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Abstract: In this paper we conduct a numerical study of the supersymmetric O(3) non-

linear sigma model. The lattice formulation we employ was derived in [1] and corresponds

to a discretization of a twisted form of the continuum action. The twisting process exposes

a nilpotent supercharge Q and allows the action to be rewritten in Q-exact form. These

properties may be maintained on the lattice. We show how to deform the theory by the

addition of potential terms which preserve the supersymmetry. A Wilson mass operator may

be introduced in this way with a minimal breaking of supersymmetry. We additionally show

how to rewrite the theory in the language of Kähler-Dirac fields and explain why this avenue

does not provide a good route to discretization. Our numerical results provide strong evidence

for a restoration of full supersymmetry in the continuum limit without fine tuning. We also

observe a non-vanishing chiral condensate as expected from continuum instanton calculations.
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1. Introduction

Supersymmetric field theories are an integral part of modern theories of particle physics.

They provide a framework for solving the gauge hierarchy problem [2] by eliminating many

divergences typical of quantum field theories through the cancellation between fermionic and

bosonic loops. Moreover in the large N limit, it is known [3, 4] that supersymmetric gauge

theories are related to quantum gravity and string theory. Two dimensional sigma models on

the other hand are important because they have a rich mathematical structure, and moreover

there exists a deep rooted analogy between them and four dimensional Yang Mills theories [5].

Indeed the former can serve as perfect theoretical laboratories to test methods and approaches

developed for solving the problems of these far richer and more complicated theories. For

example, the magnetic monopole and dyon in the gauge theory correspond to the kink and Q-

kink solution of sigma models. In many cases the interesting physics lies in non-perturbative

regimes which motivates use of the lattice to study these systems.
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Unfortunately generic discretizations of supersymmetric theories break supersymmetry

explicitly and necessitate fine tuning the couplings to a (usually large) number of lattice oper-

ators in order to approach a supersymmetric continuum limit. Recently, attention has turned

to formulations which aim to preserve one or more exact supersymmetries at non-zero lattice

spacing1. The hope is, this residual supersymmetry will shield us from the appearance of

relevant operators in the lattice effective action which violate the full symmetry group thus

reducing or possibly even eliminating such fine tuning problems. Two distinct approaches

in this direction have been followed; in the first pioneered by Kaplan and collaborators, the

lattice theory is constructed by orbifolding a certain supersymmetric matrix model and then

extracting the lattice theory by expansion around some vacuum state [7, 8, 9, 10]. This has

recently been extended to the the interesting case of gauge theories in two dimensions with

matter fields interacting via a superpotential in [11]. The second approach relies on discretiz-

ing a twisted version of the supersymmetric theory. Twisting was first introduced by Witten

[12] in the context of topological field theories. It consists of constructing a new rotation

group from a combination of the original rotation group and part of the R-symmetry associ-

ated with the extended SUSY. The supersymmetric field theory is then reformulated in terms

of fields which transform as integer representations of this new rotation group [13, 14, 15, 16].

In flat space one can think of the twisting as a merely exotic change of variables in the the-

ory. When applied to the supersymmetry algebra, a scalar nilpotent supercharge is exposed.

Furthermore as argued in [17, 18] the twisted superalgebra implies that the action rewritten

in terms of these twisted fields is generically Q-exact. In this case it is straightforward to con-

struct a lattice action which is Q-invariant provided only that we preserve the nilpotency of Q

under discretization. An other approach in the same direction [15, 19], attempts to preserve

all the twisted supercharges on the lattice by introducing a non-trivial commutation relation

between the coordinates in superspace. However, this formulation remains controversial after

a recent paper [20] pointed out an inconsistency appearing in this method when applied to a

toy quantum mechanical model. Finally, although the orbifolding and the twisting approaches

appear different, Ünsal [21] recently showed that the former approach reproduces the twisted

Yang-Mills theories in the continuum limit.

The twisting approach to constructing lattice theories was initially developed for theo-

ries without gauge symmetry [22, 23]. An implementation for supersymmetric lattice gauge

theories based on balanced topological field theories was given by Sugino [24]. An approach

emphasizing the geometrical nature of the twist and employing Kähler-Dirac fermions was

then developed by Catterall [17, 25] to construct super Yang-Mills theories in two and four

dimensions. The use of Kähler-Dirac fermions for formulating lattice supersymmetry was first

proposed in [26].

2. The 2D continuum action

As was shown in [1], the action of a general two dimensional sigma model with N = 2

1We primarily discuss Euclidean formulations - for recent work on Hamiltonian approaches see [6]
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supersymmetry may be written, using complex coordinates, in the twisted form

S = β

∫

d2σ
(

2h+−gIJ∂+φ
I∂−φ

J

− h+−gIJη
I
+D−ψ

J − h+−gIJη
I
−D+ψ

J +
1

2
h+−RIIJJη

I
+η

I
−ψ

JψJ
)

(2.1)

with

D+ψ
J = ∂+ψ

J + ΓJKL∂+φ
KψL (2.2)

The requirement of N = 2 supersymmetry forces the target manifold to be Kähler in which

case gIJ = gĪ J̄ = 0 and the only non-zero Christoffel symbols are ΓIJK and ΓĪ
J̄K̄

(see Appendix

A). This action is invariant under four supersymmetries as expected for a theory with N = 2

supersymmetry in two dimensions. In the twisted construction we focus on a single hermitian

twisted supercharge Q whose action on the fields is given by



















QφI = ψI QφĪ = ψĪ

QψI = 0 QψĪ = 0

QηI+ = BI
+ − ΓIKJψ

JηK+ QηĪ− = B Ī
− − ΓĪ

K̄J̄
ψJ̄ηK̄−

QBI
+ = −ΓIJKψ

JBK
+ −RI

KJ̄L
ψKψJ̄ηL+ QB Ī

− = −ΓĪ
J̄K̄
ψJ̄BK̄

− −RĪ
J̄LK̄

ψJ̄ψLηK̄−

(2.3)

The action of the remaining charges of the N = 2 twisted supersymmetry is given in appendix

B. The field BI
+ is an auxiliary field introduced to linearize the transformations and render

the transformation nilpotent off-shell. It has been removed from the action in eqn. (2.1)

by employing its equation of motion BI
+ = ∂+φ

I . The invariance of the action under this

supercharge Q follows just from the nilpotency of the latter and the fact that the above action

is Q-exact – that is it can be written as the Q-variation of some function which, borrowing

from BRST gauge fixing terminology, can be termed a gauge fixing fermion [1].

