Cµνλρ

Qφ = 0 (2.9)

Notice that, as expected from the twisted superalgebra [17], this charge is nilpotent up to

a gauge transformation parametrized by the additional scalar field φ – Q2 = δφ
G. Since the

entire field content of this twisted model is given in terms of p-form fields it will be natural

that only the exterior derivative and its adjoint may appear in the action of the twisted

theory. This will guide us in the construction of the appropriate action.

3. Continuum Action

3.1 Geometric Formulation

We will hypothesize that the action can be written in a Q-exact form as for the two

dimensional N = 2 theory. Thus S = βQΛ where β is a coupling and Λ(Ψ,Φ) will be

termed a gauge fermion in agreement with the usual BRST terminology. All fields should

be regarded as expanded on a basis of antihermitian generators of U(N). We choose Λ to

be of the form

Λ =

∫

d4xTr

[

χµν

(

Fµν +
1

2
Bµν − 1

2
[Wµλρ,Wνλρ] +DλWλµν

)

+ ψµDµφ+
1

4
η[φ, φ] +

1

3!
θµνλ[Wµνλ, φ]

+
1

4!
κµνλρ

(√
2D[µWνλρ] +

1

2
Cµνλρ

)]

(3.1)

Several of these terms are in common with the gauge fermion of N = 2 super Yang-Mills

theory in two dimensions. The new ones involve the 3 and 4-form fields. Of these the

terms involving derivatives must be present to generate the correct Kähler-Dirac action for

the twisted fermions (and will simultaneously generate the appropriate kinetic terms for

the W-field). The commutator term involving Wµνλ coupled to χµν will generate a quartic

potential for the W-field analogous to that generated for the scalars φ and φ. This will

allow contact to be made eventually with the supersymmetric theory where one expects the

scalars and W-field to play similar roles. In the same way the commutator term involving

φ and W will also generate the necessary mixed quartic couplings between the scalars and

the W-field. Carrying out the Q-variation leads to the following action

S = β (SB + SF + SY ) (3.2)
3Notice the minus sign which appears in the Q-variation of ψµ which was missing in our earlier paper

[1] – many thanks to Mithat Unsal for pointing out this error
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where the piece of the action SB involving the bosonic fields takes the form

SB =

∫

d4xTr

[

Bµν

(

Fµν − 1

2
[Wµλρ,Wνλρ] +DλWλµν +

1

2
Bµν

)

− DµφDµφ+
1

4
[φ, φ]2 − 1

3!
[φ,Wµνλ][φ,Wµνλ]

+
1

4!
Cµνλρ

(√
2D[µWνλρ] +

1

2
Cµνλρ

)]

(3.3)

and the fermion kinetic terms are given by SF with

SF =

∫

d4xTr

[

−χµνD[µψν] − χµνDλθλµν − ηDµψµ −
√

2

4!
κµνλρD[µ θνλρ]

]

(3.4)

and SY contains the Yukawa couplings

SY =

∫

d4xTr

[

−1

4
η[φ, η] − 1

2

1

4!
κµνλρ[φ, κµνλρ] −

1

2
χµν [φ, χµν ]

+ ψµ[φ,ψµ] +
1

3!
θµνλ[φ, θµνλ]

+
1

3!
η[θµνλ,Wµνλ] −

√
2

4!
κµνλρ[ψ[µ ,Wνλρ]]

+ χµν [θµλρ,Wνλρ] − χµν [ψλ,Wλµν ]] (3.5)

Integrating over the multiplier fields Bµν and Cµνλρ and subsequently utilizing the Bianchi

identity leads to a new bosonic action of the form

SB =

∫

d4xTr

[

−1

2

(

(

Fµν − 1

2
[Wµλρ,Wνλρ]

)2

+ (DλWλµν)2 +
2

4!

