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Abstract:

A generalization of the AdS/CFT conjecture postulates a duality between IIA string theory
and 16 supercharge Yang-Mills quantum mechanics in the large N ’t Hooft limit. At low
temperatures string theory describes black holes, whose thermodynamics may hence be stud-
ied using the dual quantum mechanics. This quantum mechanics is strongly coupled which
motivates the use of lattice techniques. We argue that, contrary to expectation, the theory
when discretized naively will nevertheless recover continuum supersymmetry as the lattice
spacing is sent to zero. We test these ideas by studying the 4 supercharge version of this
Yang-Mills quantum mechanics in the ’t Hooft limit. We use both a naive lattice action and
a manifestly supersymmetric action. Using Monte Carlo methods we simulate the Euclidean
theories, and study the lattice continuum limit, for both thermal and non-thermal periodic
boundary conditions, confirming continuum supersymmetry is recovered for the naive action
when appropriate. We obtain results for the thermal system with N up to 12. These favor
the existence of a single deconfined phase for all non-zero temperatures. These results are an
encouraging indication that the 16 supercharge theory is within reach using similar methods
and resources.
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1. Introduction

Despite progress in understanding quantum gravity there has been relatively little progress in
theoretically realizing a quantum black hole, the key object in quantum gravity. Substantial
progress was afforded by the work of Strominger and Vafa [1] who showed that for certain
black holes in string theory the constituent microstates can be explicitly counted and the
result is in agreement with the usual Bekenstein-Hawking entropy [2]. The calculation relies
on a continuation to a weakly coupled theory where states can be explicitly counted, and
this number is then argued to be independent of the continuation. This gives an indirect
understanding of the microstates of the black hole. Another beautiful result of Strominger
is that the entropy of black holes with an AdS3 near horizon geometry can be computed
on very general grounds as the gravitational theory describing the black hole can be argued
to be a 2-d conformal field theory [3]. One does not know the theory, but does know the
central charge, which is sufficient to compute the entropy using Cardy’s result. Thus again
we gain insight into the microstates, although we are not able to solve the theory governing
the quantum black hole. For a review of these approaches we refer the reader to [4] and for
an interesting new proposal concerning understanding the microscopic description without
resorting to a weak coupling continuation see the work of Mathur [5].

A very promising new direction for the study of quantum gravity is the AdS/CFT corre-
spondence and its generalizations [6, 7]. Here one can describe certain black holes in terms of
the worldvolume theory of the D-branes that compose them. These are 16 supercharge gauge
theories in various dimensions, taken in the large N ’t Hooft limit and at finite temperature.
The regime in which they describe string theory black holes is one in which they are strongly
coupled, and solving this theory would allow one to directly study the quantum properties
of the dual black hole, including its thermodynamic properties. The problem of computing
directly in this strongly coupled theory is a technical one, not one of principle. While analytic
methods have made much progress in describing the planar limit of the 4 dimensional version
of this correspondence using integrability techniques [8] it is not generally understood how
to go beyond this limit. It particular black holes are precisely objects that live beyond this
limit, having dual energy densities of order O(N2). Even protected quantities that can give
information about the strongly coupled theories through weak coupling calculations have not
yet revealed information about black holes [9] and if they do in the future, they will remain
indirect probes of quantum black hole physics. Another direction for direct calculation is
the use of the Gaussian approximation, pioneered in this context for Yang-Mills quantum
mechanics in [10]. Certain agreement with black hole thermodynamics was extracted [11],
although the approximation scheme is essentially uncontrolled, having no small parameter.

The aim of this paper is to investigate the feasibility of using lattice methods to directly
simulate the strongly coupled worldvolume theories. Hiller et al [12] have used lightcone meth-
ods to give evidence that the graviton propagator is correctly reproduced in the 2 dimensional
version of the correspondence. Here, we test the use of direct Monte Carlo simulation of the
lattice regulated path integral to investigate these systems. Since we are interested in study-
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ing the theory at finite temperature, Monte Carlo techniques seem the most natural as they
allow us to study observables directly in the thermal ensemble. In addition, Monte Carlo
methods are often the only feasible approach in higher dimensions.

These theories are necessarily supersymmetric, and this presents technical challenges for
the lattice. The first problem encountered in such a study is how best to discretize such a
supersymmetric theory. There has been much interest in the lattice study of supersymmetric
theories. Aside from our current application, supersymmetry plays a prominent role in efforts
to construct theories which go beyond the standard model of particle physics and the lattice
provides the possibility of studying nonperturbative effects such as dynamical supersymmetry
breaking, of relevance for phenomenology. Unfortunately, in many cases, supersymmetry is
broken at the classical level in such discretizations and can only be regained in the quantum
continuum limit after a great deal of fine tuning in the lattice theory. Recently significant effort
has gone into attempts to construct lattice theories which retain an exact supersymmetry
at non-zero lattice spacing. Two approaches have been used; lattice models arising from
orbifolding a supersymmetric matrix model [13, 14, 15, 16, 17] and constructions based on
discretizing a topological or twisted form of the continuum supersymmetric theory [18, 19,
20, 21, 22]. In the case of Yang-Mills theories it appears that these approaches are intimately
connected [23, 24]. The approach based on twisting has also been studied in the case of
Wess-Zumino and sigma models [25, 26, 27, 28, 29]. The philosophy behind these approaches
is that this residual lattice supersymmetry will help to protect the theory from the dangerous
radiative corrections which lead to fine tuning.

However, in a sufficiently low number of dimensions the super renormalizable nature of the
models leads to much reduced fine tuning problems – typically there are only a finite number
of divergences in such theories which may be computed in perturbation theory [30]. In the case
considered here, supersymmetric Yang-Mills quantum mechanics, we argue that no relevant
supersymmetry breaking counterterms can be written down. Naive discretizations of such a
theory, while breaking supersymmetry classically by terms of the order of the lattice spacing,
flow automatically to the supersymmetric theory in the naive continuum limit corresponding
to a vanishing lattice spacing.

In this paper we have examined the effectiveness of using Monte Carlo simulation to
study super Yang-Mills quantum mechanics in the large N ’t Hooft limit in the case of the
4 supercharge model. This theory, while exhibiting many features which are qualitatively
similar to its 16 supercharge cousin, is computationally easier and a useful ‘warm-up’ exercise
before tackling the 16 supercharge case. It has been studied using Hamiltonian methods
in [31, 32] for SU(2). We have studied two different discretizations of this theory. One of
these possesses 2 exact lattice supersymmetries corresponding to the dimensional reduction
of the twisted model derived in [21]. The other corresponds to a naive discretization of the
continuum theory constrained only by the necessity of employing a lattice derivative which
forbids fermion doubling. Both are invariant under lattice gauge transformations.

We give analytical arguments that the naive action should not require fine tuning to
attain the correct continuum limit. We reinforce this conclusion by conducting numerical
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simulations of the model on finite lattices at zero temperature. The results of these simulations
show that the vacuum energy approaches zero as the lattice spacing is reduced and that
expectation values computed in this naive lattice theory agree with those computed with
the supersymmetric lattice action. Since the simulations of the supersymmetric system are
much more computationally demanding we have primarily used the naive action in subsequent
simulations of the thermal system.

To set the stage for the interpretation of our thermal results we have also simulated
the quenched theory. These confirm the previous expectation of a rapid crossover in the
thermodynamic behavior of the system at some temperature which becomes a sharp phase
transition as N → ∞ [33, 34]. For high temperatures the theory appears deconfined but
below the critical temperature the system enters a confining phase with non-zero vacuum
energy. Our new results from simulations of the full 4 supercharge theory however favor a
simple phase structure with a single deconfined phase for all non-zero temperatures - as we
would expect for the behaviour of the 16 supercharge theory from holographic considerations.
We are able to simulate this 4 supercharge thermal theory with N up to 12, already sufficient
to see the asymptotic ’t Hooft scaling.

The plan of the paper is as follows. In section 2 we introduce the Yang-Mills model in
the continuum including a discussion of its renormalizability and vacuum structure. Section 3
describes the two lattice actions we have utilized while we present our results for the quenched,
zero temperature and thermal theories in section 4. Our final section discusses the implication
of our results both in the context of the 4 supercharge model and its string theory cousin
with 16 supercharges.

Finally, the paper ends with several appendices containing more technical details on
holographic duality, the quantum corrections to the classical moduli space of the theory,
and further numerical results concerning the extrapolation of our finite lattice data to the
continuum limit. It also contains a detailed description of the RHMC algorithm used in our
simulations.

While this paper was in preparation we received a paper which utilizes momentum space
methods to study the same system for SU(4) with results that are in at least qualitative
agreement with ours [35].