3. The 2D lattice action

Surprisingly translating the action in (2.1) to the lattice is pretty straightforward. Indeed, as

the twisted Q-symmetry makes no reference to derivatives of the fields its nilpotent property

is preserved when continuum fields indexed by a continuous coordinate are replaced by lattice

fields carrying a discrete index. We then obtain the supersymmetric lattice action by just

replacing the continuum derivative by a symmetric finite difference

S = β
∑

x

(

2h+−gIJ∆
s
+φ

I∆s
−φ

J

− h+−gIJη
I
+D−ψ

J − h+−gIJη
I
−D+ψ

J +
1

2
h+−RIIJJη

I
+η

I
−ψ

JψJ
)

(3.1)

where now,

D+ψ
J = ∆s

+ψ
J + ΓJKL∆s

+φ
KψL (3.2)
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and ∆s
± = ∆s

1 ± i∆s
2 where ∆s

µ = 1
2(∆+

µ + ∆−
µ ) and ∆± are the usual forward and backward

difference operators. However the lattice action in the form shown in eqn. (3.1) suffers from

the usual fermion doubling problem. Indeed it is easy to see that the kernel of the (free)

lattice Dirac operator constructed this way contains extra states which have no continuum

interpretation. For instance consider the fermionic part in (3.1). If we ignore the interaction

term in (3.2) then one finds that in Fourier space the kernel of ∆s
+ corresponds to solving

0 = eikx[sin k1 + i sin k2] (3.3)

Besides the solution (k1, k2) = (0, 0), one also has (0, π), (π, 0) and (π, π). The doubling

problem is made worse because supersymmetry propagates it to the bosonic sector. There

are two obvious lines of approach one may take to avoid this problem. One is rewrite the

continuum theory in the language of Kähler-Dirac fields and try to utilize the discretization

procedure developed in [17] to construct the lattice theory. This approach is reviewed in the

next section where it is shown that such a procedure runs into difficulties.

The obvious alternative, which we have pursued here, is to add some form of Wilson

mass term to lift the mass of the doubles up to the scale of the cut-off. However an ad hoc

addition of such a Wilson term will break supersymmetry explicitly in an uncontrolled way

thus spoiling our goal of preserving an element of SUSY on the lattice. Fortunately, it was

shown [28, 29] that in the case where the Kähler manifold possesses some isometries, it is

possible to add potential terms that involve the holomorphic Killing vectors V I associated

to those isometries in such a way as to keep the action Q-exact. By a careful choice of such

potential terms we may add Wilson operators which accomplish the task of rendering the

doublers heavy. In complex coordinates the possible terms are,

∆S = β
∑

x

[

λ2V IVI + λ2ψI∇IVJψ
J − 1

4
h+−ηI−∇IVJη

J
+ + h.c

]

(3.4)

Here, λ2 is an arbitrary parameter. Here, we choose λ = h+− = 1
2 . To keep the action

Q-exact the action of the twisted supersymmetry must be changed.



















QφI = ψI

QψI = V I

QηI+ = BI
+ − ΓIJKψ

JηK+
QBI

+ = −ΓIJKψ
JBK

+ + 1
2R

I
JKLψ

KψJηL+ +DKV
IηK+

(3.5)

Q is no longer nilpotent but Q2 just amounts to a Lie derivative with respect to the Killing

vector field. Indeed one can easily show that,



















Q2φI = V I

Q2ψI = ∂JV
IψJ

Q2ηI+ = ∂JV
IηJ+

Q2BI
+ = ∂JV

IBJ
+

(3.6)
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To introduce a mass term would require utilizing a Killing vector of the form

V I = imφI (3.7)

It should be clear that the transformation induced by such a Killing vector corresponds to a

infinitessimal phase rotation on the complex fields and can be seen to be a good symmetry

of both the continuum and lattice actions. Many Kähler manifolds possess metrics invariant

under such a phase rotation, for example, the CPN theories and specifically the CP 1 ∼
O(3) model considered in detail later. In the latter case the theory actually possesses three

isometries corresponding to the global O(3) symmetry of the theory - the phase rotation

associated with the Killing vector eqn. 3.7 corresponds to invariance under rotations about

the z-axis.

To remove the doubles in lattice regularizations of such models we have employed such a

twisted mass term with the constant mass parameter replaced by a Wilson operator m→ mW

where

mW =
1

2

(

∆+
+∆−

− + ∆+
−∆−

+

)

(3.8)

This leads to the additional terms in the action

∆S = β
∑

x

[

λ2mWφ
ImWφI + λ2ψI∇IgJJmWφ

JψJ − 1

4
h+−ηI−∇IgJJmWφ

JηJ+ + h.c

]

(3.9)

The generalized phase rotation associated with mW no longer corresponds to an exact isom-

etry of the metric and hence the modified action, while still Q-exact, is no longer exactly

invariant under the generalized Q-symmetry. Novertheless we will argue that the twisted

Wilson operator acts as a soft breaking term and hence should not affect the renormalization

of the lattice theory for small enough lattice spacing.

The argument goes as follows. In the continuum one is used to thinking of mass terms

as serving only to break supersymmetry softly. This expectation relies on the idea that any

mass parameter will be small compared to the U.V cut-off in the theory. However, the generic

Wilson operator in a lattice theory does not satisfy this property since the potential doublers

in the theory pick up a mass from the Wilson term on the order of the cut-off. Thus addition

of such Wilson terms generically will lead to a hard breaking of supersymmetry and it will

be necessary to fine tune additional operators to recover a supersymmetric continuum limit.

However, the twisted mass operator we use here does not have this property – in the limit

of small a the propagators are dominated by contributions from a state near the origin of

the Brillioun zone and a set of would be doublers. The latter contribution does not break

supersymmetry since the doublers contribute like additional states with a constant twisted

mass. Such a mass deformation preserves the Q-symmetry of the lattice action.

