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ABSTRACT 

This dissertation analyzes the effects of United States environmental policy - specifically that 

which regards air pollution - on health, labor market, and environmental outcomes.  The first 

chapter examines the potential long-term effects of childhood exposure to atmospheric lead.  The 

outcome of interest is crime, and the policy analyzed is the leaded gasoline phaseout.  The 

second chapter seeks to investigate the effects of environmental regulation on labor markets.  

Nonattainment status designation creates variation in regulatory levels across counties based on a 

county’s air quality for a given pollutant, in this case ozone.  The third chapter provides analysis 

of the design ramifications of the Acid Rain Program’s tradable permit market for sulfur dioxide 

established by Title IV of the Clean Air Act Amendments of 1990.  The study examines how the 

two-phase approach as well as the initial permit allocation rule affected emissions.  These studies 

all show evidence of the wide range of effects environmental policy can have. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 

 

THREE ESSAYS ON THE IMPACTS OF AIR POLLUTION AND ENVIRONMENTAL 

POLICY 

 

By 

Jordan C. Stanley 

 

 

B.A., Washington & Jefferson College, 2011 

M.A., Syracuse University, 2013 

 

 

 

 

 

Dissertation 

Submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Economics 

 

 

Syracuse University 

May 2016 

 

 

 

 



 

 

 

 

 

 

 

 

Copyright © Jordan C. Stanley, Ph.D. 2016 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENTS 

I would like to thank all those who have influenced, supported, and assisted me during my earlier 

education and my time at Syracuse University.  In particular, with reference to the pursuit of my 

Ph.D., I am immensely grateful for the guidance and support of my primary advisor Jeffrey 

Kubik as well as Peter Wilcoxen, Perry Singleton, and Jerry Evensky.  I also extend my 

appreciation to my dissertation defense committee: Gary Engelhardt, Jerry Evensky, Jeffrey 

Kubik, Perry Singleton, Peter Wilcoxen, and the chair – David Popp. 

 

On the more personal side of things, I thank my parents John and Lori Stanley for their love and 

encouragement at every stage of my life.  I literally would not be alive without them.  Finally, I 

thank Melissa Chow for her past, present, and future love and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Table of Contents 

 
Acknowledgements……………………………………………………………………………...iv 

List of Figures………………………………………………………………………………..…vii 

List of Tables…………………………………………………………………………………...viii 

 

1.  Three Essays on the Impacts of Air Pollution and Environmental Policy…..............................1 

2.  The Effects of Childhood Atmospheric Lead Exposure on Crime………….............................4 

    2.1 Introduction……………………………………………………………................................4 

    2.2 Background Information…………………………………………………………………....7 

2.2.1 The U.S. Leaded Gasoline Phaseout………………………………………………...7 

 2.2.2  The Adverse Effects of Lead Exposure…………………………………………….8 

     2.3 Literature Review: The Developmental Impacts of Childhood Lead Exposure………….10 

     2.4 Empirical Strategy and Data……………………………………………………………...12 

 2.4.1 Empirical Strategy…………………………………………………………………13 

 2.4.2 Data………………………………………………………………………………...14 

     2.5 Methodology and Primary Regression Results…………………………………………...18 

 2.5.1 First-Stage Analysis………………………………………………………………..19 

 2.5.2 Second-Stage Analysis……………………………………………………………..20 

     2.6 Supporting Analysis………………………………………………………………………23 

 2.6.1 MSA-Level Arrests………………………………………………………………...24 

 2.6.2 Regression Analysis of MSA Arrests……………………………………………...25 

 2.6.3 Graphical Analysis: The Case of California……………………………………….30 

     2.7 Discussion……………………………………………………………………………...…31 

     2.8 Conclusion…………………………………………………………………………..……34 



vi 
 

3. Labor Market Impacts from Ozone Nonattainment Status: A Regression Discontinuity 

Analysis…………………………………………………………………………………………..36 

     3.1 Introduction……………………………………………………………………………….36 

     3.2 Background Information: Nonattainment Status Designation……………………………38 

     3.3 Literature Review…………………………………………………………………………40 

     3.4 Data……………………………………………………………………………………….42 

     3.5 Methodology……………………………………………………………………………...44 

     3.6 Regression Discontinuity Results………………………………………………………...48 

     3.7 Supplemental Regressions………………………………………………………………..51 

     3.8 Conclusions……………………………………………………………………………….53 

4. The Impact of Tradeable Permit Program Design on Emissions: Evidence from the United 

States Acid Rain Program………………………………………………………………………..55 

     4.1 Introduction……………………………………………………………………………….55 

     4.2 Background Information: Sulfur-Dioxide Regulation in the United States………………56 

     4.3 Successes and Shortcomings of the Acid Rain Program…………………………………59 

     4.4 Data and General Methodology…………………………………………………………..63 

     4.5 Empirical Strategy and Results…………………………………………………………...66 

 4.5.1 Acid Rain Program Phase 1 Analysis……………………………………………...66 

 4.5.2 Acid Rain Program Phase 2 Analysis……………………………………………...70 

     4.6 Discussion and Conclusion……………………………………………………………….72 

Figures and Tables……………………………………………………………………………….76 

Bibliography……………………………………………………………………………………123 

Vita……………………………………………………………………………………………...136 

 

 



vii 
 

List of Figures 

Figure 2.1 Avg. Atmospheric Lead in the United for Years 1965-2000………………………...76 

Figure 2.2 Air Stagnation Index by County……………………………………………………...77 

Figure 2.3 Change in State Atmospheric Lead by Air Stagnation……………………………….78 

Figure 2.4 Change in MSA Atmospheric Lead by Air Stagnation………………………………79 

Figure 2.5 Change in State Incarceration by State Decline in Atmospheric Lead………………80 

Figure 2.6 Incarceration by Birth State and Cohort Atmospheric Lead…………………………81 

Figure 2.7 Change in State Incarceration by State Air Stagnation………………………………82 

Figure 2.8 Change in MSA Crime 1980s to 2000s by Change in Atmospheric Lead…………...83 

Figure 2.9 Change in MSA Crime 1980s to 2000s by Air Stagnation Index………………...….84 

Figure 2.10 Change in California MSA Atmospheric Lead by Air Stagnation Index…………...85 

Figure 2.11 Change in California MSA Crime by Decline in Atmospheric Lead……………….86 

Figure 2.12 Change in California MSA Crime by Air Stagnation Index…………………….….87 

Figure 3.1a Average Polluting-Industry Employment by EPA Designation Value………….….88 

Figure 3.1b Average Polluting-Industry Employment per Capita……………………………….89 

Figure 3.2a Average Polluting-Industry Establishments by EPA Designation Value…………...90 

Figure 3.2b Average Polluting-Industry Establishments per Capita…………………………….91 

Figure 3.3 Density of Counties by Designation Value…………………………………………..92 

Figure 4.1 Average Sulfur-Dioxide Emissions in Tons per Heat Input (mmBtu)……………….93 

Figure 4.2 Average Sulfur-Dioxide Emissions in Tons………………………………………….94 

Figure 4.3 Distribution of Emissions per Heat Input by Facility………………………………...95 

 

 

 

 



viii 
 

List of Tables 

Table 2.1 U.S. National Emissions Decline Estimates 1980 to 1990……………………………96 

Table 2.2 Summary Statistics by Individual……………………………………………………..97 

Table 2.3 First-Stage Results for Individuals by Birth State………………………………….....98 

Table 2.4 Incarceration Reduced-Form Results……………………………………………….....99 

Table 2.5 Incarceration Instrumental Variable Regression Results…………………………….100 

Table 2.6 Period-Based Summary Statistics by MSA………………………………………….101 

Table 2.7 First-Stage Results by MSA…………………………………………………………102 

Table 2.8a Period-Based Reduced-Form Property Crime Regression Results…………………103 

Table 2.8b Period-Based Reduced-Form Violent Crime Regression Results………………….104 

Table 2.9a Period-Based Instrumental Variable Property Crime Regression Results………….105 

Table 2.9b Period-Based Instrumental Variable Violent Crime Regression Results…………..106 

Table 2.10 Results for Ozone Regressed on ASI, 1980 to 2000………………………………..107 

Table 3.1 Historic NAAQS for Ozone 1979 to 2008…..……………………………………….108 

Table 3.2 Summary Statistics for Polluting-Industry Outcome Variables……………………..109 

Table 3.3 Baseline OLS Results for Polluting Industries………………………………………110 

Table 3.4 Baseline 2SLS Results for Polluting Industries……………………………………...111 

Table 3.5 Fuzzy RD Results for Polluting Industries…………………………………………..112 

Table 3.6 Fuzzy RD Results for Total County…………………………………………………113 

Table 3.7 Fuzzy RD Results for Total County Less Polluting Industries………………………114 

Table 3.8 Fuzzy RD Results for Polluting Industries, Controlling for Status Switching…...….115 

Table 3.9 Fuzzy RD Results for Polluting Industries Excluding EAC Counties……..………...116 

Table 4.1 Summary Statistics for Full Sample…………………………………………………117 

Table 4.2 Initial Allocation Summary Statistics by Facility……………………………………118 

Table 4.3 Results for Full Sample ARP Phase 1 Analysis…………………………………..…119 



ix 
 

Table 4.4 Results for ARP Phase 1 Analysis with Fixed Effects………………………………120 

Table 4.5 Results for Full Sample ARP Phase 2 Analysis……………………………………..121 

Table 4.6 Results for ARP Phase 2 Analysis with Fixed Effects………………………………122



1 
 

1. Three Essays on the Impacts of Air Pollution and Environmental Policy 
 

Environmental policy can have a broad range of ramifications in society.  The present 

work seeks to analyze multiple air pollution policy measures in the United States and the 

assorted impacts of these initiatives.  The topics investigated in these three essays cover different 

stages of environmental policy from the initial design to the aftermath.  Several econometric 

techniques are used to analyze the various effects of air pollution policy. 

The first chapter investigates the public health benefits that can result from reducing the 

levels of a harmful pollutant in the atmosphere.  The phaseout of leaded gasoline in the United 

States eliminated the vast majority of atmospheric lead pollution from the environment.  Medical 

studies have linked lead exposure to an array of health concerns, and exposure to lead as a child 

can have long-term effects that may relate to criminal behavior.  This chapter analyzes the 

impact of changes in atmospheric lead on trends in crime over time and across areas in the 

United States.  To address endogeneity concerns, an air stagnation index is employed as an 

instrumental variable.  Air stagnation accounts for meteorological conditions that contribute to 

the residence time of air pollution.  Less-stagnant areas disperse emissions more readily; so, as 

the primary source of atmospheric lead was removed over the course of the phaseout, more-

stagnant areas on average saw greater reductions in atmospheric lead than less-stagnant areas.  

The regression analysis produces evidence that decreased atmospheric lead later reduced adult 

incarceration likelihoods and arrests.  An average drop in atmospheric lead over the course of the 

phaseout is estimated to reduce incarceration probability by about 0.4 percentage points between 

cohorts.  Based on the data, this represents a roughly 16 percent decline in the probability of 

incarceration between birth cohorts.  Baseline regressions estimate elasticities of roughly 0.32 

between instrumented atmospheric lead and violent crime arrests and 0.51 between instrumented 

atmospheric lead and property crime arrests. 

The second chapter analyzes how the implementation of environmental regulations can 



2 
 

affect labor markets.  In 2004, a change in the United States Environmental Protection Agency’s 

air quality standards led to counties across the country being reclassified as nonattainment or 

attainment.  Counties considered nonattainment are subject to stricter regulations and penalties if 

they do not clean up their air.  This study employs a regression discontinuity (RD) design to test 

the potential effects of nonattainment status and the accompanying regulations on local economic 

conditions.  The sample analyzed consists of counties monitored for ozone levels by the EPA 

from 2004-2011.  When focusing on highly polluting industries – those most likely affected by 

the regulations – the RD results show a negative, statistically significant effect of nonattainment 

status on employment in such industries.  The estimated magnitude is roughly 24 percent lower 

employment in polluting industries for nonattainment counties.  The results for establishments 

also show a negative coefficient but are not statistically significant.  Additional analysis finds no 

statistically significant impact of nonattainment status on total county economic conditions, 

implying that any economic effects of the regulations are limited to polluting industries. 

The third and final chapter examines the design consequences of the United States Acid 

Rain Program (ARP).  As reducing emissions of harmful pollutants remains a primary concern in 

environmental policy, it is beneficial to examine a successful policy initiative – the United States 

Acid Rain Program.  This portion of the Clean Air Act Amendments of 1990 created a credit-

trading program for sulfur-dioxide emissions.  This study performs difference-in-differences 

regression analysis exploiting the two-phase execution to estimate how the design of the program 

affected emissions of sulfur dioxide.  The results indicate that the ARP indeed reduced emissions 

for Phase 1-only plants relative to Phase 2-only plants.  Further, this chapter also strives to 

examine the ex-post efficiency of the program’s initial permit allocations.  Theoretically, initial 

allocations should not affect efficiency as firms reach the efficient level of emissions through 

abatement or trading credits regardless of their initial permit endowment.  Put another way, the 

effect of initial allocations on emissions should be zero if standard assumptions hold.  The results 
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of this analysis imply that initial allocations have a statistically significant non-zero impact on 

emissions.  For Phase 2 allocations, the results imply a nearly one-to-one relationship between 

emissions and allocations, while one allocation in Phase 1 implies around 0.6 emissions. 

Overall, these analyses show further evidence of the potential effects of environmental 

policy.  The design and implementation mechanisms of policy are important matters to consider 

in future policy decisions.  Reducing air pollution can have major environmental and public 

health benefits while also having assorted economic impacts. 
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2. The Effects of Childhood Atmospheric Lead Exposure on Crime 

2.1 Introduction 

The phaseout of leaded gasoline, which began in the United States in the mid-1970s and 

officially ended in the mid-1990s, was one of the largest environmental policy endeavors in 

history.  Anti-lead initiatives succeeded in greatly reducing the amount of lead in the 

environment - atmospheric lead in the United States was almost completely eliminated over the 

course of the leaded gasoline phaseout.  The removal of lead from the environment has been a 

chief concern in the United States since the 1970s, but worry over the harmful effects of lead 

exposure existed long before then.  Lead can enter the body through various sources, and greater 

frequency and intensity of exposure increase the risk of lead negatively impacting health.  Even 

low levels of exposure can have adverse effects on health, especially for children, and past lead 

exposure may continue to affect the population.  The same negative developmental outcomes 

associated with lead exposure (impaired cognitive development, aggression, hyperactivity, etc.) 

can be related to various life outcomes such as academic performance and social behavior.  Case 

and cohort studies in the scientific literature have analyzed the effect of childhood lead exposure 

on cognitive test scores, while the behavioral effects of lead exposure have led some researchers 

to hypothesize a relationship between childhood lead exposure and criminal activity. 

The major crime declines seen in the United States during the 1990s resulted in a wave of 

research investigating the potential causes of such a dramatic decrease (see Levitt (2004), among 

others).  Some analysis has postulated that the large reduction of lead exposure beginning in the 

late 1970s and early 1980s could be related to the sizable crime declines of the late 1990s.  Past 

research has produced evidence of a correlation between lead exposure and crime, and stronger 

evidence of a causal effect of lead exposure on crime would imply additions to the already large 

estimated benefits of the leaded gasoline phaseout. 

This study uses the U.S. leaded gasoline phaseout to analyze the potential effects of lead 
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exposure over time across urban areas.  While the phaseout affected atmospheric lead in all areas 

in the United States, the environmental impacts varied across areas in both magnitude and 

timing.  Much of this cross-sectional variation could be endogenously determined and produce 

estimation bias when considering outcomes such as crime.  For example, socioeconomic status 

can be associated with criminal behavior as well as lead exposure.  Low socioeconomic status 

individuals could be more likely to later engage in criminal activity while also having had greater 

exposure to lead as a child if they resided in an area or home with greater automobile traffic, less 

fresh air, more lead paint, etc.  Poorer areas could have had greater crime and may have also had 

a greater concentration of older cars that still required leaded gasoline.  Such areas would then 

have had greater atmospheric lead emissions and exposure risk as well.  Political endogeneity 

could exist as well.  Active local or state governments could have instituted stricter lead laws 

while also being tougher on crime. 

To overcome such endogeneity concerns, the empirical strategy in this study relies on the 

impact of air stagnation on lead pollution levels over time.  The Air Stagnation Index (ASI) is 

used as an instrumental variable in this analysis and can be seen as a proxy for climate – 

generally speaking, ASI is a meteorological index that provides an estimate for atmospheric 

circulation based on wind, precipitation, and atmospheric temperature.  More-stagnant air 

increases air pollution residence time – how long particles stay in the atmosphere for a given 

location.  In the context of the leaded gasoline phaseout, more-stagnant areas should have, on 

average, seen a greater reduction in environmental lead levels than less-stagnant areas following 

the gradual removal of leaded gasoline – the primary source of atmospheric lead.   Less-stagnant 

areas had climatological mechanisms that reduced residence time of atmospheric lead, so 

removing the source had less of an impact on exposure risk.  Residence time would have been 

longer in stagnant areas.  As a greater proportion of lead emissions would linger for a longer 

amount of time in stagnant areas, removing the source of those emissions was presumably more 



6 
 

beneficial over time for such locations.  Results of the regression analysis in this study validate 

this expectation and are strongly significant. 

Air stagnation is also assumed to be unrelated to other trends that could have impacted 

the change in crime over time – environmental lead exposure is assumed to be the only channel 

through which air stagnation affects trends in criminal activity over time.  Air stagnation is 

regionally correlated, so regional and regional-time control variables are included in the main 

specifications.  The relationship between atmospheric lead and air stagnation is also seen with 

other air pollutants, but this is less of a concern in the present study.  In the years analyzed, the 

drop in atmospheric lead levels outpaces those in other pollutants (see Table 2.1).  Further, the 

primary health consequences associated with other air pollutants (ozone, particulate matter, etc.) 

are mostly respiratory and cardiovascular issues.1  Such effects are less likely to directly relate to 

crime than the potential cognitive and behavioral developmental impacts linked to lead exposure; 

however, there could be effects of general air pollution on childhood health outcomes that affect 

education that in turn could impact crime.  Such matters are discussed in greater detail later in 

the chapter. 

The main analysis of this study examines the potential impact of environmental lead 

exposure on crime-related outcomes.  This study produces evidence that the massive reduction in 

childhood environmental lead exposure impacted trends in crime.  The estimates imply that an 

average decline in atmospheric lead over the course of the phaseout would have reduced the 

probability of adult incarceration by roughly 0.4 percentage points.  About 2.5 percent of the 

sample was incarcerated, so the estimated reduction is about 16 percent of the average 

probability of incarceration.  The results from additional analysis of arrest trends at the 

Metropolitan Statistical Area (MSA) level support these findings.  Baseline regressions estimate 

an elasticity of roughly 0.32 between instrumented atmospheric lead and violent crime and an 

                                                 
1 “Health Effects of Air Pollution”.  United States Environmental Protection Agency. 

http://www.epa.gov/region07/air/quality/health.htm 
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estimated elasticity of 0.51 for instrumented atmospheric lead and property crime.  The overall 

analysis provides additional evidence of broad societal benefits resulting from major 

environmental policy.  The results support past scientific findings regarding the developmental 

consequences of childhood lead exposure as well as the possibility that such consequences could 

manifest themselves in criminal activity.  From a policy perspective, the key decision is whether 

to take measures to prevent lead exposure in the first place, or address the potential consequences 

later.    

Before describing the empirical analysis in greater detail, it is useful to first provide more 

information on the phaseout of leaded gasoline in the United States, the health effects of lead 

exposure, and past studies of lead and leaded gasoline phaseouts. 

2.2 Background Information 

2.2.1 The U.S. Leaded Gasoline Phaseout2 

The phaseout of leaded gasoline is one of the largest and most impactful environmental 

policy measures in U.S. history.  The amount of lead in the atmosphere was greatly reduced, and 

the decrease in lead was significant even relative to the declines in other pollutants (see Table 

2.1).  The potential hazards of lead had been known for centuries; however, these were typically 

considered to be direct occupational risks.  Oil refineries began adding lead to gasoline in the 

United States starting in the 1920s in order to improve engine performance.  Clair Patterson and 

other advocates for reducing lead pollution were largely ignored by industry and government for 

several decades until public concern over the harmful effects of lead exposure intensified in the 

early 1970s.3  In 1975, the U.S. Environmental Protection Agency (EPA) initiated the gradual 

phaseout of leaded gasoline.  At the same time, the U.S. Congress passed a requirement that all 

new cars be equipped with catalytic converters.  Catalytic converters make car emissions less 

                                                 
2 Unless otherwise noted, sources for this background information consist of Newell and Rogers (2003) and an 

assortment of EPA documents included in the References section. 
3 Cosmos, Episode: “The Clean Room”. 
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toxic and do not work with leaded gasoline.  The EPA  mandated that all gasoline stations carry 

unleaded gasoline, and gas tanks on new cars were designed to only work with unleaded fuel 

nozzles. 

Studies released in the late 1970s on the harmful effects of lead exposure further 

heightened public awareness and support for lead reduction.  The EPA banned lead in household 

paint in 1978 and set standards for lead content in gasoline in 1979.  In the 1980s, the EPA 

further reduced lead content standards, and created a lead credit-trading program to help 

refineries meet the stricter limits.  Leaded gasoline was officially banned in the United States in 

1996, but had been almost entirely phased-out by the early 1990s. 

The reduction of atmospheric lead occurred through two main mechanisms – fleet 

turnover and lead content standards.  As post-1975 automobile models were purchased, 

consumers began to need unleaded gasoline, so the share of unleaded gasoline sharply rose.  

Leaded gasoline was still an option for older cars as leaded gasoline helped engine performance 

and was initially cheaper than unleaded fuel.4  However, lead content in leaded gasoline rapidly 

declined as the EPA implemented new and gradually stricter standards. 

2.2.2 The Adverse Effects of Lead Exposure 

Lead has been a useful substance for thousands of years; however, it is toxic to humans – 

even in small doses.5  Physiologically, lead can affect biochemical processes by interacting with 

proteins, masking itself as calcium, or stymying calcium-related processes.6  Lead’s greatest 

impact comes in the brain, where calcium is crucial for healthy functioning and development.  A 

great amount was accomplished in the U.S. through the leaded gasoline phaseout, lead paint ban, 

and other measures.  The U.S. Center for Disease Control regards 5 micrograms of lead per 

                                                 
4 Borenstein (2003 Working Paper).   
5 Institute of Medicine.  Lead in the Americas: A Call for Action. 
6 Wolf, Lauren K. “The Crimes of Lead”.  Chemical and Engineering News. February 3, 2014. 
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deciliter of blood (μg/dL) to be “abnormal”.7  In 1976, the U.S. average blood lead level was 16 

μg/dL (18 μg/dL for children under 6 years old), while the average in 1991 had decreased to 3 

μg/dL (2.8 μg/dL for children).8 

Numerous studies have linked lead exposure – typically measured by blood-lead level 

(BLL for short) – to adverse health effects.  Lead exposure can be associated with many different 

health concerns: higher blood pressure, anemia, low sperm count and mobility, gastrointestinal 

problems, renal difficulties, memory and concentration issues, premature births and low birth 

weight, and stunted cognitive development in children.9  The cognitive developmental impacts of 

lead exposure on children may take the form of hyperactivity, irritability, impulsivity, and lower 

IQ.10  Such consequences could be actualized in lower test scores, riskier behavior, and criminal 

activity.11  For example, if lead exposure increases aggressive behavior and impulsivity, an 

individual could then be more likely to commit a crime.  There may be no threshold for “safe” 

lead levels for children, and adverse effects of lead exposure can persist into adulthood.12  Low-

level lead exposure is not typically treated medically; prevention is the best strategy in reducing 

the adverse effects of lead exposure.13 

Before the phaseout of leaded gasoline, the most pervasive source of lead exposure was 

air pollution from automobile exhaust.14   Inhalation of lead from the air represents one of 

several channels for lead to enter the body.  Once lead enters the body, it is distributed by the 

blood to organs such as the brain, kidneys, and liver; lead that is not processed out of the body is 

typically stored in bones and/or teeth where it can potentially be remobilized into the blood later 

                                                 
7 Ibid. 
8 Reyes (2007). 
9 "Lead and Its Human Effects”. Public Health - Seattle & King County.

 http://www.kingcounty.gov/healthservices/health/ehs/toxic/LeadGeneral.aspx 
10 Mt. Washington Pediatric Hospital 

http://www.mwph.org/services/effects_lead_poisoning.htm 
11 Reyes (2014 Working). 
12 Center for Disease Control 

http://www.atsdr.cdc.gov/csem/csem.asp?csem=7&po=10 
13 Needleman (2007). 
14 Institute of Medicine.  Lead in the Americas: A Call for Action. 
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in life.15  As increased frequency and/or magnitude of exposure to lead increases the chance it is 

deposited in the body, greater exposure means greater health risk.16  While it is difficult to 

estimate the direct effect of air lead on blood lead levels, past research has linked atmospheric 

lead levels to BLLs.  For example, a case study of children in Detroit performed in Zahran et al. 

(2013) finds that a positive change in atmospheric lead of 0.0069 μg/m3 increases BLLs in 1 year 

olds by 10 percent, controlling for other potential factors.   Past research also concludes that 

atmospheric lead levels relate to lead levels in the soil – another important environmental lead 

exposure channel (see Sheets et al. (2001), and Schmidt (2010), among others).  Now, past 

studies more relevant to the present analysis will be discussed. 

2.3 Literature Review:  Developmental Impacts of Childhood Lead Exposure 

An extensive literature exists examining the health effects of lead, but most are case or 

cohort studies.  The general consensus is that lead exposure has an adverse effect on a number of 

health outcomes, most notably cognitive development in children.  Many studies have found 

significant, negative relationships between childhood lead exposure and cognitive development.  

Examples of such studies include Chen, Dietrich, Ware, Radcliffe, and Rogan (2005), 

Chandramouli, Steer, Ellis, and Emond (2009), Strayhorn and Strayhorn (2012), and Brink et al. 

(2013).  Nillson (2009 Working) shows a negative relationship between lead exposure as a child 

and life outcomes such as education and wage. 

More relevant to this study, several past analyses address the hypothesized relationship 

between lead exposure and crime.  Nevin (2007) employs lags between 18 and 23 years to 

examine the impact of preschool BLLs on future crime.  The study asserts that childhood BLLs 

over 10 μg/dL are harmful to learning and behavior.  Reyes (2007) uses lead content of gasoline 

to examine the effect of atmospheric lead on crime at the state level, estimating that the leaded 

gasoline phaseout accounted for a 56 percent decline in violent crime in the 1990s.  Mielke and 

                                                 
15 http://www.who.int/mediacentre/factsheets/fs379/en/    
16 https://www.health.ny.gov/publications/2584/ 
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Zahran (2012) analyzes lead emissions and aggravated assault in six U.S. cities using a 22-year 

lag in exposure.  The study determines that a 1 percent rise in air lead 22 years prior would raise 

current-year aggravated assault by 0.46 percent.  Stretesky and Lynch (2004) finds that 1990 lead 

levels affected mid-1990s crime, and the effect of lead on property crime was larger than that on 

violent crime.  Lersch and Hart (2014) provides a case study of Hillsborough County, Florida, 

and investigates the impact of the spatial distribution of lead-emitting facilities on crime.  The 

spatial distribution of lead-emitting facilities improves the prediction of property crime but not 

that of violent crime.  Farrell (2013) tests assorted hypotheses for the large crime drop in the 

1990s, finding the childhood lead exposure hypothesis to have strengths and weaknesses.  Of the 

study’s five tests, the childhood lead exposure hypothesis passed three (cross-country relevance, 

explanation of crime increase, and past empirical evidence) while failing two (phone theft and 

cybercrime effect and similar effects across crime types).  Only one hypothesis – improved 

security – performed better in the study than the childhood lead exposure hypothesis.  Other 

studies examining the relationship between lead and crime (or associated behavioral problems) 

include Needleman, Riess, Tobin, Biesecker, and Greenhouse (1996), Nevin (2000), Dietrich, 

Douglas, Succop, Berger, and Borenstein (2001), Stretesky and Lynch (2001), Marcus, Fulton, 

and Clarke (2010), Haynes et al. (2011), Reyes (2015), and Feigenbaum and Muller (2014 

Working). 