(

D[µWνλρ]

)2

)

− DµφDµφ+
1

4
[φ, φ]2 − 1

3!
[φ,Wµνλ][φ,Wµνλ]

]

(3.6)

3.2 Relation to the Marcus twist of N = 4 SYM

At this point it is useful to trade the W , θ, and κ fields for new variables which will allow

contact to be made between this theory and one of the conventional twists of N = 4 super

Yang-Mills. We write

Wµνλ = ǫµνλρVρ

θµνλ = ǫµνλρψρ

κµνλρ = ǫµνλρη (3.7)

In terms of these variables the bosonic action reads

SB =

∫

d4xTr

[

−1

2

(

(Fµν − [Vµ, Vν ])2 +
(

D[µVν]

)2
+ 2 (DµVµ)2

)

− DµφDµφ+
1

4
[φ, φ]2 − [φ, Vµ][φ, Vµ]

]

(3.8)
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A further integration by parts yields a cancellation between the terms linear in Fµν and

the final bosonic action becomes

SB =

∫

d4xTr

[

−1

2
F 2

µν − 1

2
[Vµ, Vν ]

2 − (DµVν)2

− DµφDµφ+
1

4
[φ, φ]2 − [φ, Vµ][φ, Vµ]

]

(3.9)

Making the additional rescalings χ → 2χ and η → 1√
2
η we find the fermion kinetic term

takes the form

SF =

∫

d4xTr

[

−2χµνD[µψν] − 2χ∗
µνD[µψ ν] − 2

η

2
Dµψµ − 2

η

2
Dµψµ

]

(3.10)

where χ∗
µν = 1

2ǫµνλρχλρ is the dual field. In these variables the Yukawa’s take on the more

symmetrical form

SY =

∫

d4xTr

[

−η
2
[φ,

η

2
] − η

2
[φ,

η

2
] − 2χµν [φ, χµν ]

+ ψµ[φ,ψµ] + ψµ[φ,ψµ]

+ 2
η

2
[ψµ, Vµ] − 2

η

2
[ψµ, Vµ]

+ 4 χµν [ψµ, Vν ] − 4χ∗
µν [ψµ, Vν ]

]

(3.11)

The new action can be recognized as the twist of N = 4 super Yang-Mills due to Marcus

[22]. This is made explicit by the further change of variables

ηM =
1

2
(η − iη)

ψM =
1

2

(

ψ − iψ
)

χM = 2 (χ− iχ∗)

BM =
1

2
φ

CM = φ (3.12)

Notice that this twist of N = 4 super Yang-Mills was also analyzed in [23] although in

that paper two scalar supercharges were constructed which transformed into other under

a duality operation. We will see later that such duality operations are incompatible with

our latticization prescription and only the single supercharge corresponding to the trans-

formations in equation 2.9 can be adapted to the lattice. It is interesting that this twist of

N = 4 can also be interpreted as a deformation of four dimensional super BF-theory [24].

3.3 Connection to conventional formulation of N = 4 SYM

Finally we will show how this twisted model may be reinterpreted in terms of the usual

formulation of N = 4 super Yang-Mills theory. First, concentrate on the bosonic action

– 6 –



and introduce the new fields (φ = φ1 + iφ2)

Xµ = Vµ µ = 0 . . . 3

X4 = φ1

X5 = φ2 (3.13)

Then the bosonic action may be trivially rewritten as

SB = −1

2
F 2

µν −
(

DµX
i
)2 − 1

2

∑

ij

[Xi,Xj ]
2 (3.14)

Notice this is real, positive semidefinite on account of the antihermitian basis for the fields.

It is also precisely the bosonic sector of the N = 4 super Yang-Mills action with Xi the

usual 6 real scalars of that theory.

Next let us turn our attention to the fermion kinetic term. From our previous discussion

it should be clear that the twisted fermion kinetic term is nothing more than the component

expansion of a Kähler-Dirac action:

SF =
1

2
TrΨ†γ.DΨ (3.15)

where Ψ is the Kähler-Dirac field defined earlier with η → η/2, θµνλ → ǫµνλρψρ and

κµνλρ → ǫµνλρη/2. Naively such an action appears to describe a theory with four Dirac

spinor fields - rather than the two one would have expected for N = 4 super Yang-Mills.