The soft character of the breaking can be seen in yet another way. For small lattice

spacing a (large β) we can expand the bosonic action to quadratic order. Subsequently

integrating over the bosons yields a determinant det(m2
W − DS

+D
S
−). But at one loop this
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determinant is cancelled by an identical fermionic contribution det(M) where

M =

(

mW −DS
+

−DS
− mW

)

Thus the lattice theory appears both double free and supersymmetric at large β. These

arguments lead us to expect the Q-symmetry to be restored at large coupling β without

additional fine tuning. If this is the case then simple power counting arguments lead us to

conclude that the only (marginally) relevant counter terms must take the Q-exact form

O = Q
(

ηiαfij (φ)
(

∂αφ
j +Bj

))

(3.10)

where we have reverted to a formulation using real fields. General covariance ensures that

fij is a tensor which may then be taken to represent a quantum renormalization of the

target space metric tensor. This counterterm structure would be consistent with a lattice

model which exhibits N = 1 supersymmetry in the continuum limit. The restoration of full

N = 2 supersymmetry appears to require additional constraints. Luckily, such constraints

are present in the form of additional discrete symmetries of the lattice action. Consider the

classical action in Kähler form given in eqn. 3.1. It is trivial to see that this action is also

invariant under the finite transformations

ψI → iψI

ψI → −iψI

ηI+ → iηI+

ηI− → −iηI− (3.11)

Actually, this additional symmetry arises from the Kähler structure of the target space ap-

pearing in the classical action [30]. This additional symmetry of the lattice model then ensures

that only counterterms compatible with a Kähler target space survive in the quantum effective

action. But as was shown in [30] any model with N = 1 supersymmetry and a Kähler target

space automatically possesses N = 2 supersymmetry. Thus on the basis of these arguments

we expect that no additional fine tuning is needed to regain the full supersymmetry of the

continuum model which as will be seen later, is confirmed by our numerical results.

4. Kähler-Dirac reformulation

Recent work has emphasized the geometrical nature of certain twisted super Yang-Mills theo-

ries [17, 25]. In these constructions all fields appear as antisymmetric tensors with the twisted

fermions arising as components of a geometrical object called a Kähler-Dirac field. The ar-

guments leading to this geometrical interpretation are quite general, depending only in the

number of supercharges and R-symmetry, and imply that it should be possible to formulate

the twisted sigma models also in this language. Furthermore, the geometrical construction
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is key to a successful discretization of the Yang-Mills theory avoiding fermion doublers [27].

Thus such a reformulation of the sigma model potentially offers another way to build a su-

persymmetric lattice theory without encountering fermion doubling. As such it would offer

an alternative to the addition of Wilson operators as described in the previous section. As we

will see this reformulation can indeed be done in the continuum but an obstruction prevents

any simple translation of the continuum theory to the lattice.

As shown in, for example, [25] the basic N = 2 twisted supermultiplet in two dimensions

involves two Kähler-Dirac fields, a bosonic one Φ = (φ,Aµ, B12) whose p-form components

commute and fermionic one Ψ = (λ, ηµ, χ12) with grassmann valued forms. Initially we

will consider a flat target space and consider only the continuum theory. The action of the

nilpotent twisted supersymmetry is simply

Qφ = λ Qλ = 0

Qηµ = Aµ QAµ = 0

QB12 = 0 Qχ12 = 0

(4.1)

These transformations are essentially the same as the corresponding Yang-Mills variations

except that the field Aµ plays the role of a multiplier field in the sigma model case (and

hence has zero variation under Q). The twisted action can be written as the Q-variation of

some gauge fermion Λ. The most general gauge fermion which is linear in the fermion fields,

contains at most one derivative, and is not a Q-singlet is

Λ =

∫

d2xηµ [c1Aµ + c2∂µφ+ c3∂νBµν ] (4.2)

Furthermore, by a simple rescaling of the fields I can set c1 = 1
2 and c2 = c3 = 1. Carrying

out the Q-variation and integrating out the multiplier field Aµ (along the imaginary axis)

leads to the action

S =

∫

d2x

[

1

2
(∂µφ+ ǫµν∂νB12)

2 − ηµ∂µλ− χµν∂[µ ην]

]

(4.3)

As in [25] the twisted fermionic action is of Kälher-Dirac form. Writing u1 = φ, u2 = B12 the

bosonic action can now be rewritten

SB =

∫

d2x
1

2

[

(

∂µu
i
)2

+ ǫijǫµν∂µu
i∂νu

j
]

(4.4)

where the implied summations over Roman indices run from i = 1, 2. This action can be

simplified by introducing the projection operator

P+iν
jµ =

1

2

(

δijδ
ν
µ + ǫijǫ

ν
µ

)

(4.5)

where the distinction between upper and lower indices is, for the present, immaterial. The

bosonic action now reads

SB =

∫

d2x
[

P+iν
jµ ∂νu

j
]2

(4.6)
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Proceeding in this way we can introduce a new grassman valued field which is the superpartner

to ui by defining ψ1 = λ and ψ2 = χ12. Similarly the original field Aµ (and its partner ηµ)

can be promoted to a field indexed by a Roman target index Aµ → A+i
µ provided the field is

required to be self-dual under the action of this projector i.e

Aiµ = A+i
µ = P+iν

jµ Ajν (4.7)

In terms of these new variables the Q-transformations are now

Qui = ψi Qψi = 0

Qη+i
µ = A+i

µ QA+i
µ = 0

(4.8)

Going to complex coordinates we recover our original sigma model variations for a flat two

dimensional target space. It should be clear that the sigma model fields are essentially the

the Hodge self-dual components of the original Kähler-Dirac fields. It should also be clear

how to proceed to a more general target space. Clearly one must be able to introduce a

tensor J ij , here just ǫij , which squares to minus the identity and is covariantly constant (so as

not to disturb the form of the Q-transformations when applied to the self-dual fields). These

requirements require the target manifold be Kähler with J ij its complex structure. Of course

these were just the restrictions found in earlier constructions of the twisted sigma models [1].