2. 4 supercharge Yang-Mills quantum mechanics

The Euclidean supersymmetric SU(N) Yang-Mills quantum mechanics we are interested in
can be thought of as arising from the classical dimensional reduction of N = 1 super Yang-
Mills in 4 dimensions. The matter content in the quantum mechanics arises from reduction
of the gauge field in 4-d, giving 3 adjoint bosonic scalar fields Xi, where i = 1, . . . , 3 and
the adjoint gauge field, A. The 4-d adjoint fermions can be equivalently written in either
a Weyl or Majorana representation. Here we will use the Weyl representation, giving a
complex 2-component fermion field, Ψα with a Euclidean spinor index α, transforming in the
adjoint of the gauge group. Dimensionally reducing this, the spinor index becomes an internal
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symmetry. The quantum mechanics Euclidean action is given as,

S =
1
λ
NTr

∮ R

dτ

{
1
2

(DτXi)2 − 1
4

[Xi, Xj ]
2 + iΨ̄σ̄τDτΨ− Ψ̄σ̄i [Xi,Ψ]

}
, (2.1)

with τ being compact Euclidean time with radius R. The covariant derivative is defined as
Dτ = ∂τ + i [A(τ), ·] on an adjoint field, and we use the usual (Euclidean) chiral conventions,

σ̄τα̇α = −i1, σ̄iα̇α = −σi (2.2)

with σi being the Pauli matrices. We have written the SU(N) gauge theory using the ’t
Hooft coupling λ = Ng2

YM , with gYM the Yang-Mills gauge coupling. The supersymmetry
transformation derives from that of the reduction of the parent 4-d N = 1 super Yang-Mills,
giving,

δA = −iΨ̄σ̄τξ
δXi = −iΨ̄σ̄iξ
δΨ = 2

(
στiξ

)
(DτXi) + i

(
σijξ

)
[Xi, Xj ] (2.3)

where we use the notation σµν = 1
4 (σµσ̄ν − σν σ̄µ). The theory has a global SO(3) symmetry

which can be interpreted as a rotational invariance in the target space of the theory, with
action,

X ′i = Λj(1)iXj Ψ′α = Λβ
( 1
2

)α
Ψβ (2.4)

where Λ(1) gives the representation of SO(3) acting on vectors, and Λ(1/2) the representation
on spinors.

Since the Euclidean time is topologically S1 we have two spin structures which give either
periodic or anti-periodic boundary conditions for the fermion Ψ as we traverse the time circle.
In the latter case, the path integral Z is the usual thermal partition function with temperature
T ,

Za(R) = Tre−RĤ (2.5)

where R is the inverse temperature 1/T , and Ĥ is the Hamiltonian operator. Taking periodic
boundary conditions,

Zp(R) = Tr(−1)F̂ e−RĤ (2.6)

where F̂ is the fermion operator, and hence Zp gives the Witten index, whose value counts
the difference in the number of fermionic and bosonic ground states Ĥ|ψ >= 0, and hence
should not depend continuously on R.

2.1 The 16 supercharge theory and its IIA closed string theory dual

The 16 supercharge theory, which arises as the 1 dimensional reduction of N = 1 super Yang-
Mills in 10 dimensions, takes a very similar form to the above. The only difference is that
the reduction of the 10-d gauge field gives rise to 9 adjoint scalars Xī, with ī = 1, . . . , 9, and
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the 10-d Majorana fermions yield an adjoint fermion Ψµ̄ now with spinor index µ̄ = 1, . . . , 16.
Note that unlike the 4 supercharge theory, there is no Weyl representation available for the
fermions, and hence one obtains a Pfaffian from integrating out these fields rather than a
determinant.

Since the 16 supercharge theory is so similar to the 4 supercharge theory, one might ask
why we have decided to simulate the 4 supercharge case here. Clearly the 16 supercharge
case will generate a fermion operator which is four times larger than its 4 supercharge cousin.
With current simulation algorithms for near massless dynamical fermions this will lead to
a factor of 16 slowdown in our simulations. In addition even in the continuum Euclidean
theory the Pfaffian that results after integration over the fermions is in general complex as
seen from considering the zero momentum sector of the theory [36]. In contrast to this the
continuum 4 supercharge theory has a Pfaffian which can be recast as a positive definite real
determinant, and we later show that our naive lattice discretization also has this property.
The feasibility of using Monte Carlo methods to simulate such a system with complex Pfaffian
depends upon whether the resulting phase fluctuations are relatively small and infrequent as
we approach the continuum limit. In the latter case standard reweighting techniques can be
used to evaluate expectation values generated in the phase quenched ensemble (see eg. [37].
Because of these technical subtleties we have decided to initially study the 4 supercharge
theory before moving to the 16 supercharge case.

Following the AdS-CFT conjecture Itzhaki et al [7] have argued that SU(N) 16 su-
percharge Yang-Mills theories taken in the large N ’t Hooft limit are dual to certain closed
superstring theories in the near horizon region of N coincident D-branes. In particular SU(N)
super Yang-Mills quantum mechanics is supposedly dual to the IIA string theory describing
N D0-branes. We review this correspondence in more detail in the appendix A. Here we
simply state the results that the analysis gives.

At a finite temperature T = 1/R the quantum mechanics theory then describes a gas of
N D0-branes in the dual IIA theory. In one dimension we can define a parameter,

β =
λ

1
3

T
(2.7)

which we can think of as a dimensionless inverse temperature, characterizing the behavior of
the theory. For large β >> 1 (but still finite as compared with N) the system of D0-branes
should be well described by a supergravity black hole which is much larger in radius than
the string length α′1/2. It is remarkable that since we know how to compute the Bekenstein-
Hawking entropy of the supergravity black hole, we can predict - assuming the holographic
correspondence is correct - that in the large β limit the precise form of the Yang-Mills entropy
and free energy will be,

S = 11.5N2β−9/5, f = −4.11N2β−14/5 (2.8)

where f is the dimensionless free energy, given by F = λ1/3f where F is the usual free energy
[7]. For decreasing β the curvature at the horizon radius becomes larger and the supergravity
description receives string oscillator α′ corrections, about which little is known.
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For small β << 1 the system can best be thought of as a highly excited hot ball of strings
and branes. Polchinski and Horowitz have argued that the hot ball of strings for β << 1
and the black hole at β >> 1 are the same object, and the physics at the transition β ∼ 1
- the ‘correspondence point’ - is therefore smooth [38]. Witten has argued that the presence
of a black hole in the dual string theory (geometrically implying a contractible Euclidean
time circle) indicates the Yang-Mills theory is in a deconfined phase, with thermodynamic
quantities scaling as O(N2) and finite expectation value for the amplitude of the Polyakov
loop < | 1

NTrei
H
Adτ | > [39]. Conversely the appearance of a confined phase would correspond

to the absence of a black hole in the dual geometry, or more precisely a non-contractible time
circle, and results in thermodynamic quantities of order O(1) and a vanishing expectation
value for the Polyakov loop. Hence at large β >> 1 we expect the 16 supercharge theory to be
deconfined as it is indeed dual to a black hole. At small β << 1 one can dimensionally reduce
the theory to a bosonic matrix model, which Monte Carlo simulation shows has energies
scaling as O(N2), and hence one expects that the 16 supercharge theory is likely to be
deconfined for all β [33, 34], tallying with smoothness at the ‘correspondence point’.

Hence the key questions that would concern a study of the thermal 16 supercharge Yang-
Mills theory in the ’t Hooft limit would be to confirm the above thermodynamic expectations
at small and large β, and to study the transition region to see if there is a phase transition
in the correspondence region.

Whilst in this paper we shall not compute with this 16 supercharge theory, we will
simulate its relative, the 4 supercharge Yang-Mills model in the ’t Hooft limit. These two
theories have similar classical and quantum low energy dynamics and one might expect their
qualitative thermodynamic properties to be similar. However, strictly one should view the
calculation in this paper as a warm-up exercise for the 16 supercharge case, and a demon-
stration that the quantities of interest in the latter theory are likely to be computable using
similar methods.

2.2 Infrared behaviour of the 4 supercharge Euclidean theory

The classical bosonic moduli space of the theory is simply given by setting the scalar and gauge
field adjoint matrices to be mutually commuting, and constant in Euclidean time. This implies
they are all diagonal up to gauge transformation. Such a classical moduli space naively leads
to the concern that the path integral is not well defined due to infra-red divergences. However,
in both the periodic and thermal cases quantum corrections lift this classical bosonic moduli
space and hence render the path integral convergent. There are two sources of quantum
corrections to be considered. These are the off-diagonal elements of the constant modes
about the time circle, and secondly, the non-constant modes about the Euclidean time circle.
For a given β, the loop expansion parameter is determined by the separation of the diagonal
elements of the constant modes. The infra-red behaviour of the theory is precisely in the
regime where we take the diagonal elements of the constant modes to be well separated, and
hence we can approximate the theory by a 1-loop calculation. In appendix B we explicitly
perform the computation of the effective action for the bosonic classical zero modes in both
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periodic and thermal cases. We now summarize the results in this appendix, beginning with
the thermal theory.