A number of studies utilize leaded gasoline phaseouts in various countries as shocks to 

lead levels.  Studies that examine the effect of phasing out leaded gasoline on atmospheric lead 

levels include Romero (1996), Kondo et al. (2007), and Mielke, Laidlaw, and Gonzales (2011).  

The general conclusion is that phasing out leaded gasoline, as expected, reduces lead levels in 

the atmosphere; however, as Mielke et al. (2011) notes, lead that is deposited in the soil, water, 

or plants can linger for much longer.  Nichani (2006), Graber et al. (2011), Huang et al. (2012), 

and others look into the effect of leaded gasoline phaseouts on blood lead levels.  These studies 
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all find the anticipated positive relationship between BLLs and leaded gasoline availability.  

Several analyses have attempted to estimate the costs and benefits of the policy endeavor in the 

United States.  The EPA performed a Regulation Impact Analysis (RIA) in 1985, finding that 

benefits greatly exceed costs.  Studies such as Schwartz (1994b) and Salkever (1995) provide 

updated estimates to the EPA’s efforts by considering lower levels of lead exposure as well as 

less direct effects of childhood lead exposure.  The estimated benefits of the major reduction in 

lead exposure given in such studies are typically large – Schwartz (1994b) asserts a roughly $7 

billion benefit while Salkever (1995) argues an additional $2.5 billion dollars in total benefits. 

The leaded gasoline phaseout directly affected atmospheric lead levels while implicitly 

affecting BLLs.  The scientific literature has established an adverse relationship between early-

life lead exposure and childhood development.  These findings are mostly derived from cohort or 

case studies, and the strong results have been applied to cost-benefit analyses of leaded gasoline 

phaseouts.  The social science literature has found evidence of an impact of lead exposure on 

outcomes such as IQ or other cognitive measures and crime.  Observational studies typically fail 

to properly account for potential endogeneity arising from unobserved variables that may affect 

both BLLs (or the selected instrumental variable) and the outcome being analyzed.   

Dynamic and cross-sectional variation is also lacking within the literature.  Few studies 

look at the effect of changes in lead exposure on trends over time.  Some studies are too 

geographically broad – opting to focus on national or state-level trends.  Others focus on one or a 

select few urban areas, limiting the generalizability of their findings.  Proper identification 

strategies and broader analysis across urban areas and over time can provide better estimates of 

the individual and potentially societal costs of early-life lead exposure as well as the benefits of 

major environmental policy like the US leaded gasoline phaseout.  The framework and results of 

the present analysis will now be described. 

2.4 Empirical Strategy and Data 
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2.4.1 Empirical Strategy 

This study strives to fill gaps in the literature through several methodological advances.  

Like some studies in the past, the leaded gasoline phaseout will be utilized as a long-term shock 

to atmospheric lead levels.  This shock greatly reduced lead pollution across the country between 

the 1970s and the 1990s and provides large variation to analyze the effects of changes in lead 

levels.  Despite this, the broad societal impacts of the phaseout have been relatively understudied 

in the literature.  One complication arises from the nature of the phaseout – it was not an 

immediate change, and the national initiative had intricacies that varied across local areas.  The 

phaseout’s official start year, 1975, does not represent an instant, dramatic change in lead levels.

 While the national regulation started the phaseout, localities could make their own 

decisions above what was required by the EPA.  For example, the city of Chicago banned the 

sale of leaded gasoline in 1984, a full twelve years before the national ban.17  Studies of the 

phaseout also often fail to separate out direct effects of the phaseout from other anti-lead 

initiatives such as the lead paint ban in 1978.  BLLs can be affected by various sources of lead 

exposure, many of which can be related to crime through other channels such as socioeconomic 

status. 

By focusing on the outdoor environment, this study can more properly isolate the impact 

of the leaded gasoline phaseout while examining a lead exposure channel over which individuals 

have less control.  BLLs simply represent the amount of lead in the blood, meaning the source of 

changes in lead exposure is not known.  The declines in BLLs could come from reduced lead in 

the environment, lead paint removal, and/or behavioral changes resulting from increased 

awareness of the dangers of lead exposure.  Of these, lead in the outdoor environment would be 

most directly affected by the leaded gasoline phaseout.  Employing atmospheric lead as a proxy 

for lead exposure also presents an opportunity to exploit exogenous variation across areas 

                                                 
17 Kovarik (2005).   
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regarding climate and geography. 

This study uses air stagnation as an instrumental variable for atmospheric lead levels.  

The Air Stagnation Index factors in meteorological factors such as temperature inversions, 

precipitation, and wind.  The calculation of the ASI will be discussed in more detail shortly.  To 

the knowledge of the author, the ASI used in this study has not been employed as an instrumental 

variable in any previous studies in the literature, nor have air stagnation measures been utilized 

in analyzing the effects of atmospheric lead.  Atmospheric stagnation and components of the ASI 

were previously employed in air pollution studies such as Bharadwaj and Eberhard (2008 

Working), Arceo-Gomez (2012), Ransom and Pope (2013 Working), and Herrnstadt and 

Muehlegger (2015 Working). 

As a circulating atmosphere can disperse air pollution, one would expect ASI, holding 

pollution constant, to have a positive relationship with air pollution levels – more stagnant places 

have higher ASI and typically higher air pollution levels.  Of interest to the present study is the 

dynamic effect of air stagnation on lead pollution.  The expectation is that the leaded gasoline 

phaseout affected stagnant areas more than it affected less-stagnant areas, meaning that ASI is 

negatively associated with the change in atmospheric lead.  More-stagnant atmospheres meant 

lead in the environment was more likely to linger in high-ASI areas.  So, by removing the main 

source of lead pollution (via the phaseout of leaded gasoline), more-stagnant areas should have 

seen a larger reduction in atmospheric lead. 

2.4.2 Data 

The data for atmospheric lead are from monitor data from the EPA, which were acquired 

for use in this study through a Freedom of Information Act (FOIA) request.  The data cover all 

available atmospheric lead monitors in the continental United States.  The years in the sample are 

1960 to 2000, though the number of monitor observations before the mid-1960s is quite low.  

The units of measurement are micrograms per cubic meter (μg/m3), and the unit of observation is 
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at the county level.  The time trend in the lead data from 1965 to 2000 can be seen in Figure 2.1.  

The average atmospheric lead decreases over time, as expected, and the major declines occur 

during the years of the leaded gasoline phaseout.  Of note, the National Ambient Air Quality 

Standard (NAAQS), which the EPA sets for various pollutants at the respective levels deemed 

permissible for public health, has been 0.15 μg/m3 for lead since 2008.  This standard is 

represented by the horizontal line in Figure 2.1.  In the data, average lead levels in the early 

1970s were eight times higher at their peak than the current lead NAAQS.  The average county 

in the monitor sample failed to meet the current NAAQS for lead until the late 1980s.  The 

variation in lead levels among areas initially is large, but declines over time.  A data concern 

relevant to this and most other air pollution studies is the placement and availability of monitors.  

Monitor placement is assumed to be random among and within geographic areas, though this 

may not be the case. 

The ASI data come from the National Oceanic and Atmospheric Administration 

(NOAA), with the specific index data taken from Wang and Angell (1999).  The Air Stagnation 

Index is calculated as the monthly number of air stagnation periods for a given latitude and 

longitude.  An air stagnation period consists of four consecutive air stagnation days.  In simple 

terms, an air stagnation day consists of low or no wind and no precipitation, and may include 

temperature inversion – an atmospheric phenomenon that is conducive to air being trapped over 

an area, possibly keeping pollution close to the ground.18  More specific meteorological 

definitions for air stagnation days can be found in Wang and Angell (1999). 

For the purposes of this study, the monthly ASI for a given latitude-longitude pair is 

averaged from 1973 to 1997.  These years serve to cover the entire timeframe associated with the 

leaded gasoline phaseout.  As ASI can be quite volatile month to month, the averaging process 

provides a general measure of how stagnant the atmosphere is for a given area.  Over the time 

                                                 
18 http://www.wrh.noaa.gov/slc/climate/TemperatureInversions.php.   
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period analyzed, there is not great variation in the average ASI for a given location year-to-year.  

The ASI measures cover the contiguous United States.  County centroids are matched to the 

nearest latitude-longitude pair in the ASI data to provide each county with an ASI value.  Then, 

ASI is averaged by MSA or state.  There is little variation in ASI within small geographic areas 

like counties and MSAs, while variation increases as the geographic unit of observation 

broadens.  Figure 2.2 is a map showing variation in state averages for ASI by quartile.  Clearly, 

there are some regional elements to ASI.  This is addressed in the main regression analysis 

through the inclusion of regional and regional-time controls. 

For the crime outcome analysis, the individual-level data are from the American 

Community Survey (ACS) via the Integrated Public Use Microdata Series (IPUMS).  The survey 

years are 2001 to 2012, and the sample is limited to adults.  Two birth cohorts are examined – 

individuals born between 1965 and 1969 and individuals born between 1985 and 1989.  These 

years were selected based on data availability and the timing of the phaseout.  The earlier birth 

cohort will be defined as the “high exposure” cohort as it represents a group clearly born before 

the phaseout.  The later birth cohort is defined as the “low exposure” cohort since it represents 

individuals born after most of the reduction in atmospheric lead had occurred.  Later birth years 

were not used in order to provide enough adults in the “low exposure” sample. 

The incarceration variable is binary in the present analysis – it is a “1” if the individual 

was living in a prison, mental hospital, or assisted-living community in the given survey year.  

This information comes from a Census question regarding group quarters.  A precise “prison” 

indicator is not available; however, past studies have treated this group quarters category as 

representing incarcerated individuals.19  While this measure does not provide complete certainty 

regarding the means by which one is institutionalized, it should be a reasonably close 

representation of incarceration.  The age of the sample implies few individuals would be living in 

                                                 
19 Examples of such studies include Caceres-Delpiano and Giolito (2012), Charles and Luoh (2010), Borjas, 

Grogger, and Hanson (2006 Working), and Lochner and Moretti (2004).   
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assisted-living communities.  Further, when defining “institutionalized population” as those in 

prisons or mental hospitals, roughly 97 percent of institutionalized adults were in prison and just 

3 percent in mental hospitals by the year 2000.20  Another limitation of this measure is that to be 

in jail, one must be caught committing a crime and found guilty.  For this study, it is assumed 

that any differential trends in propensity to be jailed are not correlated with air stagnation after 

controlling for other factors such as region and demographics. 

Summary statistics for the state atmospheric lead, state ASI, and incarceration variables 

are included in Table 2.2.  The lead and ASI averages are weighted by county population by 

cohort to better approximate population exposure to atmospheric lead.  Roughly 2.5 percent of 

the sample is institutionalized.  One may note that the lead data has a minimum of zero – a value 

that corresponds to monitors in Wyoming.  Excluding these observations does not alter the 

results, so they are kept in the sample.  Comparisons of atmospheric lead and incarceration 

summary statistics between cohorts are also included in Table 2.2.  Average atmospheric lead 

levels decline by roughly 0.9 μg/m3 between the cohort years, while more of the post cohort is 

institutionalized compared to the pre cohort (See Table 2.2).  The difference in average 

incarceration for the birth cohorts as a whole is likely due to age – the “pre” cohort individuals 

are in their 40s while individuals in the “post” cohort are in their 20s and more likely to be 

presently committing crimes. 

Regional and individual-level demographic controls come from the ACS data through 

IPUMS.  A limitation of this analysis is the inability to perfectly determine childhood locations.  

Even when birth state is known, it is not certain if the individual stayed in their birth location for 

their formative years.  Still, birth state is assumed to be a strong indicator of early life location.  

In 2000, almost 90 percent of households resided in the same state as they had in 1995.21  These 

                                                 
20 Harcourt (2006). 
21 United States Bureau of the Census, 2003. “Migration and Geographic Mobility in Metropolitan and 

Nonmetropolitan America: 1995 to 2000”.   
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years are not part of this study’s sample years; however, the statistic supports the notion of 

limited interstate mobility over a small timeframe.  Looking at the ACS data, a majority of 

individuals reside as adults in the state in which they were born – roughly two-thirds of the 

respondents were current residents of their birth state.  It is reasonable to assume that an even 

greater percentage of individuals reside in their birth state for the first few years of life. 

2.5 Methodology and Primary Regression Results 

The anticipated effect of ASI on changes in atmospheric lead levels is negative.  The 

expectation is that over time, the positive relationship between ASI and atmospheric lead will 

diminish as more-stagnant areas see larger reductions in their lead levels than less-stagnant areas 

over the course of the phaseout.  Put another way, the reduction in lead over time is expected to 

have been larger in stagnant areas.  This relationship is seen in the data and shown graphically in 

Figures 2.3 and 2.4.  One can see that the average decline in lead over the course of the phaseout 

is larger in magnitude for high-ASI areas.  Further, this relationship is similar when comparing 

state averages to MSA averages. 

The general methodology is an instrumental variable approach with the instrumental 

variable being the interaction of ASI and the relevant time dummy variable.  This strategy relies 

on two major assertions.  First, air stagnation environment, conditional on the other explanatory 

variables, is related to changes in atmospheric lead levels.  This expected relationship can be 

tested, and results for changes in atmospheric lead regressed on ASI are included and discussed 

in the next section.  Second, it is assumed that ASI is not correlated with the error term, meaning 

ASI is not related to crime trends over time except through lead pollution.  There is no danger of 

reverse causality since ASI itself is not affected by crime trends; however, the potential exists for 

correlation between ASI and other trends that can be related to trends in crime.  As air stagnation 

is highly related to geography, perhaps there are regional or state trends that are thus related to 

ASI and also impacted crime.  Say that, over the years of the phaseout, an area attracted more-
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educated residents who were less prone to committing crimes.  Further, consider that this area 

has a high ASI – an observed relationship between ASI and crime may be overstated.  Checks 

are performed to assess the validity of the second assumption and will be discussed later. 

All regressions follow the general form described below.22  Regional indicators are used 

to account for geographic correlation in ASI.23  As demographic factors could affect the assorted 

outcomes analyzed, relevant controls are included in some specifications.24  The variable of 

interest in the reduced-form regressions is the interaction between ASI and the “Low Exposure 

Cohort” variable.  This interaction variable provides a coefficient estimate representing the effect 

of air stagnation over time. For the IV specifications, the variable of interest is “Atmospheric 

Lead”, which is the cohort period average atmospheric lead level for the birth state weighted by 

county population.25  It is instrumented by the ASI-cohort interaction term.  The first-stage 

analysis will now be discussed followed by the description of the second-stage analysis. 

2.5.1 First-Stage Analysis 

For the first stage, average atmospheric lead is a function of ASI, a dummy variable for 

birth cohort, and the interaction of the ASI and cohort variables.  In the primary analysis, the 

environmental factors are averaged at the state-level as birth state is the most refined geographic 

indicator of an individual’s birthplace.  The first-stage regression equation for individual i is 

[1] AtmosphericLeadSTit = α0 + γ1LowExposureCohortt + γ2AirStagnationIndexit + 

γ3(AirStagnationIndex×LowExposureCohort)it + γVit + ηit 

“AtmosphericLeadST” represents atmospheric lead averaged by state weighted by county 

population in cohort t; “AirStagnationIndex” is air stagnation averaged at the state level and 

weighted by county population in cohort t; the “LowExposureCohort” variable is a “0” for 

                                                 
22 Standard errors are clustered by birth state to account for serial correlation by geographic area. 
23 Regions are defined using U.S. Census definitions. 
24 The analysis was also performed using sample weights, yielding comparable results. 
25 Regressions using unweighted state averages for atmospheric lead and ASI were also performed.  The coefficient 

estimates are comparable to those using weighted averages – the statistical significance is similar and the estimated 

magnitudes are slightly larger. 
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individuals born between 1965 and 1969 and “1” for those born between 1985 and 1989; V is a 

vector of control variables; α0 is a constant; and η is the error term.  Due to some missing values 

in the data, lead is averaged for 1965 to 1974 for the “pre” cohort and 1980 to 1989 for the 

“post” cohort.  Most monitoring was performed during the prime phaseout years, so many 

monitors were not available in the early and later years of the sample. 

Table 2.3 shows the first-stage results.  The coefficient signs are all as anticipated.  The 

relationship between atmospheric lead levels and the ASI interaction term is negative as 

expected and strongly statistically significant.  The estimated effect after adding in assorted 

controls for birth region and demographic characteristics does not greatly differ from the 

baseline results – in fact, the coefficient becomes slightly larger in magnitude.  The main result 

holds across specifications – as lead declined over time, there were bigger declines in more-

stagnant states.  Put another way – the variation in lead levels between highly stagnant air 

environments (generally high lead) and less-stagnant air environments (typically lower lead 

levels) decreased over time.  The results imply that an additional air stagnation period per month 

would on average lead to a 0.14 μg/m3 greater reduction in atmospheric lead over the course of 

the phaseout.  The current NAAQS have the maximum atmospheric lead concentration to be 0.15 

μg/m3, so such a decline is fairly substantial.  The instrument is statistically significant at the 1 

percent level in all specifications, and the explanatory power of the model is quite high. 

2.5.2 Second-Stage Analysis 

The strategy in the second stage accounts for the delayed impact of childhood lead 

exposure as children age into committing crimes.  The second-stage analysis examines how 

changes in atmospheric lead exposure over time and variation across geographic areas affected 

the assorted outcome variables: 

[2] Incarcerationi= α + β1𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝐿𝑒𝑎𝑑̂ STit+ β2LowExposureCohortt + 

β3AirStagnationIndexit + βXit + εit 
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“𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝐿𝑒𝑎𝑑̂ ” is the predicted change in lead levels as instrumented by the 

“ASI×LowExposureCohort” variable; “AirStagnationIndex” and “LowExposureCohort” 

represent the birth state air stagnation average and cohort dummy variable respectively; and X is 

the appropriate vector of control variables.  The outcome analyzed is individual incarceration at 

the time of the survey. 

 From the IPUMS data, one will notice that changes in atmospheric lead are associated 

with trends in incarceration (see Figures 2.5 through 2.7).  Decline in atmospheric lead between 

the two cohorts is negatively related to changes in incarceration – the rise in incarceration 

between the cohorts is smaller for higher declines in lead (see Figure 2.5).  For the “pre” cohort, 

Figure 2.6 shows a positive relationship between atmospheric lead in birth state and incarceration 

as an adult for the “pre” cohort, and as state lead levels converge in the “post” cohort, the 

relationship dissipates (see Figure 2.6).  The change in trends between the two cohorts is also 

compared by birth state ASI in Figure 2.7.  The incarceration trend is negatively related to ASI 

as anticipated (see Figure 2.7). 

The reduced-form and IV results are included in Tables 2.4 and 2.5.   The estimated 

effect of ASI on incarceration trends shows the expected negative sign and strong statistical 

significance (see Table 2.4).  Including regional controls reducing the magnitude of the effect; 

however, the coefficient remains negative and statistically significant across specifications.  

Including the relevant control variables, an additional air stagnation period per month implies 

between a 0.05 and 0.06 percentage point reduction in the probability of incarceration between 

birth cohorts.  If comparing an average ASI location (ASI around 5) with a high ASI location 

(ASI around 10), the highly stagnant area, based on these results, would have had a roughly 0.25 

percentage point drop in incarceration roughly.  This represents roughly 10 percent of the 

average incarceration in the data sample.   

The IV results (see Table 2.5) imply a positive, statistically significant effect of 
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instrumented atmospheric lead on incarceration trends.  Including regional controls lowers the 

magnitude of the estimated lead effect, but the effect remains positive and statistically 

significant.  Reducing lead in birth state by 1 μg/m3 during the phaseout years would imply an 

average decrease in incarceration probability of roughly 0.4 percentage points when controlling 

for time and ASI as well as birth region, individual demographic characteristics, and the 

associated time trends.  The average drop in atmospheric lead in the sample was around 0.9 

μg/m3, so 1 μg/m3 is a reasonable decline.  Roughly 2.5 percent of the full sample was 

institutionalized, so the estimated incarceration probability change is slightly under one-sixth of 

the mean in the full sample.  So, all else equal, a typical drop in atmospheric lead during the 

phaseout implies a probability of incarceration in the “low exposure” cohort that is roughly 16 

percent smaller than that for the “high exposure” cohort. 

These results can be compared to other factors that have been linked to incarceration rates 

in past studies.  The focus will be on studies that used the same incarceration measure as was 

employed in this analysis.  Lochner and Moretti (2004) examines the impact of years of 

schooling on incarceration separately analyzing by race.  The study finds that one additional year 

of schooling results in a 0.1 percent reduction in the probability of incarceration for whites and a 

0.37 percent reduction for blacks.  From the present analysis, an average drop in atmospheric 

lead over the course of the phaseout would, controlling for other factors, have had an effect on 

likelihood of incarceration comparable to four years of schooling for whites and one year of 

schooling for blacks.  Lochner and Moretti (2004) find even larger impacts from a binary 

indicator of high school graduation – high school graduation is estimated to reduce incarceration 

probability by roughly 0.9 percentage points for whites and roughly 8 percentage points for 

blacks.  Caceres-Delpiano and Giolito (2012) investigates the effect of unilateral divorce reform 

on the likelihood of children being incarcerated as adults.  Increased divorce rates were 

determined to raise the likelihood of incarceration by about 60 percent.  These results and the 
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results from the present study together imply that the estimated impact, controlling for other 

factors, of the leaded gasoline phaseout on incarceration likelihood is roughly one-fourth that of 

divorce law reform.  In sum, the estimated effect of atmospheric lead exposure on probability of 

incarceration is not outrageous compared to other studies that analyze incarceration trends.  Still, 

for reasons to be discussed shortly, it is useful to check the strength and validity of the estimates 

of the primary analysis. 

2.6  Supporting Analysis 

Several concerns arise from the primary regression analysis.  First is the aforementioned 

assumption in the IV methodology – ASI is assumed to only relate to incarceration trends 

through atmospheric lead.  Second are the limitations of the incarceration variable and state-level 

analysis.  The incarceration variable covers two birth cohorts who are at very different ages in 

the years of observation.  The incarceration variable also is not a perfect proxy for crime, nor can 

it be absolutely certain that it only includes incarcerated individuals as opposed to other 

institutionalized persons.  Birth state is the most refined geographic indicator of an individual’s 

birth location; however, MSA-level arrest data are also available for years appropriate for leaded 

gasoline phaseout analysis.  Thus, MSA-level analysis can be used to test the validity of the 

primary results.  A third concern relates to the previous issue but is more specific - excluding 

California from the sample of states dramatically changes the results while removing any other 

state (so long as California is still included) does not.  California has the most individuals by 

state in the sample and contains nearly all of the highest ASI areas as well as many of the largest 

declines in atmospheric lead.  So, a major alteration of the first-stage results is not too surprising.  

More troubling is if California had drastically different time trends aside from atmospheric lead 

declines that relate to incarceration, arrests, or criminal behavior in general.  Such differential 

trends could then be driving the estimated effect of ASI on crime.  Graphical analysis is 

undertaken regarding arrest trends in California to provide additional testing of the primary 



24 
 

estimations. 

2.6.1 MSA-level Arrests 

Examining crime trends at the MSA level can provide additional support for the main 

findings.  The data specifically measure property and violent crime arrests.  As with the 

incarceration variable, the arrest data only count individuals caught committing a crime.  Though 

not perfect, number of arrests does have a very strong correlation with criminal activity (see 

Lochner and Moretti (2004)).  The use of this data avoids the potential issues of the 

“incarceration” variable not representing prisons or possibly representing non-violent criminals 

such as drug offenders.  Further, measuring crime in the 1980s more accurately accounts for 

criminal activity of individuals born before the phaseout in years when they became prime 

crime-committing age.  A drawback of this MSA-level analysis is that crime observations are 

aggregated by MSA and birthplace of individuals is unknown.  It is assumed that many 

individuals who commit crimes do so in their area of birth because factors such as poverty could 

relate to both criminal activity and non-migration. 

MSA crime data come from the National Archive for Criminal Justice Data (NACJD) 

through the Interuniversity Consortium for Political and Social Research (ICPSR).   These data 

originate from the Federal Bureau of Investigation’s Uniform Crime Reports (UCR).  The UCR 

offers good coverage of the United States – 97.4 percent of the U.S. population was represented 

by counties in the 2010 data set.26  The unit of observation is the county, and the measurement is 

number of arrests.  Two types of crime are analyzed in this study: property crime and violent 

crime.  Violent crime consists of murders, rapes, robberies, and aggravated assault.  Property 

crime consists of burglaries, larceny, and arson.   Number of arrests has been found to have a 

very high correlation with the number of crimes committed, and is often employed in the crime 

literature (see Lochner and Moretti (2004), among others).  The data are aggregated to the MSA 

                                                 
26 (Ranson 2014).   
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for the purposes of this analysis.  Summary statistics for the crime per capita variables are 

included in Table 2.6.27 

Control variables for the MSA-level analysis include geographic controls as well as a few 

demographic controls.  Population estimates are used to put the crime data into per capita terms.  

The data also come from the NACJD data set.  Specifications were also run which include 

variables accounting for population characteristics.  These data came from the U.S. Census and 

were acquired through ICPSR. 

2.6.2 Regression Analysis of MSA Arrests 

For the MSA-level analysis, the first-stage equation is altered accordingly: 

[3] AtmosphericLeadMSAit = α1 + δ1PostPeriodt + δ 2AirStagnationIndexi + 

δ3(AirStagnationIndex×PostPeriod)it + γWit + η0it 

Where “AtmosphericLeadMSA” is atmospheric lead at the MSA level, “PostPeriod” is a dummy 

variable taking on “0” for the “pre” period and “1” for the “post” period, “AirStagnationIndex” is 

MSA Air Stagnation Index, “AirStagnationIndex×PostPeriod” is the interaction term, W 

represents any MSA control variables, α1 is a constant, and η0 is the error term.  The dividing 

year (year t) used for this portion of the analysis is 1980 – atmospheric lead values are averaged 

for pre (1960 to 1979) and post (1980 to 2000) periods.  Since age of individuals and thus years 

of childhood exposure are unknown, the ranges of lead data used are expanded.  The “pre” and 

“post” periods for lead are 1960 to 1979 and 1980 to 2000.  The average lead for years before 

1980 provides a general estimate of atmospheric lead exposure for children born before or at the 

beginning of the phaseout.  Averaging lead values from 1980 to 2000 provides an estimate of 

atmospheric lead exposure for children born after lead levels had been greatly reduced. 

                                                 
27 One note about the data collection regards the handling of missing crime reports – missing data are accounted for 

using a different algorithm beginning in 1994 compared to earlier years.  Before 1994, annual data for jurisdictions 

not reporting at least six months of crime statistics were excluded from county totals; however, from 1994 onward, 

any jurisdiction with some available data could be included in the county totals through weighting or substitution. 

Further, MSA population for several years in the “pre” period is total population, while in most years MSA 

population only includes those counties that have associated crime data.  Additional details on how the NACJD data 

sets were created can be found at http://www.icpsr.umich.edu/icpsrweb/content/NACJD/guides/ucr.html#desc_cl 
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The second-stage equation is 

[4] Arrestsit2= α2 + β1𝐴𝑡𝑚𝑜𝑝𝑠ℎ𝑒𝑟𝑖𝑐𝐿𝑒𝑎𝑑̂ it1+ β2PostPeriodt + β3ASIi + βZit + ε0it 

“𝐴𝑡𝑚𝑜𝑝𝑠ℎ𝑒𝑟𝑖𝑐𝐿𝑒𝑎𝑑̂ ” is the predicted change in lead levels as instrumented by the 

“AirStagnationIndex×Post” variable, “AirStagnationIndex” and “PostPeriod” represent the MSA 

air stagnation average and cohort dummy variable respectively, and Z is the appropriate vector of 

control variables.  The constant here is α2 and the error term is ε0.  The outcome analyzed is 

“Arrests”, measured as the period average of arrests (property crime or violent crime) per one-

thousand residents.  In some specifications, the logarithm of arrests is used; in such 

specifications, the logarithm of period average MSA population is included as a control variable.