Keeping the simple form of the Q-transformations the twisted sigma model action can be

obtained as

S = Q

∫

d2xη+i
µ

[

∂µu
j − 1

2
A+j
µ − Γjlkη

+l
µ ψ

k

]

gij (4.9)

Having recast the continuum theory in this language we can return the problem of con-

structing a corresponding lattice model. We see an immediate problem. To avoid spectrum

doubling we must discretize continuum derivatives with care. Specifically an exterior deriva-

tive must be replaced by a forward difference operator D+ in the discrete theory while the

adjoint of an exterior derivative by a backward difference operator D− if the resulting lattice

theory is to be free of spectrum doubling [27]. Thus the bosonic part of the action in eqn. (4.3)

must be replaced with

SB =
∑ 1

2

(

D+φ+D−Bµν
)2

(4.10)

Since the difference operators are no longer the same we can no longer introduce the projector

P+ and rewrite the theory in terms of self-dual fields. Thus the Kähler-Dirac approach

cannot be used to construct twisted lattice theories without spectrum doubling. A similar

phenomena is encountered in the Yang-Mills case where the self-dual nature of the fields in

four dimensional N = 2 super Yang-Mills prevents construction of a Q-exact and double free

lattice theory.

5. Simulations

Here we revisit the O(3) sigma model discussed in detail in [1]. The O(3) sigma model has

the advantage of being simple and can be reformulated as a twisted model with a CP 1 target
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space. The metric, connection and curvature take the form,

guu =
1

2ρ2
(5.1)

Γuuu = guu∂uguu = −2u

ρ
(5.2)

Ruuuu = guu∂uΓ
u
uu = − 1

ρ4
(5.3)

where ρ = 1 + uu. From (3.1), (3.4) and (3.8) the (effective) lattice action for a flat base

space is given by (here I = Ī = 1),

S =
∑

x

{

β

[

1

ρ2
∆S

+u∆
S
−u+

1

ρ2
(mWu)(mWu) −

1

2ρ2
ηDS

−ψ − 1

2ρ2
ηDS

+ψ − 1

2ρ4
ηηψψ

+iψ[
1

2ρ2
mW +mW

1

2ρ2
− ū

ρ3
(mWu) −

u

ρ3
(mW ū)]ψ

− i

4ρ2
η[

1

2ρ2
mW +mW

1

2ρ2
− ū

ρ3
(mWu) −

u

ρ3
(mW ū)]η

]

+ ln[β/(2ρ2)]

}

(5.4)

where a factor of two has been absorbed into the coupling β and we have simplified our

notation by replacing φ1 → u,ψ1 → ψ, η1
+ → η and η1̄

− → η. The explicit form of the lattice

covariant derivative is

DS
+ = ∆S

+ − 2u

ρ

(

∆S
+u
)

(5.5)

Note that the new term ln[β/(2ρ2)] missing in [1], emerges from integrating out the auxiliary

fields Bi
+

2. To proceed further it is convenient to introduce an other auxiliary field σ to

remove the quartic fermion term. Explicitly we employ the identity

βV
∫

Dσe
−α
(

1
2
σσ+ σ

2ρ2 ηψ+ σ

2ρ2 ηψ
)

= e
α

2ρ4 ηηψψ (5.6)

where V is the number of lattice sites. Thus the partition function of the lattice model can

be cast in the form

Z =

∫

DuDσDηDψe−S(u,σ,η,ψ) (5.7)

where the action is now given by

S = β
∑

x

[

1

ρ2
∆S

+u∆
S
−u+

1

ρ2
(mWu)(mWu) +

1

2
σσ − 1

β
ln(2ρ2) + ΨM(u, σ)Ψ

]

(5.8)

where we have assembled the twisted fields into Dirac spinors

Ψ =

(

η̄
2i

ψ̄

)

Ψ =

(

η
2i

ψ

)

2We thank Joel Giedt and Erich Poppitz for pointing out this factor
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and the Dirac operator M(u, σ) in this chiral basis is

M(u, σ) =

(

1
2ρ2mW − ū

ρ3 (mWu) + h.c 1
ρ2 (∆S

+ − 2u
ρ

(

∆S
+u
)

+ σ)

(∆S
− + 2u

ρ

(

∆S
−ū
)

− σ̄) 1
ρ2

1
2ρ2
mW − ū

ρ3
(mWu) + h.c

)

(5.9)

Notice the extra terms depending on the target space connection appearing along the diagonal

which correspond to the twisted Wilson mass operator. These were not present in our previous

paper [1].

In order to be able to simulate this model, one needs to rewrite the effective action in

a form that doesn’t involve the grassman fields. For that we integrate out the Dirac field Ψ

generating,

det
1
2 (β2M(u, σ)†M(u, σ)) (5.10)

The effective action is now given by,

S = βSB(u, σ) − ln(2ρ2) − 1

2
Tr ln

(

β2M †(u, σ)M(u, σ)
)

(5.11)

Clearly, the form of the fermion effective action we employ does not take into account any

non-trivial phase associated with the fermion determinant - our simulation generates the

phase quenched ensemble. We later examine the phase explicitly.

To simulate this model we used the RHMC algorithm developed by Clark and Kennedy

[31]. The first step of this algorithm replaces the fermion determinant by an integration over

auxiliary commuting pseudofermion fields F and F † in the following way,

det
1
2 (β2M(u, σ)†M(u, σ)) =

∫

DFDF †e
− 1

β

∑

F †(M†M)−
1
2 F

(5.12)

The key idea of RHMC is to use an optimal (in the minimax sense) rational approximation

to this inverse fractional power.
1

x
1
2

∼ P (x)

Q(x)

where

P (x) =

N−1
∑

i=0

pix
i, Q(x) =

N−1
∑

i=0

qix
i

Notice that we restrict ourselves to equal order polynomials in numerator and denominator. In

practice it is important to use a partial fraction representation of this rational approximation,

1

x
1
2

∼ α0 +

N
∑

i=1

αi
x+ βi

(5.13)

The coefficient αi, βi for i = 1, ..., N can be computed offline using the Remez algorithm.