However it is evident that Ψ obeys a reality condition if its associated Kähler-Dirac field

is real. This reduces the action to that of two degenerate Dirac fermions. To see this in

detail let us adopt a Euclidean chiral basis for the γ-matrices

γ0 =

(

0 I

I 0

)

γi =

(

0 −iσi

iσi 0

)

(3.16)

It is straightforward to see that the γ matrices (and any products of them) obey a reality

condition

γ∗µ = CγµC
−1 (3.17)

where the matrix C is given by

C =

(

σ2 0

0 σ2

)

(3.18)

With real p-form coefficients this implies a reality condition on Ψ itself

Ψ∗ = CΨC−1 (3.19)

This in turn implies that Ψ† = CΨTC−1 which makes it clear that the result of integrating

over the Kähler-Dirac field Ψ should be the Pfaffian of the Kähler-Dirac operator (let

us neglect the Yukawa couplings for the moment). This, in turn, will correspond to the

product of two Dirac determinants.
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To see this in more detail one can use the reality condition to show that successive

columns Ψ(n) of Ψ are not independent but are charge conjugates of each other

Ψ(2) = C
(

Ψ(1)
)∗

Ψ(4) = C
(

Ψ(3)
)∗

(3.20)

These conditions allow us to rewrite the twisted fermion kinetic term in the conventional

form
1

2

∑

α=1,2

λ†αγ.Dλα (3.21)

where the spinors are read off as the first and third columns of the Ψ matrix in this chiral

basis:

λ1 =











η
2 − η

2 + 2iχ+
03

−2χ+
02 + 2iχ+

01
(

ψ0 + ψ0

)

+ i
(

ψ3 + ψ3

)

−
(

ψ2 + ψ2

)

+ i
(

ψ1 + ψ1

)











λ2 =











(

ψ0 − ψ0

)

+ i
(

−ψ3 + ψ3

)

(

ψ2 − ψ2

)

+ i
(

ψ1 − ψ1

)

η
2 + η

2 − 2iχ−
03

2χ−
02 − 2iχ−

01











(3.22)

Here, χ± = 1
2 (χ± χ∗) are the usual self-dual and antiself-dual parts of the field. The

Yukawa’s can also be put in the general form

1

2

∑

α=1,2

λ†αC
α
i Γi[Xi, λα] (3.23)

where Γi = {I, γ5, γµγ5, µ = 0 . . . 4} and the coefficients Cα
i are just numbers. This is just

the structure expected of N = 4 super Yang-Mills. Notice that both Dirac operators Mα

including the Yukawa interactions possess the symmetry

(Dα)∗ = CDαC−1 (3.24)

which shows that their eigenvalves come in complex conjugate pairs and hence the associ-

ated determinants are positive definite.

Up to this point we have shown that the original Q-exact action written in terms of the

component tensors of Kähler-Dirac fields 3.1 may be rewritten in terms of a conventional

twisted action which may in turn be used to reconstruct exactly the usual formulations

of N = 4 super Yang-Mills theory. All this has been in the continuum. The recasting

of the theory in terms of these geometrical fields is crucially important when devising a

transcription to the lattice which preserves as much as possible of the continuum symmetry.

We turn to this now.

4. Lattice Action

4.1 Geometric Formulation

The lattice action is obtained by discretization of the Q-exact action given in eqn. 3.1. The

prescription we employ was introduced in our earlier paper on N = 2 super Yang-Mills in

two dimensions and draws on the work in [25, 26]. It is summarized below
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• A continuum p-form field fµ1...µp(x) will be mapped to a corresponding lattice field

associated with the p-dimensional hypercube at lattice site x spanned by the (posi-

tively directed) unit vectors {µ1 . . . µp}.

• Such a lattice field is taken to transform under gauge transformations in the following

way

fµ1...µp(x) → G(x)fµ1...µp(x)G
−1(x+ eµ1...µp) (4.1)

where the vector eµ1...µp =
∑p

j=1 µj.