2.2.1 The finite temperature theory

The thermal case is simpler than the periodic case, and the result we give was previously given
as a special case in Aharony et al [34]. Taking temperature T , and antiperiodic Euclidean
time with radius R = 1/T , the thermal boundary conditions imply there are no fermion
modes that are constant in time, and hence no fermion zero modes. Thinking of the adjoint
fields as N ×N matrices we may expand them as,

Aab(τ) = Aaδab +
1√
2π

∞∑
m=−∞

δA
(m)
ab e

2π
R
imτ

Xi,ab(τ) = xai δab +
1√
2π

∞∑
m=−∞

δX
(m)
i,ab e

2π
R
imτ

Ψα,ab(τ) =
1√
2π

∞∑
m=−∞

δΨ(m)
α,abe

2π
R
i(m+ 1

2
)τ (2.9)

where the matrix indices a, b = 1, . . . , N . The classical bosonic moduli are Aa, xai . We take the
perturbations δA(0), δX

(0)
i to have no diagonal terms and since the gauge group is SU(N), the

field matrices are traceless so the sums
∑

aA
a,
∑

a x
a
i vanish. We define ∆Aab = R(Aa −Ab)

and ∆xabi = R(xai − xbi), where we note that these are now dimensionless. As we show in the
appendix, the effective dimensionless coupling constant governing the fluctuations is

geff ∼
β3

|∆xab|4
(2.10)

where |∆xab|2 =
∑

i(∆x
ab
i )2. Hence we may integrate out all the fluctuations with any m

provided the diagonal component moduli are sufficiently well separated compared to dimen-
sionless temperature, so,

|∆xab| >> β3/4. (2.11)

As noted in the appendix, this condition arises from the zero modes with m = 0. For small
circle size, β << 1 we can integrate out all ‘Kaluza-Klein’ modes, ie. bosonic fluctuations
with m 6= 0 and all the fermionic fluctuations, and are then left with a zero dimensional
bosonic matrix theory. However, unless the moduli are well separated in the sense above, one
cannot also integrate out the off-diagonal components of this matrix theory, ie. the m = 0
fluctuations.

As shown in the appendix, when we gauge fix the action and integrate out the fluc-
tuations at 1-loop we find an action for the bosonic moduli. Supersymmetry is broken by
the thermal boundary conditions and hence the 1-loop determinants from the bosonic and
fermionic fluctuations do not cancel each other. We obtain an effective action for the moduli,

S1−loop[Aa, xai ] =
∑
a<b

log
(

cosh |∆xab| − cos ∆Aab

cosh |∆xab|+ cos ∆Aab

)
. (2.12)
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This potential takes a simple form, arising from a pair-wise interaction of the moduli and
hence scales as O(N2). Gauge invariance implies the potential is periodic in ∆Aab, the
moduli Aa multiplied by R being angular variables giving the value of the Wilson loop
Pei

H
dτA = eiβA

aδab = diag
(
eiRA

1
, eiRA

1
, . . . , eiRA

N
)

. The minimum for the potential is

when the moduli are coincident. Asymptotically, for a large separation |∆xab| >> 1 the
potential goes to zero as S1−loop ∼ −e−|∆x

ab| cos ∆Aab, and so is attractive towards the coin-
cident point for −π

2 < ∆Aab < π
2 . One might worry that all moduli will simply coalesce under

these attractive pairwise forces. However, as discussed above, for a separation |∆xab| ∼ β3/4

the loop approximation breaks down and the theory becomes strongly coupled. Hence we see
that the classical moduli space is lifted by an attractive potential that drives the infra-red
dynamics to strong coupling.

Since the path integral measure over the non-compact zero modes is
∏
a,i dx

a
i we see that

the integral, giving the partition function, should be convergent in the infra-red due to the
exponential decay of the potential to zero for large separations. Naively this fast fall off would
imply that the tails of the eigenvalue distributions of the scalars should die off faster than a
power law.

2.2.2 The periodic theory

The analysis of the periodic case is more subtle. The results we summarize here and give fully
in the appendix are new, and draw on previous results of Aoki et al and Aharony et al [40, 34].
The interesting feature of the periodic case is that in addition to the bosonic classical zero
modes, there are also fermionic zero modes, where the fermion field matrices are diagonal
and constant in time. We may then compute a 1-loop effective action for both the boson
and fermion zero modes by integrating out fluctuations about these. Then integrating over
the fermion zero modes yields an effective theory for the bosonic zero modes, which has an
attractive potential that drives the theory to strong coupling. We begin, as above, by writing
our field as matrices and expanding as,

Aab(τ) = Aaδab +
1√
2π

∞∑
m=−∞

δA
(m)
ab e

2π
R
imτ

Xi,ab(τ) = xai δab +
1√
2π

∞∑
m=−∞

δX
(m)
i,ab e

2π
R
imτ

Ψα,ab(τ) = ξaαδab +
1√
2π

∞∑
m=−∞

δΨ(m)
α,abe

2π
R
imτ (2.13)

where we have included classical fermionic moduli, ξaα. We take the fluctuations δΨ(0)
α to have

no diagonal terms and since the gauge group is SU(N), the matrix Ψα is traceless so the sum∑
a ξ

a
α vanishes. The dimensionless coupling controlling the integration over the fluctuations

is again given by geff as defined above in equation (2.10).
As shown in the appendix, when we gauge fix the action and integrate out the fluctuations

at 1-loop we find an action for the bosonic and fermionic moduli. Supersymmetry leads to
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large cancellations between contributions of the bosonic and fermionic fluctuations, and we
find that this action is only non-trivial due to the presence of the fermionic moduli, ξaα. When
we integrate over these, we then obtain an effective action for the bosonic moduli,

S1−loop[Aa, xai ] = − log
∑

(a1,a2,...,aN )∈P

Ma1a2Ma2a3 . . .MaN−2aN−1MaN−1aN (2.14)

where P is the set of permutations of (1, 2, . . . , N), and

Mab =
∞∑

m=−∞

1(
(m+ ∆Aab)2 + (∆xabi )2

)3 . (2.15)

This potential is again periodic in ∆Aab. It is energetically unfavourable for large separations
in |∆xabi |, and hence is attractive. As above the classical bosonic moduli space is lifted,
and the attractive potential drives the theory to strong coupling, with a moduli separation
|∆xab| ∼ β3/4. Since the number of terms in the sum is N !, we expect the 1-loop effective
action for the bosonic zero modes to have energy O(N logN). Since the path integral measure
over these remaining zero modes is

∏
a (dAa

∏
i dx

a
i ) we see that the integral, giving the

partition function, should be convergent in the infra-red. Analogous reasoning to that of
Krauth and Staudacher [41] in the context of matrix integrals suggests, using naive power
counting, that the distribution of the bosonic eigenvalues should have tails decaying as a
power law 1/x3. In particular this means that the expectation values of the moments TrX2p

for any positive integer p do not exist, even though the partition function itself does.
As mentioned above, for small enough circle size we may effectively ignore all the non-

constant modes on the circle and the quantum mechanics should reduce to the 4 supercharge
matrix integral. This has been studied beyond the 1-loop approximation both numerically
and analytically. In particular Austing [42] has proven analytically existence of a twisted
version of the theory and full Monte Carlo simulation was performed by Ambjorn et al [43]
for large N .

At this point we should comment that analogous calculations for the 16 supercharge
theory would yield similar results for the effective potential governing the fluctuations of the
bosonic zero modes in both the periodic and thermal cases.

2.3 Phase structure

In our supersymmetric quantum mechanics with finite N , and hence a finite number of degrees
of freedom, one cannot have a sharp phase transition, but only smooth cross-over behaviour.
However, we are interested here in the large N limit of this quantum mechanics. In the infinite
N limit it is possible to have sharp phase transitions - ie. the cross-over becomes sharper as
N is increased, leading to non-analytic behaviour for N →∞. The simplest example of this
is the Gross-Witten matrix integral which in its large N limit exhibits a 3rd order quantum
phase transition [44]. Indeed the quenched version of our quantum mechanics theory exhibits
a discontinuous confinement-deconfinement transition at large N , as discussed in [33, 34].
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Hence it is then an interesting question as to whether the supersymmetric theory exhibits
smooth thermal behaviour or not at large N . As discussed above in section 2.1, holographic
arguments suggest that the 16 supercharge quantum mechanics is always in a deconfined
phase, ie. the free energy will scale as O(N2). Since the infra-red properties of the 16 and
4 supercharge theories are qualitatively similar one might expect the 4 supercharge theory
to always be deconfined. Indeed we will see this is borne out in our results, and we see no
evidence of any sharp phase transition.

2.4 Ultraviolet behaviour of the theory

We now consider the UV behaviour of theory, and will show that it is finite. This is extremely
important for what follows as it allows a naive lattice discretization of the action to recover
the full supersymmetry of the theory without fine tuning. Let us consider our action (2.1).
Let us firstly gauge fix the theory so that the gauge field A is constant in Euclidean time,
∂τA = 0. This yields a trivial Jacobian, det ∂2

τ , and allows us then to consider the quantum
mechanics partition function Z[A] defined as,

Z =
∫
DA Z[A], Z[A] =

∫
DXi(τ)DΨ(τ)DΨ̄(τ)e−Squad−Sint (2.16)

which for fixed A has no gauge dynamics. The unitary matrix A determines the Polyakov loop
as eiRA, and one performs the matrix integral of Z[A] over A to compute the full partition
function Z. The ultraviolet behaviour of the gauged quantum mechanics is determined by
the gauged fixed quantum mechanics derived from Z[A]. The final matrix integral over A
does not introduce any new high energy behaviour.