 For the arrest variable, the “pre” and “post” periods are 1980 to 1990 and 2000 to 2010.  

These periods are matched to their respective counterparts in the first-stage regression. 

Figures 2.8 and 2.9 show the relationship between atmospheric lead and changes in MSA crime 

over time.  The “pre” and “post” periods for lead are 1960 to 1979 and 1980 to 2000, while the 

“pre” and “post” periods are 1980 to 1990 and 2000 to 2010 for crime.  The period selections 

account for childhood exposure to lead and the mechanical element of aging into committing 

crime years after the most-impactful lead exposure occurs.  A greater decrease in lead is 

associated with a larger decline in crime over time (see Figure 2.8).  Figure 2.9 shows the 

relationships between ASI and crime trends that are seen in the data.  For property crime, a 

higher ASI (more air stagnation) is associated with a greater decline in crimes per capita (see 

Figure 2.9, Left Panel).  Based on the graph, ASI and the change in violent crime per capita have 

little to no relationship (see Figure 2.9, Right Panel). 

Regressions were run both using observations for all years of available data and using 

“pre” and “post” period averages by MSA.   Due to the similarity of the results and the greater 

simplicity of the latter set, only the period-based regressions are included and discussed here.  

For all of these regressions, standard errors are clustered by MSA.  Table 2.7 shows the first-
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stage results.  The dependent variable is MSA-averaged atmospheric lead in μg/m3 averaged by 

period.  The relationship between atmospheric lead levels and the ASI interaction term is once 

again negative and strongly statistically significant. 

The reduced-form regressions directly show the relationship between ASI and crime 

trends, while the IV regressions show the lead-crime trend relationship when lead is 

instrumented by ASI.  The sample analyzed is all MSAs meeting the data requirements, and the 

years are 1980 through 1990 and 2000 through 2010.  The dependent variable is number of 

arrests (or arrests per capita) for property or violent crime.  For most of the specifications, the 

crime data are in per capita form by thousand residents – meaning a “1” represents one crime per 

thousand people.  To better gauge the direct impact of ASI and atmospheric lead on crime trends, 

the logged specification uses the logarithm of crime as the dependent variable and employs the 

logarithm of MSA population as a control variable. 

Results for the reduced-form regressions are included in Tables 2.8a and 2.8b.  In the 

property crime regressions (see Table 2.8a), the coefficient estimates are statistically significant 

at the 1 percent significance level in the basic specification.  Based on the results, being in the 

95th percentile in ASI implies an additional decrease in property crime of roughly two property 

crimes per thousand residents compared to an MSA in the 50th percentile of ASI.   The estimated 

negative effect is slightly weaker in magnitude and statistical significance when adding in 

regional controls (see Column (2)).  Specifications using the logarithm of crime as the dependent 

variable yield intuitively comparable results (see Columns (3) and (4) of Table 2.8a).  The 

violent crime results are generally not statistically significant (see Table 2.8b).  The estimated 

coefficients are negative when using the logarithm of crime as the dependent variable and 

including population as a control; the coefficient on the ASI-time interaction terms is statistically 

significant at the 5 percent level in the most basic specification (see Column (3) of Table 2.8b). 

This estimate suggests that an additional air stagnation period per month would imply a 2.5 
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percent reduction in violent crime. 

Turning to the IV regression results in Tables 2.9a and 2.9b, the impact of atmospheric 

lead on crime is positive as expected.  In the level regressions, a 1 μg/m3 decrease in lead implies 

a reduction in property crime ranging from around 5 crimes per thousand to around 9 crimes per 

thousand (see Table 2.9a).   The estimated coefficients are statistically significant at the 5 percent 

level in the most basic regression.  The violent crime regressions in levels do not yield 

statistically significant results for the estimated effect of lead on crime (see Table 2.9b). 

Columns (3) and (4) of Tables 2.9a and 2.9b present regression results for the period-based 

sample when using logged crime as the dependent variable and including logged MSA 

population as a control variable.  The results for property crime are intuitively comparable to the 

level results, but violent crime results differ from those for the level regressions.  In the logged 

specification, the effect of lead is positive and statistically significant in the most basic 

specification (see Columns (3) and (4) of Table 2.9b).   

From the most basic results, the elasticity of property crime with respect to atmospheric 

lead is 0.51, while the elasticity of violent crime with respect to atmospheric lead is roughly 0.32.  

These estimates suggest that a 100 percent decline in atmospheric lead implies a reduction in 

property crime of 51 percent and a decline in violent of 32 percent.  When adding in regional 

controls, the elasticity becomes 1.29 for property crime and 0.24 for violent crime.  Factoring in 

the drop in average atmospheric lead from 1975 to 1985, my estimated elasticities would predict 

a 14 to 26 percent decline in violent crime from 1995 to 2005.  Numerous factors can impact 

crime rates, and the results of this analysis support the hypothesis that childhood lead exposure 

may be an important factor to consider. 

There is support in the literature for the results of the MSA-level analysis in this study.  

Though different in their analytical framework, studies such as Stretesky and Lynch (2004) and 

Lersch and Hart (2014) also find the effects of atmospheric lead on property crime to be larger 
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than such effects on violent crime.  Several studies in the literature have identification 

frameworks similar to that in the present study.  No previous study uses ASI, but the atmospheric 

lead results can be compared to some past work.  Reyes (2007) performs a panel data state-level 

analysis using gasoline lead content as an instrument for atmospheric lead.  The results show no 

statistical effect of atmospheric lead on property crime, but the elasticity of violent crime with 

respect to atmospheric lead is estimated to be 0.8.  Mielke and Zahran (2012) investigate the 

effect of lead emissions in six U.S. cities (San Diego, Indianapolis, Chicago, New Orleans, 

Minneapolis, and Atlanta) on aggravated assault rates 22 years later.  The study finds that a 1 

percent decline in air lead implies a 0.46 percent drop in aggravated assault rates 22 years later.  

As they relate more closely to the literature estimates, the violent crime elasticity estimates are 

more relevant to this discussion.  The estimates in this study imply violent crime elasticity to be 

around 0.32 in the most basic specification and about 0.24 when controlling for region and 

region-time effects. 

The elasticity estimates in these past studies are higher than those in the present analysis.  

Some variation is to be expected given the nature of this type of environmental exposure analysis 

(reliance on monitor data, aggregation over a geographic area, etc.).  The difference in results 

could also be driven by improper identification that causes positive bias in past estimates.   The 

instrument of state lead content of gasoline used in Reyes (2007) is not naturally occurring like 

the ASI instrumental variable used in the present analysis.  Lead content reductions were 

indirectly due to EPA regulation and directly determined by petroleum companies, but local 

preferences and conditions would still affect demand for different types of gasoline.  Drivers of 

demand (e.g. socioeconomic status) could also affect or be related to crime.  It is also possible 

that local or state conditions contributed to the practices of the corresponding petroleum 

companies.  If petroleum company behavior before or during regulation was influenced by state 

or local conditions that relate to crime, this could also bias the results. 
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The estimated elasticity in Mielke and Zahran (2012) is more comparable to the estimate 

in the present analysis, but still higher.  This could simply be due to their focus on aggravated 

assault – lead exposure may have a greater impact on assault than on violent crime as a whole.  

The study is also limited in its sample size of six cities, so results could be higher simply due to 

the nature of these select urban centers.  Further, the identification strategy is to use relevant 

control variables such as city income and youth population.  The lack of an instrumental variable 

strategy presents greater risk of unobserved variable bias.  Maybe an active local government 

pushed for anti-lead initiatives as well as other measures that improved local living and rendered 

people less likely to assault each other. 

2.6.3 Graphical Analysis: The Case of California 

To further assess the strength of the primary results, I graphically analyze these MSA-

level data within California.  California is crucial to the strength of the instrumental variable 

strategy in this analysis.  This is not too surprising as California MSAs represents much of the 

upper tail for both air stagnation and atmospheric lead.  It is concerning if there are confounding 

state-level differences for California that are driving the crime results.  California has variation in 

air stagnation within the state, and any potentially confounding state-level difference (e.g. crime 

policy) should affect all California MSAs– presumably independently of air stagnation.  Within 

California, the lead-ASI relationship is as expected and seen in the full sample – bigger declines 

in atmospheric lead were seen in higher ASI MSAs (see Figure 2.10). 

The graphical relationships between crime trends and the two environmental measures 

(atmospheric lead and ASI) are generally as expected.  These relationships are depicted in 

Figures 2.11 and 2.12.  The decline in atmospheric lead is negatively associated with changes in 

violent crime per capita for MSAs within California (see Figure 2.11, Right Panel).  The decline 

in atmospheric lead is also negatively associated with changes in property crime per capita in 

California (Figure 2.11, Left Panel).  In California, property crime per capita shows a positive 
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relationship with ASI at the MSA level (see Figure 2.12, Left Panel); however, the expected 

negative relationship is estimated for changes in violent crime per capita (Figure 2.12, Right 

Panel).  

The regression analysis of the full MSA sample and the graphical analysis of the 

California MSAs provide additional support for the results in the main analysis.  The regression 

analysis generally estimates the expected relationships between atmospheric lead and crime 

trends and ASI and crime trends.  Often the estimated effects are statistically significant.  

Graphical analysis of MSAs in California and all MSAs not in California show relationships 

similar to those seen in the full sample analysis.  Further, the inclusion of California appears 

most important in the first-stage analysis of the relationship between atmospheric lead changes 

and ASI.  This makes sense as California contains most of the highest ASI areas as well as many 

of the areas with the largest declines in atmospheric lead.  The results of the supporting analysis 

of arrests at the MSA level do not eliminate all potential concerns with the primary analysis; 

however, they provide strong evidence that supports the main findings. 

2.7 Discussion 

As touched upon earlier, two elements are critical in the identification strategy of this 

analysis.  The results show that ASI does affect changes in atmospheric lead, validating the first 

condition needed for this methodology to be appropriate.  As for the second condition, the 

analysis does produce evidence that ASI relates to trends in crime, assumedly through its effect 

on changes in atmospheric lead levels. This assertion rests on the assumption that ASI is not 

related to crime trends through other channels.   

The supporting analysis discussed in the prior section is in accord with the estimated 

effects from the main analysis; however, a primary concern with the instrument is that ASI will 

likely have similar impacts on pollutants other than lead.  Indeed, Table 2.10 shows first-stage 

results using 1980 through 2010 ozone instead of lead.  These data are from the U.S. EPA.  
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Ozone is the primary component of smog and is used here to represent “clean air”.  As these data 

do not extend far enough back to perform the main analysis using ozone instead of atmospheric 

lead, running such a robustness check is regrettably outside the scope of this analysis.  However, 

the estimated relationship between ozone trends and ASI seen in the data is not nearly as strong 

as that between atmospheric lead changes and ASI.  This could be due to ozone being more 

impacted by industrial sources of pollution as well as more recent environmental policies 

specific to ozone.   

From a scientific perspective, the health and developmental consequences of lead 

exposure are more directly relevant to criminal behavior compared to those of other air pollutants 

(e.g. respiratory issues).  Other atmospheric lead studies have found no effect of general air 

pollution on crime (for example, Stretesky and Lynch (2004)).  However, past work outside the 

lead literature has shown a link between general air pollution exposure and childhood health 

outcomes such as asthma or adverse birth effects (see Currie, Neidell, and Schmieder (2009), and 

Sanders (2012), among others) that could relate to later life outcomes (e.g. education).  Since 

educational attainment can relate to crime (see Lochner and Moretti (2004), among others), an 

indirect relationship between childhood air pollution exposure and criminal activity could exist.  

Bounding can be performed to provide a rough estimate of the potential effect of general 

air pollution on crime.  I employ the results of several past analyses to link air pollution to birth 

weight to educational attainment.  In light of its presence in car exhaust, a reduction in emissions 

over time (though not nearly as great as that for lead), and past usage in the literature, I select 

carbon monoxide as a representative pollutant for this exercise.  Currie et al. (2009) estimates the 

impact of carbon monoxide pollution on birth outcomes.  The study also performs a bounding 

exercise using results from Black, Devereux, and Salvanes (2007).   Black et al. (2007) analyzes 

the effects of birth weight on an array of outcomes using twin data, and the high school 

attainment impacts estimated in the study can then be linked to incarceration results in Lochner 
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and Moretti (2004). 

An upper bound estimate for an effect of general air pollution (here represented by 

carbon monoxide) on education will now be derived.  Given data availability, the change in 

carbon monoxide during the 1980s will be used for comparison to the drop in lead during the 

primary leaded gasoline phaseout years.  Currie et al. (2009) estimates that a one part per million 

increase in carbon monoxide would decrease birth weight by roughly 0.005 percent.  From 

available EPA data, the average carbon monoxide level in the United States decreased roughly 

three parts per million between 1980 and 1990 with most of the drop coming after 1982.  An 

accompanying change in birth weight based on the Currie et al. (2009) results would then be 

roughly 0.015 percent.  From Black et al., a 10 percent increase in birthweight increases the 

probability of high school completion by roughly 1 percentage point.  So, the national average 

change in carbon monoxide in the 1980s would imply a 0.0015 percentage point increase in the 

likelihood of high school graduation.  Graduating from high school (a binary variable) is 

estimated in Lochner and Moretti (2004) to reduce incarceration risk by roughly 0.9 percentage 

points for whites and roughly 8 percentage points for blacks.  This implies that the carbon 

monoxide drop in the 1980s would increase high school graduation probability by 0.00135 and 

0.012 percentage points for whites and blacks respectively. 

Recall that the present analysis estimated that a 1 µg/m3 drop in atmospheric lead reduced 

incarceration likelihood by roughly 0.4 percentage points.  For this exercise, I will take the 0.012 

percentage point estimate as an upper bound for a carbon monoxide effect on incarceration and 

assume that a general air pollution effect roughly this size was part of the estimated impact of 

atmospheric lead on incarceration likelihood.  So, a 1 µg/m3 drop in atmospheric lead during the 

leaded gasoline phaseout would still reduce incarceration likelihood by about 0.388 percentage 

points.  Clearly, the estimated “general air pollution” effect is a rough estimate using one 

representative pollutant and also assumes adequate generalizability and correct effect estimation 
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in these past analyses; however, this exercise implies that such an impact of other air pollution 

on incarceration would be quite small. 

2.8 Conclusion 

Past studies have linked lead exposure to an array of health concerns and adverse 

outcomes.  In the United States, lead levels in the environment declined substantially during the 

leaded gasoline phaseout; however, the negative intellectual and behavioral outcomes that may 

be associated with lead exposure as a child could manifest themselves later in life.  Exposure to 

atmospheric lead could vary greatly based on when and where an individual was born.  The 

literature has found some evidence of an effect of lead exposure on outcomes such as crime; 

however, endogeneity concerns persist. 

The present study addresses the issue of endogeneity through use of an air stagnation 

instrumental variable.  Air stagnation is a natural characteristic of a geographic area that affects 

atmospheric lead but is not impacted by trends that may be related over time to both atmospheric 

lead changes and changes in outcomes such as crime.  Two major assertions are made in order to 

employ this methodology – air stagnation should be related to atmospheric lead trends, but air 

stagnation should not be directly related to crime trends.  The first assumption is met as air 

stagnation and changes in atmospheric lead have the expected relationship, and the relationship 

is highly statistically significant.  Some potential confounders of the second assumption are 

addressed in several ways.  Control variables for region, demographics, and the associated time 

trends are included in most specifications.  Additional analysis produces intuitively comparable 

estimates when examining crime trends at the MSA level.  These estimated relationships are also 

seen graphically for MSAs within the state of California.   

The results of this analysis support past findings that atmospheric lead impacts crime 

trends while also showing that air stagnation relates to crime trends through its effect on the 

residence time of atmospheric lead in the environment.  ASI is found to have negative effects on 
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incarceration trends.  ASI is also shown to have a statistically significant effect on atmospheric 

lead changes.  The results imply that the effect of childhood atmospheric lead exposure on 

incarceration is positive as expected and statistically significant.  The estimated effect is around a 

0.4 percentage point decrease in probability of incarceration between cohorts for a 1 μg/m3 drop 

in atmospheric lead.  A 1 μg/m3 decrease is around the average decline in lead between the two 

birth cohorts, and roughly 2.5 percent of the sample is institutionalized.  So, an average decline 

in atmospheric lead implies a roughly 16 percent smaller probability of being institutionalized 

for the “post” cohort compared to the “pre” cohort. 

The study finds evidence supporting past scientific findings regarding the health 

consequences of childhood lead exposure as well as the notion that such developmental impacts 

could manifest themselves in criminal activity.  The results imply both individual and societal 

ramifications from the immense drop in atmospheric lead caused by the leaded gasoline 

phaseout.  From a policy perspective, the alternative to proactive policy to prevent exposure to 

harmful substances is to treat exposure consequences ex-post.  The results of this and other 

analyses show major positive effects from reducing lead exposure, and past cost-benefit analysis 

has shown the leaded gasoline phaseout was highly successful proactive policy.  As reducing air 

pollution remains a top priority in the U.S. and abroad, major environmental policy decisions 

will continue to impact society.  Further, while atmospheric lead exposure is less of a concern 

today than it had been in the past, troubling lead exposure situations persist (e.g. the water crisis 

in Flint, Michigan, lead paint in older housing, and more-recent leaded gasoline phaseouts in 

other nations within the past twenty years).  Addressing lead exposure concerns (particularly 

childhood exposure sources) through policy interventions is becoming an increasingly relevant 

issue.  Additional research into such policy measures and the benefits of reduced lead exposure 

could be quite useful. 
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3. Labor Market Impacts from Ozone Nonattainment Status: A Regression 

Discontinuity Analysis 

3.1 Introduction 

In 1963, the United States passed the Clean Air Act (CAA) in order to protect its citizens 

from hazardous air contaminants.  In the 1970s, amendments to the CAA were passed to give the 

legislation more force.  Among the more prominent tools created were the National Ambient Air 

Quality Standards (NAAQS) and the accompanying attainment/nonattainment designations.  The 

NAAQS created air quality standards to which counties were supposed to adhere.  Counties in 

violation of the air quality standards were labeled “nonattainment”, while those who met the 

standard were labeled “attainment”.  Nonattainment counties are subject to stricter environmental 

regulation and potential penalties for remaining in violation of the NAAQS, such as mandated 

technology improvements, penalty fees, or diminished funding from the federal government.  

The regulations and penalties were heightened in the 1990 CAA amendments, and the NAAQS 

have been modified for several pollutants since their first inception.  A more-detailed account of 

the NAAQS and nonattainment status is given in the next section.  

Nonattainment status and the accompanying regulations are important to analyze for an 

array of reasons.  While there are clearly environmental benefits to cleaning up the air, a stated 

purpose of the CAA is to protect public health.  While societal benefits of reduced air pollution 

can help validate such policy, the potential effects of air quality regulation on local industry are 

cause for investigation.  The exact nature of these effects (if they indeed exist) is theoretically 

ambiguous.  Households may opt to live away from polluted areas, or they may need to live in a 

highly polluted area because of job availability.  Firms may desire to locate in polluted areas 

where other firms are located in order to capitalize on agglomeration economies, or they may 

choose a laxer regulatory environment.  Air pollution could be reduced if high abatement costs 

induce polluting firms to not locate in a nonattainment area; however, reductions in air pollution 
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could also come about as firms clean up their present establishments, or new firms start out with 

greener technology.  With stricter regulations or pressure from local governments, firm costs 

may increase as they are mandated to adopt new technologies or reform their current production 

means to be more environmentally friendly.  Such changes could result in cutting workers to 

save on cost. 

Reducing the size or concentration of polluting firms would likely have air quality 

benefits but could hypothetically harm local economies dependent on such industries.  On the 

other hand, while individual polluting firms may be affected, local economies overall may be 

stable as displaced workers shift industries, or economies simply move away from being 

manufacturing-based.  Additionally, nonattainment status could alter how local governments 

behave with regard to industry. 

 This study focuses on ozone regulations and standards because of the emphasis of past 

literature on ozone effects, the prevalence of counties in nonattainment for ozone, and 

developments in the realm of regulations and standards for ozone.  The sample years range from 

2004 to 2011.  The main question in this study regards how, if at all, local economic activity is 

affected by a county being designated nonattainment status during this period.  The focus is on 

employment and establishments in highly polluting industries, but total county employment and 

establishments are also analyzed for comparative purposes.  In answering the main research 

question, this study employs a regression discontinuity (RD) design.  RD design is a technique 

that can be utilized to determine the effect of a policy or treatment by looking at those just above 

and just below a threshold that determines treatment.  Assuming these entities around the 

threshold are similar in most regards aside from the treatment (here, nonattainment status), an 

RD regression will yield an estimate of the local average treatment effect.  RD design can 

improve upon other econometric methods (e.g. ordinary least squares) by better controlling for 

unobserved differences and reducing omitted variable bias. 
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This study finds nonattainment status to have a negative effect on employment and 

establishments in affected industries – specifically highly polluting industries with regard to 

ozone; however, the analysis finds no statistically significant effects for countywide conditions 

across all industries.   For polluting industries, the estimated impacts of nonattainment status are 

roughly 24 percent lower employment and about 9 percent lower number of establishments.  

Several supplemental regressions are performed to investigate the nature of the impact.  In order 

to provide context for the present analysis, it is useful to now describe nonattainment status in 

greater detail and discuss the past literature. 

3.2 Background Information: Nonattainment Status Designation 

The NAAQS create a threshold which, in most cases, determines whether a county is 

attainment or nonattainment for a given air pollutant.  A county will be considered 

nonattainment if it fails to meet the NAAQS or is considered a “contributor” to a nearby 

nonattainment county.28  A nonattainment county is subject to any accompanying regulations or 

penalties until it sufficiently cleans up, or a new standard is put in place.    

Based on the CAA Amendments of 1990, all states submit a state implementation plan 

(SIP) when new NAAQS are introduced.  SIPs show how a state will attain and/or maintain the 

air quality standards for different pollutants. The SIP outlines what relevant regulatory actions 

will be taken (emission control requirements, air quality management programs, etc.). 

Nonattainment areas require more intensive SIPs than attainment areas, and these SIPs are 

supposed to be submitted by a certain due date (usually within one to three years of designation). 

These areas must adopt additional programs in order to demonstrate a commitment to meeting 

and maintaining the NAAQS.  If a state does not submit the necessary SIP for its nonattainment 

area(s), the U.S. Environmental Protection Agency (EPA) will step in and develop a federal plan 

that may not be in the best interest of the county and/or state.  Further, states/counties could be 

                                                 
28 https://www.epa.gov/ozone-pollution 
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subject to losing federal highway funds.  

To acquire attainment status, a nonattainment area must meet the air quality standard and 

develop the proper SIP.  Required SIP components for the 1997 NAAQS for ozone include 

ozone attainment demonstration, emissions inventory, emissions monitoring, transportation 

control measures, and "reasonably available" control measures and techniques at the county level 

as well as at the firm level for polluting industries.  Reasonably available control 

measures/techniques refer to “the lowest emission limitation that a particular source is capable of 

meeting by the application of control technology that is reasonably available considering 

technological and economic feasibility" and are applicable to existing firms looking to expand 

operations.29  New firms are typically subject to meeting the lowest achievable emission rate 

guideline set forth by the EPA on a case-by-case basis.  Failure to meet the NAAQS by the 

EPA’s due date can also lead to penalty fees.  For example, several counties in New Jersey were 

subject to such fees in 2009 for failing to meet the NAAQS by 2007.  Fees were assessed on 

facilities with emissions over the EPA’s calculated baseline emissions – the estimated fee was 

$7,951 per ton of emissions over the baseline.30 

The initial amendments to the Clean Air Act were passed in 1970 and 1977, with 

nonattainment designations stemming from the latter set of amendments.  In 1990, amendments 

were passed to the CAA that raised air quality regulations and made penalties for nonattainment 

harsher for all pollutants.  In 1997, the NAAQS for ozone were changed and an 8-hour standard 

was chosen to replace the previous 1-hour standard.  After legal battles, the new NAAQS for 

ozone were finally officially adopted in 2004.  In 2008, the standards for ozone were tightened 

from 0.08 parts per million to 0.075 parts per million.  Again, there were legal troubles, and the 

new ozone NAAQS began in 2012. 

                                                 
29“NOx RACT Summary”.  https://www3.epa.gov/region1/airquality/noxract.html 
30 All4 Inc.  http://www.all4inc.com/northeastern-new-jersey-nonattainment-penalty-fees-for-ozone 
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3.3 Literature Review 

 Past research has investigated such questions of how air pollution regulations, 

specifically those attached to nonattainment status, affect industrial activity.  In line with the 

theoretical perspectives, the overall results of these analyses have been ambiguous; however, 

studies have found significant negative effects of nonattainment status on industrial activity 

aspects such as manufacturing employment, firm location decisions, and firm investment.  These 

effects can differ across industries as well as across types of pollutants. 

Environmental regulations, particularly nonattainment status, have been found to affect 

several key areas.31  Studies on the potential impact of nonattainment on the economic outcomes 

discussed in the present study include McConnell and Schwab (1990); Henderson (1996); Kahn 

(1997); Becker and Henderson (2000); Berman and Bui (2001); Greenstone (2002); List, 

McHone, and Millimet (2004); Condliffe and Morgan (2009); Lowe and Islam (2009); Cole, 

Elliot, and Lindley (2009); Walker (2011); Walker (2013); and Kahn and Mansur (2013). 

 Based on the existing literature, air pollution and environmental regulations could have 

effects on economic outcomes in various ways.  While there is no general consensus in the 

literature, past research has found negative, statistically significant effects of nonattainment 

status on manufacturing industries – particularly for firms that are the largest polluters.  The 

literature employs a number of proxies for industrial activity, most notably employment and firm 

location decisions.  Studies such as Greenstone (2002) find effects on employment, while studies 

like Henderson (1996) see negative effects on industrial firm numbers through the impact of 

nonattainment status on firm locational decisions.  Past research has analyzed variation across 

industries based on pollution intensity, and ozone is often the pollutant of interest.  Studies have 

examined effects at the plant level as well as at larger geographic levels.   

                                                 
31 Studies of the impact of nonattainment status on outcomes not researched in this present study include Jorgenson 

and Wilcoxen (1993); Greenstone (2003); Becker (2005); Altman (2001); Chay and Greenstone (2005); 

Auffhammer, Bento, and Lowe (2011); Carr (2011); and Greenstone, List, and Syverson (2011).   
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 This study strives to fill several gaps in the literature.   First, RD can improve on past 

estimates of the effects of nonattainment status on labor markets by better controlling for 

unobservable factors (see Lee and Lemieux (2010), among others).  The NAAQS program 

design fits well with the RD methodology; however, the literature is lacking in studies 

employing this technique.  RD analysis is used in Chay and Greenstone (2005), but it is used to 

study the effect of county nonattainment status on local housing prices, not industrial activity.  

Kahn and Mansur (2013 Working) analyzes the potential effect of nonattainment status on 

industry using RD analysis, but the focus is on geographically adjacent counties rather than those 

with comparable designation values.  Focusing on counties around the designation value 

threshold helps to isolate the policy impact of the NAAQS comparing counties that are nearly the 

same in air quality but are regulated differently.  Further, RD design also allows for the 

estimation the effect of distance from the threshold.  Firms in nonattainment counties (or the 

counties themselves) that are very close to attainment could behave differently than firms in 

counties (or counties as a whole) that have worse pollution and little chance of meeting the 

NAAQS.   