Furthermore, the coefficients can be shown to be real positive. Thus the linear systems

are well behaved and, unlike the case of polynomial approximation, the rational fraction
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approximations are robust, stable and converge rapidly with N . The resulting pseudofermion

action becomes

SPF =
1

β

[

α0F
†F +

N
∑

i

F † αi
M †M + βi

F

]

(5.14)

In principle this pseudofermion action can now be used in a conventional HMC algorithm to

yield an exact simulation of the original effective action [32]. This algorithm requires that

we compute the pseudofermion forces. For example, the additional force on the scalar field u

due to the pseudofermions takes the form,

fu =
∂SPF
∂u

= −
N
∑

i

αiχ
†i ∂

∂u

(

M †M
)

χi

where the vector χi is the solution of the linear problem

(M †M + βi)χ
i = F

The final trick needed to render this approach feasible is to utilize a multi-mass solver to

solve all N sparse linear systems simultaneously and with a computational cost determined

primarily by the smallest βi. We use a multi-mass version of the usual Conjugate Gradient

(CG) algorithm [33]. Note that for our simulations we have used N = 12 and an approxima-

tion that gives us an absolute bound on the relative error of 8× 10−6 for eigenvalues of M †M

ranging from 10−6 to 10.0 which conservatively covers the range needed.

5.1 Spectrum

As a check of supersymmetry, we have studied the boson and fermion propagators projected

to zero spatial momentum, namely, GB(t) = Re(< u(t)u(0) >) and GFij(t) =< Ψi(t)Ψj(0) >.

One can then extract the lowest lying mass states by fitting these two point functions to the

form a + b cosh(mB(t − T/2)) for bosons and A(t − T/2)δij + iB(t − T/2)ǫij for fermions

respectively. The quantities A and B are even and odd functions of their argument and

we have taken the Dirac gamma matrix in the time direction to correspond to the usual

Pauli matrix σ2. To calculate the fermion masses mF
00, m

F
11, m

F
01 and mF

10 we have used

the simple functions a cosh(mF
00(t − T/2)), a cosh(mF

11(t − T/2)), a sinh(mF
01(t − T/2)) and

a sinh(mF
10(t−T/2)) to fit ReGF00(t), ReGF11(t), ImGF01(t) and ImGF10(t) respectively. Figure 1

shows the bosonic and fermionic masses versus coupling β in the range 0.5 to 10.0 for different

lattice sizes. While the masses are quite different at small couplings, the mass degeneracy

required by supersymmetry is recovered as we approach the continuum limit corresponding

to large coupling β.

5.2 Ward Identities

Of prime interest and a stringent test of supersymmetry are the supersymmetric Ward iden-

tities. Consider first the scalar supersymmetry Q. The Ward identities corresponding to Q
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are simply expectation values of the form < QO >. The simplest of these corresponds to the

action itself, indeed as the latter is Q-exact [1], it is clear that,

−∂ lnZ

∂β
=

1

Z

∫

[DΦ]e−βSS

=
1

Z

∫

[DΦ]e−βSQΛ =< QΛ >

(5.15)

which should be zero if the action is supersymmetric3. On the other hand using the effective

action in (5.11),

−∂ lnZ

∂β
= 0 =< SB > −2L2

β
(5.16)

Figure 2 shows a plot of β
2L2 < SB > for a range of couplings β and different lattice sizes.

While there are deviations from unity at small coupling these seem to disappear as the

coupling β is increased beyond β ∼ 4.0 and yield very strong support to exact Q-symmetry

in the continuum limit.

We have also looked at other Ward identities. Consider the local operator O of the form

O = h+−gIJ(x)[η
I
+(x)∂−φ

J(y) + ηJ−(x)∂+φ
I(y)] (5.17)

The operator O is chosen in such a way that QO is local and leads to a 2-point function for the

fermions. It is also Lorentz invariant in the base space and invariant under reparametrizations

of the target space (at least in the continuum limit where the base difference operator becomes

a true derivative). These constraints ensure the resultant supersymmetric Ward identity is

satisfied non-trivially. In the O(3) case < QO >= 0 leads to

< 1
2ρ2(x)

∂+u(x)∂−u(y) > + < 1
2ρ2(x)

∂+u(y)∂−u(x) > = 1
2 <

1
2ρ2(x)

η(x)∂−ψ(y) > +
1
2 <

1
2ρ2(x)η(x)∂+ψ(y) >

(5.18)

Figures 3, 4 and 5 show plots of (5.18) projected to zero spatial momentum for different

lattice sizes and coupling β = 0.5, 4 and 10.0 respectively. While for small coupling β the

Ward identities are violated they are clearly satisfied for large coupling and vanishing lattice

spacing. Notice the additional, at first sight rather startling feature; for β ≥ 4.0 the functions

are approximately independent of the coordinate separation |x − y|! Actually this result

follows from the Q-exactness of the theory. A continuum theory which is Q-exact has an

energy momentum tensor Tµν = δS
δgµν

which is also Q-exact. Furthermore, it then follows

that the correlation function of two Q-invariant operators is independent of the metric and

3Note that, this tells us that Z is independent of β, as long as β is not zero, and thus one can evaluate Z

in the large-β limit. Such a limit corresponds to the semi-classical approximation. Such an approximation is

exact in our case (this is true for Witten type theories in general)
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hence also of their separation [34]. Using the Q-variation of the η+ field in eqn. (2.3) and the

equation of motion B+ = ∂+u we see that

∂+u = Qη − 2u

ρ
ψη (5.19)

The second term becomes small for large coupling β since u ∼ β−
1
2 and hence in this limit the

correlator is dominated by the leading Q-exact piece yielding the constant correlator as we

observe. Thus the Ward identity reveals not only that the scalar supersymmetry is restored

for large β but that the energy-momentum tensor and action of the theory are also Q-exact

as expected from the continuum theory.

We have also looked at the Ward identities following from the other supercharges of the

twisted N = 2 supersymmetry (see Appendix B for the action of these other supersymme-

tries). Indeed for the vector supercharges G± we have studied

< h+−(G+O− +G−O+) >= 0 (5.20)

where,

O− = gIJ(x)ψ
I(x)∂−φ

J(y) (5.21)

O+ = gIJ(x)ψ
J (x)∂+φ

I(y) (5.22)

For O(3), eqn. (5.20) gives,

<
1

2ρ2(x)
∂+u(x)∂−u(y) >= −1

2
<

1

2ρ2(x)
ψ(x)∂+η(y) > (5.23)

Figures 6, 7 and 8 show plots of eqn. 5.23 projected to zero spatial momentum for different

lattice sizes and coupling. As for the scalar supercharge Q the Ward identities due to the

vector supercharges are broken for small coupling but appear to be restored without fine

tuning for small lattice spacing and large coupling. Again for large enough coupling these

correlation functions appear independent of the temporal coordinate. This again follows from

the fact that asymptotically we are examining the correlator of two Q-exact operators; Qη

and Qu = ψ.

