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I. Introduction 

A. Autistic Spectrum Disorder 
Autistic spectrum disorder (ASD) is a term referring to the five 

pervasive developmental disorders (PDD) characterized by symptoms in three 

domains: 1) impairments in social interaction, 2) impairments in verbal and 

non-verbal communication, and 3) repetitive behaviors or interests (American 

Psychiatric Association, 2000). These developmental disorders are defined by 

the presence of behavioral symptoms. Diagnostic criteria are defined by the 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text 

Revision (DSM IV-TR). The assignment of one of the five subtypes of ASD is 

based upon number and distribution of symptoms among the three main 

domains, as well as age of onset. These five disorders include autistic disorder 

(classic autism), Asperger syndrome, Rett syndrome, child disintegrative 

disorder (CDD) and pervasive developmental disorder not otherwise specified 

(PDD-NOS) (Muhle, et al., 2004). 

The most severe form of ASD is autistic disorder, also known as classic 

autism. This is often the main focus of ASD research.  The diagnostic criteria 

for classic autism as defined by the DSM IV-TR are as follows:  

Patients who qualify as autistic must have at least six of the following 

criteria, with at least two in the first main category at least one in each 

remaining category:  
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I. Qualitative impairment in social interaction manifested by at least two 

of the following:   

1) Impairment in nonverbal behaviors such as facial expressions, gestures and 

eye contact.  

2) Failure to develop peer relationships appropriate for their age.  

3) A lack of seeking to share his/her enjoyments, interests, or achievements 

with others.    

4) Lack of social or emotional reciprocity, including difficulty interpreting or 

understanding the emotions of others.  

II. Qualitative impairments in communication manifested by at least one 

of the following 

5) A delay in, or total lack of, the development of spoken language, without a 

replacement with nonverbal communication like mime or gesture. 

6) Stereotyped and repetitive use of language.  

7) In individuals with adequate speech, marked impairment in the ability to 

initiate or sustain a conversation with others.  

8) Lack of make-believe or social-imitative play.  

III. Restricted repetitive and stereotyped patterns of behavior, interests, 

and activities as manifested by at least one of the following:  

9) Preoccupation with one or more stereotyped and restricted patterns of 

interest that is abnormal either in intensity or focus.  

10) Apparent inflexibility of adherence to specific routines or rituals.  
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11) Stereotyped and repetitive motor mannerisms.  

12) Persistent preoccupation with parts of objects.  

(American Psychiatric Association, 2000)  

Symptoms of autistic disorder are observable in children at a very 

early age. Diagnosis usually occurs between 12 and 30 months of age, when 

lagging developments in language and social interactions become readily 

apparent (US Department of Health and Human Services, 2004). Some 

parents report observable symptoms in their child very early in infancy, with 

some noticing differences just after birth. Others report the change as being 

sudden, with a period of seemingly normal development followed by a 

regression, while still others describe plateau of social and language 

development. 

Asperger syndrome is a higher-functioning autism in which the 

individual develops verbal language appropriate to age. Child disintegrative 

disorder (CDD) is an extremely rare disorder characterized by a period of 

normal development followed by dramatic regression and loss of previously 

acquired skills such as vocabulary and motor skills occurring between two and 

ten years of age. PDD-NOS is a disorder of symptoms similar to autism, but 

does not meet the qualifications of the other four subtypes. Rett syndrome is a 

relatively rare disorder caused by a single point mutation on the X 

chromosome, predominantly affecting females.  It is the only pervasive 

developmental disorders subtype that has a clear and identifiable 

physiological cause (US Department of Health and Human Services, 2004). 
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Rett syndrome and CDD are extremely rare, so for the purposes of this 

paper the term ADS will refer mainly to autistic disorder, Asperger syndrome 

and PDD-NOS. These three disorders differ from one another primarily by the 

number and severity of symptoms. Diagnostic cut-off points between these 

disorders are relatively arbitrary and are defined by qualifications outlined in 

the DSM-IV. 

ASD has become a subject of particular concern to researchers due to 

the dramatic increase in diagnosis in recent years. The most recent studies 

estimate that 1/150 children age 3-10 have an ASD (Center for Disease 

Control, 2007). Within a single decade the number of children diagnosed 

increased nearly ten-fold, from 1/2,500 –1/2,000 in the 1980’s, to 1/333 – 

1/166 in the 1990’s (Szpir, 2006). It is debated that this dramatic increase is 

due primarily to increased awareness of the disorder and changing diagnostic 

standards, however no studies have been conducted to confirm this hypothesis 

(Hertz-Picciotto and Delwiche, 2009).   