The literature is also limited in its use of recent NAAQS; many of the past studies are 

performed using data from the 1970s, 1980s, or 1990s.  This study analyzes the period of the 

second-most recent update of the NAAQS and better reflects modern economic conditions.   

Finally, nonattainment status is a county-level regulation; however, the literature has rarely 

analyzed the total effect of the regulations on local economies across the United States.  This 

chapter focuses on labor market impacts to examine whether such potential regulatory effects 

have broader implications than just affecting individual firms.  If there are ramifications of 

nonattainment status for local economies, not just individual plants or specific industries, 

comparing costs and benefits of air quality regulation becomes a more interesting and necessary 

endeavor. 
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3.4  Data 

 The geographic area of analysis for this study is the contiguous United States, with 

observations at the county level.  The environmental data come from the U.S. Environmental 

Protection Agency (EPA). The EPA provides nonattainment status designations dating back to 

1978.  It also provides air quality data for counties with monitors for a given pollutant (ozone, 

sulfur dioxide, etc.) from 1980 to the present.  The EPA uses this monitor data to calculate 

designation values for all counties.  The designation values come via the EPA Green Book.  

Designation values are calculated differently for different years and pollutants.  For ozone, the 

designation values in 2004 were, except for several unique situations, determined by averaging 

the annual fourth-highest maximum 8-hour concentration of ozone from 2001, 2002, and 2003.  

Official designation values were released in 2004 by the EPA.  The 1997 threshold (in place 

from 2004 until 2012) is technically set at .08 parts per million (ppm); however, due to rounding 

practices, the threshold in practice is .085 ppm.32  For years prior to 2004 (before the 1997 

standard went into effect), ozone attainment was defined as having a maximum hourly 

concentration above the one-hour ozone threshold of 0.12 ppm for no more than one day per year 

(see Table 3.1).33 

If a county was in violation of the standard for a given pollutant or deemed a contributor 

to a nearby county’s violation, that county received nonattainment status.  Therefore, some 

counties that were not directly in violation of the NAAQS for ozone still received nonattainment 

status.   Alternatively, some counties with 2004 designation values above the threshold did not 

receive nonattainment designation.  These counties were in areas that received Early Action 

Compact (EAC) status.  If an area makes a valid case for having its air quality measuring redone, 

nonattainment designation is deferred to a later date.  Counties in the EAC areas then had new 

                                                 
32 Designation values are typically listed as an integer, meaning the parts per million measurement is multiplied by 

1,000 (i.e. the ozone threshold is a designation value of 85). 
33 The original standard was not officially revoked until 2005; however, no counties in my primary data sample were 

simultaneously in attainment for the 8-hour standard and nonattainment under the 1-hour standard in 2004. 
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designation values determined based on 2005, 2006, and 2007 ozone readings.  If the new 

designation value met the NAAQS, that area was designated attainment.34 

For the period analyzed, fourteen geographic areas were EAC.35  Of these, thirteen met 

attainment by the required date and were never designated as nonattainment areas.36  Effectively, 

their initial designation values were ignored, and they were considered to have met the threshold 

(i.e. in attainment) conditional on being reassessed a few years later.  The only EAC area that 

was later designated nonattainment was the greater Denver area in Colorado.  This study’s 

sample of counties includes nineteen EAC counties that were initially above the threshold but 

successful deferred and avoided nonattainment status under the 8-hour standard.  To determine if 

such counties are affecting the regression results, robustness checks are run excluding the 

successful EAC counties from the regressions. 

This study utilizes the designation values as well as the nonattainment statuses for 

counties which had ozone monitors during the period analyzed.  651 such counties meet the air 

quality data needs of this study.  Some counties that have monitors for ozone did not have the 

needed economic or population data for the purposes of this analysis and were excluded from the 

sample.  The counties in the full sample have an average 2004 designation value of 82.75, so the 

average county would be just below the threshold.  

The economic data at the county level come from the U.S. Census County Business 

Patterns.  U.S. Census data, including but not limited to the County Business Patterns, are the 

most common source of employment and establishment measures in this particular literature (see 

Henderson (1996), Kahn and Mansur (2013), among others).  The population data come from the 

2000 U.S. Census.  The economic data are taken as annual averages by county by industry.  The 

outcome variables of interest are employment and number of establishments.  For the County 

                                                 
34 EPA Greenbook. 
35 “Geographic area” may represent one or multiple counties. 
36 EPA Greenbook. 
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Business Patterns, most of the industry-level employment data are confidential; however, the 

numbers of firms per county with given ranges of employment (e.g. five firms with 50 to 99 

employees) are available for all counties.  In order to estimate industry-specific county-level 

employment, the midpoints for each range are utilized with the number of establishments in each 

employment range.  The general formula is the countywide sum of the number of firms in 

polluting industries in each given employment range multiplied by the midpoint for that given 

range.37   For example, if county X has two firms with 1 to 4 employees and one firm with 5 to 9 

employees, the midpoint estimate would yield 12 employees.38 

The primary sample of interest contains industrial employment and establishments in 

highly polluting industries.  The standard for “highly polluting” used in this study comes from 

Greenstone (2002), which considers polluting industries to be those that contribute 7 percent or 

more of nationwide emissions for a given pollutant.39  The present study takes the Standard 

Industrial Classification (SIC) codes provided in Greenstone (2002) and matches them to related 

North American Industry Classification System (NAICS) codes.  The following are broad 

categories of highly polluting industries for ozone: Printing; Organic Chemicals; Rubber and 

Plastic; Fabricated Metals; Motor Vehicles; Petroleum refining; Stone, Clay, Glass, and 

Concrete; Pulp and Paper; and Iron and Steel.  All of these industries are classified under NAICS 

two-digit codes 32 and 33.  Summary statistics for the outcome variables for the polluting 

industry sample are included in Table 3.2.   

3.5  Methodology 

 The main methodology for this study is a regression discontinuity approach.  Lee and 

Lemieux (2010) and Imbens and Lemieux (2008) provide excellent overviews of the technique 

                                                 
37 The author acknowledges that this process is imperfect.  It may miss smaller changes that occur within a range of 

employment, misestimate the size of employment changes when moving from one range to another, etc. 
38 Measures were also developed using range minima and maxima in place of midpoints.  These are of course 

correlated with the midpoint-calculated estimates, and using such estimates in the regression analysis yields 

intuitively comparable results.  They are thus excluded from the dissertation, but are available upon request. 
39 For ozone, the contributing emissions are either nitrogen dioxide or volatile organic compounds 
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for readers interested in a more technical discussion.  Of the two main variations of RD – sharp 

and fuzzy – the fuzzy is utilized in this study.  The fuzzy RD can be viewed as the two-stage 

version of the sharp RD.  Sharp RD is used when the probability of treatment is 0 or 1, meaning 

all participants to one side of the threshold are treated while none are treated on the other side.  

The outcome variable is a function of a binary treatment (here, it would be nonattainment status), 

the distance of the assignment variable from the threshold, the interaction of those two terms, 

and any control variables.  For example: 

[5] Outcomeit = β0 + β1T it + β2DVD i + β3T×DVDit + β4Popi + εit 

“T” would be 1 if county i is nonattainment in year t and 0 otherwise, “DVD” is the 2004 

designation value of county i minus 85, T×DVD is the interaction of T and DVD, and Pop is the 

2000 census population of county i.  The outcomes on the left-hand side would be county i 

polluting industry employment or establishments in year t.  The main coefficient of interest is β1, 

which represents the local average treatment effect of nonattainment status.  The coefficients for 

DVD and T×DVD respectively represent the effect of closeness to the threshold for attainment 

counties (β2) and the difference between those effects for attainment and nonattainment counties 

(β3).  

The fuzzy RD is utilized in this study and can be run as a two-stage least squares (2SLS) 

regression.  Fuzzy RD should be used if the probability of treatment is not binary.  For example, 

in this study, some counties below the threshold received nonattainment status, while some EAC 

counties technically above the threshold did not receive nonattainment status.  Further, counties 

could change designation status over the course of the sample.  For a sharp RD to be preferred, 

all counties below the threshold would initially be attainment and all above the threshold would 

be (and consistently remain) nonattainment.  The instrument for the fuzzy RD is a binary 

indicator of position around the threshold.  Here, the nonattainment status treatment variable “T” 

would be instrumented by a dummy variable, “D”, indicating whether designation value is above 
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85 (1 if 85 or higher, 0 otherwise).40  The second stage would then be equation (5) using the 

instrumented “T” variable from this first stage. 

Several important assumptions are tied to regression discontinuity design.  The major 

element of RD is the analysis of a discontinuity in the outcome variable around the assignment 

variable threshold.  The focus is then on observations close to the threshold.  As an example, 

Figure 3.1a shows average employment at the initial designation values.  Clearly, there is a 

positive jump in average polluting industry employment just after the threshold.  Since the 

employment numbers are raw and thus related to population, the jump may simply reflect more 

polluted areas being more populated.  Indeed, when controlling for population and using an 

employment per capita outcome measure, one sees a drop in average polluting industry 

employment soon after crossing the threshold (see Figure 3.1b).  After this drop, average 

employment in polluting industries is generally higher in counties with larger designation values.  

So, there is a discontinuity around the threshold in both graphs, but the direction of the 

discontinuity appears to be driven by population.  The graphs are similar for the establishment 

data, though the population-controlled discontinuity in the establishment data is not as clean as 

that for the employment data (Figures 3.2a and 3.2b). 

Population will have a direct effect on the variable for employment and possibly a direct 

or indirect effect on the establishment variable because these variables are in raw numeric form, 

i.e. a highly populated area is likely to have larger total employment and thus will probably have 

larger employment within sectors of the economy.  Population could be associated with the 

assignment variable (designation value) and thus could relate to the treatment variable 

(nonattainment status).  RD requires that no omitted variables be correlated with the treatment 

dummy variable.  Highly populated counties are more likely to be polluted and thus are more 

likely to have nonattainment status.  Further, the outcome variables are likely to be higher in 

                                                 
40 Note that counties that were initially nonattainment but later gained attainment status are given D = 0 for years 

after attainment status is acquired. 
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more heavily populated areas as manufacturing is likely to be more prevalent in polluted areas.  

These issues should become less of a concern as the range of designation values is narrowed so 

that only those close to the threshold are included.  Areas near the threshold should be more 

similar in terms of local economic environments as well as population.  Still, population is used 

as a control variable in all regressions. 

Selection is also a potential issue in RD analysis.  It should be difficult for counties to 

specifically “select” their ozone reading, but the possibility for strategically emitting pollution to 

garner low ozone readings does exist.41  While this notion more likely impacts individual plant 

readings, counties are aware of the threshold, so, in theory, they could make scheduling 

adjustments to try to get their emissions just under the threshold.  Selection issues can be 

examined by looking at the frequency of counties around the threshold (See Figure 3.3).  

Counties would prefer to be attainment rather than nonattainment, so selection would be a 

concern in this study if there were a large concentration just under the designation value 

threshold.  Based on the density of counties around the threshold, this does not appear to be a 

problem.  The peak in the kernel density graph appears to the right of the threshold with a sort of 

valley occurring just below the threshold. 

 The baseline panel regression is done with the outcome variables in levels, nonattainment 

status as the treatment variable, year and region (as defined by the U.S. Census) dummies, and 

population as a control variable.  The optimal bandwidth was found to be 1.6868, which has been 

rounded up to 2 due to the discrete nature of the assignment variable.  With discrete assignment 

variables, some data away from the threshold is needed.42  Based on this information, the 

preferred bandwidth is a designation value range from 82 to 88.  These represent counties that 

                                                 
41 Henderson (1996). 
42 Lee and Card (2008). 
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are close to the threshold but numerous enough to provide adequate power for the RD analysis.43  

For reference, regressions are also run using a designation value range from 75 to 95 that covers 

most of the full sample of counties.  These results will help show the value (if any) of narrowing 

the sample of counties to those close to the threshold. 

3.6  Regression Discontinuity Results 

 Nonattainment designation is not perfectly correlated with a designation value of 85 or 

greater; thus, a fuzzy RD is the preferred approach for this analysis.  I include baseline 

regressions using ordinary least squares (see Table 3.3) and two-stage least squares (Table 3.4).  

Table 3.5 contains the fuzzy regression discontinuity results for outcomes of polluting industry 

employment and establishments.  The results included are those utilizing the logarithmic form of 

the assorted dependent variables.44  Standard errors are clustered based on county.  As in the 

baseline regressions, the RD specifications contain a population control as well as year and 

region dummy variables.  As anticipated, the population effect is positive and statistically 

significant, while the year effects are all negative and statistically significant.  The variable of 

interest – nonattainment status – has a negative coefficient for both ranges of designation values.  

The results are stronger in magnitude when the sample is limited to counties closest to the 

threshold.  For nonattainment counties near the threshold (DV range 82 to 88), the estimated 

treatment effect is roughly 24 percent lower employment in polluting industries for 

nonattainment counties compared to similar attainment counties.  The establishment results are 

also negative but statistically insignificant.   

The treatment effect estimates for employment in the fuzzy regression discontinuity 

design are generally stronger in statistical significance and magnitude than those for both the 

OLS and 2SLS baseline regressions.  The 2SLS estimated treatment effect is nearly identical to 

                                                 
43 Samples using similarly narrow designation value ranges around the threshold yield comparable results to the 

preferred sample. 
44 Regressions using levels as the functional form of the dependent variables yield intuitively comparable results.  

These are available upon request. 
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the wider sample RD estimate; however, the RD estimated treatment effect for the narrow range 

is stronger in magnitude and significance than its 2SLS counterpoint.  The establishment results 

for the fuzzy RD are also larger in magnitude than those in the baseline regressions but remain 

statistically insignificant, though the narrow sample yields a higher t-statistic than that in the 

OLS and 2SLS regressions.  The larger results in the RD design would imply that omitted 

variables could be biasing the OLS and 2SLS upwards - the estimated negative impact is smaller.  

One possible explanation is that counties narrowly in attainment are also shifting away from 

polluting industries, and, without controlling for exact position around the threshold, the effect of 

nonattainment status on local industry is not as large when the comparison group is such 

attainment counties. 

The other RD-specific variables are weaker in statistical significance but show the 

additional effects of designation value.  In the broad sample, the estimated coefficient for the 

distance from the threshold variable is positive, meaning that counties that are in attainment 

would have higher polluting industry employment (or establishments) approaching the threshold 

from the left (“Distance Over Threshold” becomes less negative) or moving further from the 

threshold to the right (“Distance Over Threshold” becomes more positive).  This is logical – 

more pollution (higher designation value) implies greater polluting industry presence.  With a 

narrower sample, the estimated effect of distance from threshold is negative – implying that a 

higher designation value above the threshold leads to lower industrial employment.  This could 

be driven by counties that were initially nonattainment but became attainment within the sample 

period.  A reduced designation value over time presumably means lowering pollution and could 

imply that polluting industry presence has gone down as well. 

The interaction term coefficient represents the difference between the effect of 

designation value distance from threshold for nonattainment counties compared to that for 

attainment counties.  The sign is negative and statistically significant for the wider designation 
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value range and becomes positive but statistically insignificant in the narrow sample.  In essence, 

nonattainment status reverses the impact of the distance variable.  For the wider designation 

value range, this implies that, for counties above the threshold, being nonattainment means 

distance from threshold reduces polluting industry employment and establishments.  Areas with 

greater ozone levels (or polluting firms in those areas) could be subject to stricter environmental 

regulations, or perhaps these areas simply feel a stronger need to reduce industrial pollution than 

areas closer to attainment.  

I also examine some potential spillover effects.  It is plausible that the estimated effects 

on local industrial employment and establishments could affect the entire local economy.  

Further, the estimated negative effects of nonattainment status on local industrial employment do 

not shed light on where potentially displaced workers go.  They could remain unemployed or 

retire, find jobs in different sectors, or migrate seeking employment.  Past research provides 

some insight into these questions.  Walker (2013) examines sectoral reallocation following 

regulation changes due to the Clean Air Act Amendments in 1990.  The study finds a reduction 

in sectoral employment of industries affected by the regulations; however, the study also 

concludes that transitioning workers most likely exited the affected industry and joined an 

entirely different industry, typically in the same county as they had previously worked. 

To see if nonattainment status affects the local economy across industries, I run 

regressions using total employment and establishment data for the entire county as the dependent 

variable.  These results are included in Table 3.6.  The estimated effects of nonattainment status 

on county employment are negative but statistically insignificant.  Further, subtracting out 

polluting industry employment and establishments from total county employment and 

establishments weakens the statistical significance even further (see Table 3.7).  For the broad 

sample, the estimated treatment effects on county employment and establishments in non-

polluting industries are actually positive (See Columns (1) and (3)).  Based on these results, it 
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does not appear that nonattainment status has a significant effect on total county employment.  

Instead, it seems that any consequences on the local economy stemming from nonattainment 

status and the accompanying regulations are primarily limited to polluting industries.  Even when 

focusing around the threshold, there is no statistically significant evidence of countywide effects. 

In sum, the results of this analysis imply that any effects of nonattainment status are 

primarily limited to highly polluting industries.  For these highly polluting industries, the RD 

results show a negative, statistically significant impact of nonattainment status designation on 

county employment in polluting industries and a negative, statistically insignificant effect on 

polluting establishment numbers.  So far, it is not clear what drives this result.  This could be 

individuals seeking employment elsewhere or in other industries, firms reacting to the cost of 

regulation by cutting workers, local industry declining in general, or a broad county-level shift 

away from polluting industries.  The impacts of nonattainment status could also differ between 

initial designation status and persistent designation status.  Such questions are analyzed through a 

series of supplemental regressions. 

3.7  Supplemental Regressions 

 Since counties may change designation status over the course of the sample years, I run 

several robustness checks.  First, it is useful to see if the impact of nonattainment status stems 

from persistence of nonattainment status, or if initial designation is all that matters.  Counties 

that are on the margin may react differently to initial nonattainment status because it is easier for 

them to improve and meet the NAAQS.  If regulation is driving the results, one may find that 

persistence of nonattainment status has a more important impact on industry than the initial 

designation. 

To analyze the role of persistence of nonattainment and any differential effects between 

counties that stay nonattainment and those that eventually have their nonattainment designation 

removed, I add a “switcher” indicator and interaction term to the main regression analysis.  The 
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“switcher” variable is a binary indicator regarding whether a county changed designation over 

the period analyzed.  To clarify, a “0” would indicate that a county was either attainment the 

entire time or nonattainment the entire time, while a “1” means that the county went from 

nonattainment to attainment or, for a few areas, from attainment to nonattainment.  Roughly 40 

percent of the narrow sample switched designation status at some point in the sample years.  The 

interaction term is for the “switcher” indicator and current nonattainment status.45  Therefore, the 

switcher/nonattainment interaction term can vary year to year.   

For these regressions, the estimated treatment effect is much stronger in both statistical 

significance and magnitude (see Table 3.8).46  Of note, the establishment results are now 

statistically significant at the 10 percent level (see columns (3) and (4)).  The interaction term 

coefficient estimates are positive and statistically significant.  Those counties that switched from 

nonattainment to attainment had much higher polluting industry employment and establishments 

in years when they were nonattainment compared to nonattainment areas that did not switch. 

These results provide some support for the findings in the original RD regressions while 

shedding light on the nature of the estimated impact.  It appears that the persistence of 

nonattainment status and the accompanying regulations is the driving force behind the estimated 

effects on industrial employment.  The estimated reduction in employment and establishments in 

polluting industries seen in nonattainment counties is primarily from counties that remained 

nonattainment throughout the sample.  Perhaps lowered employment and establishments in 

polluting industries is not an attempt to clean up and meet the NAAQS but is instead a 

mechanical reaction to regulation.  Consistently nonattainment areas could also have sources of 

ozone pollution other than industry (e.g. automobiles) that are more detrimental to air quality 

than such sources in switcher counties.   

                                                 
45 Using the “switcher” variable and an interaction with initial nonattainment status yields results quite similar to the 

main results.  Results are available upon request. 
46 Not surprisingly, results are nearly identical when running the original regressions and simply excluding switchers 

from the sample. 
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A check of the impact of EAC counties was also performed (see Table 3.9).  Recall that 

EAC counties were a unique case – their designation was delayed several years, so they initially 

counted as “attainment” under the new standard despite technically having designation values 

over 85.  Excluding these counties from the sample reduces the magnitudes and statistical 

significances of the results; however, the estimated effects are still comparable.  The lower 

magnitude implies that EAC counties have high employment and establishments in polluting 

industries.  They counted as attainment counties in the main regressions, and attainment counties 

in the sample were seen to have higher employment and establishments than nonattainment 

counties in the sample.  Thus, the estimated adverse impact on the treated group was larger and 

more statistically significant.  EAC counties had initial ozone pollution comparable to 

nonattainment counties but were able to avoid nonattainment designation and the associated 

regulation.  The results of this check further imply that environmental regulations impacted 

polluting industries in nonattainment counties when compared to such industries in similar 

attainment counties. 

3.8  Conclusions 

 This chapter sets out to test the effects of nonattainment status on local economic 

conditions, specifically in highly polluting industries.   It contributes analysis focusing on the 

impacts of regulation differences between areas comparable in air quality as well as the role of 

distance from the designation value threshold.  The analysis examines a time period understudied 

in the literature and employs a regression discontinuity design not previously implemented for 

this data in this context.  The general results align with past research in this area, finding 

negative effects of environmental regulations on industrial employment and establishments.  

Supplemental regressions that show a lack of significant countywide spillovers also support past 

findings in the literature.   

Near the designation value threshold, the estimated impacts of the nonattainment 
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treatment variable on polluting-industry employment are statistically significant, and the 

estimated negative effect of nonattainment status on polluting-industry employment and 

establishments holds across different sample sizes and regression forms.  The RD results are 

stronger in magnitude and statistical significance than baseline results using ordinary least 

squares and two-stage least squares.  In the main fuzzy RD specification for samples close 

around the threshold, results indicate that, all else equal, nonattainment status would, on average, 

lower employment in polluting industries by about 24 percent.  Additional analysis yields 

estimates that imply that the persistence of nonattainment status is more impactful than initial 

designation.  A larger negative effect is seen in counties that remained nonattainment compared 

to those who started as nonattainment but later became attainment. 

Regressions were also performed to investigate potential spillover effects.  The results 

show no statistically significant evidence of any effects of nonattainment designation affecting 

non-polluting industries nor the county economy as a whole – local economic effects of ozone 

nonattainment status appear to be strongest in and mostly limited to highly polluting industries. 

This study does not analyze or assert whether any of the estimated effects are “good” or 

“bad”.  Future research in this field could focus more on cost-benefit analysis of the NAAQS.  

Particular attention should be paid to any variance in effects as standards are tightened and 

regulations and penalties are increased over time.  Research could also strive to determine the 

exact cause(s) of any adverse effect of nonattainment status on polluting industries beyond what 

was analyzed in the present analysis.  For example, firms could be reacting to being regulated, or 

counties may be pressuring local industry to clean up.  In general, as the NAAQS continue to be 

revised and debated, further research into other potential costs (e.g. wage impacts) and benefits 

(e.g. health improvements) of nonattainment status regulations would be useful. 
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4. The Impact of Tradable Permit Program Design on Emissions: Evidence 

from the United States Acid Rain Program 

4.1  Introduction 

Over the past few decades, tradable permit markets for emissions have been of particular 

interest to policy-makers and researchers.  In the United States, the most prominent example has 

been the sulfur-dioxide emissions permit market (also referred to as the Acid Rain Program, 

henceforth ARP) created by Title IV of the 1990 Clean Air Act Amendments.  The goal of Title 

IV was to roughly halve the 1980 level of sulfur-dioxide emissions by the year 2010.  The ARP 

was implemented in two phases – Phase 1 lasted from 1995 to 2000, while Phase 2 began in 

2000.  Phase 1 provided allowance allocations to 110 of the dirtiest sulfur dioxide emitting 

electricity-generating plants, while Phase 2 added in remaining plants with capacities at or above 

25 megawatts (MW).  The consensus is that the program succeeded in reducing both sulfur-

dioxide emissions and acid rain; however, it is difficult to determine how things would have been 

in the absence of the program or under a different policy.  Past research on the matter has been 

largely observational or theoretical.  Tradable permit markets are a potential solution to pollution 

problems, so further investigating the design, implementation, and outcomes of a real-world 

example can be beneficial to future policy development.  

This study exploits the unique two-phase implementation of the ARP and provides 

regression analysis of the effect of the ARP on plant behavior.  I use a difference-in-differences 

approach to isolate the effects of being part of the program by comparing Phase 1 facilities (also 

referred to as “Table A” plants) to Phase 2 facilities.  The results of this study indicate that 

starting out as part of the program mattered - Phase 1 plants more-sharply reduced emissions 

relative to Phase 2 plants during the Phase 1 period.  Further, the timing of phase-in seems to 

affect how the program ran during Phase 2.  Plants only included in Phase 2 show an increase (or 

smaller decrease) in emissions compared to their Phase 1 counterparts from 2000 on.   
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This study also investigates the role of initial allocations.  Theoretically, initial 

allocations should not affect efficiency as firms act in self-interest and, depending on cost, meet 

the efficient abatement outcome by either abating their pollution or trading for permits.47  This 

notion relies on several key assumptions (e.g. no transaction costs, no barriers to trade, etc.); 

therefore, unsurprisingly, this is often not thought to be the case in reality.  Indeed, the results of 

this study show a statistically significant non-zero effect of initial permit allocations on 

emissions.  The nature of this effect appears to differ between phases.  In Phase 1, one permit 

allocation is estimated to reduce emissions by about 0.6, while in Phase 2 this estimate is roughly 

a one-to-one relationship.  Put another way, plants in Phase 1 are estimated to have utilized 

roughly 60 percent of their permit allocations, while plants in Phase 2 on average utilized nearly 

all of their allocations.  Over-compliance in the early years of Phase 1 is seen in the data and past 

work, and several explanations have been discussed in the literature. 

The discussion will return to the original research and results of the present analysis 

following an in-depth summary of the design, implementation, and past analysis of the ARP. 

4.2  Background Information: Sulfur-Dioxide Regulation in the United States 

Sulfur dioxide is emitted during fossil fuel combustion, mostly at power plants and other 

industrial facilities.  Sulfur dioxide is a major environmental concern as it is a precursor to acid 

rain.  The gas can also have adverse effects on human health; it has been linked to assorted 

respiratory issues such as asthma and bronchoconstriction.  Sulfur dioxide is the most troubling 

of the sulfur oxides – a group of gases that, after combining with other atmospheric particles, can 

lead to or exacerbate respiratory conditions and/or worsen pre-existing heart disease.48  

Prior to the Clean Air Act (CAA) of 1963, air pollution regulation was performed exclusively at 

the state level.  After the passage of the CAA, air pollution regulation was radically altered in the 

1970s and beyond.  The Environmental Protection Agency (EPA) has been at the forefront of all 

                                                 
47 Callen and Thomas, 112.   
48 “Sulfur Dioxide”.  U.S. Environmental Protection Agency http://www.epa.gov/airquality/sulfurdioxide/index.html 
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environmental policy since its formation in 1970.  The CCA and its subsequent amendments in 

1970, 1977, and 1990 increased the powers of the federal government and tightened air quality 

requirements.  Older plants were not subject to these new regulations, but plants constructed or 

significantly modified after 1970 were.  A sulfur-dioxide standard was first established in 1971. 