We have additionally examined a simpler Ward identity. Namely

1

2
〈η(x)ψ̄(y)〉 = 〈∂+u(x)ū(y)〉 (5.24)

This Ward identity arises as a result of applying the scalar supercharge Q to the operator

O′ = η(x)φ̄(y), i.e. 〈QO′〉 = 0. Figure 9 shows a numerical calculation of eqn. (5.24)

projected to zero spatial momentum. While supersymmetry is broken at small β coupling it

is clearly restored as we approach the continuum limit, confirming the results we obtained

with the other Ward identities.
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5.3 Fermionic Condensate

In the previous section we considered Ward identities that lead to fermionic 2-point functions.

Here we consider Ward identities involving 4-point functions of the fermion fields. As we

will see, the physics here is richer and more complicated as these quantities can receive

contributions from instantons. Calculations in the continuum theory [35, 36] predict the

presence of a vacuum condensate < 1
2ρ2
ψψ > similar to the gluino condensate in N = 1 super

Yang-Mills theory. Since ψ = ΨL a single chiral component of the Dirac field we see that the

presence of such a condensate constitutes an anomalous breaking of the chiral symmetry of

the theory.

To see how this comes about in the twisted theory consider the following correlation

function

C(x− y) =< Θ(x)Θ(y) > (5.25)

where

Θ(x) = JIJψ
JψI(x) (5.26)

Here, JJI is the complex structure in the target manifold which locally takes the form iδJI .

It is straightforward to verify that Θ(x) is invariant under Q. Hence, as we argued earlier

the correlation function C(x − y) should actually be independent of |x − y|; C(x − y) = C

a constant. Further, using cluster decomposition, it can be shown that any non-vanishing

value for C implies a non-vanishing value for the condensate 〈Θ(x)〉 = 〈Θ〉 = ±
√
C.4 At first

glance the classical chiral symmetry of the theory would prohibit such a non-zero value for C.

However quantum anomalies can and do spoil this symmetry. As is well known, the theory

admits non-trivial classical solutions called instantons. These are given by solutions of the

equations

∂+u = 0 (5.27)

The simplest single instanton is hence given by the analytic function

u(z) =
α

z + β
(5.28)

where α and β are complex constants. There are four real zero modes associated to variation

of these parameters and hence, by supersymmetry, there will be four real fermion zero modes

localized in the vicinity of such an instanton. Examination of the equation D+Ψ = 0 in

such a background reveals these zero modes to be chiral and such a condensation will hence

break chiral symmetry. Furthermore, since Θ is topological its expectation value can be

computed exactly in the semi-classical limit corresponding to a one loop computation in such

an instanton background. Notice that the number of fermion zero modes is just sufficient

to saturate the four point function we are considering. The result is given in [35]. A lattice

4A word of caution here – [37, 38] shows that cluster decomposition fails in the strong coupling instanton

calculation of the analogous condensate in N = 1, D = 4 super Yang-Mills theory. Here, the topological

character of C allows it to be calculated exactly at weak coupling
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calculation of this quantity is potentially very interesting as it yields information on both

the U(1) anomaly, the presence of approximate lattice instantons and, as we will see, the

dynamical breaking of supersymmetry.

In our lattice regulated O(3) model we have hence measured the four point function

< Θ >=<
1

ρ2(0)
ψ(0)ψ(0)

1

ρ2(t)
ψ(t)ψ(t) > (5.29)

The plots in figure 10. shows (5.29) projected to zero spatial momentum for different lat-

tice sizes and different values of the coupling β. Clearly in the large β limit < Θ(t) > is

approximately independent of t confirming the presence of a condensate.

Of course on a torus only instanton/anti-instanton pairs can exist but provided these are

well separated and the discretization errors small we can still expect a condensation of four

approximate zero modes in the vicinity of such a lattice instanton yielding a corresponding

contribution to the local value of C. In practice the value of the correlator is not constant as

we will find contributions to C also from the anti-instanton. This is particularly true for small

lattice volumes as can be seen in the figures 10. There are also explicit lattice supersymmetry

breaking effects visible in the data at β = 0.5. Notice that the value of the condensate for a

fixed lattice volume initially grows as β is increased but eventually turns over and decreases.

We can understand this as the result of finite volume effects which become large for large β

and suppress such instanton-like configurations. Notice that the correlation function we plot

is dimensionless and hence contains powers of the lattice spacing a(β). We have not measured

this quantity directly so it hard to assess from figure 10 whether this condensate survives the

continuum limit. We will try to address this question in the next section.

We have argued that the presence of such a condensate is signal for the anomalous break-

ing of chiral symmetry but it can also be viewed as an order parameter for supersymmetry

breaking. To see this notice that the condensate of the O(3) model can actually be obtained

as the Q-variation of the following operator.

Ocond =
u(x)

ρ(x)ρ2(y)
ψ(x)ψ(y)ψ(y) (5.30)

Thus a non-zero value for this quantity is equivalent to the statement < QO > 6= 0 and

indicates a dynamical breaking of supersymmetry driven by instantons rather along the lines

originally envisaged by Witten [39]. However it was pointed out in [35, 36] that this operator

Ocond is not invariant under the global O(3) symmetry of the model. It is conjectured that

supersymmetry is only violated in the unphysical O(3) non-invariant sector of the theory.

Specifically, the expectation is that any operator QO containing a multiple of a four-fermion

term and for which O is not O(3) invariant would develop a vacuum expectation value different

from zero whereas for an O(3) invariant O it would remain zero. For a general N = 2 sigma

model the notion of O(3) invariance would then be replaced by the requirement that the

operator be invariant under all possible isometries of the target metric. It would be interesting

to investigate these issues in more detail.
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5.4 Phase

Up to this point we have neglected a possible phase arising in the calculation of fermion

determinant. It is not hard to show that the determinant is real since generically the eigen-

values occur in complex conjugate pairs. The exception occurs with purely real eigenvalues.