B. Causation 
The specific causes of ASD are largely unknown. Epidemiological 

studies have attested genetic inheritance as the predominant cause, however 

no specific genes or gene combinations have been positively identified 

(Muhle, et al. 2004). Monozygotic (MZ) twin studies report an 80 to 90% 

concordance rate of ASD, and a 10% concordance of dizygotic (DZ) twins. 

Phenotypes of concordant twins often vary. A British study found a MZ 

concordance rate of 60% for classic autism, but found a 92% concordance rate 

when expanded to a broader ASD (Baily et al., 1995). This evidence leads us 
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to believe the disorder is caused by an interaction of genetic and non-genetic 

components. Given that the onset of the disorder occurs within the first few 

years of life, contributing environmental factors are likely prenatal. A few 

teratogens have been clearly linked to increased risk for autism. These include 

the chemical agents ethanol, thalidomide and valproic acid, as well as 

infectious agents such as the rubella virus (Arndt, et al. 2005). The effects of 

each of these teratogens are highly dependent on the period of prenatal 

development at which exposure occurred.  

C. Anatomy of an autistic brain 
The neurological deficits that cause the symptoms of ASD are also 

unknown. Multiple brain abnormalities have been found in post-mortem 

analysis of the patients with autism. Brain abnormalities have been noted in 

the brain stem, cerebellum, amygdala, hippocampus, basil ganglia, corpus 

callosum and cerebral cortex (US Department of Health and Human Services, 

2004).  These differences have been found both on the microscopic and 

macroscopic scale, however differences are inconsistent and widely variant 

among autistic patients.  

D. Critical window of environmental exposure 
Thalidomide is an antiemetic that was found to cause severe 

teratogenic effects when taken during the first trimester of pregnancy. Most 

notably, early prenatal exposure led to malformations in limb development 

causing short or even missing limbs (Rodier, et al., 1996). Exposure also 

caused craniofacial malformations including missing ears (both inside and 
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out) and/or deafness as well as increased prevalence of mental retardation and 

autism.  

A Swedish study of thalidomide-exposed patients found that 5 out of 

the 86 thalidomide cases had autism (Rodier, 1996). Among the 86 available 

cases, only 15 had exposure on days 20-24 of gestation, however all 5 autistic 

cases had exposure on these days. Thus, 5/15 or 30% of those who had 

thalidomide exposure on days 20-24 of gestation resulted in autism. This 

finding is highly significant considering the prevalence rate of autism in the 

general population is only 0.6%. Conversely, the rate of autism for all other 

days of thalidomide exposure was 0%.  

Such a substantial increase in autism following exposure to a teratogen 

during this window of development gives insight into the specific brain injury 

that may underlie the neurological deficits associated with autism. At 20-24 

days of gestation, very little of the central nervous system has developed. The 

direct injury caused by the exposure could only occur in areas that were 

present or developing at the time of exposure. This substantially limits the 

area of the direct brain damaged based on developmental stage.  

The critical window of gestation correlates with the period of neural 

tube closure and the development of the first neurons of the brainstem 

(Rodier, 2002). After neural tube closure, the developing brainstem divides 

into the basal and alar plates, giving rise to the cranial motor and sensory 

tracts respectively. These plates further segment into lateral sections called 

rhombomeres, where cells differentiate to form specific cranial nerve nuclei. 
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The critical time of thalidomide exposure suggests that an injury of these early 

developing cranial nerve nuclei may be the initial injury that led to autism.   

Neurological anomalies of the five autistic patients in the study are 

consistent with deficits in specific cranial nerves (Rodier, 1996). Of the five 

patients with autism, three of the cases had Duane syndrome, caused by a 

failure of the abducens (MoVI) nerve that innervates the lateral muscles of the 

eye, four had Moebius Syndrome, caused by failure of the facial nerve 

(MoVII) that innervates facial muscles, and two had abnormal lacrimation, 

caused by a failure of the facial nerve (MoVII) innervation of the lacrimal 

apparatus causing mis-innervation of the neurons that normally supply the 

submandibular structure. Each of the autistic cases also had ear malformations 

and hearing deficits.  