The quadratic and interaction parts of the quantum mechanics derived from Z[A] for
fixed A are given by,

Squad = Tr
∮ R

dτ

{
1
2

(Dτ X̃i)2 + i ˜̄Ψσ̄τDτ Ψ̃
}

(2.17)

and,

Sint = Tr
∮ R

dτ

{
−1

4
λ

N

[
X̃i, X̃j

]2
−
(
λ

N

)1/2
˜̄Ψσ̄i

[
X̃i, Ψ̃

]}
, (2.18)

where we have rescaled the fields Xi = (λ/N)1/2X̃i and Ψ = (λ/N)1/2Ψ̃ to obtain canonical
kinetic terms.

Consider now performing perturbation theory in the coupling λ, and introducing a high
energy cut-off Λ. Clearly quantum mechanics is always super-renormalizable. In general
this does not preclude divergences, but simply means there can only be a finite number of
them. Consider the two boson mass renormalization diagrams shown in figure 1. In both
cases the loop propagators contribute ∼ 1/p2, and the loop integral

∫ Λ
dp/p2 ∼ O(Λ−1) is

independent of the cut-off. However for the last diagram in the figure the fermion tadpole
loop has only a ∼ 1/p contribution from the fermion propagator, and superficially the loop
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Figure 1: Relevant diagrams in super Yang-Mills quantum mechanics perturbation theory. The heavy
lines are bosonic and the dashed fermionic. The left 2 diagrams are finite mass renormalizations going
as ∼ Λ−1. The right diagram is a fermionic tadpole loop which, while naively potentially divergent as
∼ log Λ, is actually also finite going as ∼ Λ−1, the divergence not arising due to form of the Yukawa
gauge interaction.

integral goes as
∫ Λ

dp/p ∼ O(log Λ) and hence depends on the cut-off. The only divergences
in the perturbation theory for this Yang-Mills quantum mechanics come from such fermion
tadpole loops.

However, let us consider more carefully the fermion loop in the tadpole. Whilst it superfi-
cially diverges we will see the gauge and global symmetries actually render the diagram finite.
We introduce XA

i = TrTAXi and ΨA
α = TrTAΨα where TA are the generators of SU(N) in

the adjoint representation. The generators obey [TA, TB] = ifABCTC with antisymmetric
structure constants fABC , and are normalized so that Tr TATB = δAB. Then we may write
the fermionic interaction term in (2.18) as,

Lferm ∼ fABCΨ̄A
α̇ σ̄

iα̇αΨC
αX

B
i (2.19)

The fermion propagator in momentum space is given by,

1
iσ̄τ,α̇αDAB

τ

=
1

δα̇α(iδABp+ fABCAC)
=
δABδα̇α
ip

+O(
1
p2

) (2.20)

where the subleading terms at large momentum involve the gauge matrix A. The tadpole
loop for an incoming boson XC

i will therefore contribute an integral proportional to,∫ Λ

dp

(
fABCδAB

Tr(σ̄i)
p

+O(
1
p2

)
)

= O(1)
∫ Λ

dp
1
p2
∼ O(Λ−1) (2.21)

where now we see the potentially divergent leading term actually vanishes identically due
to both the anti-symmetry of the structure constants, fABCδAB = 0, and also the fact the
Pauli matrices are traceless so Tr(σ̄i) = 0. Hence we see that actually the fermion tadpole
loops, and therefore all diagrams in this theory, are cut-off independent provided that the
momentum regulator preserves the gauge and global symmetry and hence the form of the
Yukawa interaction term above. This implies that we can regulate our theory with impunity,
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and providing we have correctly maintained the degrees of freedom given by the quadratic
action above, and the gauge and global symmetry, we should expect to recover the correct
theory when we remove the regulator, and in particular all its supersymmetries. This applies
to the naive lattice regulator we are interested in here.

Figure 2: Relevant diagrams in perturbation theory for Witten’s supersymmetric quantum mechanics
for a quartic superpotential. The left diagram, a mass renormalization, is due to the quartic superpo-
tential term. The right diagram is a fermion tadpole loop due to the cubic term. Both are divergent
going as ∼ log Λ.

How generic is this stability against UV radiative corrections? Suppose we wished to
study the 2 dimensional version of the holographic correspondence we would then have a
similar 2-d Yang-Mills theory to compute with, and in this case now the mass renormalization
diagrams in figure 1 above are divergent, since

∫ Λ
dp2/p2 ∼ O(log Λ) as the regulator is

removed. Unlike the quantum mechanics case there are no internal symmetries preserved
by a naive momentum regulator that mean the superficial divergence is avoided. Hence a
naive discretization is not guaranteed to give a continuum limit preserving supersymmetry,
and one would have to perform a lattice perturbation theory calculation to compute the
potential counter-terms that would have to be added to counteract this, as for example in
[45, 46]. Notice that the absence of such counter terms in Yang-Mills quantum mechanics is
not generic for all quantum mechanics models. For example, Giedt et al [30] have studied the
case of Witten’s supersymmetric quantum mechanics,

S′ =
∫
dτ

{
1
2
ẋ2 + h′(x)2 + ψ̄ψ̇ + h′′(x)ψ̄ψ

}
(2.22)

Here x is a bosonic field, and ψ fermionic, and if we take a superpotential as h(x) =
mx2 + γx3 + λx4, then a mass renormalization term is generated as in figure 2 from the
quartic piece, and the cubic piece gives rise to the fermion tadpole shown in the same figure.
Naive power counting shows that both superficially diverge as

∫ Λ
dp/p ∼ O(log Λ), again with

no internal symmetry preserved by a naive momentum cut-off protecting from this divergence.
Hence, when discretizing this theory naively one might expect to generate UV sensitive ra-
diative corrections, and hence break supersymmetry unless the discretization preserves the
supersymmetry manifestly. Indeed this was confirmed in [47, 30, 29] for the quartic term. So
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we see that the fact that we are able to discretize our super Yang-Mills quantum mechanics
is a result not only of its low dimension, but also its interaction structure, in particular, the
gauge and global symmetry which constrains the boson-fermion interaction vertices which are
potentially dangerous in quantum mechanics.

Since we are discussing quantum mechanics we may equivalently use the language of
operator ordering in order to discuss the UV behaviour of the theory. Starting from a Hamil-
tonian operator we may construct a lattice path integral discretized in time, by using the
Hamiltonian to propagate states forward by a small time step in the usual manner. Different
operator orderings in the Hamiltonian will give different discrete lattice path integrals. If
there is a physical ordering ambiguity the continuum limit of the discrete path integral will
yield different physical theories depending on the details of the ordering used. If there is no
ordering ambiguity, any ordering will yield the same continuum physics. Hence we see that
in general different naive discretizations of an action will correspond to Hamiltonians with
different operator orderings, and if there is a physical ambiguity, then different naive lattice
actions will give different continuum physics.

We consider again the example of Witten’s supersymmetric quantum mechanics. Asso-
ciated with the continuum interaction term h′′(x)ψ̄ψ in the action is the interaction Hamil-
tonian,

Ĥ ′ferm = b̂†b̂ h′′(x̂) (2.23)

with anticommuting fermionic operators b̂, b̂† so that {b̂†, b̂} = 1. This is the only term in the
Hamiltonian which is sensitive to operator ordering, as the bosonic interaction term involves
only x̂ and not its momenta. Indeed we see that changing the operator ordering of the
fermions changes the purely bosonic interaction terms in the Hamiltonian. For the general
ordering,

Ĥ ′ferm =
(

(1− ξ)b̂†b̂− ξb̂b̂†
)
h′′(x̂) + ξh′′(x̂) (2.24)

for some ξ we see we have added ξh′′(x̂) to the bosonic interaction term. Consider the
supercharges for this theory,

Q̂ =
(
P̂ + h′(x̂)

)
b̂, Q̂† = b̂†

(
P̂ − h′(x̂)

)
(2.25)

and so,

Ĥ ′ =
{
Q̂†, Q̂

}
= P̂ 2 + h′(x̂)2 + h′′(x̂)

[
b̂†, b̂

]
. (2.26)

Hence we see that supersymmetry requires a particular fermion operator ordering. From our
discussion above, a naive discretization of the action will correspond to a Hamiltonian with
some operator ordering, and in general it will not be the one required above by supersym-
metry. Thus naive discretizations will generically lead to continuum theories which are not
supersymmetric as the continuum bosonic potential will be incorrect. This argument tal-
lies with our previous considerations of UV behaviour in Witten’s quantum mechanics from
perturbation theory above.
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Consider now our Yang-Mills quantum mechanics. We again introduce XA
i = TrTAXi

and ΨA
α = TrTAΨα. This fermionic interaction in (2.19) is associated to a Hamiltonian

interaction term,

Ĥferm = fABC b̂†Aα̇ σ̄iα̇αb̂Cα X̂
B
i (2.27)

where the fermionic operators b̂†Aα̇ , b̂Aα anticommute as,

{b̂†Aα̇ , b̂Bα } = δABδα̇α. (2.28)

Again this is the only term in the action which might be sensitive to operator ordering, as the
bosonic quadratic interaction term involves only the Xi and not their momenta. However,

σ̄i,α̇αfABC{b̂†Aα̇ , b̂Cα } = fABCδABTr(σ̄i) = 0 (2.29)

due to both the antisymmetry of the structure constants and also the traceless property of
the Pauli matrices. We see that changing the operator ordering in this term introduces no
additional bosonic terms. From our discussion above, since the form of the Hamiltonian is
invariant under ordering, naive lattice discretizations will lead to the supersymmetric contin-
uum physics we are interested in. Thus again we see that while the Yukawa couplings in our
supersymmetric gauge quantum mechanics superficially could render a naive discretization
non-supersymmetric in the continuum, the precise structure given by gauge invariance and
global symmetry ensures that this does not happen.