As one of these crosses the origin the sign of the determinant will change. Indeed figure 11.

indicates that this phase does undergo weak fluctuations and one has to check for its effect

on the simulation. As usual we can always compensate for neglecting the phase factor in the

simulation by re-weighting all observables by the phase factor according to the simple rule

< O >=
< Oeiα(Φ) >α=0

< eiα(Φ)>α=0
(5.31)

Hence we examined the Ward identities we have studied in the previous section now weighted

with this phase factor. For example table 1 shows the mean re-weighted bosonic action

together with the phase quenched value for different lattice sizes and a range of couplings

β. While re-weighting typically amplifies the estimated errors it does not appear to change

the mean value for this observable at least within statistical errors. This seems to indicate

that the phase fluctuates approximately independently of the remaining part of the measured

observable leading to an, at least approximate factorization in the reweighted observable

< O >full=
< Oeiα >α=0

< eiα >α=0
∼ < O >α=0< eiα >α=0

< eiα >α=0
=< O >α=0 (5.32)

5.5 Continuum Limit

Figure 12 shows a plot for the dimensionless ratio value <1/ρ2ψψ>
mB

(mB is the lightest boson

mass) for different lattice sizes and for different values of the coupling. One can see that

an approximate plateau occurs for sufficiently small lattice spacing which we interpret as

the onset of continuum physics. The separation of the curves from different lattice volumes

we consider to be a measure of possible finite volume effects. Modulo these finite volume

questions we take this as evidence that the magnitude of the condensate is non-zero in the

continuum limit.

6. Conclusions

This paper is devoted to a study of the N = 2 supersymmetric sigma model regulated on

a lattice. The lattice formulation we employ was derived in an earlier paper [1] and results

from a discretization of a twisted version of the continuum theory. The twisting process is

to be viewed as a change of variables (we are in flat space) and has the merit of exposing a

nilpotent scalar supersymmetry Q which can be preserved under discretization. In this paper

we extend our previous work by introducing a modified Wilson operator in the form of a

twisted mass term which is used to remove doubler modes from our lattice theory without

spoiling the Q-exact property of the lattice action. The introduction of such a mass term is
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β β < Sb > β < Sb >W

0.5 145.523 ± 0.286 144.464 ± 3.858

1.0 147.369 ± 0.281 148.764 ± 21.547

2.0 135.51 ± 0.281 139.749 ± 53.707

3.0 128.275 ± 0.242 122.731 ± 8.747

4.0 127.272 ± 0.329 126.933 ± 2.093

5.0 127.326 ± 0.213 127.342 ± 1.274

10.0 127.552 ± 0.299 127.164 ± 1.967

β β < Sb > β < Sb >W

0.5 321.541 ± 0.568 321.461 ± 8.984

1.0 310.143 ± 0.391 305.595 ± 17.114

2.0 291.275 ± 0.360 284.338 ± 40.365

3.0 286.719 ± 0.352 276.315 ± 24.448

4.0 285.546 ± 0.326 283.904 ± 5.489

5.0 285.627 ± 0.340 285.307 ± 3.386

10.0 287.163 ± 0.285 286.943 ± 2.483

β β < Sb > β < Sb >W

0.5 283.02 ± 2.166 285.369 ± 4.369

1.0 458.823 ± 1.707 459.028 ± 7.847

2.0 509.266 ± 0.628 504.264 ± 38.233

3.0 503.627 ± 0.784 496.215 ± 46.938

4.0 507.243 ± 0.609 505.991 ± 13.837

5.0 507.412 ± 1.028 506.915 ± 14.778

10.0 511.561 ± 0.570 511.715 ± 5.386

Table 1: β < Sb > for quenched and unquenched phase on 8x8, 12x12 and 16x16 lattices.

compatible with supersymmetry if it takes the form of a holomorphic Killing vector in the

target space [40] and corresponds to the addition of central charges in the supersymmetry

algebra. The replacement of a simple mass term with a Wilson difference operator breaks

supersymmetry softly and is not expected to lead to additional fine tuning. We study the

CP 1 ∼ O(3)-model in detail using the RHMC algorithm on lattices as large as 162 over a

range of coupling β = 0.5 → 10.0. Our results for both the spectrum and Ward identities

provide strong evidence for a restoration of full supersymmetry at large β and small lattice

spacing without additional fine tuning. Notice that while the Ward identities are examples

of trivial topological observables the mass spectrum we measure is non-topological. Further

investigations of such physical observables are underway and will published elsewhere [41].

We are also able to see a non-zero chiral condensate and this appears to persist into the

continuum limit as expected from the chiral anomaly. It would be very interesting to extend

this work to the general CPN−1 models where the numerical results could be compared with

exact results on the low lying mass spectrum [42].
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A. Appendix: Notations

A real system is denoted by x1, x2 which combine to give holomorphic coordinates,

z = x1 + ix2, z̄ = x1 − ix2 (A.1)

Then a vector V µ with components (V 1, V 2) has holomorphic components,

V+ =
1

2
(V1 − iV2), V− =

1

2
(V1 + iV2) (A.2)

The Dirac matrices γµ are given by (Chiral basis),

(γ1) β
α = σ1, (γ2) β

α = σ2 (A.3)

Spinor indices are raised and lowered by the matrix Cαβ = σ1,

(γµ)αβ = (γµ) τ
α Cτβ (A.4)

thus for a vector V µ,

γµ++Vµ = V1 − iV2 = V+ (A.5)

γµ−−Vµ = V1 + iV2 = V− (A.6)

(A.7)

For a Kähler manifold, the metric is given by,

gIJ̄ = ∂I∂J̄K (A.8)

where K is a Kähler potential. (Note that gĪ J̄ = gIJ = 0 for a almost complex manifold).