Ear malformations, eye motility problems and Moebius Syndrome 

have been previously associated with autism, showing these malformations 

are not specific to thalidomide-exposed autistic cases (Rodier 1996). All of 

these disorders are linked to brainstem injury. Autopsy cases of non-

thalidomide exposed autistic patients also exhibit deficits in cranial nerves, 

however little research has been conducted to systematically investigate these 

deficits. One non-thalidomide autopsy case discovered a striking 97% 

reduction in the number of neurons in the facial (MoVII) cranial motor 

nucleus (Rodier 1996). This may suggest a malfunction occurred in the 

formation of the rhombomere from which the facial nucleus (MoVII) is 

derived, rhombomere 4. This converging evidence suggests that the initial 
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injury that leads to autism and the cranial nerve deficits may be one in the 

same. 

The thalidomide cases indicate the brain injury leading to autism 

occurs very early in neurological development. Injury must occur in the areas 

that are present or developing at the time of exposure. Early derivatives of the 

brainstem are the only parts of the brain that are present so early in 

development.  The specific injury may cause deficits in mitotic action or a 

disturbance in the formation of specific rhombomeres of the brainstem. 

Progenitor cells that give rise to the rest of the brain are also present, and 

injury in these cells may lead to secondary deficits in later forming brain 

areas. The injury must occur during the period of neural tube closure and 

development of the first neurons. By exposing model animals to chemical 

agents during this window of prenatal development, we may be able to disrupt 

development and create an animal model for autism. 

E. Animal Model 
  Thalidomide does not cause the same teratogenic effect in rodents as 

it does primates. The drug itself is non-teratogenic and damage to the 

developing embryo is caused by a metabolite that is not manufactured in 

rodents (Rodier, 2002). Thus thalidomide is not useful for rodent animal 

studies.  Valproic acid (VPA), an antiepileptic drug and mood stabilizer, 

causes teratogenic effects in rodents similar to those in humans. Prenatal 

exposure is associated with many of the same effects as thalidomide, 

including neurological dysfunctions, limb and craniofacial malformations, and 

an increased incidence of autism (Rodier 2002). VPA-exposed autistic 
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patients also exhibited malformations of the ears indicating damage during the 

same critical window prenatal development.  

Previous rodent studies have found brainstem as well as behavioral 

deficits in VPA-exposed animals (Schneider and Przewlocki, 2005; Rodier et 

al., 1996). Morphological studies of the mouse embryo have demonstrated 

that acute exposure to VPA can cause a failure of neural tube closure and 

disorganization of cells of the neuroepithelium (Rodier, 2002).  This suggests 

that we may be able to reproduce the neurological injuries during the period of 

neural tube closure found in thalidomide cases by exposing rats to VPA 

during this window of development. Examination of brain and behavioral 

deficits may allow us to explore this and develop a rat model for autism.  

The critical developmental window in humans of gestational days 20-

24 (G20-24) correlates with gestational days 9-11 (G9-11) in rats (Sadamatsu, 

et al., 2006). Neural tube closure occurs on approximately G11 and generation 

of the neurons of the cranial nerve motor nuclei begins immediately afterward. 

If exposure to VPA causes effects similar to thalidomide in humans, we would 

predict to find malformations in the cranial nerve nuclei of rats with exposure 

during the window that correlates with days G9-G11. 

 The thalidomide study found that prenatal exposure to 

thalidomide only resulted in autism when exposure occurred between G20-24. 

No autistic cases were found with exposure at any other time during gestation. 

This leads us to believe the teratogenic effects that lead to autism are time-

dependent.  If this is the case, we would predict malformations in the cranial 

nerves only when acute exposure occurs during a specific window of 
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gestation. Exposure on all other days would likely have little effect.  Studies 

of rats with acute prenatal exposure to ethanol have revealed that cranial nerve 

deficits occur within a specific time-dependent window of vulnerability 

(Mooney and Miller, 2007).  Prenatal exposure to ethanol is also associated 

with craniofacial malformations and an increased risk of autism (refs xxx 

Jones and Smith, 1973; Nanson, 1992), This suggests we may see time-

dependent differences in animals with acute prenatal exposure to VPA.  By 

giving animals acute exposure to VPA on different days of gestation spanning 

the expected critical window, we will be able to determine if deficits are 

specific to this period of prenatal development. A window from G9-13, allows 

us to examine the effects of acute exposure from just after gastrulation (G9) to 

the development of the facial cranial nerve neurons (G13) in order to 

determine a critical window of vulnerability.  