• To construct gauge invariant quantities we will need to introduce both fµ1...µp and

its hermitian conjugate f †µ1...µp(x). The latter transforms as

f †µ1...µp
(x) → G(x+ eµ1...µp)fµ1...µp(x)G

−1(x) (4.2)

Since for all fields bar the gauge field we will assume fµ1...µp =
∑

a f
a
µ1...µp

T a where

T a are antihermitian generators of U(N), this necessitates taking the fields fa
µ1...µp

to be complex.

• For a continuum gauge field we introduce lattice link fields Uµ(x) = eAµ(x) = eA
a
µ(x)T a

with Aa
µ(x) complex together with its conjugate U †

µ = eA
†
µ(x).

• A covariant forward difference operator can be defined which acts on a field fµ1...µp(x)

as follows

D+
µ fµ1...µp(x) = Uµ(x)fµ1...µp(x+ µ) − fµ1...µp(x)Uµ(x+ eµ1...µp) (4.3)

This operator acts like a lattice exterior derivative with respect to gauge transforma-

tions in mapping a p-form lattice field to a (p+ 1)-form lattice field.

• Similarly we can define an adjoint operator D−
µ whose action on some field fµ1...µp is

given by

D−
µ fµ1...µp(x) = fµ1...µp(x)U

†
µ(x+ eµ1...µp − µ) − U †

µ(x− µ)fµ1...µp(x− µ) (4.4)

It thus acts like the adjoint of the exterior derivative.

• Following [19] all instances of ∂µ in the continuum action will be replaced by D+
µ if

the derivative acts like d (curl-like operation) and D−
µ if the derivative acts like d†

(divergence-like operation). One can show using results from homology theory [19]

that this guarantees that the lattice theory will exhibit no spectrum doubling.

Notice that each p-hypercube (for p > 0) possesses two orientations and this gives one

natural explanation of the doubling of degrees of freedom exhibited by the lattice theory4.

The need for this doubling can be easily seen at an operational level – with the lattice

gauge transformation rules we have given the lattice operator
∫

d4xAµ1...µd
Bµ1...µd

(4.5)

4Another possible interpretation relates to the existence of both lattice and dual lattice
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is not gauge invariant (and if used in the gauge fermion will also lead to a violation of Q-

invariance). However, there is a natural way to construct a gauge invariant lattice operator
∫

d4xA†
µ1...µd

Bµ1...µd
(4.6)

However, the differing gauge transformations of A†
µ1...µd

and Aµ1...µd
then require that the

component fields Aa
µ1...µd

be taken as complex. Clearly this prescription must be used

consistently for all fields and necessitates treating the gauge links as non-unitary matrices.

This rule naturally leads to a gauge action of the form F †
µνFµν which, we will see later,

reduces to the usual Wilson action in the unitary limit – a feature which would not have

occurred with the lattice operator FµνFµν .

Notice that our gauge transformation rules allow for a complex gauge transformation

parameter φ(x). This is natural in such a complexified theory. Compatibility with the

dagger operation requires that φ† = −φ which should be true for all scalar fields. While

the symmetries are most easily implemented in the complexified theory we will argue that

the final path integral can be restricted to the real line without violating either gauge

invariance or the twisted supersymmetry.

Using these ingredients we can easily transfer the continuum gauge fermion in eqn. 3.1

to the lattice obtaining

Λ =
1

2

∑

x

Tr

[

−χ†
µν

(

Fµν +
1

2
Bµν − 1

2
[Wµλρ,Wνλρ]

′ +D−
λ Wλµν

)

− ψ†
µD

+
µ φ− 1

4
η†[φ, φ] − 1

3!
θ†µνλ[Wµνλ, φ]

− 1

4!
κ†µνλρ

(√
2D+

[µWνλρ] +
1

2
Cµνλρ

)

+ h.c

]

(4.7)

Notice that it is necessary to add the hermitian conjugates of these terms to the gauge

fermion to obtain a real lattice action. The extra minus signs just reflect the antihermitian

nature of our basis matrices T a. Unlike the continuum theory we are no longer at liberty

to transform 3-form and 4-form fields to their duals since this would break lattice gauge

invariance. The lattice field strength Fµν is obtained from the simple relation

Fµν(x) = D+
µ Uν(x) (4.8)