The CAA Amendments created the National Ambient Air Quality Standards (NAAQS) for sulfur 

dioxide and other criteria pollutants.  The NAAQS established air quality standards to which 

counties were supposed to adhere.  Counties in violation of the air quality standards were labeled 

“nonattainment” and were subject to stricter environmental regulation and potential punishments 

for remaining in violation of the NAAQS.  The NAAQS for all pollutants have become stricter 

over time, recently being revised in 2008 (with the revisions implemented in 2012).49 

The 1990 Clean Air Act Amendments again tightened the air pollution regulation for all 

pollutants.  With regard to sulfur dioxide, Title IV of the legislation created a market for sulfur-

dioxide allowances with the explicit goal of reducing acid rain.  One allowance permitted a plant 

to emit one ton of sulfur dioxide.  Exactly when this emission could occur depended on the 

permit’s “vintage year”.  The vintage year indicated the first year during which the allowance 

would cover an emitted ton.  For example, a vintage year of 1995 meant a plant could use that 

allowance to emit one ton of sulfur dioxide in any year 1995 or later.  At the end of every year, 

all plants subject to the ARP needed to have enough valid allowances to cover their amount of 

emissions for that year.  So, to be in compliance, a plant essentially needed to reduce emissions 

enough to meet its allowance allocation or else purchase allowances from another plant or at 

auction.  Failure to be in compliance resulted in an automatic penalty of $2,000 per ton (in 1990 

U.S. dollars).50 

Plants in the program were initially allocated permits based on a heat input baseline.  This 

                                                 
49 “Air and Radiation”.  U.S. Environmental Protection Agency.  http://epa.gov/air 
50 “Acid Rain Program”.  U.S. Environmental Protection Agency 

http://www.epa.gov/airmarkets/progsregs/arp/basic.html 
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effectively made permit allocations a function of plant size.  For Phase 1, a plant’s average heat 

input in millions of British Thermal Units (mmBtu) from 1985-1987 was multiplied by 2.5 

pounds of sulfur dioxide per mmBtu of heat input.  The multiplier was reduced to 1.2 pounds of 

sulfur dioxide per mmBtu of heat input for Phase 2.  Firms (either electric-generating entities or 

anyone with an interest in owning permits) could also purchase allowances at auction.  For 

example, allowances could be purchased by a plant that needs to cover its emissions, or by an 

environmentalist group who planned to simply retire the allowances to reduce pollution.51  Plants 

could also earn additional allowances through certain activities such as adopting cleaner energy 

sources, earlier-than-required emissions reduction, or high expected production growth.52  These 

“bonus allowances” were more prevalent in Phase 1, representing roughly 20 percent of total 

allocations in 1995; however, they were less utilized in Phase 2.53 

The market was expected to reduce abatement costs.  Plants with lower abatement costs 

would be able to reduce their emissions and need fewer allowances.  Plants with higher 

abatement costs could then purchase allowances as needed.  As the program was structured, 

while an individual plant’s emissions could go up, the overall level of emissions would decline.  

Trade was not restricted by geography or time.  Plants could bank allowances to use or trade 

later, swap allowances with different vintage years, and trade with other plants regardless of 

geographic region. 

The program was executed in two phases.  Phase 1 lasted from 1995 through 1999.  

Plants mandated to participate in Phase 1 were the 110 dirtiest, large electricity-generating 

plants.  Other plants or units had the opportunity to opt-in, receiving allowances but also being 

subject to the requirements of the program.  With compliance being required in 1995, Phase 1 

firms needed to make investment decisions in the early 1990s (install scrubbers, switch fuel type, 

                                                 
51 Israel (2007). 
52 Schwarze and Zapfel (2000). 
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etc.).  Phase 2 began in 2000 as the remaining hundreds of electricity-generating plants with 

capacity above 25 megawatts (MW) were added.  By the end of the decade, the program was 

irrelevant.  Additional regulations greatly interfered with the market, and the success of the 

program reduced the abatement cost heterogeneity among plants, which made trade valuable in 

earlier years.54 

4.3  Successes and Shortcomings of the Acid Rain Program 

The literature provides a variety of analyses on the Acid Rain Program and its aftermath, 

and generally finds that the ARP actually performed better than expected.  In addition to EPA 

research and other non-academic reports (see Burns, Lynch, Cosby, Fenn, and Baron (2011), 

among others), studies in the academic literature such as Farrell and Lave (2004) and Chestnut 

and Mills (2005) determine that benefits greatly exceeded costs.  The benefits of the ARP were 

not limited to accomplishing its explicit goal of reducing acid rain.  Additional positive 

consequences include an array of public health and environmental benefits as well an ancillary 

benefit of reduced mercury levels (see, among others, Chestnut and Mills (2005)).  The program 

also provided better incentive for plants to develop more efficient abatement technology.55  

Benefits were not only greater than anticipated ex-ante, costs were much lower than 

initially projected.  While lower costs were directly or indirectly due to the program itself, 

external trends also contributed.  Schmalensee and Stavins (2013) attributes much of the cost-

reduction to railroad deregulation of previous decades and the increased prevalence of low-sulfur 

coal.  Switching to low-sulfur coal was becoming economically advantageous years before the 

ARP when the railroads were deregulated in the late 1970s and early 1980s.  As rail prices fell, 

eastern plants could more easily afford low-sulfur coal from the Powder River Basin in 

Wyoming.  Chestnut and Mills (2005) further support this notion – finding that coal switching in 

the early 1990s was due to economic reasons rather than the ARP.  Kumar (2010) concludes that 

                                                 
54 Schmalensee and Stavins (2013). 
55 Popp (2003).   



60 
 

the ARP made a difference in technological innovation, but the endogenous effect was small 

relative to exogenous technological change.  Regardless of the cause, abatement technology 

improvements did aid in lowering costs.56 

Several studies note that the program worked well but still did not minimize costs.  

Carlson, Burtraw, Cooper, and Palmer (2000) notes that cost-minimization as well as the full 

potential gains from trade were not realized in the early years of the program.  Transaction costs 

and uncertainty may have contributed to this as well as to the high propensity to bank.  Bohi and 

Burtraw (1997) asserts that transactions were low in number early on and often within firm.  

Hahn and Stavins (2010 Working) discusses what conditions affect the efficiency of cap-and-

trade programs, determining that the ARP was initially hindered by transaction costs.   

Other regulations – particularly state regulation of utilities – may also have adversely 

affected the ARP.   Stavins (1998) concludes that both local environmental regulations and state 

utility regulations affected the performance of the ARP.  Fullerton, McDermott, and Caulkins 

(1997) finds that Public Utility Commissions (PUCs) can affect utility abatement decisions.  

Hahn and Stavins (2010 Working) asserts that regulated plants were more likely to switch to 

low-sulfur coal, which was typically more expensive than buying allowances.  On the other 

hand, the study also shows that about half of the plants in the ARP still did not switch to low-

sulfur coal even when it was economical to do so.  The National Ambient Air Quality Standards 

(NAAQS) had effects on trade in the ARP as the EPA tried to discourage allowances trades to 

non-attainment areas.57 

A few unexpected developments during the implementation of the ARP are investigated 

in the literature.  One important outcome from Phase 1 was over-compliance in the early years of 

the program as plants greatly reduced emissions.  Several reasons for this phenomenon are 

discussed in the literature.  Banking allowances was a crucial component of Phase 1 of the ARP.   

                                                 
56 Chestnut and Mills (2005). 
57 Henry, Muller, and Mendelsohn (2011). 
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Plants reduced emissions to comply with the ARP and saved their allowances to ease their 

transition into Phase 2.58   The pros and cons of banking in the ARP are debated in the literature.  

Some studies determine that banking was indeed efficient (see Ellerman and Montero (2002 

working)), while others additionally note disproportionate temporal impacts (see Burtraw and 

Mansur (1999)).  While banking implies lower emissions in the present, it also likely means 

more emissions at some point in the future.  Schmalensee, Joskow, Ellerman, Montero, and 

Bailey (1998) reasons that in addition to banking, investment in scrubbers and commitments to 

high quantities of low-sulfur coal also contributed to over-compliance early in the ARP.  As 

compliance requirements began in 1995 for Phase 1 plants, investment in meeting such 

requirements needed to start years earlier.  Large investment in abatement technology drove 

costs down in the short-run, so it was more sensible to reduce emissions early and hold onto 

allowances for later. 

Another interesting facet of the ARP was price dynamics in the allowance market.  

Allowance prices were far lower than expected, especially in Phase 1.  Schmalensee et al. (1998) 

notes that prices were lower than anticipated because substitute means of compliance were 

cheaper than expected.  Indeed, from a theoretical perspective, prices in the market should equal 

marginal costs of abatement in equilibrium.59  So, if abatement costs are lower, prices will be 

lower.  Prices increased and became more volatile in Phase 2 as other regulations and proposed 

policies interfered with the market adjustment process.60  

 Despite the perceived success of the ARP, several concerns exist that have been 

addressed in the literature.  One question regards the mechanism for the decline in emissions.  In 

theory, assuming total generation on the grid continued to meet demand, plants could have 

reduced their generation in order to lower emissions.  Several studies rebut such a notion.  

                                                 
58 Ellerman, Schmalensee, Bailey, Joskow, and Montero (2000). 
59 Callan and Thomas, 269-277. 
60 Schmalensee and Stavins (2012 Working). 
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Regarding the program in practice, Schwarze and Zapfel (2000) asserts that generation shifting 

was not a major issue.  Further, Schmalensee and Stavins (2013) shows that electric generation 

went up 25 percent even though emissions went down 38 percent.  The potential negative impact 

from opt-ins in Phase 1 was another concern that has been generally dispatched in ex-post 

research.  Carlson et al. (2000) notes that volunteers could join Phase 1, but these plants could 

not have average emission rates increase.  Ellerman, Joskow, and Harrison (2003) sees that 

Phase 2 units that opted into Phase 1 were mostly part of a Phase 1 utility.  Further, the study 

concludes that the potential impact on emissions due to opt-ins was negligible.   

 A few possible negative consequences of the ARP have been analyzed.  Concerns over 

hotspots are often associated with tradable permit programs.  The potential exists for tradable 

permit programs to lead to a concentration of pollution in certain areas, which could 

disproportionately harm particular communities or demographic groups.  Chestnut and Mills 

(2005) finds that hotspots were not an issue in the ARP; in fact, low-emission areas stayed low 

while high-emission areas saw the biggest reductions.  Ringquist (2011) looks into if and how 

the ARP transferred pollution to poor areas and/or areas with greatest concentrations of 

minorities.  The study finds no negative effect of the ARP on these types of areas and determines 

that allowance trading may actually have helped minorities.    

Of relevance to the present study, the literature has discussed the potential role of initial 

allocations in tradable permit programs and lacks consensus as to their possible effects.  An 

implication of the Coase Theorem is that market equilibrium in cap-and-trade is efficient 

independent of initial allocations; however, conditions such as transaction costs, imperfect 

information, and extraneous regulation can prevent this result from happening in reality.61  

Grimm and Illieva (2013) produces experimental evidence that initial allocation affects final 

allocation.  Bohi and Burtraw (1997) and Fullerton et al. (1997) attest that initial allocations can 

                                                 
61 Hahn and Stavins (2010 Working).   
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affect plant decisions; however, Ellerman et al. (2003) finds no evidence that initial allocations 

mattered in the ARP.   

In sum, this analysis contributes regression analysis regarding both the phase-based 

implementation of the ARP and the potential role of initial allocations.  Few tradable permit 

programs have been put into practice; so, much of past analysis has been theoretical.  The ARP 

has often been utilized for observational data analysis, but regression analysis can provide further 

insight.  This study adds empirical evidence supporting or questioning previous assertions.  

Better understanding the potential effects of the design and implementation of the ARP would be 

beneficial to both academic research and policy design. 

4.4  Data and General Methodology 

The data for this project come from several sources.  The emissions and allowance 

history data for the present analysis are from the EPA’s Air Market Data for the ARP.   The 

emissions data are available every five years from 1980 until 1995, and annually after that.  The 

EPA also provides data on initial allowances as well as allowance transactions.  The sample used 

in this study only includes facilities that were in Phase 1 and/or Phase 2 of the ARP.  The data 

originally represent generating units; however, the present analysis focuses on emissions and 

allowances aggregated by facility.  While a unit-based analysis is possible, the focus of the 

present analysis is on facilities for several reasons.  Effects of the ARP on emissions at the unit-

level may represent strategic decisions regarding generation activity, allowance transactions, 

and/or abatement investment.  For example, plants could have chosen to distribute generation 

activity among their units depending on the characteristics of different units (e.g. fuel type).   

These are potentially interesting extensions to investigate, but the analysis in this present analysis 

will only be concerned with how facilities respond to when and to what extent they are included 

in the ARP.   

The emissions data are measured in tons of sulfur dioxide while the heat input is in 
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mmBtu as described earlier.  The allocations data are in number of allowances, with one 

allowance being equivalent to one permitted ton of emissions.  Summary statistics by period for 

sulfur-dioxide emissions (in tons) and heat input (in mmBtu) are included in Table 4.1.   Table 

4.2 includes summary statistics for the main sample regarding allocations: “Phase 1 Allocations” 

is the total number of allowances initially allocated to a facility in Phase 1 and “Phase 2 

Allocations” is the total number of allowances initially allocated to a facility in Phase 2.  The 

summary statistics are based on plants that actually received allowances (i.e. Phase 2-only plants 

are not included in the Phase 1 summary statistics).  Roughly one-sixth of the primary sample is 

plants that were included in Phase 1. 

For the central analysis, data are aggregated to the facility level to include all units in the 

data set for that facility.  Some robustness checks were run by aggregating heat input and sulfur-

dioxide emissions when excluding units that should not be greatly affected by the ARP – those 

that do not emit sulfur dioxide, and those which use combustion turbines and/or use natural gas 

as their primary fuel source.  It is possible these units received allowance allocations that would 

have been used at the facility level; so, the allocation aggregations for facilities are maintained 

across samples.  

 The establishment of counterfactuals representing plant emissions in the absence of the 

ARP has been a contentious point in the literature.  Previous studies have estimated emissions in 

the absence of the program using counterfactuals based on heat input changes (Schmalensee et 

al. (1998), Ellerman and Montero (2002 working)), initial allocations (Henry, Muller, and 

Mendelsohn (2011)), or performance standards (Henry et al. (2011)).  Rather than attempt to 

compare a tradable permit policy to the absolute absence of any program or an alternative policy 

such as direct regulation or emissions tax, this study focuses instead on elements of the design 

and timing of the ARP.  Counterfactuals are formed using plants in the other phase of the 

program as the comparison group. 
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The basic methodology for the present analysis is a difference-in-differences regression 

exploiting the two-phase approach of the ARP.  A few studies in the tradable permits literature 

have utilized difference-in-differences estimation.  Most similar to the present analysis, Fowlie, 

Holland, and Mansur (2009) focuses on the Regional Clean Air Incentives Market (RECLAIM) 

in California – a tradable permit program used to address nitrogen oxide emissions.  The study 

employs both difference-in-differences and propensity-score matching, finding that emissions 

decreased by 20 percent on average at RECLAIM plants relative to similar non-RECLAIM 

plants.   Busse and Keohane (2008) analyze potential price discrimination by low-sulfur coal 

shippers resulting from the ARP.  Like the present analysis, the study uses Phase 1 and Phase 2 

plants as the treatment and comparison groups, determining that Phase 1 plants paid more for 

low-sulfur coal in the early years of the program. 

One facet of the present analysis in this chapter is a simple comparison of plant emissions 

based on inclusion or exclusion from Phase 1.  Phase 1 plants were typically dirtier and larger 

than those only in Phase 2 were; however, the trends in sulfur-dioxide emissions before the ARP 

was announced were comparable when controlling for plant size (see Figure 4.1).  The trends are 

not similar when looking only at raw emissions data (see Figure 4.2).  Figure 4.1 shows that, 

when controlling for plant size, Phase 1 and Phase 2-only plants on average display similar 

trends in emission reduction prior to the start of Phase 1.  There is a large drop in emissions for 

Phase 1 plants in 1995, but then the emissions trends are again fairly similar to those of Phase 2-

only plants.  For the pre-ARP period, the same abatement technologies would have been 

available to all plants, and, since the baseline for allocations in both phases is based on 1985-

1987 heat input, plants were unable to strategize in this regard.  The similarity in emissions 

trends between plants from different phases presents the opportunity to also analyze if delayed 

inclusion impacted Phase 2-only plants relative to their Phase 1 counterparts that were already 

under compliance. 



66 
 

4.5  Empirical Strategy and Results 

4.5.1  Acid Rain Program Phase 1 Analysis 

Starting in 1995, only plants in Phase 1 – whether volunteers or mandatory participants – 

were required to comply with the ARP rules regarding allowances matching or exceeding 

emissions.  From 2000 on, all ARP plants were then subject to the ARP rules.  Employing 

different treatment groups can show how the timing of the phases impacted emissions.  Plants in 

the other phase constitute the comparison group.  The basic structure of a regression for this 

portion of the analysis is the following: 

[6] Emissionsit = α0 + β1Phase1i + β2Timet + β3(Time×Phase1)it + β4Xit + ε     

Equation (6) represents the regression for the Phase 1 analysis.  “Emissions” represents the 

sulfur-dioxide emissions in tons at plant i in year t.  For Equation (6), the “Phase1” variable is a 

dummy variable for being in Phase 1 (1 if facility was in Phase 1, 0 otherwise); “Time” is a 

dummy variable for time (1 if year t is 1995 or later, 0 otherwise); “Time×Phase1” is the 

interaction of the previous two variables; X represents control variables (e.g. heat input); α0 is a 

constant term; and ε is the error term.  The time period for the Phase 1 regressions is 1980 

through 1999 with observations every five years.  So, the “pre” period is 1980, 1985, and 1990, 

while 1995 and 1999 represent the post period.62  It is expected that being in Phase 1 means 

higher emissions, emissions are generally declining over time, and emissions are decreasing 

more rapidly at Phase 1 plants relative to Phase 2 plants.  So, β1 is expected to positive, while β2 

and β3 should be negative. 

  Analysis is also performed regarding the role of initial allocations.  The general format of 

the difference-in-differences remains the same but with allocation variables included: 

[7] Emissionsit = α1 + δ1Phase1i + δ 2Timet + δ 3(Time×Phase1)it + δ4(Phase 1 Allocations) 

+ δ5(Phase 1 Allocations×Time) + η 

                                                 

62 Regressions run using 1996 data in place of the 1995 observations yield similar results. 
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  “Phase 1 Allocations” is the initial allocations in Phase 1 for a given plant, while “Phase 

1 Allocations×Time” is the interaction of allocations and the time dummy.  Specifications are run 

including each allocation variable separately and together.  As discussed earlier, initial 

allocations theoretically should not affect emissions as firms trade to reach their efficient 

amount.  However, in reality conditions such as transaction costs and uncertainty will likely lead 

to a non-zero effect.  If one expects a non-zero impact of allocations on emissions trends, the 

overall effect of allocations should to be positive since one permit gives the right to pollute one 

ton of sulfur dioxide.  Heat input is no longer included as a control since it is directly correlated 

with allowance allocations.  An endogeneity concern exists since most but not all of initial 

allocations were determined exogenously by historical heat input.  Initial allocations are based on 

the plant’s heat input baseline; however, plants may have earned “bonus allowances” that 

contributed to the initial total.  The baseline is calculated using heat input average from several 

years before the announcement of the ARP, so firms could not have strategized in this regard.  

However, bonus allowances or auction purchases are based on firm decisions after the 

announcement of the ARP.   

In light of this, a robustness check was performed using the estimated allocations (i.e. the 

1985-1987 heat input average multiplied by the phase-appropriate multiplier) as an instrument 

for actual allocations.  The reduced-form results using estimated allocations were nearly identical 

to the primary results using actual allocations.  This implies that the estimated effect is not being 

driven by such allocations.  Still, initial allocations are based on historic heat input, and historic 

heat input is likely correlated with historic emissions.  Effectively, treatment is not entirely 

random as the Phase 1 plants were on average much larger and dirtier than Phase 2-only plants.  

The difference-in-differences strategy helps control for such group effects; however, it is still 

possible that the observed differential trends in emissions are not solely driven by the policy. 

 Another concern is that the distribution of sulfur-dioxide emissions may not be 
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continuous.  For example, emission reduction could be fast and permanent rather than gradual.  

Facilities may alter banking strategies if there is no margin for substitution – once fuel switching 

is complete, there is no need for further abatement and thus no decision between abatement and 

using permits.  There could be concentrations of high-emitters and low-emitters rather than a 

smooth distribution.  Figure 4.3 shows the distribution for emissions per heat input by facility.  

As one can see, the distribution is relatively smooth with a large concentration near zero and a 

gradual decline in number of plants as emissions per heat input increase. 

 Finally, other environmental regulations – most notably those accompanying 

nonattainment status designations – could have been simultaneously affecting these firms.  While 

new air quality standards for sulfur dioxide were not implemented during the time period 

analyzed, new standards for particulate matter and ozone were.63  A small percentage of plants 

were located in counties that were designated nonattainment in particulate matter during the 

years of the ARP; however, roughly 20 percent of the sample were in ozone nonattainment 

counties.  Looking at plant emissions trends by county attainment status, it does not appear that 

plants in ozone attainment counties had differential declines in sulfur-dioxide emissions 

compared to those in ozone nonattainment counties.  Therefore, nonattainment status is not 

addressed in the regression analysis for this chapter. 

The present analysis focuses on the difference-in-differences regressions described in the 

previous section.  In all regressions, standard errors are clustered by facility.  The results are 

included in Tables 4.3 and 4.4.  Excluding units that were unaffected or hardly affected by the 

ARP from facility-level aggregation (those discussed in the previous section) does not have a 

major effect on the results.64  The following discussion focuses on the primary results that 

                                                 
63 EPA Greenbook. 
64 These results are excluded from the present analysis but are available upon request.   
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include all units in the sample.65   

Using plants in the opposite program phase as the counterfactual, these regressions 

analyze the potential effects of both inclusion/exclusion from Phase 1 as well as the extent to 

which a plant is included in the ARP (i.e. the initial allocations).  The regression results generally 

support what has been hypothesized about the ARP and previously observed in the data.   For the 

Phase 1 analysis, the period of interest is 1980 through 1999 with observations every five years 

(1999 is used instead of 2000 due to the start time of Phase 2).   The dependent variable in all 

specifications is “SO2 Emissions”, which represents sulfur-dioxide emissions in tons by facility.  

Column (1) of Table 4.3 shows the results from a simple difference-in-differences regression 

with heat input to control for plant size.  “Heat Input” is heat input in mmBtu, “Phase 1” 

represents the dummy variable for being included or excluded from Phase 1, “PostDummy1” is 

the time dummy variable, and “Phase1×PostDummy1” is the interaction term.  The signs are all 

as expected, and the coefficient estimates are statistically significant at the 1 percent level.  On 

average, Phase 1 plants emit more sulfur-dioxide than Phase 2 only plants, emissions are lower 

in the post period (1995 and 1999), and sulfur-dioxide emissions decline after compliance begins 

at Phase 1 plants relative to Phase 2 plants. 

The additional specifications in columns (2), (3), and (4) of Table 4.3 add in variables for 

actual allocations received and remove “Heat Input” because heat input directly relates to 

allocations.  The variable “Phase 1 Allocations” represents the number of sulfur-dioxide 

allowances given to a facility in Phase 1 and “Phase 1 Allocations×PostDummy1” is the 

interaction of “Phase 1 Allocations” and the time dummy, “PostDummy1”.  Not surprisingly, the 

number of allocations received relates positively and strongly to emissions.  Large plants on 

average emit large quantities and received large quantities of allowances.  The results are most 

                                                 
65 Another complication in aggregating units to the facility level, including age of facility as a control variable is 

complicated by units being added years after a facility’s inception.  Regardless, including an indicator for facility 

age does not greatly alter the main results.  Such results are available upon request. 
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interesting when including the interaction term.  Theory suggests that the effect of allocations on 

emissions should be zero under ideal conditions; however, the coefficients on “Phase 1 

Allocations×PostDummy1” are statistically significantly different from zero.  This implies that 

other factors (e.g. uncertainty) affected firm behavior.  When including both allocation terms 

(see Column (4) of Table 4.3), the results imply that the effects of the ARP on emissions in 

Phase 1 were primarily driven by allocations and not simply by being in the program.   As a 

check, regressions were run including state fixed effects as well as state-year fixed effects.  The 

results from these regressions are included in Table 4.4.  While the magnitudes change slightly, 

the results are quite comparable across specifications. 

If one were to assume that the effect of allocations would not be zero due to various 

conditions (transaction costs, imperfect information, etc.), one would still anticipate an effect 

close to one-to-one given that each allocation lets the holder release one ton of emissions without 

penalty.  This is not seen in the Phase 1 results – the average effect of allocations is an increase 

of 0.611 tons of sulfur dioxide per additional allowance (see Column (3) of Table 4.3).  By 

looking at Column (4), one can see the breakdown of this total effect – the estimated coefficient 

for “Phase 1 Allocations” is positive as expected while “Phase 1 Allocations×PostDummy1” has 

an estimated negative impact of about 0.9 emissions per allowance.  Once again, the estimated 

effects are similar when adding in the state and state-year fixed effects (see Table 4.4).  This 

result supports the high amount of banking in Phase 1 – plants held onto allowances while 

reducing their emissions in order to comply with the ARP.   

4.5.2  Acid Rain Program Phase 2 Analysis 

The empirical analysis for the Phase 2 sample is analogous to that for Phase 1 except for 

a few necessary alterations: 

[8] Emissionsit = λ0 + γ1Phase2i + γ2Timet + γ3(Time×Phase2)it + γ4Zi  + µ 

Equation (8) logically follows the description of Equation (6): the “Phase 2” variable is a 
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dummy variable for being only in Phase 2 (1 if plant is in only Phase 2, 0 if in both phases); 

“Time” is a dummy variable for time (1 if year t is 2000 or later, 0 otherwise); “Time×Phase2” is 

the interaction of the previous two variables; Z represents control variables; λ0 is a constant term; 

and µ is the error term.  The control variable in the simplest specifications is the 1985 heat input 

(in mmBtu) used as a proxy for plant size.  As in the Phase 1 analysis, other specifications 

remove the heat input variable and add in allocation-related variables.  These additional 

specifications are analogous to Equation (7) and include a variable for number of allocations 

and/or an interaction term between number of allocations and the time dummy.   

Regressions for the Phase 2 period use annual observations from 1995 to 2009.  The end 

year is chosen for several reasons. Allowance trading was essentially finished by the end of the 

decade as other regulations supplanted the ARP.66  Further, the Clean Air Act stipulated a hard 

cap on allowances starting in 2010, thus limiting total annual emissions.67  This broke up Phase 2 

into two parts with different initial allocations, so 2010 could be seen as the start of a different 

phase.  Thus, 2010 to the present is excluded from this analysis. 

 Tables 4.5 and 4.6 show the Phase 2 regression results.  The column layout is the same as 

in the Phase 1 regression results table (see Table 4.3).  The variable names also follow the same 

pattern.  Plants that were only in Phase 2 are now the treatment group while Phase 1 plants are 

the comparison group.  After compliance began in 1995, Phase 1 plants show similar emissions 

trends compared to Phase 2 plants.  These regressions essentially test the impact of delayed 

phase-in, and the results appropriately vary slightly from the Phase 1 regressions that tested early 

phase-in.  Across specifications, Phase 2 plants are on average lower sulfur-dioxide emitters, and 

emissions for all plants decline over time.  Compared to Phase 1 plants, Phase 2 plants on 

average abated less following the commencement of Phase 2.  The positive, statistically 

                                                 
66 Schmalensee and Stavins (2013).   
67 “Acid Rain Program SO2 Allowances Fact Sheet”.  U.S. Environmental Protection Agency. 

 http://www.epa.gov/airmarkets/trading/factsheet.html 
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significant coefficients on the interaction term (Phase2×PostDummy2) implies that emissions at 

Phase 2 plants were declining over time less than they were at Phase 1 plants.  This makes sense 

intuitively.  Phase 1 plants had been under compliance restraints for several years prior to Phase 

2 and had already invested in abatement technology.  Lower abatement costs meant lower permit 

prices, and Phase 1 plants had both their Phase 2 allocations and those permits banked from 

Phase 1.  Phase 2 plants capitalized on high supply and low prices in the permit market and could 

delay abatement investment.  Once again, including fixed effects does not drastically alter the 

results (See Table 4.6). 