Cranial nerves for our study were sampled to determine whether injury 

affected only neurons undergoing their final mitosis during exposure, or 

whether some other factor of selection was involved. To investigate this, we 

studied sensory cranial nerves from multiple rhombomeres to determine the 

presence of specific differences. We combined the present data with 

previously generated data on motor cranial nerve nuclei to compare the effects 

of VPA on both the basal and alar plates. Injury or deletion of an entire 

rhombomere would suggest malformations in nuclei of both plates located on 

the same rhombomere.  

Our study focused on the determining the size and cell density of the 

principal sensory nucleus (PSN) and the oral and interpolar subnuclei of the 
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spinal trigeminal complex (SpVo, and SpVi, respectively). The PSN develops 

on G12-13, from the 3
rd
 rhombomere.  The SpVo develops primarily on G13-

14 from the 5
th
 rhombomere, and the SpVi develops on G14-15 out of the 7

th
 

rhombomere. By using nuclei on different rhombomeres on both plates that 

develop on different days we may be able to determine how the teratogen 

causes brainstem malformations.  

We hypothesized that acute exposure during the period of neural tube 

closure will lead to deficits in cranial nerve nuclei in a time-and site-

dependent manner.   

II. Materials and Methods: 

A. Animals 
Long Evans rats were mated, and pregnancy was determined by the 

presence of a vaginal plug. The day the plug was found was labeled as the first 

day of gestation (G1). Sodium valproate was dissolved in saline and the  

pH was adjusted to 7.3.  Each treated dam received a single intraperitoneal 

(i.p.) injection of 350mg/kg body weight of sodium valproate in solution on a 

single day of gestation from G9 through G13 inclusive. Control dams were 

given a single intraperitoneal injection of an equivalent volume of saline. The 

day of birth was designated as postnatal day one (P1). On postnatal day 30 

male offspring were taken from each litter and anesthetized with an 

intraperitoneal injection of a 100 mg/kg ketamine and 10 mg/kg xylazine mix.  

The animal was then perfused transcardially with a solution of 4.0% 

paraformaldehyde in 0.10 M phosphate buffer (PB). The brains were 
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removed, post-fixed in a fixative for 4 hours at room temperature, washed in 

PB and stored in fresh PB at 4 °C.  

  Brainstems were isolated and dehydrated through increasing 

concentrations of ethanol, cleared with butanol, then infiltrated with Paraplast 

Plus paraffin. The paraffin embedded tissue was then cut into 5µm sections. 

Half of the samples for each treatment day were cut into sagittal sections 

while the remaining half was cut into horizontal sections. The 5µm sections 

divided the entire brainstem, with one in every 10 sections put on a slide and 

taken for analysis. These sections were de-paraffinized in xylene, rehydrated, 

stained with cresyl violet then dehydrated through increasing concentrations 

of ethanol before being coverslipped.  

B. Anatomic Studies 
Stereological methods were used to estimate the volume and cell density 

of two cranial nerve motor nuclei: the facial (VII) and the trigeminal (V), as 

well as three sensory nuclei: the principal sensory nuclei (PSN) and the oral 

and interpolar subnuclei of the spinal trigeminal nuclear complex (SpVo and 

SpVi respectively).  Estimates of the volume of the cranial nerve nuclei were 

determined by using the Cavalieri estimator (Jenson et al., 1987; Mooney and 

Miller, 2007).  In each section in which the cranial nerve nucleus was visible 

the cross sectional area was measured using the Bioquant Image Analysis 

System (R&M Biometrics, Nashville TN).  The borders of each nucleus were 

determined based on cytoarchitectonic criteria. The neuron cell bodies of the 

each of the two cranial motor nuclei were much larger and more densely 

packed than surrounding cells. The principal sensory was identified based on 
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its disk –shape appearance and its characteristic very small and densely 

packed neurons.  The oral nucleus was identified based on its hourglass 

structure and medium-size neurons organized in striations. The interpolaris 

was identified based on its relatively small medium packed neurons and 

characteristic shape.  

The total volume was determined by summing cross sectional areas 

and multiplying by the section thickness (5µm) times the inverse of the 

section frequency (1/10). This method is illustrated in the formula below:  

V
T
 = Σ A

s
 * t/f 

where Σ A
s 
is the sum of the cross sectional areas, t is the section thickness 

(5µm), and f is the frequency of sections in the series (1/10).  