The non vanishing components of the Christoffel symbols are then,

ΓIJK = gIL̄∂JgKL̄, ΓĪJ̄K̄ = gĪL∂J̄gLK̄ (A.9)

This implies the only non-trivial components of the Riemann tensor are,

RĪJK̄L = gĪM∂K̄ΓMJL, or RIJK̄L = ∂K̄ΓIJL, (A.10)

B. Appendix: Twisted N = 2 supersymmetry algebra

The algebra of N = 2 supersymmetry in 2 space dimensions is given by [28],

{Qα+, Qβ−} = γµαβPµ, [R,Qα±] = ±1
2Qα±

{Qα+, Qβ+} = {Qα−, Qβ−} = 0, [J, Pµ] = −iǫ νµ Pν
[Qαa, Pµ] = [Pµ, Pν ] = 0, [R,Pµ] = 0

[J,Q±a] = ±1
2Q±a, [J,R] = [J, J ] = [R,R] = 0

(B.1)
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where J is the generator of Lorentz SO(2) symmetry and R is the generator of the internal

SO(2) symmetry. In order to obtain some scaler charges, one perform a twisting that changes

the spin of the above charges. In order to do this we need to redefine the Lorentz generator.

Indeed if we take (see Appendix A for our notations),

J̃ = J +R (B.2)

with respect to this new generator one finds that Q+− and Q−+ behave as scalars while the

pair Q++ and Q−− as vectors. To make manifest the new Lorentz structure of each of the

generators we define,

QL = Q+−

QR = Q−+

Q++ = γµ++Gµ = G+

Q−− = γµ−−Gµ = G−

it is clear from (B.1) that,

Q2
L = Q2

R = {QL, QR} = 0 (B.3)

The algebra (B.1) in terms of the new Lorentz generator J̃ and the following redefined oper-

ators,

Q = QL +QR, M = QL −QR (B.4)

is
Q2 = M2 = {Q,M} = [Q,Pµ] = [M,Pµ] = 0

{Q,Gµ} = Pµ
[Q, J̃ ] = [M, J̃ ] = 0

{M,Gµ} = −iǫ ν
µ Pν

[J̃ , Pµ] = −iǫ ν
µ Pν

[J̃ , Gµ] = −iǫ ν
µ Gν

[Pµ, Pν ] = {Gµ, Gν} = [J̃ , J̃ ] = 0

(B.5)

in addition, the action of the R generator on the new twisted charges is,

[R,Q] = −1
2M

[R,M ] = −1
2Q

[R,Gµ] = − i
2ǫ

ν
µ Gν

[R,R] = [R, J̃ ] = [R,Pµ] = 0

(B.6)

Let our field content be φi, Bi
α, ψ

i and ηiα or on the complex manifold φI , BI
+, ψ

I and ηI+.

The R-transformations of these fields is given by

[R,φI ] = 0, [R,φĪ ] = 0

[R,ψI ] = 1
2ψ

I , [R,ψĪ ] = −1
2ψ

Ī

[R, ηI+] = 1
2η

I
+, [R, ηĪ−] = −1

2η
Ī
−

[R,BI
+] = BI

+, [R,B Ī
−] = −B Ī

−

(B.7)
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More importantly the transformation of our fields under the twisted charges Q,M,G+

and G− is given by, for Q,

QφI = ψI QφĪ = ψĪ

QψI = 0 QψĪ = 0

QηI+ = BI
+ − ΓIKJψ

JηK+ QηĪ− = B Ī
− − ΓĪ

K̄J̄
ψJ̄ηK̄−

QBI
+ = −ΓIJKψ

JBK
+ −RI

KJ̄L
ψKψJ̄ηL+ QB Ī

− = −ΓĪ
J̄K̄
ψJ̄BK̄

− −RĪ
J̄LK̄

ψJ̄ψLηK̄−

(B.8)

for M

MφI = −ψI MφĪ = ψĪ

MψI = 0 MψĪ = 0

MηI+ = −(BI
+ − ΓIKJψ

JηK+ ) MηĪ− = B Ī
− − ΓĪ

K̄J̄
ψJ̄ηK̄−

MBI
+ = ΓIJKψ

JBK
+ −RI

KL̄J
ψJψL̄ηK+ MB Ī

− = −ΓĪ
J̄K̄
ψJ̄BK̄

− +RĪ
K̄LJ̄

ψJ̄ψLηK̄−

(B.9)

for G+

G+φ
I = 1

2η
I
+ G+φ

Ī = 0

G+ψ
I = −1

2(BI
+ − ΓIKJψ

JηK+ ) G+ψ
Ī = 0

G+η
I
+ = 0 G+η

Ī
− = 0

G+B
I
+ = −1

2ΓIJKB
J
+η

k
+ G+B

Ī
− = ∂+η

Ī
− − 1

2R
Ī
K̄LJ̄

ψJ̄ηL+η
K̄
−

(B.10)

and finally for G−,

G−φ
I = 0 G−φ

Ī = 1
2η

Ī
−

G−ψ
I = 0 G−ψ

Ī = −1
2(B Ī

− − ΓĪ
K̄J̄
ψJ̄ηK̄− )

G−η
I
+ = 0 G−η

Ī
− = 0

G−B
I
+ = ∂−η

I
+ − 1

2R
I
KL̄J

ψJηL̄−η
K
+ G−B

Ī
− = −1

2ΓĪ
J̄K̄
BJ̄

−η
k̄
−

(B.11)
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Figure 1: mass spectrum for 8x8, 12x12 and 16x16 lattices
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Figure 3: < QO >= 0 for 8 × 8 lattice

– 25 –



0 5 10 15
t

−0.01

0

0.01

0.02

<QO>=0
12x12 lattice, β=0.5, O=guubar(x)[ψx(d−ubar)y+ψbarx(d+u)y]

bosonic part
fermionic part

0 5 10 15
t

−0.01

−0.005

0

0.005

0.01

<QO>=0
12x12 lattice, β=4.0, O=guubar(x)[ψx(d−ubar)y+ψbarx(d+u)y]

bosonic part
fermionic part

0 5 10 15
t

−0.004

−0.002

0

0.002

0.004

<QO>=0
12x12 lattice, β=10, O=guubar(x)[ψx(d−ubar)y+ψbarx(d+u)y]

bosonic part
fermionic part
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Figure 9: < Q(ηxūy) >= 0 for 8 × 8 lattice
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