 The main takeaway from the allocation specifications (Columns (3) and (4) of Table 4.5) 

is that the overall effect of allocations is much closer to a one-to-one tradeoff than the estimates 

in the Phase 1 analysis were.  As in the Phase 1 regression, the allocation variables are 

statistically significant at the 1 percent level across specifications.  One can see in Column (3) of 

Table 4.5 that the estimated effect of an additional allowance is 0.997 – essentially a one-ton 

increase in sulfur-dioxide emissions for each permit allocated.  This implies that, on average; an 

additional permit allocation in Phase 2 was utilized for polluting rather than banked.  Indeed, 

Column (4) shows a much smaller negative effect (about -0.3 emissions per allowance) of the 

allocations-time interaction term than the -0.9 coefficient in the Phase 1 estimation. 

4.6  Discussion and Conclusion 

 The regression results in this study further validate much of what has been advocated in 

the literature.   They provide evidence regarding the impact of certain design elements of the 

ARP.  The results show that the timing of phase-in made a difference, which is not too 

surprising.  More interesting is the implication that initial allocations had a significant effect on 

emissions.   This suggests that the determination of total market permits and the initial allocation 

of permits are crucial factors in future design of tradeable permit markets. 

 Permit allocations are seen to affect sulfur dioxide emissions in both phases of the ARP; 
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however, allocation utilization differs between phases.   Under proper conditions (e.g. no 

transaction costs), permit allocations should have no effect on emissions.  In both phases, the 

results imply a statistically significant non-zero impact.  In Phase 1, this impact is roughly 0.6 

tons of sulfur dioxide for each permit allocated.  Since one permit provides the right to emit one 

ton of sulfur dioxide, allocations were seemingly under-utilized in Phase 1.   Phase 1 saw higher 

rates of banking and early over-compliance – emission reductions were greater than anticipated 

given the requirements provided by the program design.  Abatement was not as costly as 

expected, so plants on average were able to reduce emissions without acquiring more permits or 

utilizing their full initial allocation.   

 Banking is seen in the data but the reasons for banking cannot be determined with 

certainty - several mechanisms could be involved in this scenario.  Plants are making decisions 

ex-ante amid uncertainty regarding the permit market as well as their own plant operations.  If 

plants expected permit prices to rise, abating in the present and saving excess permits for later 

would be a rational decision.  Uncertainty over prices could also have led to banking if plants 

were interested in arbitrage – saving cheap permits in the present to sell later when permits 

increase in value.  With abatement relatively inexpensive, plants had little problem reducing 

emissions.  With regard to the market, this meant there was low demand for additional permits 

and thus few trade partners available.  Plants in Phase 1 knew that Phase 2 was on the horizon, 

and that allocations per plant would be reduced.  Given uncertainty over future output and 

abatement costs, saving presently unnecessary permits for later would be a good safety net to 

have.  

In Phase 2, the results show a nearly one-to-one relationship between allocated permits 

and sulfur dioxide emissions.  With a tightened allocation rule, plants received fewer allocations 

than under Phase 1 rules; however, plants included in Phase 1 still had previously banked 

permits.  Plants in Phase 2 did not over-comply as plants had done early in Phase 1.   Indeed, 
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little banking was done early in Phase 2 as plants fully utilized their permit allocations.  

Additional pollution was permissible given the banked permits from Phase 1 available to be used 

by the holding plant or purchased by a different plant.   Indeed, the emissions trends show a 

leveling off and even some slight increases in emissions in the early 2000s (see Figure 4.1).  This 

calls to mind the potential for banking in permit programs to lead to temporal inequality (see 

Burtraw and Mansur (1999)).  While the levels of emissions were still significantly lower than 

years past, permit banking affected the trend in emissions.   From 2000 to 2005, emissions were 

greater than annual allocations; however, there was perfect compliance from 2005 onward.68 

The general goal of the ARP was to reduce sulfur dioxide emissions (and by extension, 

acid rain), and this goal was nominally accomplished.  With an ever-increasing need for air 

pollution policy, it is helpful to dissect the ARP to determine what worked and what could be 

improved.  One criticism of the program relates to a lack of built-in flexibility regarding the 

emissions cap (see Siikamäki et. al (2012)).  As plants initially over-complied, the emission 

reduction targets were exceeded; however, the design of the program did not allow for an update 

of the standards.  The rate of emission reduction slowed and banked permits from Phase 1 had 

additional ramifications in Phase 2 of the program.  It is easy to pick apart the program ex-post; 

however, ex-ante it was not known that abatement would inexpensive and that there would be 

such an excess of permits.  There are tradeoffs at work – banked permits may have influenced 

emission reductions in Phase 2, but the reductions in Phase 1 may not have been as large without 

the option to bank unused permits.   Giving regulators the ability to update permit allocations 

based on program performance creates additional uncertainty for the regulated firms to consider.  

One compromise could be gradual tightening of allowed emissions of which regulated firms 

receive some advanced notice.  Perhaps the emissions limit will be reduced each year; however, 

the exact amount of the reduction is announced at least one year in advance.  That way, 

                                                 
68 Burns et. al (2011) 
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regulators can further reduce the threshold if it seems feasible and firms can more efficiently 

plan regarding abatement, trading, and banking decisions. 

The basic results in this present analysis provide interesting evidence regarding the 

effects of the ARP’s design and implementation.  The generally positive view of the ARP has led 

to it often being an example in proposing new tradable permit market policy.  The results of the 

present analysis have some tradeable permit policy implications.  It appears that, as 

acknowledged in past work, uncertainty had an effect on Phase 1 facilities.  This uncertainty may 

have regarded future abatement costs, permit prices, the lifespan of the ARP, etc.  The 

prevalence of banking may be a manifestation of such concerns.  With specific regard to the 

ARP, the two-phase approach has several ramifications.  Plants in Phase 1 invested in abatement 

more and utilized permits less than plants added in Phase 2.  The design of the market (the option 

to bank permits, the number of allocations, price determination, etc.) will have major 

consequences on abatement as well as permit trading.  Tradeable permit markets can be an 

efficient policy solution to pollution problems; however, design elements must be carefully 

considered. 
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Figures and Tables 

Figure 2.1: Avg. Atmospheric Lead Level in the United States for Years 1965-2000 

Notes: "Atmospheric Pb" is county monitor readings for lead averaged by year.  The 

horizontal line represents the current National Ambient Air Quality Standard for Lead of 

0.15 μg/m3. 
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Figure 2.2: Air Stagnation Index by County 

Notes:  ASI is average air stagnation periods per month.  The map is divided into discrete bins 

covering the full range of ASI values at the county level.  Red represents the most-stagnant areas 

while blue represents the least. Mapping shape files courtesy of NOAA. 
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Figure 2.3: Change in State Atmospheric Lead by Air Stagnation 

Notes: Unit of observation is the state.  The X-axis (State ASI) is the Air Stagnation Index, 

specifically the average number of stagnation periods per month from 1973 to 1997.  Lead and 

ASI are both averaged weighted by county population.  The Y-axis (Change in Atmospheric Pb) 

represents the change in the average atmospheric lead 1965 to 1974 and the average for 1980 to 

1989. 
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Figure 2.4: Change in MSA Atmospheric Lead by Air Stagnation Index 

Notes: Unit of observation is MSA.  The Y-axis (Change in Atmospheric Pb) compares the 

average atmospheric lead by MSA for 1960 to 1979 with the MSA average for 1980 to 2000.  

MSA ASI is the Air Stagnation Index for a given Metropolitan Statistical Area, specifically the 

average number of stagnation periods per month from 1973 to 1997. 
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Figure 2.5: Change in State Incarceration by State Decline in Atmospheric Lead 

Notes:  Incarceration is “0” if not living in an institution in the current survey, and “1” if 

institutionalized. The Y-axis (Change in Incarceration Probability) is the difference between the 

cohort averages in the sample for “Incarceration” by state.  The decrease in lead compares the 

average atmospheric lead 1965 to 1974 with the average for 1980 to 1989, where the state 

averages are weighted by county population.  Lead is measured in µg/m3. 
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Figure 2.6: Incarceration by Birth State and Cohort Atmospheric Lead 

Notes:  The Y-axis (Incarceration Probability) is the sample average for “Incarceration” by state 

by cohort.  Incarceration is “0” if not living in an institution in the current survey, and “1” if 

institutionalized.  Atmospheric Pb is averaged by cohort and state weighted by county 

population.  “High Exposure Cohort” consists of individuals born between 1965 and 1969; “Low 

Exposure Cohort” consists of individuals born between 1985 and 1989.  Lead is measured in 

µg/m3. 
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Figure 2.7: Change in State Incarceration by State Air Stagnation 

Notes: “Change in Incarceration Probability” is the difference between cohorts in the sample 

average for “Incarceration” by state.  The incarceration variable is “0” if not living in an 

institution in the current survey, and “1” if institutionalized.  ASI is the Air Stagnation Index, 

specifically the average number of stagnation periods per month from 1973 to 1997.  The state 

average is weighted by county population. 
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Figure 2.8: Change in MSA Crime 1980s to 2000s by Change in Atmospheric Lead 

Notes: The unit of observation is MSA.  The variable on the Y-axis is the change in the number 

of crimes per 1,000 residents comparing the 1980-1990 average and the 2000-2010 average.  

Change in lead compares the average atmospheric lead 1960 to 1979 with the average for 1980 

to 2000.  Lead is measured in µg/m3. 



84 

Figure 2.9: Change in MSA Crime 1980s to 2000s by Air Stagnation Index 

Notes: The unit of observation is MSA.  The variable on the Y-axis is the change in the number 

of crimes per 1,000 residents comparing the 1980-1990 average and the 2000-2010 average.  The 

left panel is property crime while the right panel is violent crime.  ASI is the Air Stagnation 

Index, specifically the average number of stagnation periods per month from 1973 to 1997.   
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Figure 2.10: Change in California MSA Atmospheric Lead by Air Stagnation Index 

Notes: Unit of observation is MSA.  “Change in Atmospheric Pb” compares the average 

atmospheric lead 1960 to 1979 with the average for 1980 to 2000.  “MSA ASI” is the Air 

Stagnation Index, specifically the average number of stagnation periods per month from 1973 to 

1997. 
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Figure 2.11: Change in California MSA Crime by Decline in Atmospheric Lead 

Notes: The unit of observation is MSA.  The Y-axis is the change in the number of crimes per 

1,000 residents comparing the 1980-1990 average and the 2000-2010 average.  The left panel is 

property crime while the right panel is violent crime.  “Decline in Atmospheric Pb” compares the 

average atmospheric lead 1960 to 1979 with the average for 1980 to 2000.  Lead is measured in 

µg/m3. 
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Figure 2.12: Change in California MSA Crime by Air Stagnation Index 

Notes: The unit of observation is MSA.  The Y-axis is the change in the number of property 

crimes per 1,000 residents comparing the 1980-1990 average and the 2000-2010 average.  “MSA 

ASI” is the Air Stagnation Index for an MSA, specifically the average number of stagnation 

periods per month from 1973 to 1997. 
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Figure 3.1a: Average Polluting-Industry Employment by EPA Designation Value 

Notes: “EPA DV” represents 2004 nonattainment designation value for ozone.  The sample was 

narrowed to provide a better view around the threshold.  The attainment threshold is at 85 and 

represented by the vertical line.  “Polluting Industry Employment” is average county 

employment in highly polluting industries from 2004 to 2011. 
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Figure 3.1b: Average Polluting-Industry Employment per Capita 

Notes: “EPA DV” represents 2004 nonattainment designation value for ozone.  The sample was 

narrowed to provide a better view around the threshold.  The attainment threshold is at 85 and 

represented by the vertical line.  “Employment per Capita” regards average employment in 

highly polluting industries from 2004 to 2011 divided by county population. 
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Figure 3.2a: Average Polluting-Industry Establishments by EPA Designation Value 

Notes: “EPA DV” represents 2004 nonattainment designation value for ozone.  The sample was 

narrowed to provide a better view around the threshold.  The attainment threshold is at 85 and 

represented by the vertical line.  “Polluting Industry Establishments” is average county 

establishments in highly polluting industries from 2004 to 2011. 
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Figure 3.2b: Average Polluting-Industry Establishments per Capita 

Notes: “EPA DV” represents 2004 nonattainment designation value for ozone.  The sample was 

narrowed to provide a better view around the threshold.  The attainment threshold is at 85 and 

represented by the vertical line.  “Establishments per Capita” is average county establishments in 

highly polluting industries from 2004 to 2011 divided by county population.  
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Figure 3.3: Density of Counties by Designation Value 

Note: “EPA DV” represents nonattainment designation value.  The NAAQS threshold is at 85.  
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Figure 4.1: Average Sulfur-Dioxide Emissions in Tons per Heat Input (mmBtu) 

Notes: Phase 1 Plants are those given allocations in Phase 1 of the ARP, while Phase 2 Only 

Plants are those only given allocations in Phase 2.  The Y-axis represents sulfur dioxide 

emissions in tons per heat input mmBtu.   
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Figure 4.2: Average Sulfur-Dioxide Emissions in Tons 

Notes: Phase 1 Plants are those given allocations in Phase 1 of the ARP, while Phase 2 Only 

Plants are those only given allocations in Phase 2.  The Y-axis is raw sulfur-dioxide emissions in 

tons. 
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Figure 4.3: Distribution of Emissions per Heat Input by Facility 

Note: “so2heat” represents sulfur dioxide emissions per mmBtu of heat input. 
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Table 2.1: U.S. National Emissions Decline Estimates 1980 to 1990 

 

Pollutant Decline in Emissions 

Lead 93% 

Particulate Matter 50% 

Volatile Organic Compounds (VOC’s) 23% 

Carbon Monoxide 19% 

Sulfur Dioxide 12% 

Nitrogen Oxide 7% 

Source: "Air Quality Trends." EPA 

 

Notes: This table depicts that percentage declines in emissions for different air pollutants 

between 1980 and 1990. 
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Table 2.2: Summary Statistics by Individual 

Variable Cohort Observations Mean Std. Dev. Min Max 

Institutionalized 

All 2,189,417 0.0247 0.1551 0 1 

Pre 1,136,055 0.0219 0.1465 0 1 

Post 1,053,362 0.0276 0.1639 0 1 

       

State Atmospheric Lead 

(μg/m3) 

All 2,189,417 0.6876 0.5058 0 1.9859 

Pre 1,136,055 1.1096 0.3431 0 1.9859 

Post 1,053,362 0.2324 0.0751 0.0031 0.4242 

       

State Air Stagnation Index 

(stagnation periods per month) 

All 2,189,417 4.7250 2.3247 2.0432 10.3468 

Pre 1,136,055 4.5290 

 

2.2070 

 

2.0432 

 

10.3284 

 

Post 1,053,362 4.9368 2.4275 2.0438 10.3468 
 

Notes: The data for this table are from the American Community Survey through IPUMS.  The 

survey years are 2001 to 2012.  The sample consists of adults born in one of two cohort periods.  

The “pre” cohort consists of individuals born between 1965 and 1969, while the “post” cohort 

has individuals born between 1985 and 1989.  “State Pb” is the county population-weighted 

average of atmospheric lead in a state by cohort.  Due to limitations in the monitor data, the 

“pre” period for lead is 1965 to 1974, and the “post” period is 1980 through 1989.  “State ASI” is 

the county-population weighted average of Air Stagnation Index by state and cohort.  ASI is the 

monthly average of stagnation periods from 1973 to 1997.  “Institutionalized” is a binary 

variable that is “1” if the individual was institutionalized (either in prison or in a mental hospital) 

in the year of survey and “0” otherwise. 
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Table 2.3: First-Stage Results for Individuals by Birth State 

VARIABLES Atmospheric Lead Atmospheric Lead Atmospheric Lead 

ASI × Low Exposure Cohort -0.0960***

(0.0314)

-0.1357***

(0.0175)

ASI 0.1038***

(0.0331)

0.1425***

(0.0202)

Low Exposure Cohort -0.4458***

(0.1355)

-0.2637

(0.1678)

-0.1358*** 
(0.0174) 
0.1427*** 
(0.0201)

-1.6978

(18.214) 

Birth Region No Yes Yes 

Birth Region × Low Exposure Cohort No Yes Yes 

Age No No Yes 

Age × Low Exposure Cohort No No Yes 

Female No No Yes 

Female × Low Exposure Cohort No No Yes 

Race No No Yes 

Race × Low Exposure Cohort No No Yes 

Observations 2,189,417 2,189,417 2,189,417 

R-squared 0.8578 0.9393 0.9394 

Notes: The dependent variable is atmospheric lead in μg/m3 averaged by birth state and cohort.  

“Low Exposure Cohort” is “0” if individual born between 1965 and 1969, and “1” if individual 

born between 1985 and 1989.  Regional indicators are based on U.S. Census definitions.  ASI 

and Lead are both state averages weighted by county population by cohort.  Results are 

comparable with or without the Age and Age×Low Exposure Cohort variables.  “Female” is “1” 

if the observation is female; “Race” is a set of indicators for each coded race in the sample. *** 

indicate significance at the 1 percent level, ** indicate significance at the 5 percent level, and * 

indicates significance at the 10 percent level.  Standard errors are included in parentheses and are 

clustered by birth state. 
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Table 2.4: Incarceration Reduced-Form Regression Results 

VARIABLES Institutionalized Institutionalized Institutionalized 

ASI × Low Exposure Cohort -0.0013*** 

(0.0002) 

-0.0006*** 

(0.0002) 

-0.0005** 

(0.0002) 

ASI 0.0025*** 

(0.0007) 

0.0024*** 

(0.0004) 

0.0012*** 

(0.0003) 

Low Exposure Cohort 0.0113*** 

(0.0010) 

0.0054*** 

(0.0016) 

0.0520 

(1.5428) 

    

Birth Region No Yes Yes 

Birth Region × Low Exposure Cohort No Yes Yes 

Age No No Yes 

Age × Low Exposure Cohort No No Yes 

Female No No Yes 

Female × Low Exposure Cohort No No Yes 

Race No No Yes 

Race × Low Exposure Cohort No No Yes 

    

Observations 2,189,417 2,189,417 2,189,417 

R-squared 0.0011 0.0021 0.0411 
 

Notes: The dependent variable, “Institutionalized”, is a binary variable that is “1” if the 

individual was incarcerated in the year of survey and “0” otherwise.  “ASI” is the county-

population weighted average of Air Stagnation Index by state and cohort.  “Low Exposure 

Cohort” takes on 0 for the “pre” cohort and 1 for the “post” cohort.  “ASI×Low Exposure 

Cohort” is the interaction of “ASI” and “Low Exposure Cohort”.  Column (1) has controls for 

birth region (U.S. Census definition) and interactions between cohort and birth region, and 

column (2) adds demographic controls and the associated time interactions to the initial 

specification. Results are comparable with or without the Age and Age×Post variables.  

“Female” is “1” if the observation is female; “Race” is a set of indicators for each coded race in 

the sample. *** indicate significance at the 1 percent level, ** indicate significance at the 5 

percent level, and * indicates significance at the 10 percent level. Standard errors are in 

parentheses and are clustered by birth state. 
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Table 2.5: Incarceration Instrumental Variable Regression Results 

VARIABLES Institutionalized Institutionalized Institutionalized 

Atmospheric Lead 0.0132**   

(0.0054) 

0.0046*** 

(0.0011) 

0.0039*** 

(0.0012) 

ASI 0.0010* 

(0.0006) 

0.0017*** 

(0.0004) 

0.0006* 

(0.0003) 

Low Exposure Cohort 0.0168***    

(0.0045) 

0.0073*** 

(0.0013) 

-0.0502*** 

(0.0068) 

    

Birth Region No Yes Yes 

Birth Region × Low Exposure Cohort No Yes Yes 

Age No No Yes 

Age × Low Exposure Cohort No No Yes 

Female No No Yes 

Female × Low Exposure Cohort No No Yes 

Race No No Yes 

Race × Low Exposure Cohort No No Yes 

    

Observations 2,189,417 2,189,417 2,189,417 

 

Notes: The dependent variable, “Institutionalized”, is a binary variable that is “1” if the 

individual was institutionalized (either in prison or a mental hospital) in the year of survey and 

“0” otherwise. “Atmospheric Pb” is the county population-weighted average of atmospheric lead 

(in micrograms per cubic meter) in a state by cohort and is instrumented by “ASI×Low Exposure 

Cohort”.  “ASI×Low Exposure Cohort” is the interaction of “ASI” and “Low Exposure Cohort”.    

“ASI” is the county-population weighted average of Air Stagnation Index by state and cohort.  

“Low Exposure Cohort” takes on 0 for the “pre” cohort and 1 for the “post” cohort.  Column (1) 

has controls for birth region (U.S. Census definition) and interactions between cohort and birth 

region, and column (2) adds demographic controls and the associated time interactions to the 

initial specification.  Results are comparable with or without the Age and Age×Post variables.  

“Female” is “1” if the observation is female; “Race” is a set of indicators for each coded race in 

the sample.  *** indicate significance at the 1 percent level, ** indicate significance at the 5 

percent level, and * indicates significance at the 10 percent level.  Standard errors are in 

parentheses and are clustered by birth state. 
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Table 2.6: Period-Based Summary Statistics by MSA 

Variable Observations Mean 
Std. 

Dev. 

25th 

Percentile 

50th  

Percentile 

75th 

Percentile 

95th 

Percentile 

Atmospheric Lead (μg/m3) 394 0.4566 0.3976 0.1363 0.3196 0.7233 1.2206 

Air Stagnation Index 

(stagnation periods per 

month) 

394 4.8153 2.1556 3.0833 4.2483 5.7517 9.6067 

Property Crime  

(crimes per 1,000 pop) 
394 7.6101 2.8601 5.5023 7.0250 9.5630 13.096 

Violent Crime  

(crimes per 1,000 pop) 
394 1.9040 0.9531 1.2420 1.6694 2.3541 3.6845 

Notes: These summary statistics pertain to the MSA-level sample.  The crime data are from 

National Archive for Criminal Justice Data (NACJD) and were attained through the 

Interuniversity Consortium for Political and Social Research (ICPSR).   These data originate 

from the Federal Bureau of Investigation’s Uniform Crime Reports (UCR).  The lead data come 

from the U.S. Environmental Protection Agency and were acquired through a Freedom of 

Information Act (FOIA) request.  The ASI data are from the National Oceanic and Atmospheric 

Administration (NOAA).  Atmospheric lead is in micrograms per cubic meter, and the ASI is the 

monthly average of stagnation periods from 1973 to 1997.  The crime variables are measured in 

number of arrests in the respective categories.  The various percentiles refer to the percentiles of 

the respective variable. 
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Table 2.7: First-Stage Results by MSA 

VARIABLES Atmospheric Lead Atmospheric Lead 

ASI×Post2000 -0.0474***

(0.0178) 

-0.0644***

(0.0229) 

ASI 0.0414** 

(0.0186) 

0.0682*** 

(0.0257) 

Post2000 -0.373***

(0.0784) 

-0.592***

(0.1090) 

Region No Yes 

Region×Post2000 No Yes 

Observations 394 394 

R-squared 0.599 0.674 

Notes: The dependent variable is atmospheric lead in μg/m3 averaged by MSA and period.  The 

“pre” period is 1960 through 1979 and the “post” period is 1980 to 2000.  ASI is the average 

number of stagnation periods per month from 1973 to 1997.   Post2000 is a dummy variable 

taking on 0 for the “pre” period and 1 for the “post” period.  “Region” is based on U.S. Census 

definitions.  *** indicate significance at the 1 percent level, ** indicate significance at the 5 

percent level, and * indicates significance at the 10 percent level.   Standard errors are included 

in parentheses and are clustered by MSA. 
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Table 2.8a: Period-Based Reduced-Form Property Crime Regression Results 

VARIABLES Property Crime 

per Capita 

Property Crime 

per Capita 

Ln(Property 

Crime) 

Ln(Property 

Crime) 

ASI×Post2000 -0.415***

(0.0660) 

-0.237**

(0.106) 

-0.0404***

(0.0081) 

-0.0356***

(0.0115) 

ASI 0.495*** 

(0.0843) 

0.0043 

(0.124) 

0.0595*** 

(0.0083) 

0.0029 

(0.0105) 

Post2000 -1.109***

(0.367) 

-3.914***

(0.644) 

-0.195***

(0.0495) 

-0.381***

(0.109) 

Ln (MSA Population) 0.952*** 

(0.0166) 

0.976*** 

(0.0159) 

Region No Yes No Yes 

Region×Post2000 No Yes No Yes 

Observations 394 394 394 394 

R-squared 0.367 0.588 0.925 0.946 

Notes: The dependent variable is property crimes per 1,000 residents or the logarithm of property 

crime.  These are averages (or the logarithm of averages) by MSA and period.  Crime is based on 

number of arrests.   The “pre” period is 1980 through 1990 and the “post” period is 2000 to 

2010.   “Region” and “Region×Post2000” are geographic control variables based on U.S. Census 

definitions.  ASI is the Air Stagnation Index average by MSA and Post2000 is a dummy variable 

taking on 0 for the “pre” period and 1 for the “post” period.  The logarithm of MSA population is 

the logarithm of the average MSA population by period.  *** indicate significance at the 1 

percent level, ** indicate significance at the 5 percent level, and * indicates significance at the 10 

percent level.  Standard errors are included in parentheses and are clustered by MSA. 
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Table 2.8b: Period-Based Reduced-Form Violent Crime Regression Results 

VARIABLES Violent Crime 

per Capita 

Violent Crime 

per Capita 

Ln(Violent Crime) Ln(Violent Crime) 

ASI×Post2000 0.011 

(0.0255) 

0.0077 

(0.0401) 

-0.0249** 

(0.0116) 

-0.0066 

(0.0212) 

ASI 0.208*** 

(0.0342) 

0.197*** 

(0.0449) 

0.113*** 

(0.0141) 

0.0886*** 

(0.0213) 

Post2000 -0.074 

(0.130) 

-0.514** 

(0.215) 

0.110 

(0.0696) 

0.0836 

(0.196) 

Ln (MSA Population)   1.145*** 

(0.0262) 

1.126*** 

(0.0269) 

     

Region No Yes No Yes 

Region×Post2000 No Yes No Yes 

     

Observations 394 394 394 394 

R-squared 0.258 0.232 0.911 0.92 

 

Notes: The dependent variable is violent crimes per 1,000 residents or the logarithm of violent 

crime.  These are averages (or the logarithm of averages) by MSA and period.  Crime is based on 

number of arrests.   The “pre” period is 1980 through 1990 and the “post” period is 2000 to 

2010.   “Region” and “Region×Post2000” are geographic control variables based on U.S. Census 

definitions.  ASI is the Air Stagnation Index average by MSA and Post2000 is a dummy variable 

taking on 0 for the “pre” period and 1 for the “post” period.  The logarithm of MSA population is 

the logarithm of the average MSA population by period.  *** indicate significance at the 1 

percent level, ** indicate significance at the 5 percent level, and * indicates significance at the 10 

percent level.  Standard errors are included in parentheses and are clustered by MSA. 
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Table 2.9a: Period-Based Instrumental Variable Property Crime Regression Results 

VARIABLES Property Crime 

per Capita 

Property Crime 

per Capita 

Ln(Property 

Crime) 

Ln(Property 

Crime) 

Atmospheric Lead 8.755** 

(3.764) 

3.681 

(2.422) 

  

Ln(Atmospheric Lead)   0.514*** 

(0.160) 

1.291 

(1.662) 

ASI 0.132* 

(0.0754) 

-0.247** 

(0.0956) 

0.0457*** 

(0.0111) 

-0.0637 

(0.0850) 

Post2000 2.157 

(2.194) 

-1.737 

(1.871) 

0.490* 

(0.277) 

2.221 

(3.146) 

Ln (MSA Population)   0.859*** 

(0.0348) 

0.749** 

(0.296) 

     

Region No Yes No Yes 

Region×Post2000 No Yes No Yes 

Observations 394 394 394 394 

 

Notes: The dependent variable is property crimes per 1,000 residents or the logarithm of property 

crime.  These are averages (or the logarithm of the average) by MSA and period.  Crime is based 

on number of arrests.   The “pre” period is 1980 through 1990 and the “post” period is 2000 to 

2010.  Atmospheric lead is the average atmospheric lead in micrograms per cubic meter by MSA 

and period.  “Region” and “Region×Post2000” are geographic control variables based on U.S. 