Notice that it automatically antisymmetric in its indices and reduces to the usual Yang-

Mills field strength in the naive continuum limit. The prime on the commutator of two

W -fields indicates that this term must be modified in the lattice theory in order to main-

tain gauge invariance. The following definition of the commutator yields a term which

transforms as a lattice 2-form

{Wµλρ(x)Wνλρ(x+ µ+ λ+ ρ) −Wνλρ(x)Wµλρ(x+ ν + λ+ ρ)}P (x+ µ+ ν;λ, ρ) (4.9)

where the ordered link path P (x+ µ+ ν;λ, ρ) is necessary to ensure that the gauge trans-

formation properties of the commutator do not depend on the indices λ and ρ.

P (x;λ, ρ) = U †
λ(x+ λ+ 2ρ)U †

λ(x+ 2ρ)U †
ρ(x+ ρ)U †

ρ(x) (4.10)
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To enforce lattice rotational symmetry one can replace P (x;λ, ρ) by a symmetrized average

over all lattice paths leading from (x+ 2λ+ 2ρ) to x. Notice that this lattice commutator

term reduces to the continuum commutator in the naive continuum limit in which the

gauge links are set to unity. Actually there is one further wrinkle to comment on. The

commutator term involving W and φ must also be modified from its naive continuum

form to maintain gauge invariance. Since this same procedure must be used in the lattice

Q-transformations we list the general rule for the commutator of a scalar field with an

arbitrary lattice p-form

[φ, fµ1...µp ] = φ(x)fµ1...µp(x) − fµ1...µp(x)φ(x+ eµ1...µp) (4.11)

The Q-transformations listed in eqn. 2.9 can now be taken over almost trivially to the

lattice. They take the form

Qφ = η Qη = [φ, φ]

QUµ = ψµ Qψµ = −D+
µ φ

QBµν = [φ, χµν ] Qχµν = Bµν

QWµνλ = θµνλ Qθµνλ = [φ,Wµνλ]

QCµνλρ = [φ, κµνλρ] Qκµνλρ = Cµνλρ

Qφ = 0 (4.12)

where gauge invariance dictates the use of a forward difference in the variation of ψµ and

the commutators are to be point split in the way described above so that they can be

interpreted as infinitessimal gauge transformations on lattice p-form fields. For example,

[φ, χµν ] → φ(x)χµν(x) − χµν(x)φ(x+ µ+ ν) (4.13)

The Q-transformations of the daggered fields can be found by taking the hermitian con-

jugate of these transformations together with the requirement that scalar fields transform

into (minus) themselves under the dagger operation.

Carrying out the Q-variation and subsequently integrating out the multiplier fields as

for the continuum case leads to the following components of the lattice action

SB =
1

2

∑

x

Tr

[

(

Fµν − 1

2
[Wµλρ,Wνλρ]

′ +D−
λ Wλµν

)(

Fµν − 1

2
[Wµλρ,Wνλρ]

′ +D−
λ Wλµν

)†

+
2

4!

(

D+
[µWνλρ]

)(

D+
[µWνλρ]

)†
+
(

D+
µ φ
)† (

D+
µ φ
)

+
1

4
[φ, φ]2

− 1

3!
[φ,W †

µνλ][Wµνλ, φ] + h.c

]

(4.14)

Notice that the terms listed above are positive semidefinite along the contour φ = −φ†
corresponding to choosing φ

a
(x) = (φa(x))∗. Notice also that the lattice Yang-Mills action

F †
µνFµν takes the form

Tr
∑

x

∑

µ<ν

(

2I − UP
µν − (UP

µν)†
)

+ Tr
∑

x

∑

µ<ν

(Mµν +Mνµ − 2I) (4.15)
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where

UP
µν = Tr

(

Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x)
)

(4.16)

is the usual Wilson plaquette operator and

Mµν(x) = Uµ(x)U †
µ(x)Uν(x+ µ)U †

ν (x+ µ) (4.17)

Notice that the latter term vanishes if we restrict the gauge links to be unitary. Turning

now to the fermion kinetic term we find

SF =
∑

x

Tr

[

1

2!
χ†

µνD
+
[µψν] + ψ†

νD
−
µ χµν +

1

2!
χ†

µνD
−
λ θλµν +

1

3!
θ†µνλD

+
[µχνλ]

+ ψ†
µD

+
µ

η

2
+
η†

2
D−

µ ψµ +
1

4!