We note that since the form of the 16 supercharge action is the same as that of the 4
supercharge theory, we expect the same argument to ensure that a naive discretization of the
16 supercharge theory will also regain full supersymmetry in the naive continuum limit.

3. Two lattice actions

We now discuss the two actions we have used to simulate the 4 supercharge quantum mechan-
ics - a naive discretization of the continuum theory and a manifestly supersymmetric lattice
action. The naive action follows the standard rules for discretizing a gauge theory. We will
show that the resulting fermion determinant is positive real, which much simplifies simula-
tion. While the lattice action preserves no supersymmetry, we have argued above that since
the quantum mechanics is free from UV divergences provided gauge and global symmetries
are preserved by a UV regulator, all the supersymmetries will be restored in the continuum
limit - this argument also applies to the 16 supercharge theory of interest for future work.
The supersymmetric action arises from discretizing a twisted or cohomological formulation of
the continuum Yang-Mills theory in which nilpotent scalar supercharges can be constructed
as linear combinations of the original supercharges. In this case we show that half of the
original supersymmetry of the continuum theory can be preserved in the discrete theory.
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3.1 Naive lattice action

In this section we consider a naive discretization of the 4 supercharge quantum mechanics.
Firstly we rewrite the action using a dimensionless compact coordinate θ, so τ = Rθ, where
θ has unit period θ ∼ θ + 1. We create our discrete lattice choosing M lattice sites at
position θn = an, with a the discretization length 1/M . We use R to make our lattice fields
dimensionless, and denote the variable at lattice site n = 0, 1, . . . ,M − 1 with a subscript
Xa,Ψa so that,

Xi(Rθn) = R−1Xi,n, and Ψα(Rθn) = R−3/2Ψα,n (3.1)

Since we are taking compact Euclidean time we must identify X0 = XM ,Ψ0 = ±ΨM , with
the sign for the fermions giving periodic or antiperiodic (thermal) boundary conditions.

An important consideration is to avoid fermion doubling on the lattice. This problem
is encountered if one replaces continuum derivatives by symmetric difference operators. The
resulting fermion operator possesses additional light states – “doublers” which do not decouple
as the lattice spacing is sent to zero. Theorems guarantee the appearance of such states in
any local, translationally invariant and chirally symmetric theory. One simple way to remove
these unwanted states is to add a so-called Wilson mass term ar4 to the lattice action where a
is the lattice spacing, 4 is the Laplacian, and r is some non-zero constant. This term lifts the
doublers to have mass O(r/a), leaving the physical modes light. For our naive simulations we
have employed an r = 1 Wilson term, which in quantum mechanics, yields the simple Euler
discretization prescription Ψ̇a = (Ψa+1 −Ψa)/a.

We introduce unitary adjoint link fields, Ua, to implement the gauge invariance. Gauge
freedom allows us to fix the link variables on a spanning tree which in our one dimensional
case means there is one unitary degree of freedom for the whole lattice and we may choose
how to represent it. For the purpose of simulating the theory a convenient choice is a gauge
where all the links are equal U = Ui. We may think of U as representing the holonomy of
the gauge connection about the time circle, so that the Polyakov loop is simply given as,

ei
H
Adτ = UM . (3.2)

Note that the Jacobian introduced by the gauge fixing to set all the links equal is trivial.
Now we may naively discretize the action as,

S =
N

β3

M−1∑
a=0

Tr
[

1
2a

(
Xi,a − UXi,a−1U

†
)2
− a

4
[Xi,a, Xj,a]2 + δα̇αΨ̄α̇,a

(
Ψα,a − UΨα,a−1U

†
)

− aσ̄i,α̇αΨ̄α,a[Ψα,a, Xi,a]
]

(3.3)

where again we note the Euler differencing of the fermion kinetic term is free of doublers.
Let us now show that integrating out the quadratic fermion term gives rise to a positive

real determinant. As above we again introduce XA
i = TrTAXi and ΨA

α = TrTAΨα. Taking
the generators TA to be Hermitian, they obey [TA, TB] = ifABCTC with the SU(N) structure
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constants fABC being real. Since Xi are Hermitian the components XA
i are real. We then

define the fermion operator from the above action so that the fermionic part is given by,
Ψ̄A
α̇,aO

α̇α,AB
ab ΨB

α,b, and we have,

Oα̇α,ABab = δα̇α
(
δABδab − δa,b+1TrTAUTBU †

)
− i a fABC σ̄i,α̇αδabXC

i,a. (3.4)

Following a related argument in [43] we see that,

σ2OABab σ2 =
(
OABab

)?
(3.5)

and hence any eigenvector vαAa of O having eigenvalue λ will be paired with another eigen-
vector (σ̄2,α̇αvαAa)? with eigenvalue λ?. Since the determinant of O is the product of its
eigenvalues, we see it is real and positive. This is very nice as it ensures that in the naive dis-
cretization we can, in principle, exponentiate the fermion determinant, and use Monte-Carlo
methods to straightforwardly simulate the resulting action. Notice that we used properties
of the Weyl representation, and this no longer holds for the 16 supercharge theory. Indeed,
already in the 16 supercharge matrix integral, the Pfaffian obtained from integrating out the
fermions is not positive [36]. Thus in the 16 supercharge case, using a naive action one would
likely have to take the absolute value of the Pfaffian and then use ‘reweighting’ to simulate
the phase. How effective this would be would then depend on how important this phase is in
the physical regime of interest.

3.2 Manifestly supersymmetric lattice action

A lattice action which possesses an exact supersymmetry may be derived by dimensional
reduction of the supersymmetric lattice action for two-dimensional twisted four supercharge
Yang-Mills theory described in [21, 37]. The resulting action may be written as

S = Q
∑
x

Tr
(
χ†1(B1 + 2D+

1 φ
3) + ψ†1D

+
1 φ+ κ†[φ3, φ] +

1
4
η†[φ, φ] + h.c

)
(3.6)

where the scalar supercharge arising from the twisting process has the following action on the
fields

QU1 = ψ1 (3.7)

Qψ1 = −D+
1 φ

Qφ3 = κ

Qκ = −[φ3, φ]

Qχ1 = B1

QB1 = [φ, χ1]

Qφ = η

Qη = [φ, φ]

Qφ = 0
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It is straightforward to verify that Q2 acts like a gauge transformation on a generic field f

which is taken to lie in the adjoint of the gauge group and of the form f =
∑N2−1

i=1 faT a

where in this section we employ antihermitian generators T a. The Q-exact structure of the
action then guarantees the discrete action will be supersymmetric. To avoid fermion doubling
a covariant forward difference operator is utilized whose action on lattice scalar fields is given
by

D+
1 φ(x) = U1(x)φ(x+ 1̂)− φ(x)U1(x) (3.8)

where U1(x) is the usual Wilson gauge link.1 Notice that several of these fields, such as U1(x),
carry a vector index. In the continuum this is redundant for a one dimensional theory but in
this lattice construction the index plays an important role, indicating that such fields live on
the links of the lattice and transform under gauge transformations as

f1(x)→ G(x)f1(x)G†(x+ 1̂) (3.9)

where G(x) = eφ(x). The corresponding transformation for scalar or site fields is

f(x)→ G(x)f(x)G†(x) (3.10)

These transformation reduce to the usual continuum ones in the naive continuum limit.
Notice also that the definition of the forward difference operator when acting on a site field
automatically produces a vector or link field with the correct lattice gauge transformation
properties.