Census definitions.  ASI is the Air Stagnation Index average by MSA and Post2000 is a dummy 

variable taking on 0 for the “pre” period and 1 for the “post” period.  The logarithm of MSA 

population is the logarithm of the average MSA population by period.  *** indicate significance 

at the 1 percent level, ** indicate significance at the 5 percent level, and * indicates significance 

at the 10 percent level.  Standard errors are included in parentheses and are clustered by MSA. 
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Table 2.9b: Period-Based Instrumental Variable Violent Crime Regression Results 

VARIABLES Violent Crime 

per Capita 

Violent Crime 

per Capita 

Ln(Violent Crime) Ln(Violent Crime) 

Atmospheric Lead -0.221 

(0.564) 

-0.120 

(0.630) 

  

Ln(Atmospheric Lead)   0.316* 

(0.168) 

0.239 

(0.748) 

ASI 0.217*** 

(0.0327) 

0.205*** 

(0.0439) 

0.105*** 

(0.0134) 

0.0763** 

(0.0327) 

Post2000 -0.157 

(0.338) 

-0.586 

(0.514) 

0.531* 

(0.292) 

0.449 

(1.450) 

Ln (MSA Population)   1.087*** 

(0.0357) 

 

1.084*** 

(0.132) 

Region No Yes No Yes 

Region×Post2000 No Yes No Yes 

Observations 394 394 394 394 

 

Notes: The dependent variable is violent crimes per 1,000 residents or the logarithm of violent 

crime.  These are averages (or the logarithm of the average) by MSA and period.  Crime is based 

on number of arrests.   The “pre” period is 1980 through 1990 and the “post” period is 2000 to 

2010.   Atmospheric lead is the average atmospheric lead in micrograms per cubic meter by 

MSA and period.  “Region” and “Region×Post2000” are geographic control variables based on 

U.S. Census definitions.  ASI is the Air Stagnation Index average by MSA and Post2000 is a 

dummy variable taking on 0 for the “pre” period and 1 for the “post” period.  The logarithm of 

MSA population is the logarithm of the average MSA population by period.  *** indicate 

significance at the 1 percent level, ** indicate significance at the 5 percent level, and * indicates 

significance at the 10 percent level.  Standard errors are included in parentheses and are clustered 

by MSA. 
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Table 2.10: Results for Ozone Regressed on ASI, 1980 to 2010 

VARIABLES Ozone Ozone 

ASI×Post1990 0.0004 

(0.0005) 

-0.0015** 

(0.0007) 

ASI -0.0006 

(0.0006) 

0.0035*** 

(0.0008) 

Post1990 -0.0091*** 

(0.0023) 

-0.0126*** 

(0.0031) 

   

Observations 1,497 1,497 

R-squared 0.051 0.253 

Notes: These regressions test the relationship between air stagnation and trends in ozone.  The 

dependent variable is ozone in parts per million (ppm).  Post1990 takes on “0” if year is before 

1990 and “1” if year is 1990 or later.  Results are comparable when using 1995 as starting “post” 

year.  Column (1) includes no geographic controls, Column (2) controls for regional and 

regional-time variables (based on U.S. Census).  Standard errors are included in parentheses and 

are clustered by MSA.  *** indicate significance at the 1 percent level, ** indicate significance 

at the 5 percent level, and * indicates significance at the 10 percent level. 
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Table 3.1: Historic NAAQS for Ozone 1979 to 2008 

Year Rule Established Averaging time Level Form 

1979 1 hour 0.12ppm Not to be exceeded 

for more than 1 hour 

per year 

1997 8 hour 0.08ppm Annual fourth-highest 

daily maximum 8 

hour concentration, 

averaged over 3 years 

2008 8 hour 0.075ppm Annual fourth-highest 

daily maximum 8 

hour concentration, 

averaged over 3 years 

Source: United States Environmental Protection Agency 

Note: “ppm” stands for “parts per million”. 

 

 

 

 

 

 

 

 

 

 



109 
 

Table 3.2: Summary Statistics for Polluting-Industry Outcome Variables 

Variable Observations Mean Std. Dev. Min Max 

Employment 

 (Full Sample) 

 

5,200 

 

 

11,781 

 

22,720 

 

3 

 

390,304 

Employment 

(EPADV 82-88) 

 

1,336 

 

 

12,168 

 

24,058 

 

66 

 

229,673 

Establishments 

(Full Sample) 

 

 

5,200 

 

288 

 

595 

 

1 

 

10,817 

Establishments 

(EPADV 82-88) 

 

1,336 

 

280 

 

609 

 

4 

 

5,690 

 

Note: “EPADV” refers to the designation value range.  Data come from the U.S. Census County 

Business Patterns. 
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Table 3.3: Baseline OLS Results for Polluting-Industries 

 DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

     

Nonattainment Status -0.123* -0.180* -0.00300 -0.0447 

 (0.0624) (0.0972) (0.0367) (0.0657) 

Ln(County Population) 1.039*** 1.006*** 0.969*** 0.963*** 

 (0.0371) (0.0615) (0.0200) (0.0368) 

Constant -2.790*** -2.141*** -6.148*** -5.866*** 

 (0.454) (0.756) (0.248) (0.469) 

     

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

     

Observations 3,728 1,328 3,728 1,328 

R-squared 0.740 0.718 0.874 0.865 

 

Note: This table shows the results from a baseline regression using Ordinary least squares.  

Standard errors are in parentheses and clustered by county.  *** indicate statistical significance 

at the 1 percent level, ** indicate statistical significance at the 5 percent level, and * indicates 

statistical significance at the 10 percent level.  Year and U.S. Census region dummy variables are 

included.  Nonattainment status is a binary variable indicating whether a county was in 

attainment of the ozone NAAQS for a given year (0 for in attainment, 1 for nonattainment).  

“Ln(Employment)” represents the logarithm of the number of workers in highly polluting 

industries.  “Ln(Estbs.)” represents the logarithm of the number of highly polluting industry 

establishments.  “DV” stands for “designation value” with the threshold for attainment being 85 

ppm.  The 75-95 sample contains most counties in the full sample, while the 82-88 sample is the 

preferred selection of counties close to the threshold. 
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Table 3.4: Baseline 2SLS Results for Polluting Industries 

 DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

     

Nonattainment Status -0.179** -0.201 -0.0302 -0.0333 

 (0.0765) (0.125) (0.0467) (0.0871) 

Ln(County Population) 1.046*** 1.009*** 0.972*** 0.961*** 

 (0.0380) (0.0633) (0.0210) (0.0396) 

Constant -2.637*** -2.282*** -6.053*** -5.937*** 

 (0.477) (0.791) (0.264) (0.504) 

     

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

     

Observations 3,728 1,328 3,728 1,328 

R-squared 0.740 0.718 0.874 0.865 

 

Note: This table shows the results from a baseline regression using Two-Stage Least Squares.  

The instrument is the 2004 ozone designation value for a county.  Standard errors are in 

parentheses and clustered by county.  *** indicate statistical significance at the 1 percent level, 

** indicate statistical significance at the 5 percent level, and * indicates statistical significance at 

the 10 percent level.  Year and U.S. Census region dummy variables are included.  

Nonattainment status is a binary variable indicating whether a county was in attainment of the 

ozone NAAQS for a given year (0 for in attainment, 1 for nonattainment).  “Ln(Employment)” 

represents the logarithm of the number of workers in highly polluting industries.  “Ln(Estbs.)” 

represents the logarithm of the number of highly polluting industry establishments.  “DV” stands 

for “designation value” with the threshold for attainment being 85 ppm.  The 75-95 sample 

contains most counties in the full sample, while the 82-88 sample is the preferred selection of 

counties close to the threshold. 
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Table 3.5: Fuzzy RD Results for Polluting Industries 

DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

Nonattainment Status -0.179** -0.241** -0.0346 -0.0911

(0.0828) (0.113) (0.0521) (0.0787) 

Ln(County Population) 1.035*** 1.022*** 0.966*** 0.968*** 

(0.0374) (0.0609) (0.0207) (0.0366) 

Distance Over Threshold 0.0210*** -0.0693* 0.0140*** -0.0164

(0.0074) (0.0407) (0.0048) (0.0240) 

Distance×Nonattainment Status -0.0275** 0.0937 -0.0176** 0.0413 

(0.0120) (0.0576) (0.00762) (0.0425) 

Constant -2.503*** -2.421*** -5.966*** -6.003***

(0.472) (0.768) (0.262) (0.481) 

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

Observations 3,728 1,328 3,728 1,328 

R-squared 0.743 0.723 0.876 0.866 

Notes: This table contains the primary regression discontinuity regression results.  Standard 

errors are in parentheses and clustered by county.  *** indicate statistical significance at the 1 

percent level, ** indicate statistical significance at the 5 percent level, and * indicates statistical 

significance at the 10 percent level.  Year and U.S. Census region dummy variables are included.  

“Nonattainment status” is a binary variable indicating whether a county was in attainment of the 

ozone NAAQS for a given year (0 for in attainment, 1 for nonattainment).  The “distance” 

variable takes the 2004 designation value and subtracts 85. “Ln(Employment)” represents the 

logarithm of the number of workers in highly polluting industries.  “Ln(Estbs.)” represents the 

logarithm of the number of highly polluting industry establishments. “DV” stands for 

“designation value” with the threshold for attainment being 85 ppm.  The 75-95 sample contains 

most counties in the full sample, while the 82-88 sample is the preferred selection of counties 

close to the threshold. 
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Table 3.6: Fuzzy RD Results for Total County 

DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

Nonattainment Status -0.0739 0.0345 -0.0282

(0.0894) (0.0314) (0.0742)

Ln(County Population) 1.157*** 1.052*** 1.046***

(0.0348) (0.0162) (0.0283)

Distance Over Threshold -0.0266 -0.0068** -0.0168

-0.0078 
(0.0394) 
1.179*** 
(0.0189)

-0.0030 
(0.0039)  (0.0238) (0.0033) (0.0192) 

Distance×Nonattainment Status 0.00151 0.0712 0.0661 

(0.0064) (0.0493)

0.0076 

(0.0056) (0.0425) 

Constant -2.839*** -2.537*** -4.309*** -4.211***

(0.239) (0.459) (0.205) (0.381)

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

Observations 3,724 1,328 3,724 1,328 

R-squared 0.934 0.921 0.941 0.938 

Notes: This table contains the regression discontinuity regression results for total county 

outcomes.  Standard errors are in parentheses and clustered by county.  *** indicate statistical 

significance at the 1 percent level, ** indicate statistical significance at the 5 percent level, and * 

indicates statistical significance at the 10 percent level.  Year and U.S. Census region dummy 

variables are included.  “Nonattainment status” is a binary variable indicating whether a county 

was in attainment of the ozone NAAQS for a given year (0 for in attainment, 1 for 

nonattainment).  The “distance” variable takes the 2004 designation value and subtracts 85. 

“Ln(Employment)” represents the logarithm of the number of workers in highly polluting 

industries.  “Ln(Estbs.)” represents the logarithm of the total county establishments.  “DV” 

stands for “designation value” with the threshold for attainment being 85 ppm.  The 75-95 

sample contains most counties in the full sample, while the 82-88 sample is the preferred 

selection of counties close to the threshold. 
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Table 3.7: Fuzzy RD Results for Total County Less Polluting Industries 

DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

Nonattainment Status 0.0133 -0.0658 0.0379 -0.0260

(0.0405) (0.0969) (0.0316) (0.0754)

Ln(County Population) 1.209*** 1.191*** 1.056*** 1.050***

(0.0192) (0.0355) (0.0165) (0.0287)

Distance Over Threshold -0.0197 -0.0077**   -0.0174-0.0062 
(0.0041) (0.0242) (0.0033) (0.0196) 

Distance×Nonattainment Status 0.0038 0.0682 0.0674 

(0.0067) (0.0533)

0.0084 

(0.0056) (0.0431) 

Constant -3.458*** -3.205*** -4.430*** -4.327***

(0.241) (0.465) (0.208) (0.384)

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

Observations 3,723 1,328 3,724 1,328 

R-squared 0.933 0.921 0.940 0.937 

Notes: This table contains the regression discontinuity regression results for total county 

employment less polluting industries.  Standard errors are in parentheses and clustered by 

county.  *** indicate statistical significance at the 1 percent level, ** indicate statistical 

significance at the 5 percent level, and * indicates statistical significance at the 10 percent level. 

Year and U.S. Census region dummy variables are included.  “Nonattainment status” is a binary 

variable indicating whether a county was in attainment of the ozone NAAQS for a given year (0 

for in attainment, 1 for nonattainment).  The “distance” variable takes the 2004 designation value 

and subtracts 85. “Ln(Employment)” represents the logarithm of the number of workers in highly 

polluting industries.  “Ln(Estbs.)” represents the logarithm of total county establishments 

excluding those in highly polluting industries.  “DV” stands for “designation value” with the 

threshold for attainment being 85 ppm.  The 75-95 sample contains most counties in the full 

sample, while the 82-88 sample is the preferred selection of counties close to the threshold. 
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Table 3.8: Fuzzy RD Results for Polluting Industries, Controlling for Status Switching 

 DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

Nonattainment Status -0.483*** -0.636*** -0.158* -0.231* 

 (0.144) (0.187) (0.0923) (0.140) 

Ln(County Population) 1.059*** 1.079*** 0.974*** 0.984*** 

 (0.0392) (0.0658) (0.0216) (0.0413) 

Distance Over Threshold 0.0356*** -0.0462 0.0213*** -0.0003 

 (0.0115) (0.0462) (0.00759) (0.0297) 

Distance×Nonattainment Status -0.0408*** 0.0688 -0.0246*** 0.0242 

 (0.0137) (0.0617) (0.00932) (0.0461) 

Switcher Status -0.282** -0.246 -0.139 -0.149 

 (0.139) (0.174) (0.0890) (0.118) 

Switcher×Nonattainment Status 0.664*** 0.788*** 0.276** 0.304* 

 (0.174) (0.240) (0.109) (0.161) 

Constant -2.776*** -3.118*** -6.046*** -6.166*** 

 (0.518) (0.873) (0.282) (0.559) 

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

Observations 3,728 1,328 3,728 1,328 

R-squared 0.748 0.728 0.877 0.866 

Notes: This table contains the regression discontinuity regression results for polluting industries 

when controlling for counties that changed designation over the course of the sample (e.g. went 

from nonattainment to attainment).  Standard errors are in parentheses and clustered by county.  

*** indicate statistical significance at the 1 percent level, ** indicate statistical significance at 

the 5 percent level, and * indicates statistical significance at the 10 percent level.  Year and U.S. 

Census region dummy variables are included.  “Nonattainment status” is a binary variable 

indicating whether a county was in attainment of the ozone NAAQS for a given year (0 for in 

attainment, 1 for nonattainment). The “distance” variable takes the 2004 designation value and 

subtracts 85.  “Switcher Status” is a binary variable indicating whether a county changed 

designation status during the sample years.  “Ln(Employment)” represents the logarithm of the 

number of workers in highly polluting industries.  “Ln(Estbs.)” represents the logarithm of the 

number of highly polluting industry establishments.  “DV” stands for “designation value” with 

the threshold for attainment being 85 ppm.  The 75-95 sample contains most counties in the full 

sample, while the 82-88 sample is the preferred selection of counties close to the threshold.   
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Table 3.9: Fuzzy RD Results for Polluting Industries Excluding EAC Counties 

 DV 75-95 DV 82-88 DV 75-95 DV 82-88 

VARIABLES Ln(Employment) Ln(Employment) Ln(Estbs.) Ln(Estbs.) 

     

Nonattainment Status -0.161* -0.165 -0.0254 -0.0623 

 (0.0855) (0.118) (0.0531) (0.0767) 

Ln(County Population) 1.029*** 0.994*** 0.963*** 0.958*** 

 (0.0384) (0.0623) (0.0211) (0.0371) 

Distance Over Threshold 0.0198** -0.0882** 0.0129*** -0.0243 

 (0.00785) (0.0436) (0.00502) (0.0239) 

Distance×Nonattainment Status -0.0260** 0.110* -0.0165** 0.0482 

 (0.0120) (0.0566) (0.00760) (0.0416) 

Constant -2.433*** -2.128*** -5.941*** -5.897*** 

 (0.483) (0.785) (0.267) (0.488) 

     

Year Yes Yes Yes Yes 

Census Region Yes Yes Yes Yes 

     

Observations 3,576 1,224 3,576 1,224 

R-squared 0.743 0.726 0.878 0.874 

 

Notes: This table contains regression results when excluding Early Action Compact counties 

from the sample. Standard errors are in parentheses and clustered by county.  *** indicate 

statistical significance at the 1 percent level, ** indicate statistical significance at the 5 percent 

level, and * indicates statistical significance at the 10 percent level.  Year and U.S. Census region 

dummy variables are included.  “Nonattainment status” is a binary variable indicating whether a 

county was in attainment of the ozone NAAQS for a given year (0 for in attainment, 1 for 

nonattainment).  The “distance” variable takes the 2004 designation value and subtracts 85.  

“Ln(Employment)” represents the logarithm of the number of workers in highly polluting 

industries.  “Ln(Estbs.)” represents the logarithm of the number of highly polluting industry 

establishments.  “DV” stands for “designation value” with the threshold for attainment being 85 

ppm.  The 75-95 sample contains most counties in the full sample, while the 82-88 sample is the 

preferred selection of counties close to the threshold. 
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Table 4.1: Summary Statistics for Full Sample 

 Variable Observations Mean Standard 

Deviation 

Minimum Maximum 

 

All 

Years 

SO2 Emissions 

(tons) 

11,503 17,781 32,148 0 374,920 

Heat Input 

(mmBtu) 

 

11,503 34,600,000 41,700,000 0 265,000,000 

Pre-

ARP 

Period 

SO2 Emissions 

(tons) 

2,034 23,797 47,451 0 374,920 

Heat Input 

(mmBtu) 

 

2,034 27,300,000 33,100,000 0 208,000,000 

Phase 

1 

Period  

SO2 Emissions 

(tons) 

3,244 19,193 31,706 0 284,616 

Heat Input 

(mmBtu) 

 

3244 35,700,000 42,100,000 0 245,000,000 

Phase 

2 

Period  

SO2 Emissions 

(tons) 

6,225 15,079 25,108 0 206,442 

Heat Input 

(mmBtu) 

6,225 36,500,000 43,700,000 0 265,000,000 

Notes: Data are from the EPA’s Air Market Data for the Acid Rain Program.  “Pre-ARP Period” 

is 1980, 1985, and 1990; “Phase 1 Period” is 1995 to 1999; “Phase 2 Period” is 2000 to 2009. 
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Table 4.2: Initial Allocation Summary Statistics by Facility 

Variable Observations Mean Standard 

Deviation 

Minimum Maximum 

Phase 1 Plant 

Allocations 

104 52,110 46,929 2,571 247,881 

Estimated 

Phase 1 Plant 

Allocations  

104 51,496 46,808 883.74 252,625 

Phase 2 Plant 

Allocations 

654 13,772 17,862 1 109,781 

Estimated 

Phase 2 Plant 

Allocations  

654 16,477 20,010 0 124,748 

Notes: Data are from the EPA’s Air Market Data for the Acid Rain Program.  The “Estimated” 

Allocations are calculated based on the 1985-1987 heat input baseline multiplied by the 

respective multiplier for each phase. 
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Table 4.3: Results for Full Sample ARP Phase 1 Analysis 

VARIABLES SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

Phase 1 × PostDummy1 -45,764*** 

(6,457) 

-45,712*** 

(6,096) 

-76,481*** 

(6,968) 

1,849 

(6,771) 

Phase 1 64,539*** 19,703*** 79,414*** 1,084 

 (5,565) (4,725) (7,633) (5,302) 

PostDummy1 -3,141*** 1,859*** 1,859*** 1,859*** 

 (520.7) (483.1) (483.1) (483.2) 

Heat Input 0.624***    

 (0.0416)    

Phase 1 Allocations  1.167*** 

(0.0835) 

 1.530*** 

(0.128) 

Ph1 Alloc. × PostDummy1   0.611*** 

(0.116) 

-0.919*** 

(0.187) 

Constant -3,395*** 11,264*** 11,264*** 11,264*** 

 (789.1) (860.3) (860.3) (860.5) 

     

Observations 3,318 3,318 3,318 3,318 

R-squared 0.615 0.602 0.362 0.641 

Notes: Standard errors listed in parentheses are clustered by facility.  *** indicates significance 

at the 1 percent level; ** indicates significance at the 5 percent level; * indicates significance at 

the 10 percent level”.   “PostDummy1” is a binary indicator that represents “0” if the year is 

before 1995 and “1” if 1995 or later.  “Phase 1” is a binary indicator for whether a facility was 

included in Phase 1, while “Phase 1 Allocations” is the number of yearly tradable permit 

allocations for a given facility.  The unit for “Heat Input” is 1000 mmBtu. 
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Table 4.4: Results for ARP Phase 1 Analysis with Fixed Effects 

VARIABLES SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

Phase 1 × PostDummy1 -45,764*** -45,688*** -41,263*** -76,481*** -69,067*** -69,433*** 

(6,457) (6,472) (5,688) (6,968) (7,401) (7,316) 

Phase 1 64,539*** 55,978*** 53,989*** 79,414*** 69,251*** 67,813*** 

(5,565) (5,261) (5,112) (7,633) (7,119) (7,089) 

PostDummy1 -3,141*** -3,265***  1,859*** 1,448***  

(520.7) (530.1)  (483.1) (499.3)  

Heat Input 0.624*** 0.601*** 0.609***    

(0.0416) (0.04) (0.0416)    

Ph1 Alloc. × PostDummy1    0.611*** 0.468*** 0.548*** 

   (0.116) (0.143) (0.130) 

Constant -3,395*** -1,272 -2,765*** 11,264*** 13,046*** 13,599*** 

(789.1) (882.5) (986.6) (860.3) (975.4) (989.9) 

State FE No Yes No No Yes No 

State-Year FE No No Yes No No Yes 

Observations 3,318 3,318 3,318 3,318 3,318 3,318 

R-squared 0.615 0.658 0.670 0.362 0.439 0.453 

Notes: Standard errors listed in parentheses are clustered by facility.  *** indicates significance 

at the 1 percent level; ** indicates significance at the 5 percent level; * indicates significance at 

the 10 percent level”.  Columns 2 and 5 include state fixed effects, while Columns 3 and 6 

include state-year fixed effects.  “PostDummy1” is a binary indicator that represents “0” if the 

year is before 1995 and “1” if 1995 or later.  “Phase 1” is a binary indicator for whether a facility 

was included in Phase 1, while “Phase 1 Allocations” is the number of yearly tradable permit 

allocations for a given facility.  The unit for “Heat Input” is 1000 mmBtu. 
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Table 4.5: Results for Full Sample ARP Phase 2 Analysis 

VARIABLES SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

Phase 2 Only×PostDummy2 10,257*** 

(3,155) 

9,713*** 

(3,134) 

25,325*** 

(4,323) 

5,100** 

(2,524) 

Phase 2 Only -25,987*** -19,074*** -36,220*** -15,995*** 

 (3,864) (3,557) (4,749) (3,273) 

Post Dummy2 -13,132*** -12,654*** -39,574*** -4,640** 

 (3,136) (3,117) (4,398) (2,206) 

Heat Input 0.389***    

 (0.294)    

Phase 2 Allocations  1.097*** 

(0.0624) 

 1.294*** 

(0.0721) 

Phase 2 Alloc.× Post Dummy 2   0.997*** 

(0.0647) 

-0.297*** 

(0.0531) 

Constant 27,133*** 19,991*** 49,607*** 14,673*** 

 (3,757) (3,477) (4,646) (3,051) 

Observations 9,469 9,469 9,469 9,469 

R-squared 0.517 0.627 0.419 0.634 

Notes: Standard errors listed in parentheses are clustered by facility.  *** indicates significance 

at the 1 percent level; ** indicates significance at the 5 percent level; * indicates significance at 

the 10 percent level”.  “Post Dummy2” is a binary indicator that represents “0” if the year is 

before 2000 and “1” if later.  “Phase 2” is a binary indicator for whether a facility was only 

included in Phase 2, while “Phase 2 Allocations” is the number of yearly tradable permit 

allocations for a given facility.  The unit for “Heat Input” is 1000 mmBtu. 
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Table 4.6: Results for ARP Phase 2 Analysis with Fixed Effects 

VARIABLES SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

SO2 

Emissions 

       

Phase 2 × PostDummy2 10,257*** 

(3,155) 

10,367*** 

(3,169) 

8,980*** 

(3,748) 

25,325*** 

(4,323) 

23,578*** 

(4,186) 

19,722*** 

(4,807) 

Phase 2 -25,987*** -19,620*** -18,713*** -36,220*** -29,195*** -26,933*** 

(3,864) (3,812) (4,145) (4,749) (4,641) (5,105) 

PostDummy2 -13,132*** -13,032***  -39,574*** -36,299***  

(3,136) (3,150)  (4,398) (4,186)  

Heat Input 0.389*** 0.374*** 0.373***    

(0.0294) (0.0274) (0.0285)    

Ph2 Alloc. × PostDummy2    0.997*** 0.878*** 0.952*** 

   (0.0647) (0.0589) (0.0620) 

Constant 27,133*** 22,251*** 13,690*** 49,607*** 44,245*** 19,321*** 

(3,757) (3,631) (2,608) (4,646) (4,428) (2,567) 

State FE No Yes No No Yes No 

State-Year FE No No Yes No No Yes 

Observations 9,469 9,469 9,469 9,469 9,469 9,469 

R-squared 0.517 0.585 0.605 0.419 0.478 0.519 

Notes: Standard errors listed in parentheses are clustered by facility.  *** indicates significance 

at the 1 percent level; ** indicates significance at the 5 percent level; * indicates significance at 

the 10 percent level”.  Columns 2 and 5 include state fixed effects, while Columns 3 and 6 

include state-year fixed effects.  “PostDummy2” is a binary indicator that represents “0” if the 

year is before 2000 and “1” if later.  “Phase 2” is a binary indicator for whether a facility was 

only included in Phase 2, while “Phase 2 Allocations” is the number of yearly tradable permit 

allocations for a given facility.  The unit for “Heat Input” is 1000 mmBtu. 

 



123 
 

Bibliography 

“Acid Rain Program”.  U.S. Environmental Protection Agency.

 http://www.epa.gov/airmarkets/progsregs/arp/basic.html 

 “Acid Rain Program SO2 Allowances Fact Sheet”.  U.S. Environmental Protection Agency. 

 http://www.epa.gov/airmarkets/trading/factsheet.html 

 “Air and Radiation”.  U.S. Environmental Protection Agency.  http://epa.gov/air/ 

"Air Quality Trends."  U.S. Environmental Protection Agency.    

 http://www.epa.gov/airtrends/aqtrends.html 

All4 Inc.  2009.  "Northeastern New Jersey Nonattainment Penalty Fees for Ozone."

 http://www.all4inc.com/northeastern-new-jersey-nonattainment-penalty-fees-for-ozone 

Altman, Morris.  2001.  When Green isn't Mean: Economic Theory and the Heuristics of the

 Impact of Environmental Regulations on Competitiveness and Opportunity Cost”.

 Ecological Economics, 36 (1): 31-44. 