κµνλρ

2
D+

[µ
θνλρ] +

1

3!
θ†µνλD

−
µ

κµνλρ

2

]

(4.18)

In this expression we have rescaled κµνλρ → 1√
2
κµνλρ as in the continuum. The Yukawa

couplings follow in a similar manner

SY =
1

2

∑

x

Tr

[

η†

2
[φ,

η

2
] +

1

4!

κ†µνλρ

2
[φ,

κµνλρ

2
] +

1

2
χ†

µν [φ, χµν ]

− ψ†
µ[φ,ψµ] − 1

3!
θ†µνλ[φ, θµνλ]

+ 2
1

3!
θ†µνλ[Wµνλ,

η

2
] + 2

1

4!

κ†µνλρ

2
[ψ[µ ,Wνλρ]]

− 1

2
χ†

µν [θλρ[µ ,Wν]λρ]
′ + χ†

µν [ψ
†
λ,Wλµν ] + h.c

]

(4.19)

The commutator term involving ψµ and Wνλρ is easily found to take the gauge covariant

and point split form

(

ψ[µ (x)Wνλρ](x+ µ) −W[νλρ (x)ψµ](x+ ν + λ+ ρ)
)

(4.20)

Similarly that involving ψ†
λ and Wλµν is found to be

(

Wλµν(x)ψ†
λ(x+ µ+ ν) − ψ†

λ(x− λ)Wλµν(x− λ)
)

(4.21)

There is one further term which arises from the Q-variation of the P (x;λ, ρ) factor in

the primed commutator. This yields

−1

2
χ†

µν [Wµλρ,Wνλρ]Q (P (x+ µ+ ν;λρ)) (4.22)

This operator will vanish in the naive continuum limit as expected.

Consider now the twisted lattice fermion action SF + SY . In the continuum this can

be recast in terms of a single Kähler-Dirac field Ψ.

SF+Y = Ψ†M(U, φ, V )Ψ (4.23)
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On the lattice, it is convenient, although not essential to to rewrite it in terms of a single

complex Kähler-Dirac field Ψ. However the following Yukawa coupling is problematic in

this respect as it involves a Ψ†Ψ† coupling

χ†
µν(x)[ψ†

λ(x),Wλµν(x)] (4.24)

Such a term could be accommodated in the lattice theory by doubling the number of

fermion fields (and taking an appropriate further square root of the fermion determinant

when calculating the effective bosonic action). Such an approach has the merit of preserving

the Q-symmetry exactly. Alternatively, one can get around this problem by replacing this

term with the another similar one

χ†
µν [U †

λ(x)ψλ(x)U †
λ(x),Wλµν(x)] (4.25)

This modification of the lattice theory corresponds to a soft breaking of the twisted SUSY

and as such should not lead to dangerous SUSY violating corrections. The additional soft

breaking terms would then vanish in the continuum limit. Notice that a Q-violating gluino

mass term is likely to be necessary to control any numerical algorithm used to simulate

this theory and such a term will look rather like the modified Yukawa we discuss here.

However, further work will be needed to completely clarify this issue, in particular, how

the presence of such a soft breaking term effects the other twisted supersymmetries.

Finally, using this latter prescription leads, after integration over the complex twisted

fermions, to a factor of detM(U, φ, V ) in the effective action for the bosonic fields.