Carrying out the Q-variation and integrating out the auxiliary field B1 we find the fol-
lowing lattice action

S =
∑
x

Tr

− 3∑
i=1

XiD−D+Xi −
3∑
i>j

[Xi, Xj ]2 − λi†1 D
+
1 ρ

i − ρi†D−1 λ
i
1 + SYK

 (3.11)

where we have written φ = X1 + iX2, φ = X1 − iX2, φ3 = X3 and the covariant backward
derivative D−1 , which is adjoint to D+

1 , acts on link fields in the following way

D−1 ψ1 = ψ1(x)U †(x)− U †(x)ψ1(x− 1̂) (3.12)

We have also relabeled the fermions according to

λ1
1 = ψ1 (3.13)

λ2
1 = χ1

ρ1 =
η

2
ρ2 = κ

1actually a complexified version of it since the construction requires the lattice fields be taken complex
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Notice that the bosonic action is real positive definite on account of the antihermitian basis
for the fields. The Yukawa interactions take the form

SYK = ρ2†[X1, ρ2]− iρ2†[X2, ρ2]− ρ1†[X1, ρ1]− iρ1†[X2, ρ1] (3.14)

+ λ1†
1 [X1, λ1

1]− iλ1†
1 [X2, λ1

1]− λ2†
1 [X1, λ2

1]− iλ2†
1 [X2, λ2

1]

+
{
λ1†

1 [X3, λ2]− ρ2†[X3, ρ1] + h.c
}

While the bosonic action arising in this discretization is rather similar to the naive action
described in the previous section, differing mainly in the definition of the lattice derivative,
it is clear that the fermionic action is quite different – the fermions can be assembled into
a four component object which in the continuum is just the usual Majorana fermion of four
dimensional N = 1 super Yang-Mills. Thus the result of integrating out the fermions in this
twisted formulation is to produce a Pfaffian rather than the determinant encountered with
the naive discretization. Of course, in the continuum, one can find a change of variables
which allows the Pfaffian to be rewritten as a simple determinant but this is no longer true in
the lattice construction. Indeed the complex two component spinor encountered in the naive
formulation takes the form (

χ1 + iη/2
ψ1 + iκ

)
(3.15)

Since the different component fields carry different gauge transformation properties this spinor
does not transform simply under lattice gauge transformations and cannot be used to con-
struct a gauge invariant lattice action.

A more difficult question relates to the complex nature of the fields in the supersymmetric
lattice construction. To target the correct continuum theory requires choosing the path
integral along a contour such that the imaginary parts of all fields are zero. The question
then arises as to whether the supersymmetric Ward identities are satisfied along this path.
The latter are Q-exact and hence by standard arguments can be evaluated exactly in the
semiclassical limit in which the fields are expanded about the classical solution [26]. It is not
hard to show that in this limit the real and imaginary parts of the fields decouple and the
computation can be consistently truncated to the real line. These theoretical arguments are
strengthened by the results of Monte Carlo calculations which support the existence of an
exact Q-supersymmetry at the quantum level [37, 48].

Finally notice that this lattice action actually possesses a global symmetry of the form

ρ1 → ρ2 (3.16)

λ1
1 → λ2

1

X1 → −X1

X2 → X2

X3 → X3
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This symmetry combined with the original Q-supersymmetry leads to the lattice action pos-
sessing a second exact supersymmetry. The existence of this second supersymmetry is con-
sistent with the orbifold construction described in [13].

4. Results

In this section we discuss the results of lattice simulation of our two implementations. We
begin by considering the quenched theory, move onto the periodic theory and end the section
by discussing the thermal theory. The results for the quenched theory agree precisely for the
naive and supersymmetric actions since they differ only in their treatment of the fermions
(notice though that no gauge fixing is done in the supersymmetric implementation). As we
discuss, the naive and supersymmetric implementations both give compatible results for the
periodic theory. In practice the naive implementation is computationally easier since the
corresponding fermion operator is half that of the supersymmetric formulation and, as we
have shown, is real and positive. Hence the bulk of the periodic results were generated with
the naive action. In the case of the thermal system the situation is more interesting - for
coarse lattice spacings and a small number of colors we observed that both codes suffered from
strong lattice artifacts most visible in the distribution of scalar eigenvalues which developed
long tails out to large eigenvalue – a situation quite different from the complementary runs
with periodic boundary conditions. We observe that this stems from very large fluctuations of
the scalars in the classical moduli space – for the periodic system the corresponding bosonic
zero mode is strongly suppressed by its fermionic superpartner but in the thermal case the
would be fermionic zero mode is lifted by the antiperiodic boundary conditions and is less
effective at finite β at suppressing these zero mode effects. This problem appears to be worse
for the supersymmetric action and hence we have again derived the bulk of our thermal results
from the naive action runs. In the latter case these effects appeared negligible for N ≥ 5 and
M ≥ 5.

We have examined the following expectation values. We normalize the expectation value
of the fermionic action as,

SF =
1

2M(N2 − 1)
< Sfermionic > (4.1)

and a simple scaling argument gives the Schwinger-Dyson equation SF = 1 which we then
use to check the equilibration of our runs. We also compute the bosonic action as,

SB =
1
N2

(< Sbosonic > −Szero) (4.2)

where we have subtracted the extensive zero point energy contribution, which is given ex-
plicitly as 3

2M(N2 − 1) for both actions as can easily be seen in the weakly coupled high
temperature limit. For the supersymmetric lattice action we have SB = 0 for all β since it is
related to an index [21]. For the naive periodic theory we expect SB to approach zero as the
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number of lattice points M → ∞. We have normalized the bosonic action by N2 to ensure
that SB should tend to a constant at large N in a deconfined phase.

This form of the bosonic action has an additional interpretation in the thermal and
quenched theories as yielding a measurement of the dimensionless mean energy of the system,
< E >. This dimensionless energy is given by the usual relation < E >= −∂ lnZ

∂β so that,

SB = −β
3
< E > . (4.3)

Thus the vanishing of (the subtracted) SB in the periodic theory corresponds to the usual
requirement that the supersymmetric theory have vanishing vacuum energy at zero temper-
ature.

We are also interested in the behaviour of the Polyakov loop variable, and we compute
the expectation value of its modulus,

P =
1
N
< |Trei

H
Adτ | > (4.4)

and also its corresponding susceptibility

dP =
1
N
< |
(

Trei
H
Adτ
)2
| > − < |Trei

H
Adτ | >2 . (4.5)

We note the inclusion of 1/N in these definitions to ensure that at large N in a deconfined
phase, P , dP should tend to a constant.

We have also computed the distribution of eigenvalues of the scalar fields, made dimen-
sionless as RXi(τ), and averaged over the lattice. We have seen no evidence of broken SO(3)
symmetry 2 and so assume the distribution for i = 1, 2, 3 is the same, and denote it as x(µ).
We observe this appears to have a well-defined large N -limit with a width which is controlled
by β. From our earlier discussion of the 1-loop eigenvalue potentials we deduced that well sep-
arated dimensionless eigenvalues were attracted together until they entered a strongly coupled
infra-red regime when their separation goes as ∼ β1/4. This therefore is the expected scale
characterizing the parametric dependence of the width of the distribution x(µ), and indeed
this is borne out by our results later. For SU(N) the distribution has N peaks localized close
to the origin, and as we have discussed we expect the distribution to fall off most slowly for
the periodic theory, going as x(µ) ∼ |µ|−3 for large µ. This tail appears to be universal for
the periodic boundary conditions depending on β but not N [48]. The tail means that the
standard deviation is in principle ill-defined as an observable, at least for periodic boundary
conditions. Therefore in order that we may characterize the quenched, periodic and thermal
theory scalar distributions we define the width by the observable,

W = β−1/4

∫
dµ |µ| x(µ) (4.6)

which is well defined even for the expected tail behaviour of the periodic theory.
2We note that at finite N such a spontaneous symmetry breaking is not possible, although it might be in

the large N limit.
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4.1 The quenched approximation

We begin by discussing the quenched theory, where the fermions are simply ignored. The
lattice simulation of this bosonic theory is then a very tractable problem, and one can easily
work at large N and establish the ’t Hooft scaling. Such gauged quantum mechanics with
adjoint scalar fields was originally studied in [33, 34] where evidence was given that the theory
undergoes a large N confinement/deconfinement transition. We now review this behaviour
as it indicates where the interesting dynamics in the unquenched theory is likely to occur,
and how we might see this in the available observables.

The first observation we may make from the quenched theory is that the continuum limit
is very easy to obtain. In the appendix D we show the bosonic action and Polyakov loop for
different numbers of lattice points M = 5, 8, 12. We see that the results we obtain for all
these quantities on a lattice with M = 5 are very close (within one percent) to those with
M = 8, 12. Indeed we find this to be true for all the observables we measure in the quenched,
periodic and thermal theories (with the exception of the bosonic action for the naive periodic
theory which we discuss later). Hence, in the main text, results are calculated using M = 5
lattice points unless otherwise stated. Certainly, in the case of the unquenched theory, the
statistical errors in most of our measurements are larger than the systematic discretization
error incurred by using the small lattice for the range of β studied.

In figure 3 we plot the expectation value of the bosonic action SB, the expectation value
of the modulus of the Polyakov loop, P , and its corresponding susceptibility dP for various
numbers of colors N up to 16. Indeed it would be easy to compute at larger N but this is not
our objective here. As observed earlier in [33, 34] we see that there appears to be a sharp,
probably first order large N phase transition in behaviour at β = βc ' 0.85, signaled by the
bosonic action SB, the Polyakov loop P , its susceptibility dP and also the scalar eigenvalue
distribution width W . In particular, the Polyakov loop variable P remains finite for β < βc,
but appears to be consistent with zero at large N for β > βc (see [33, 34] for data with N up
to 30). Furthermore, the mean energy < E > appears to suffer a discontinuity around the
critical point.