 The cell density of the nuclei was determined using the Smolen 

correction of Abercrombie’s estimator (Abercrombie, 1946; Smolen et al., 

1983; Miller and Muller 1989). The cranial nerve nuclei had been counted by 

a student previously working in the lab. For the cranial nerve motor nuclei, the 

number of motor neurons with visible nucleoli in a 400 x 400 µm area at x 10 

magnification were counted for each section of the brainstem in which the 

nerve nuclei was visible. Only neurons fully within this box, or touching one 

of two adjacent sides of the box were counted. Neurons touching the 

remaining two sides were excluded from counts. The sensory nuclei consist of 

much smaller and more densely packed neurons and thus were estimated 

using same procedure with a 100 x 100 box at a magnification of x 40.  The 
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diameter was measured for each of the counted cells. The neuronal density 

was calculated using the following formula: 

 N
v 
= n * t  / ( t + D

m
 – 2k) 

 
Where Nv is the neuronal cell density, n is the total number of neurons 

counted in the boxes of the nuclei sections, t is the section thickness (5µm), 

D
m 

is the mean maximal diameter of the cell bodies, and k was the diameter of 

the smallest recognizable cap of a cut cell nucleus.   

 Estimates of the volume of the nerve nuclei were multiplied by the 

estimates for cell density in order to approximate the total number of neurons 

within the nucleus.  

C. Statistical Analysis 
The mean ± standard error of the mean was calculated for the volume, 

neuronal cell density, and neuronal number for each nucleus of each treatment 

day. These numbers were subject to a one-way ANOVA, to determine on 

overall effect of treatment. Where significant differences were found, a post-

hoc Tukey test was performed. Significance was set at p = 0.05.  

III. Results 

All five nuclei examined were identifiable in the cresyl violet stained 

sections. There were no gross differences in appearance of nuclei among 

treatment groups.  Analysis of Variance (ANOVA) for the sensory nuclei are 

located in Tables 1-3 in the appendix.  

Principal Sensory Nucleus of the Trigeminal Nerve 
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The volume of the principal sensory nucleus of the trigeminal nerve 

exhibited significant differences among treatment groups (p< .001). A Tukey 

post-hoc analysis found volume to be significantly greater on G13 than in 

control-treated animals (p < .05). No significant differences from controls 

were found in the neuronal cell density or total number of neurons (Figure 1).   

Spinal Trigeminal Nucleus, Oral portion 

The volume of the oral subnuclei of the spinal trigeminal was not 

significantly different compared to controls. The neuronal cell density was 

also did not significantly differ.  The total number of neurons however, was a 

significantly decreased in animals exposed on G13 (Figure 2).  

Spinal Trigeminal Nucleus, Interpolar portions 

 The volume of the interpolar subnuclei of the spinal trigeminal was not 

significantly affected by treatment. There was a significant decrease in 

neuronal cell density with animals exposed on G13. The total number of 

neurons also significantly decreased with exposure on G13 (Figure 3). 

IV. Discussion 

A. Summary of Data  
The total neuronal number of both the oral and interpolar subnuclei of 

the spinal trigeminal significantly decreased following exposure to VPA on 

G13. This time correlates with the peak neuronal generation of the oral 

subnuclei of the spinal trigeminal, and just before peak neuronal generation of 

the interpolar subnuclei of the spinal trigeminal.  Decreased total neuronal 

number with exposure during neuronogenesis of these nuclei suggests VPA 
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exposure may affect cell proliferation. The oral and interpolar subnuclei of the 

spinal trigeminal derive from different rhombomeres, suggesting the 

mechanism that leads to deficits is not selective for a single rhombomere. 

No effects in total neuronal number were seen for the principal sensory 

nucleus (PSN). This nucleus reaches peak neuronal generation at G12-13, 

however, no deficit were seen at G13.  This suggests that the teratogen does 

not merely cause deficits in all neurons undergoing neurogenesis at the time of 

exposure. The teratogen must have an alternate means of selection in order to 

affect the oral and interpolar subnuclei of the trigeminal while sparing the 

principal sensory nucleus. Perhaps the teratogen does not effect rhombomeres 

so far rostal, and only affects the more caudal sections.   