Arceo-Gomez E.O., R. Hanna, and P. Oliva.  2012.  Does the Effect of Pollution on Infant

 Mortality Differ Between Developing and Developed Countries? Evidence from Mexico

 City.  Work. Pap., Nat. Bur. Econ. Res. No. 18349 

Auffhammer, Maximilian, Antonio M. Bento, and Scott E. Lowe. 2011.  The City-Level Effects

 of the 1990 Clean Air Act Amendments. Land Economics, 87, no. 1: 1-18. 

Barker, V. 2010. Explaining the Great American Crime Decline: A Review of Blumstein and

 Wallman, Goldberger and Rosenfeld, and Zimring. Law & Social Inquiry, 35: 489–516. 

Becker, Randy A.  2005.  Air Pollution Abatement Costs under the Clean Air Act: Evidence

 from the PACE Survey.  Journal of Environmental Economics and Management, 50

 (1):144 169. 

Becker, Randy and Vernon Henderson. 2000.  Effects of Air Quality Regulations on Polluting

 Industries. Journal of Political Economy, 108 (2): 379-421.  



124 
 

Berman, Eli, and Linda T.M. Bui.  2001.  Environmental Regulation and Labor Demand:

 Evidencefrom the South Coast Air Basin.  Journal of Public Economics, 79 (2): 265-295. 

Bharadwaj, Prashant and Juan Eberhard.  2008.  Atmospheric Air Pollution and Birth Weight.

 Working Paper. 

Black, Sandra, Paul Devereux, and Kjell Salvanes.  2007.  From the Cradle to the Labor Market?

 The Effect of Birth Weight on Adult Outcomes.  Quarterly Journal of Economics, 122: 

 409–439. 

Borenstein, Severin. 1993.  Price Incentives for Fuel Switching: Did Price Differentials Slow the

 Phase Out of Leaded Gasoline?.  Working Paper. 

Bohi, Douglas, and Dallas Burtraw.  1997.  SO2 Allowance Trading: How Do Expectations and

 Experience Measure Up? The Electricity Journal,  10 (7) (August/September): 67-75. 

Brink, L. L., E.O. Talbott, R.K. Sharma, G.M. Marsh, W.C. Wu, J.R. Rager, and H.M.

 Strosnider.  2013.  Do U.S. Ambient Air Lead Levels Have a Significant Impact on

 Childhood Blood Lead Levels: Results of a National Study. Journal of Environmental 

 and Public Health: 8. 

Burns, D.A., J.A. Lynch, B.J. Cosby, M.E. Fenn, and J.S. Baron. 2011.  National Acid

 Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment.

 Washington, DC: Executive Office of the President of the United States.

 http://ny.water.usgs.gov/projects/NAPAP/NAPAP_2011_Report_508_Compliant.pdf  

Burtraw, Dallas and Erin Mansur.  1999.  Environmental Effects of Trade and Banking.

 Environmental. Science and Technology, 33 (20): 3489–3494. 

Busse, M. R. and N.O. Keohane. 2007. Market Effects of Environmental Regulation: Coal,

 Railroads, and  the 1990 Clean Air Act.  The RAND Journal of Economics, 38: 1159

 1179. 

Caceres-Delpiano, Julio, and Eugenio Giolito.  2012.  The Impact of Unilateral Divorce on



125 
 

 Crime.  Journal of Labor Economics, 30: 215-248 

Callan, Scott, and Janet M. Thomas.  2004.  Environmental Economics & Management: Theory,

 Policy, and Applications. 3rd ed. Mason, OH: Thomson/South-Western. 

“Carbon Monoxide”.  U.S. Environmental Protection Agency.

 http://www3.epa.gov/airtrends/carbon.html 

Carlson, Curtis, Dallas Burtraw, Maureen Cooper, and Karen Palmer.  2000.  Sulfur Dioxide

 Control by Electric Utilities: What Are the Gains from Trade?  Resources for the Future 

 Discussion Paper. 

Carr, Douglas A.  2011.  The Intergovernmental Fiscal Effects of the Clean Air Act.  Public

 Finance Review, 39: 810-830. 

Chandramouli, K., C.D. Steer, M. Ellis, A.M. Emond.  2009.  Effects of Early Childhood Lead

 Exposure on Academic Performance and Behaviour of School Age Children.  Archives of

 Disease in Childhood, 94: 844–848. 

Charles, Kerwin K., and Ming Ching Luoh.  2010.  Male Incarceration, the Marriage Market,

 and Female Outcomes.  The Review of Economics and Statistics, 3: 614-627 

Chay, Kenneth Y., and Michael Greenstone.  2005.  Does Air Quality Matter? Evidence from the

 Housing Market.  Journal of Political Economy, 113 (2): 376-424.  

Chen, A., K. N. Dietrich, J.H. Ware, J. Radcliffe, and W.J. Rogan.  2005.  IQ and Blood Lead

 from 2 to 7 Years of Age: Are the Effects in Older Children the Residual of High Blood

 Lead Concentrations in 2-year-olds?  Environmental Health Perspectives, 113 (5): 597-

 601. 

“The Clean Room”.  Cosmos: A Spacetime Odyssey.  Fox.  April 20, 2014.  Television. 

Cohn, E. G. (1990). Weather and Crime.  British Journal of Criminology, 30(1): 51-64. 

Currie, Janet, Matthew Neidell, and Johannes Schmieder.  2009.  Air Pollution and Infant 

 Health:  Lessons from New Jersey.  Journal of Health Economics, 28 (3), 688-703. 



126 
 

Cole, M. A., R.J. Elliot, and J.K. Lindley. 2009.  Dirty money: Is there a wage premium for  

 working in a pollution intensive industry?  Journal of Risk and Uncertainty, 39 (2):

 161-180. 

Condliffe, Simon and O. A. Morgan. 2009.  The Effects of Air Quality Regulations on the

 Location Decisions of Pollution-Intensive Manufacturing Plants.   Journal of

 Regulatory Economics 36 (1): 83-93. 

Dietrich, K. N., R. M. Douglas, P.A. Succop, O.G. Berger, R.L. Borenstein.  2001.  Early

 Exposure to Lead and Juvenile Delinquency.  Neurotoxicology and Teratology, 23 (6):

 511-518. 

Ellerman, A. Denny, R. Schmalensee, E.M. Bailey, P.L. Joskow, and J.P. Montero.  2000.

 Markets for Clean Air: The U.S. Acid Rain Program. Cambridge, U.K.: Cambridge

 University Press. 

Ellerman, A. Denny and Juan-Pablo Montero.  2002.  The Temporal Efficiency of SO2

 Emissions Trading.  MIT Center for Energy and Environmental Policy Research

 Working Paper No. 02-003 

Ellerman, A.D., P.L. Joskow, and D. Harrison.  2003.  Emissions Trading in the United States

 Pew Center on Global Climate Change Discussion Paper.  

“EPA Greenbook”.  U.S. Environmental Protection Agency. 

http://www.epa.gov/oaqps001/greenbk/o8index.html 

Farrell, A. E., and L.B. Lave.  2004.  Emission Trading and Public Health. Annual Review of

 Public Health, 25, 119-38. 

Farrell, Graham.  2013.  Five tests for a theory in crime drop.  Crime Science, 2 (5): 1-8. 

Feigenbaum, James, J., and Christopher Muller.  2014.  The Effects of Lead Exposure on Violent

 Crime: Evidence from U.S. Cities in the Early Twentieth Century.  Harvard University. 

Fowlie, Meredith, Stephen Holland, and Erin Mansur.  2012.  What Do Emissions Markets 



127 
 

Deliver and to Whom? Evidence from Southern California’s NOx Trading Program.  

American Economic Review. 102(2): 1-29. 

Fullerton, Don, Shaun P. McDermott, and Jonathan P. Caulkins.  1997.  Sulfur Dioxide 

Compliance of a Regulated Utility.  Journal of Environmental Economics and 

Management, 34 (1): 32-53. 

Graber, L. K., D. Asher, N. Anandaraja, R.F. Bopp, K. Merrill, M.R. Cullen, L. Trasande.  2010.

 Childhood Lead Exposure after the Phaseout of Leaded Gasoline: An Ecological Study of

 School Age Children in Kampala, Uganda.  Environmental Health Perspectives, 118 (6):

 884-9. 

Greenstone, Michael.  2002.  The Impacts of Environmental Regulations on Industrial Activity:

 Evidence from the 1970 and 1977 Clean Air Act Amendments and the Census of

 Manufactures.  Journal of Political Economy, 110 (6): 1175-1219.  

Greenstone, Michael. 2003.  Estimating Regulation-Induced Substitution: The Effect of the

 Clean Air Act on Water and Ground Pollution.  The American Economic Review, 93 (2):

 442-448. 

Greenstone, Michael, John A. List, and Chad Syverson. 2011.  The Effects of Environmental

 Regulation on the Competitiveness of U.S. Manufacturing.  U.S. Census Bureau Center

 for Economic Studies Paper No. CES-WP-11-03. 

Grimm, V. and L. Ilieva.  2013.  An Experiment on Emissions Trading: The Effect of

 Different Allocation Mechanisms.  Journal of Regulatory Economics, 44 (3): 308-338.  

Haines, Michael R., and Inter-university Consortium for Political and Social Research.

 Historical, Demographic, Economic, and Social Data: The United States, 1790-2002.

 ICPSR02896 v3. Ann Arbor, MI: Inter-university Consortium for Political and Social

 Research [distributor], 2010-0521. http://doi.org/10.3886/ICPSR02896.v3 

Hanson, Gordon H., George J. Borjas, and Jeffrey Grogger.  2006.  Immigration and African



128 
 

 American Employment Opportunities: The Response of Wages, Employment, and

 Incarceration to Labor Supply Shocks.  NBER Working Paper. 

Harcourt, Bernard E. 2006.  From the Asylum to the Prison: Rethinking the Incarceration

 Revolution.  University of Chicago, Public Law Working Paper No. 114; U Chicago Law

 & Economics, Olin Working Paper No. 277. 

Haynes E.N., A. Chen, P. Ryan, P. Succop, J. Wright, K.N. Dietrich.  2011.  Exposure to

 Airborne Metals and Particulate Matter and Risk for Youth Adjudicated for Criminal

 Activity.  Environmental Research, 111:1243–1248. 

“Health Effects of Air Pollution”.  United States Environmental Protection Agency

 http://www.epa.gov/region07/air/quality/health.htm 

Henderson, J. V. 1996.  Effects of Air Quality Regulation.  The American Economic Review, 86

 (4): 789-813.  

Henry, D. D., N.Z. Muller, and R.O. Mendelsohn.  2011.  The Social Cost of Trading:

 Measuring the Increased Damages from Sulfur Dioxide Trading in the United States.

 Journal of Policy Analysis and Management, 30: 598–612. 

Herrnstadt, Evan and Erich Muehlegger.  2015.  Air Pollution and Criminal Activity: Evidence

 from Chicago Microdata.  NBER Working Paper 21787.   

Huang, Po-Chin, Pen-Hua Su, Hsin-Yi Chen, Han-Bin Huang, Jin-Lian Tsai, Hsin-I Huang,

 Shu-Li Wang.  2012.  Childhood Blood Lead Levels and Intellectual Development after

 Ban of Leaded Gasoline in Taiwan: A 9-year Prospective Study. Environment

 International. 40, 88–96. 

“Identification of Ozone Areas for Which the 1-Hour Standard Has Been Revoked and Technical

 Correction to Phase 1 Rule”.  Federal Register 70 (3 August 2005), 44470-44479. 

Imbens, Guido W. and Thomas Lemieux.  2008.  Regression Discontinuity Designs: A Guide to

 Practice. Journal of Econometrics, 142 (2): 615-635. 



129 
 

Institute of Medicine.  1996.  Lead in the Americas: A Call for Action.  Washington, DC: The

 National Academies Press, doi:10.17226/9168. 

Israel, Debra.  2007.  Environmental Participation in the U.S. Sulfur Allowance Auctions.

 Environmental and Resource Economics, 38 (3): 373-390. 

Jorgenson, Dale W., and Peter J. Wilcoxen. 1993.  The Economic Impact of the Clean Air Act

 Amendments of 1990.  The Energy Journal, 14 (1):159-182.  

Kahn, Matthew E.  1997.  Particulate Pollution Trends in the United States.  Regional Science

 and Urban Economics, 27 (1): 87-107. 

Kahn, Matthew E. and Erin T. Mansur. 2013.  How Do Energy Prices, and Labor and

 Environmental Regulations Affect Local Manufacturing Employment Dynamics? A

 Regression Discontinuity Approach.  NBER Working Paper 16538. 

Kahn, Matthew E. and Erin T. Mansur. 2013.  Do Local Energy Prices and Regulation Affect the

 Geographic Concentration of Employment?  Journal of Public Economics, 101: 105 -

 114. 

Knittel, Christopher R., Douglas L. Miller, and Nicholas J. Sanders.  2011.  Caution Drivers!

 Children Present: Traffic, Pollution, and Infant Health.  NBER Working Paper Series. 

Kondo, Akira, Esrom Hamonangan, Satoshi Soda, Akikazu Kaga, Yoshio Inoue, Masaharu

 Eguchi, Yuta Yasaka.  2007.  Impacts of Converting from Leaded to Unleaded Gasoline

 on Ambient Lead Concentrations in Jakarta Metropolitan Area.  Journal of 

 Environmental  Sciences, 19 (6): 709–713. 

Kovarik, William.  2005.  Ethyl-Leaded Gasoline: How a Classic Occupational Disease Became

 an International Public Health Disaster.  International Journal of Occupation

 Environmental  Health, 11: 384-397. 

Kumar, Surender, and Shunsuke Managi.  2010.  Sulfur Dioxide Allowances: Trading and

 Technological Progress.  Ecological Economics, 69(3):  623-631. 



130 
 

"Lead and Its Human Effects”. Public Health - Seattle & King County.

 http://www.kingcounty.gov/healthservices/health/ehs/toxic/LeadGeneral.aspx 

"Lead Exposure in Adults - A Guide for Health Care Providers." Lead Exposure in Adults – A

 Guide for Health Care Providers.  https://www.health.ny.gov/publications/2584/ 

"Lead Poisoning and Health." World Health Organization.

 http://www.who.int/mediacentre/factsheets/fs379/en/ 

Lee, David S. and David Card.  2008.  Regression Discontinuity Inference with Specification

 Error.  Journal of Econometrics, 142 (2): 655-674. 

Lee, David S. and Thomas Lemieux.  2010.  Regression Discontinuity Designs in Economics.

 Journal of Economic Literature, 48 (2): 281-355. 

Lersch, Kim M., and Timothy C. Hart.  2014.  Environmental Justice, Lead, and Crime:

 Exploring the Spatial Distribution and Impact of Industrial Facilities in Hillsborough

 County, Florida.  Sociological Spectrum, 34 (1): 1-21. 

Levitt, S. D.  2004.  Understanding Why Crime Fell in the 1990s: Four Factors That Explain the

 Decline and Six That Do Not.  Journal of Economic Perspectives, 18(1), 163-190. 

List, John A., W. Warren McHone, and Daniel L. Millimet.  2004.  Effects of Environmental

 Regulation on Foreign and Domestic Plant Births: Is There a Home Field Advantage?

 Journal of Urban Economics, 56 (2): 303-326. 

Lochner, L., and E. Moretti.  2004.  The Effect of Education on Crime: Evidence from Prison

 Inmates, Arrests, and Self-Reports.  The American Economic Review, 94(1), 155-189. 

Lowe, Scott E. and Samia Islam.  2009.  Impact of Air Quality Regulations on Entrepreneurial

 Activity.  Southern Journal of Entrepreneurship, 2 (1): 71-90. 

Marcus, David K., Jessica J. Fulton, and Erin J. Clarke.  2010.  Lead and Conduct Problems: A

 Meta-Analysis.  Journal of Clinical Child & Adolescent Psychology, 39 (2): 234 – 241. 

McConnell, Virginia D. and Robert M. Schwab.  1990.  The Impact of Environmental

http://www.tandfonline.com/toc/usls20/34/1


131 
 

 Regulation on Industry Location.  Land Economics, 66 (1): 67-82. 

Mielke Howard W., Mark A.S. Laidlaw, Chris R. Gonzales.  2011.  Estimation of Leaded (Pb)

 Gasoline's Continuing Material and Health Impacts on 90 U.S. Urbanized Areas.

 Environment International, 37 (1): 248–257. 

Mielke Howard W., and Sammy Zahran.  2012.  The Urban Rise and Fall of Air Lead (Pb) and

 the Latent Surge and Retreat of Societal Violence.  Environment International, 43: 48-55. 

Moretti, Enrico, and Matthew Neidell.  2009.  Pollution, Health, and Avoidance Behavior:

 Evidence from the Ports of Los Angeles.  NBER Working Paper 14939. 

Needleman, H., J.A. Riess, M.J. Tobin, G.E. Biesecker, and J.B. Greenhouse.  1996.  Bone

 Lead Levels and Delinquent Behavior.  Journal of the American Medical Association,

 275 (5): 363-369. 

Needleman, Herbert.  2009.  Low Level Lead Exposure: History and Discovery.  Annals of

 Epidemiology, 19 (4): 235-238, ISSN 1047-2797. 

“Neuropsychological Effects of Lead Poisoning on Child Development”. Mt. Washington

 Pediatric Hospital.  http://www.mwph.org/services/effects_lead_poisoning.htm 

Nevin, Rick.  2000.  How Lead Exposure Relates to Temporal Changes in IQ, Violent Crime,

 and Unwed Pregnancy.  Environmental Research, 83 (1): 1-22, ISSN 0013-9351. 

Nevin, R.  2007.  Understanding International Crime Trends: The Legacy of Preschool Lead

 Exposure.  Environmental Research, 104 (3), 315-336.  

Newell, Richard G., and Kristian Rogers.  2003.  The U.S. Experience with the Phasedown of

 Leaded Gasoline.  Resources for the Future Discussion Paper.  

Nichani, Vikram, Wan-I Li, Mary Alice Smith, Gary Noonan, Milind Kulkarni, Mohan Kodavor,

 Luke P. Naeher.  2006.  Blood lead Levels in Children after Phase-out of Leaded

 Gasoline in Bombay, India.  Science of the Total Environment, 363 (1–3): 95–106. 

Nillson, J Peter. 2009.   The Long-term Effects of Early Childhood Lead Exposure: Evidence



132 
 

 from the Phase-out of Leaded Gasoline. Working Paper. 

"NOx RACT Summary | Ground-level Ozone | New England | U.S. EPA."  U.S. Environmental

 Protection Agency.  https://www3.epa.gov/region1/airquality/noxract.html 

"Ozone Pollution." U.S. Environmental Protection Agency.   

https://www.epa.gov/ozone-pollution 

Popp, D.  2003.  Pollution Control Innovations and the Clean Air Act of 1990.  Journal of Policy

 Analysis and Management, 22: 641–660. 

"Previous 1-Hour Ozone Information | Green Book | U.S. EPA." EPA. Environmental Protection

 Agency, n.d. Web. 16 Apr. 2013. 

Ransom, Michael, and C. Arden Pope III.  2013.  Air Pollution and School Absenteeism: Results

 from a Natural Experiment.  Working Paper. 

Ranson, Matthew.  2014.  Crime, Weather, and Climate Change.  Journal of Environmetnal

 Economics and Management, 67 (3): 274-302. 

Reyes, Jessica Wolpaw.  2007.  Environmental Policy as Social Policy? The Impact of

 Childhood Lead Exposure on Crime.  The B.E. Journal of Economic Analysis & Policy, 7

 (51): 1935-1982. 

Reyes, Jessica Wolpaw.  2015.  Lead Exposure and Behavior: Effects on Aggression and Risky

 Behavior among Children and Adolescents.  Economic Inquiry, 53: 1580–1605. 

Ringquist, E. J.  2011.  Trading Equity for Efficiency in Environmental Protection?

 Environmental Justice Effects from the SO2 Allowance Trading Program.  Social Science

 Quarterly, 92: 297–323. 

Romero, Aldemaro.  1996.  The Environmental Impact of Leaded Gasoline in Venezuela.  The

 Journal of Environment & Development, 5: 434-438. 

Ruggles, Steven, J. Trent Alexander, Katie Genadek, Ronald Goeken, Matthew B. Schroeder,

 and Matthew Sobek.  2010.  Integrated Public Use Microdata Series: Version 5.0



133 
 

 [Machine-readable database]. Minneapolis: University of Minnesota. 

Salkever, D.S.  1995.  Updated Estimates of Earnings Benefits from Reduced Exposure of

 Children to Environmental Lead.  Environmental Research, 70 (1), 1–6. 

Sanders, Nicholas J.  2012.  What Doesn't Kill You Makes You Weaker: Prenatal Pollution

 Exposure and Educational Outcomes.  Journal of Human Resources, 47 (3): 826-850. 

Schlenker, Wolfram. W. Reed Walker. 2011. Airports, Air Pollution, and Contemporaneous

 Health.  NBERWorking Paper Series. 

Schmalensee Richard, Paul L. Joskow, A. Denny Ellerman, Juan Pablo Montero and Elizabeth

 M. Bailey.  1998.  An Interim Evaluation of Sulfur Dioxide Emissions Trading.  

 The Journal of Economic Perspectives, 12(3):  53-68.  

Schmidt, C. W. (2010).  Lead in Air.  Environmental Health Perspectives, 118(2), A76-A79. 

Schnaas, L., S.J. Rothenberg, M. Flores, S. Martinez, C. Hernandez, E. Osorio, S.R. Velasco,

 and E. Perroni.  2006.  Reduced Intellectual Development in Children with Prenatal Lead

 Exposure.  Environmental Health Perspectives, 114(5), 791-797. 

Schwartz, J.  1994a.  Low-Level Lead Exposure and Children′s IQ: A Meta-analysis and Search

 for a Threshold.  Environmental Research, 65 (1), 42–55. 

Schwartz J.  1994b.  Societal benefits of reducing lead exposure. Environmental Research, 66:

 105-124. 

Schwarze R., P. Zapfel.  2000.  Sulfur Allowance Trading and the Regional Clean Air Incentives

 Market: a Comparative Design Analysis of Two Major Cap-and-Trade Permit Programs?.

 Environmental Resource Economics, 17(3): 279–298. 

Sheets, Ralph W., Joseph R. Kyger, Richard N. Biagioni, Shelly Probst, Ron Boyer, Karl Barke.

 2001.  Relationship between Soil Lead and Airborne Lead Concentrations at Springfield,

 Missouri, USA.  Science of the Total Environment, 271 (1–3), 79-85. 

Siikamäki, J., D. Burtraw, J. Maher, and C. Munnings.  2012.  The U.S. Environmental



134 
 

 Protection Agency’s Acid Rain Program.  Resources for the Future Backgrounder.   

"Status of Nonattainment Area and Ozone Transport Region SIP Requirements." EPA.

 Environmental Protection Agency, n.d. Web. 16 Apr. 2013. 

Stavins, R. N.  1998.  What Can We Learn from the Grand Policy Experiment? Lessons from

 SO2 allowance trading.  The Journal of Economic Perspectives, 12(3): 69-88. 

Stavins, R.N., R. Schmalensee.  2013.  The SO2 Allowance Trading System:  The Ironic History

 of a Grand Policy Experiment.  Journal of Economic Perspectives, 27 (1): 103-122. 

Strayhorn, J. C., and Joseph M. Strayhorn, Jr.  2012.  Lead Exposure and the 2010 Achievement

 Test Scores of Children in New York Counties.  Child and Adolescent Psychiatry and

 Mental Health, 6: 4. 

Stretesky, Paul B., and Michael Lynch. 2001. The relationship between lead exposure and

 homicide.  Archives of Pediatrics and Adolescent Medicine, 155: 579-582 

Stretesky, P. B., and Lynch, M. J. (2004). The relationship between lead and crime. Journal of

 Health and Social Behavior, 45(2), 214-229. 

“Sulfur Dioxide”.  U.S. Environmental Protection Agency.

 http://www.epa.gov/airquality/sulfurdioxide/index.html 

United States Bureau of the Census.  2003.  Migration and Geographic Mobility in Metropolitan

 and Nonmetropolitan America: 1995 to 2000.  U.S. Census Bureau: Washington, D.C. 

United States Department of Justice, Federal Bureau of Investigation.  Uniform Crime Reporting

 Program Data [United States]: County Level Arrest and Offenses Data, 1977-1990.

 Washington, DC: U.S. Dept. of Justice, Federal Bureau of Investigation [producer], 1984.

 Ann Arbor, MI:Inter-university Consortium for Political and Social Research

 [distributor], 1998. http://doi.org/10.3886/ICPSR08703.v1 

United States Department of Justice. Federal Bureau of Investigation. Uniform Crime Reporting

 Program Data [United States]: County-Level Detailed Arrest and Offense Data, 2000-



135 
 

 2010. ICPSR03451-v4. Ann Arbor, MI: Inter-university Consortium for Political and

 Social Research [distributor], 2006-01-16. http://doi.org/10.3886/ICPSR03451.v4 

United States Environmental Protection Agency (U.S. EPA).  1977.  Air Quality Criteria for

 Lead. 

United States Environmental Protection Agency.  1985a.  Costs and Benefits of Reducing Lead

 in Gasoline: Final Regulatory Impact Analysis. 

United States Environmental Protection Agency. 1986.  Air Quality Criteria for Lead, Volume

 II. 

Wang, J.X.L., and J.K. Angell.  1999.  Air Stagnation Climatology for the United States (1948

 1998).  NOAA/Air Resources Laboratory ATLAS, No.1 

“What Are the Physiologic Effects of Lead Exposure?”.  United States Center for Disease

 Control. http://www.atsdr.cdc.gov/csem/csem.asp?csem=7&po=10 

“What are temperature inversions?”. National Oceanic and Atmospheric Administration.

 http://www.wrh.noaa.gov/slc/climate/TemperatureInversions.php 

Wolf, Lauren K.  “The Crimes of Lead”.  Chemical and Engineering News. 3 Feb 2014.

 http://cen.acs.org/articles/92/i5/Crimes-Lead.html 

Walker, W. Reed.  2011.  Environmental Regulation and Labor Reallocation: Evidence from the

 Clean Air Act.  The American Economic Review: Papers and Proceedings, 101 (2): 442-

 447. 

Walker, W. Reed.  2013.  The Transitional Costs of Sectoral Reallocation: Evidence from the

 Clean Air Act and the Workforce.  Quarterly Journal of Economics, 128 (4), 1787-1835. 

Zahran, Sammy. Mark A. S. Laidlaw, Shawn P. McElmurry, Gabriel M. Filippelli, and Mark

 Taylor.   2013.  Linking Source and Effect: Resuspended Soil Lead, Air Lead, and

 Children’s Blood Lead Levels in Detroit, Michigan.  Environmental Science &

 Technology, 47 (6), 2839-2845. 



136 
 

VITA 

Jordan C. Stanley 

Syracuse University      Phone: (301) 697-2537 

Department of Economics     Email: jstanley@syr.edu 

110 Eggers Hall      htpps://jstanley.expressions.syr.edu 

Syracuse, NY, 13244 

 

EDUCATION 

M.A. in Economics, Syracuse University, January 2013 

B.A. in Economics, Washington & Jefferson College, May 2011 

 

EMPLOYMENT 

Principal Instructor, Syracuse University   Summer 2014     

Summer 2015  

 

Research Assistant, Syracuse University   Summer 2013  

Fall 2013 – Spring 2014   

Fall 2015 – Spring 2016  

 

Teaching Assistant, Syracuse University   Fall 2011 – Spring 2013  

Fall 2014 – Spring 2015 

AWARDS AND HONORS 

      Syracuse University: 

 Center for Environmental Policy and Administration Grant, Summer 2015 

 Certificate in University Teaching, Spring 2015 

 Center for Environmental Policy and Administration Grant, Summer 2014  

 Graduate Assistantship, Summer 2011 – present 


	Three Essays on the Impacts of Air Pollution and Environmental Policy
	Recommended Citation

	tmp.1468506965.pdf.43DH4