Notice also that the linear regime observed in SB at large β is consistent with a non-zero
vacuum energy – the latter being given by the slope of SB = −β/3 < E > with respect to β at
large β. This is, of course, consistent with what one would expect for a non-supersymmetric
theory. Conversely the observed β-independence of SB at high temperature (small β) is
consistent with the expected classical thermal behavior < E >∼ N2T for a theory possessing
N2 deconfined gluons.

4.2 Full supersymmetric theory: Periodic

We now focus on the theory with dynamical fermions having periodic boundary conditions
- ie. the theory in finite volume and zero temperature. Our task is to compare the results
obtained from our two independent implementations - the naive and supersymmetric - and
show they are consistent, and produce the correct supersymmetric continuum physics.
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Figure 3: Plots of action SB , Polyakov loop P , its susceptibility dP and the scalar width W for the
quenched theory for varying N , and 5 lattice points.

Figure 4 shows a comparison of the Polyakov loop observable P and its susceptibility
dP for the two lattice implementations in the case of N = 3 and M = 5 lattice points. We
see the results are in in rather close agreement, in fact within statistical error, for P , dP .
The close agreement is a good check on both implementations as it indicates that lattice
spacing effects appear to be small and supports the claim that the M = 5 runs with naive
action yield results which are already decent approximations to the continuum. The figure
also shows a detailed comparison of the scalar eigenvalue distributions for the naive and
supersymmetric actions and again reasonable agreement is seen. We study the continuum
behaviour of the naive periodic theory in appendix D, and confirm that the observables P and
dP are close to their continuum values by simulating at M = 8 and 12 lattice points. Given
constraints on resources we have not been able to compute for larger N in the supersymmetric
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Figure 4: Top: Plot comparing scalar field distributions for the 2 implementations with periodic
fermions (bars for naive, dots for supersymmetric; left β3 = 0.1, right β3 = 2.0). Bottom: the
Polyakov loop P and its susceptibility dP for N = 3 and 5 lattice points.

implementation and therefore cannot check the agreement there.

We show the action SB for the supersymmetric implementation in figure 6 for N = 5 and
5 lattice points and see that it is consistent with zero, as we expect for the vacuum energy of
a system with exact supersymmetry.

Figure 5 shows the bosonic action SB for the naive theory at three representative values of
β3 with N = 3, 5 as a function of increasing numbers of lattice points. While by construction
this vanishes in the supersymmetric theory, in the naive theory we only expect it to vanish
in the limit M →∞. We see, both for N = 3 and 5 and fixed β3, that the numerical results
are indeed consistent with SB decreasing to zero as M increases. The time taken to compute
larger lattice sizes with reasonable statistical errors has prohibited extending these plots to
higher numbers of lattice points. While the approach to the continuum value of the action
is rather slow, appearing to go as ∼ 1/Mp with p ' 1

4 −
1
2 , even for the modest number of

lattice points M = 5 its actual value is already rather small compared to the quenched or
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Figure 5: Plots of the bosonic action SB for the naive discretization with periodic fermion boundary
condition for N = 3 (left) and N = 5 (right) for increasing lattice size M = 5, 8, 12 for 3 values of
β3 = 0.5, 1, 2.
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Figure 6: Plot of the bosonic action SB for the supersymmetric discretization with periodic fermion
boundary condition for N = 5 with M = 5 lattice points. We see it is consistent with zero as we
expect.

thermal theory (eg. see figures 3 and 8) for these values of β.

In figure 7 we plot the Polyakov loop P , its susceptibility dP and the scalar eigenvalue
distribution width W for N = 3 compared with those of the quenched theory. Interest-
ingly, while the action and scalar distribution width are different to the quenched theory, the
Polyakov loop behaves rather similarly. In figure 8 we also see the same is true for N = 5.
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Figure 7: Plots of the Polaykov loop P , its susceptibility dP and the scalar width W for the periodic
theory for N = 3 with 5 lattice points, also compared to the quenched theory.

We have currently not simulated the periodic theory for N > 5 and therefore cannot confirm
this correspondence with the periodic theory occurs in the large N limit. If it does, it leads
to the interesting conclusion that while the bosonic action SB is a constant in the periodic
continuum theory independent of volume and coupling, the behaviour of the Polyakov loop
may nevertheless not be smooth in the large N limit. We note that the scalar eigenvalue
width is broader for the periodic theory than for the quenched. This is consistent with the
1-loop calculations of the potentials on the classical moduli space where we expect the peri-
odic theory will have power law tails in the eigenvalue distributions, whereas the quenched
will not.

Let us summarize these results. We have compared the supersymmetric and naive lattice
actions for dynamical fermions with periodic boundary conditions. The results are consistent,
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and both actions yield the expected behaviour with the supersymmetric version giving a
vanishing bosonic action and the naive version giving a continuum limit consistent with
vanishing bosonic action. Hence our earlier analytic claims that a naive discretization of the
action will give the correct supersymmetric continuum physics appears to be borne out in
practice.

4.3 Full supersymmetric theory: Finite temperature results

We now turn to the most interesting part of our results: the supersymmetric theory at finite
temperature. If we were studying the 16 supercharge theory these lattice simulations would
be dual to a computation of the thermal properties of N D0-branes, and should reproduce
the thermodynamics of black holes described earlier at low temperature. In the case of the
4 supercharge model studied in this paper no such correspondence exists. Nevertheless, we
might expect on the basis of the one loop calculations described earlier that this model lies in
a similar universality class and so understanding how to extract continuum results from this
model should stand us in good stead for a future simulation of the thermal 16 supercharge
theory.

We have observed that the thermal theory exhibits large lattice artifacts for small values
of N and the number of lattice points M . These lead to an apparent instability in the scalar
eigenvalues. The problems seem most acute with the supersymmetric action and so we have
concentrated on using the naive implementation for the bulk of our thermal runs. In this
case to avoid these strong artifacts we require N ≥ 5, M ≥ 5 for the range of β we are
studying, β3 ≤ 10.0, and then a good lattice continuum limit is seen. We discuss these effects
in more detail in the appendix D, and it is an interesting direction for future research to
better understand how to more stably implement the supersymmetric lattice action at finite
temperature.

We begin in figure 8 by comparing this thermal theory with the previously discussed
quenched and periodic theories for N = 5 and M = 5 lattice points. In appendix D we show
these quantities for increasing lattice sizes, showing that already these 5 lattice point data
capture the continuum reasonably accurately.

Our expectation for this theory is that at small β (high temperature) the thermal theory
will behave like the quenched theory since the fermions are lifted out of the dynamics by their
thermal mass. On the other hand in the absence of spontaneous supersymmetry breaking, in
the large β limit (low temperature) we expect the energy of the theory to go to zero and the
behaviour to coincide with the periodic theory.

We clearly see from the data that at small β the action SB, Polyakov loop P and scalar
eigenvalue distribution width W do coincide with the quenched behaviour as expected. Con-
versely, at large β we see the same observables depart from the corresponding quenched
quantities and approach the periodic results. The variation of the bosonic action, SB, is
flatter and apparently smoother than that of the quenched theory and appears to have a
small linear slope for large β, which would imply a non-zero energy and hence supersymme-
try breaking if it were to continue to large values of β. However, given we have data only
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Figure 8: Plots of the bosonic action SB for the quenched and thermal theories, and the Polaykov
loop P and scalar width W for the quenched, periodic and thermal theories for N = 5 and 5 lattice
points. These quantities are expected to be close to their continuum values.

to inverse temperatures β ∼ 2.2 it is difficult to say whether we are really seeing asymptotic
behavior – any sublinear behavior would imply supersymmetry is restored at zero tempera-
ture. And the apparent asymptotics may also be influenced by discretization effects. Indeed,
to address the possibility of supersymmetry breaking one should first extrapolate the data to
zero lattice spacing at fixed β and then examine the β dependence of the extrapolated curve.
This extrapolation is beyond our current resources. Nevertheless, it should be noted that the
asymptotic behavior of this quantity appears to be rather different than that expected for the
16 supercharge theory where we see from equation (2.8) that holography predicts SB ∼ β−9/5.