The principal sensory nucleus only exhibited significant differences 

from the control on one occasion, in which the volume of the nuclei was 

significantly greater with exposure on G13. This is the same day in which we 

saw a significant decrease in the total neuronal number in the other two 

sensory nuclei (SpVo and SpVi). Exposure to VPA may have caused an 

inverse effect in the PSN, leading to an increased volume. The total number of 

neurons was not affected so the cause of the increased volume was not due to 

increased neuron proliferation. An increase in the production of fibers or glial 

cells within the nucleus may have accounted for the volume increase.     

To check for differences between effects in the alar and basal plates, 

we compared the sensory data to previously collected motor nuclei data 

(Figures 4 and 5). Neurons of the facial motor nucleus (MoVII) develop on 

G13, out of the 5
th
 rhombomere.  Neurons of the trigeminal motor nucleus 
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(Mo V) form on G12, from the 3
rd
 rhombomere. Analysis of MoV found 

significantly smaller volumes in all treatment groups when compared to the 

controls.  We also found significantly greater cell density in all treatment 

groups when compared to controls. This data combined to yield no significant 

differences in total neuronal number between control and treatment groups.  

Much like the results of MoV, inverse differences in volume and 

neuronal cell density yielded no significant differences in total neuronal 

number the facial (VII) nuclei.   Significantly smaller volumes were found for 

treatment days G9, G11, and G13, and significantly lower neuronal cell 

density was found for the same three treatment days. These results again lead 

to no significant differences in the total neuronal cell number.  

It is difficult to draw conclusions on VPA affect on the two motor 

nuclei. The control data for the motor nuclei had not been conducted so 

control data used for analysis was taken from a study on time-dependent 

effects of ethanol exposure on cranial nerves (Mooney and Miller, 2007). 

While this was control data and thus should have little effect on the analysis, 

differences in inter-rater counting techniques may have affected our results. 

From the data it is difficult to draw specific conclusions about the effect of 

treatments when compared to controls, however it appears the treatment had 

little effect on the total neuronal number on the motor cranial nerves that were 

examined, and no time-dependent differences were revealed.  This suggests 

that the basal plate was largely protected from VPA-induced toxicity. 
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B. Literature Comparison 
A study of time-dependent differences in rat cranial nerves with acute 

exposure to ethanol found a significant decrease in total neuronal number in 

the principal sensory nucleus, the trigeminal motor nucleus (MoV), and the 

facial nucleus (MoVII) after exposure on G12 and G13 (Mooney and Miller, 

2007). No significant differences were found in the SpVo or SpVi. These 

findings do not parallel the effects seen with prenatal VPA, suggesting that 

ethanol and VPA may affect different areas of the brain selectively.  That said, 

exposure to a teratogen on G13 has an effect on both cranial motor and 

sensory nuclei, and thus, is a window of vulnerability for cranial nerve nuclei.. 

This may be due to the window of neuronogenesis, or an alternate factor 

arising during this time of development. 

 

A similar study on the prenatal effects of VPA on cranial nerves found 

no effect in the facial nuclei following acute exposure on rats on days G11.5, 

G12 and G 12.5 (note that G12.5 in this study = G13 in our study; Rodier, 

1996). This is consistent with the data we found, and suggests that acute VPA 

exposure does not affect the facial nucleus. The Rodier study did not give data 

for nuclei volume and neuronal density.  

The same study by Rodier did not parallel our results for MoV. They 

reported a significant decrease in neuronal number of the trigeminal (MoV) 

with exposure on G11.5 and G12, while our study did not find any significant 

changes after treatment on G12 (equivalent to their G11.5).  It is unclear why 

we did not find similar results in the trigeminal (MoV). Difference in results 
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may be due to experimental techniques. More studies need to be conducted in 

order to determine whether the trigeminal neuronal number is affected.  

Our data did not find any effects in neuronal number of the motor 

nuclei, but did find decreased neuronal number in two sensory nuclei. This 

suggests the alar plate may be more susceptible to deficits caused by VPA 

exposure. No differences in the PSN show that not all nuclei of the alar plate 

undergoing neuronogenesis are affected, suggesting other factors of selection 

must be involved.  

The oral and interpolar subnuclei of the spinal trigeminal complex 

exhibited a significant decrease in neuronal number following exposure to 

VPA on G13. This data suggests that deficits caused by VPA exposure may 

target more than one rhombomere as both the oral and interpolar subnuclei are 

affected.  