4.2 Continuum Limit

We have formulated the lattice theory in terms of a set of complex fields since in this

way we can preserve both gauge invariance and the twisted supersymmetry. However

to target N = 4 super Yang-Mills we would like to restrict the path integrals defining

correlation functions to the real line (actually, in the case of the scalars we need to impose

the condition φ = −φ†). The first point to note is that the on-shell bosonic action SB

is still gauge invariant if the imaginary parts of Wµνλ, Uµ are set to zero. Furthermore,

as in the continuum theory, we will assume that the correct weight for the lattice twisted

fermions after projection to the real line is just the Pfaffian of the full Kähler-Dirac operator

(including the Yukawas). The latter can be replaced by det
1
2M(U, φ, V ) which is then

also gauge invariant. Finally, it should be clear that the lattice action we have proposed

reduces in the naive continuum limit to the usual super Yang-Mills form along the real

line. So the remaining question is whether the Ward identities corresponding to the twisted

supersymmetry Q continue to hold along this contour. We have no proof of this statement

but can make the following plausibility argument.

The lattice action is Q-exact which implies that any Q-invariant observable can be

computed in the limit β → ∞. This limit corresponds to the naive continuum limit in

which the gauge links are expanded to first order in the complex gauge field Cµ = Aµ + iBµ

and lattice expressions can be identified with their continuum counterparts. Consider the

– 13 –



(complexified) Yang-Mills field strength that arises in such a limit

β
[

(Fµν(A) − [Bµ, Bν ])2 +
(

D[µBν]

)2
]

(4.26)

As β → ∞ it is clear that the path integral is saturated by fields with Bµ = 0 and

Fµν = 0. Thus it should be possible to compute any Q-invariant observable on the subspace

corresponding to Bµ = 0. The Ward identities are generated by picking a trivial Q-invariant

observable, namely QO(Ψ,Φ). We can thus conjecture that these Ward identities will hold

on the real line at finite lattice spacing. This conjecture should be checked by perturbative

calculations and numerical simulation.

5. Conclusions

In this paper we propose a discretization of the N = 4 twisted Yang-Mills action in four

dimensions which is a generalization of the procedure used earlier to construct a lattice

theory of N = 2 super Yang-Mills theory in two dimensions [1]. The approach emphasizes

the geometrical character of the twisted theory – the twist of N = 4 that we consider

contains only integer spin fields and the fermion content is naturally embedded in a (real)

Kähler-Dirac field with anticommuting components. This decomposition of the fermions

also implies the existence of a scalar supercharge Q which is nilpotent up to gauge trans-

formations. The superpartners of the fermions are now contained in another Kähler-Dirac

field. We write down a simple set of transformation rules for the fields under this super-

charge. A Q-exact action is derived and shown to reduce to a well-known twisting of N = 4

super Yang-Mills after a suitable change of variables. For completeness we also show how

the original spinor formulation of the theory can be recovered from this twisted model.

This manifestly geometric starting point allows us to discretize the theory without

inducing spectrum doubling and maintaining both gauge invariance and a single twisted

supersymmetry. The lattice theory naturally contains complex fields – to access the correct

continuum limit requires that an appropriate contour be chosen when evaluating the path

integral. We argue that both gauge invariance and the twisted supersymmetry can be

maintained if this contour is chosen such that the imaginary parts of all component fields

bar the scalars are taken to vanish. The scalars φa(x) and φ
a
(x) are taken to be complex

conjugates of each other. The resulting effective action is real, positive semidefinite at least

for small enough lattice spacing.

There are several directions for further work. The most obvious is the need for both

perturbative and numerical checks on the twisted supersymmetric Ward identities corre-

sponding to Q. If the results of those are positive it will be necessary to derive and examine

the Ward identities following from additional elements of the twisted superalgebra. In gen-

eral we would expect that these latter Ward identities would be broken at finite lattice

spacing. The hope is that the presence of a single exact supersymmetry will, however,

largely prohibit the theory from developing relevant operators breaking these additional

supersymmetries. In this context it will be crucial to pursue further studies, both analytical

and numerical, directed at allowing us to understand what, if any, additional fine tuning

is needed to reach the full N = 4 theory in the continuum limit.
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