Convergent data with other VPA studies and ethanol studies suggest 

teratogen exposure may cause greater deficits in the cranial nerves when 

exposed on G13 than on surrounding days. Exposure to VPA in rats on G13 

appears to be a critical window, leading to deficits in the oral and interpolar 

subnuclei of the spinal trigeminal.  

 

C. Future Research 

More motor nuclei must be examined to determine if the basal plate is 

at all affected by VPA exposure. Studies should also retest the trigeminal 

(MoV) in order to determine why we did not see differences in neuronal 

number while the Rodier study did find differences. We should also examine 
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sensory nuclei deriving from other rhombomers, to determine where an affect 

is evident. This will help us understand why effects were seen in the two 

subnuclei of the trigeminal (SpVo and SpVi), but not seen in the PSN. 

 Research should also look into brain deficits in higher-functioning 

parts of the brain in VPA exposed rats, such as the amygdala and the cerebral 

cortex, in order to determine the presence of secondary effects caused by 

acute exposure to VPA during the critical window of exposure (which appears 

to be G13). Studies may then expand to examine behavioral deficits in order 

to further develop VPA exposed rats as an animal model for autism. 

The VPA model for autism has serious potential for aiding in autism 

treatment and research. Discovery of a possible window of vulnerability leads 

to significant insight on the parts of the brain that may be affected, namely the 

brainstem. Research can expand beyond the cranial nerve nuclei to determine 

what parts of the mature brain are damaged by teratogenic exposure during 

neural tube closure and generation of the first neurons. We can also research 

higher functioning parts of the mature brain that may have been secondary 

effects of damage caused in development of the brainstem. While the initial 

damage that leads to autism a may occur in the brainstem, these secondary 

affects may lead to symptoms observed in autism. 

Any animal model of autism is inherently limited due to the diagnostic 

standard, based on communication, social interaction and emotional 

reciprocity which cannot be seen in animal models to the same extent as 

humans. A number of studies have developed to test for autistic traits, 
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particularly with social interaction and repetitive behaviors (Crawley, 2007). 

These tests have yielded promising results for the VPA exposed rat as a model 

for autism.  Behavioral tests have found VPA exposed rats to exhibit autistic 

traits such as increased repetitive behaviors and latency to social behavior 

(Schneider, 2005).  Communication deficits have also been examined by 

testing ultrasonic vocalization patterns (Crawley, 2007). The formation of 

refined behavioral tests may allow us to further explore how this model may 

parallel the symptoms of autism. Further research must be conducted using 

VPA exposure and behavioral tests in tandem to determine connections 

between behavioral and neurological deficits observed. We must combine this 

with more autopsy cases in order to determine the presence of consistent 

neurological deficit in autistic patients.  

Development of a rat model for autism will help researchers 

understand the disorder, as well as provide a mechanism for exploring 

treatments.  Tests have already shown some success in altering behavioral 

deficits in VPA exposed rats through particular therapies and enriched 

environments.  (Schneider, et al., 2006). The development of an animal model 

will be particularly useful in creating and testing neuropharmacological drugs 

to treat autism in the future. 
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VI. Appendix 
 
Table 1 

ANOVA Analyses of Nuclear Volume 

Cranial Nerve         F – statistic          Degrees of                 P value 

Nuclei                                                   freedom              

PSN 9.555 5 <0.001* 

SpVo 5.784 5 0.002* 

SpVi 3.000 5 0.037* 

Mo V 14.455 5 <0.001* 

Mo VII 11.066 5 <0.001* 

 
Table 2 

ANOVA Analyses of Neuronal Cell Density  

Cranial Nerve 

Nuclei 

F - statistic Degrees of 
freedom 

P value 

PSN 5.612 5 0.002* 

SpVo 6.618 5 <0.001* 

SpVi 6.432 5 <0.001* 

Mo V 12.685 5 <0.001* 

Mo VII 11.160 5 <0.001* 

 
Table 3 

ANOVA Analyses of Total Neuronal Number 

Cranial Nerve 

Nuclei 

F - statistic Degrees of 
freedom 

P value 

PSN 1.725 5 0.173 

SpVo 4.762 5 0.006* 

SpVi 6.443 5 0.001* 

Mo V 1.453  5 0.249 

Mo VII 1.999 5 0.125 

* Statistically significant difference 
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Figure 1 Figure 2 Figure 3 

Figure 4 Figure 5 

  

*Statistically significant difference 

from control 
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