Independent of the final conclusion concerning supersymmetry breaking there is little
indication of a discontinuity in the mean energy as a function of β as N increases and our
numerical results are consistent with the existence of just a single phase for all β. In figure 9
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we show the bosonic action SB, Polyakov loop variable P , its susceptibility dP and the scalar
eigenvalue width W for the thermal theory for N = 5, 8, 12. We see the results confirm the ’t
Hooft scaling - recall we expect the observables SB, P,W to tend to a constant at fixed β in
the large N limit, as we see confirmed in the data. Whilst in the quenched theory there is a
large N transition, with P vanishing at large N for β > βc, and the susceptibility diverging
at β = βc, we see no such behaviour here for the thermal theory in the range of β studied.
Instead P appears smooth and the susceptibility dP reduces for increasing N over most of
the range of β. Together with the apparently smooth bosonic action SB and scalar width
W we conclude that the thermal theory is always in one, presumably deconfined, phase with
non-vanishing P and with bosonic energy O(N2).
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Figure 9: Plots of the bosonic action SB , Polaykov loop P , its susceptability dP and the scalar field
width W for the thermal theory for increasing N = 5, 8, 12 with 5 lattice points. These quantities are
expected to be close to their continuum values and show no indication of large N phase transitions.
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5. Discussion

This paper is devoted to a study of four supercharge Yang Mills quantum mechanics at large
N . This work is motivated by the idea that a related model – namely the sixteen supercharge
theory, should be dual to IIA string theory at least at sufficiently low energies that it can
be approximated by a supergravity theory. In this regime the Yang-Mills model is strongly
coupled and hence we have developed lattice discretizations of the model which allow for
Monte Carlo simulation. Two such discretizations have been studied – a so-called naive
action in which supersymmetry is broken classically by terms of the order the lattice spacing
and a manifestly supersymmetric action which arises from a discretization of a twisted form
of the continuum theory.

We have analytically argued that the quantum mechanics is independent of a UV mo-
mentum regulator provided it preserves the gauge and global symmetries and hence our naive
discretization should give the correct continuum physics. The mean energy and the Polyakov
loop computed with these two discretizations agree well for the case when supersymmetry
preserving periodic boundary conditions are used for the fermions, and the mean energy of
the naive discretization is indeed consistent with vanishing in the continuum as required by
supersymmetry.

The theory has a large classical bosonic moduli space. We have analytically computed
the 1-loop effective action for the bosonic moduli in this theory – both for periodic and
antiperiodic (thermal) fermion boundary conditions and find that the classical moduli space
is lifted and the theory does not suffer from infrared divergences. These analytical results are
in agreement with our numerical work which shows that the eigenvalues of the scalar fields are
localized close to the origin in field space where the low energy behaviour is strongly coupled.

We have studied the thermodynamic behaviour of the thermal theory for N ≤ 12 and ob-
serve the expected ’t Hooft scaling of thermodynamic quantities. In contrast to the quenched
theory, the behaviour of the thermal theory with dynamical fermions appears smooth and we
find no evidence of a large N phase transition, the theory always appearing deconfined. This
is similar to holographic expectations for the 16 supercharge theory, although we find that
the temperature dependence of the free energy in the 4 supercharge model is rather different
from that expected for 16 supercharges.

It would be very interesting to extend these calculations to the case of 16 supercharges.
This is computationally more challenging with the main problem being how effectively the
Monte Carlo procedures can handle the phase of the Pfaffian arising after integration over
the fermions in that case. This problem is currently being studied. If calculations with this
Pfaffian prove possible it would be extremely interesting as then the lattice model could be
used to further test the duality between gauge theories and gravity and perhaps learn more
about the nature of the gravitational theory in regimes of high temperature where stringy
corrections are not small.
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A. Holographic dual of 16 supercharge quantum mechanics

Following Itzhaki et al [7], we consider the “decoupling” limit of N coincident D0-branes.
We take N large with Ngs fixed, where gs is the string coupling. The decoupling limit is
then defined by considering excitations of these D0-branes with fixed energy while sending
the string length scale to zero so α′ → 0. In this limit the degrees of freedom of the system
split up into those localized near the branes - the ‘near horizon’ excitations - and those living
far from the brane which we are not interested in here.

Depending on Ngs there are two perturbative descriptions of the degrees of freedom
living near the branes. For Ngs << 1 the D0-branes decouple from the ambient 10-d gravity
and the degrees of freedom are well described simply by the worldvolume theory of the D0-
branes whose degrees of freedom are the open strings ending on the branes, with dynamics
governed by the 16 supercharge SU(N) Yang-Mills quantum mechanics. Since we consider
fixed energy excitations and α′ = l2s → 0, the action is just the conventional two derivative
one, the higher derivative α′ corrections being irrelevant. The gauge coupling is then found
to be g2

YM = gsα
′−3/2/(2π)2 and in this Ngs << 1 regime it is small.

For Ngs >> 1 the D0-branes couple strongly to gravity and the appropriate perturbative
description is given by the target spacetime supergravity solution for N D0-branes. The
string frame metric is

ds2
IIA = − f

h1/2
dt2 + h1/2

(
1
f
dr2 + r2dΩ2

(8)

)
,

f(r) = 1−
(r0

r

)7
, h(r) = 1 +

(
R

r

)7

(A.1)

and the dilaton and Ramond-Ramond (RR) gauge field are given as,

eφ = gsh
3
4 , A0 = −1

2

(
1
h
− 1
)
. (A.2)

The solution describes a black hole with temperature T and Bekenstein-Hawking entropy S,

T =
7

2r0

√
1 +

R7

r7
0

, S =
2

(2π)7g2
s l

8
s

Ω8

(
e−2φh2r8

)
r=r0

(A.3)

using the conventions of [7] with Ω8 the area of a unit 8-sphere. Each brane carries RR
charge, and hence the number of D0-branes is computed from the charge of the black hole by
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N =
∫
S8 ?F with F the RR field strength, and one finds,

Ngs =
R7

b l7s

(
1 +

r7
0

R7

)1/2

. (A.4)

Hence in the limit Ngs is large the characteristic curvature radius of the solution, estimated
by R, is much larger than the string length and therefore the string worldsheet theory is
weakly coupled, and supergravity is a good approximation. Geometrically this solution has
two regions. One is asymptotically flat 10-d spacetime, the other is the geometry describing
the ‘near-horizon’ region of the branes. Finite energy excitations in these two regions are
separated from each other by a potential barrier. To take the decoupling limit and focus
on the excitations only in the ‘near-horizon’ region we must fix our physical energy scales of
interest and take α′ → 0. We identify the energy scales we wish to fix as U and U0, where

U =
r

α′
, U0 =

r0

α′
(A.5)

and so U ≥ U0. Then taking α′ → 0 keeping U,U0 fixed we see that Ngs → R7

b l7s
and the

near-horizon geometry becomes,

ds2 = α′

(
U

7
2

2π
√
bλ

(−fdt2) + 2π
√
bλ

(
U−

7
2
dU2

f
+ U−

3
2dΩ2

))

f(U) = 1− U0

U
(A.6)

with λ = Ng2
YM . In this decoupling limit the entropy becomes,

S =
1

28
√

15π7/2
N2
(
U0/λ

1/3
)9/2

, (A.7)

and the temperature is given by,

T/λ1/3 =
7

16
√

15π7/2

(
U0/λ

1/3
)5/2

. (A.8)

The key statement of Maldacena’s duality is that both these perturbative desciptions -
the Yang-Mills for Ngs << 1 and the stringy black hole for Ngs >> 1 - are not limited to the
regime of Ngs where they are perturbatively good. In particular the Yang-Mills description
remains well defined for all Ngs. The string black hole description also persists for finite Ngs
away from Ngs >> 1, and for Ngs finite one must take into account stringy α′ corrections to
the description of the black hole in supergravity.

To summarize the correspondence, the claim is that Yang-Mills with coupling gYM at
finite temperature T taken in the large N limit is dual to string theory with target space
given in the large Ngs limit by the near horizon geometry of N D0-branes as above, given by
fixing our thermal energy scale U0 and taking α′ → 0. The dimensionless effective coupling at
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finite temperature in the Yang-Mills is given by β3 = λ/T 3. The equations (A.7) and (A.8)
then relate the Yang-Mills quantities to the string theory.

Let us further explore the corrections to the supergravity description of the string theory
above. It is crucial that all curvatures and the dilaton are small in order that the above
supergravity solution is valid. The curvature radius ρ at energy scale U is characterized by
the radius of the sphere in the above geometry, so that in string units,

ρ

α′1/2
∼
(
λ

U3

)1/4

(A.9)

and the dilaton at the radius U is,

eφ ∼ 1
N

(
λ

U3

)7/4

(A.10)

We also require the temperature T to be large enough that Euclidean winding modes are not
present at the horizon.

Hence we see that provided λ/U3, λ/U3
0 and N are large the supergravity solution above

is a good approximation. In particular the dilaton condition shows we must take the ’t Hooft
limit, first taking N to infinity with λ/U3, λ/U3

0 fixed, and then take these large.
If we take the black hole to have a high energy/temperature with λ/U3

0 ∼ 1 we reach
the Horowitz-Polchinski correspondence region where the IIA supergravity breaks down even
at the horizon due to α′ curvature corrections becoming important. One requires full IIA
string theory to describe the horizon region. Conversely for a black hole with ultra low
energy/temperature, so U3

0 /λ ∼ N−4/7, which is outside the ’t Hooft scaling limit, the dilaton
becomes large near the horizon and the string theory becomes strongly coupled there. It
may then be resolved by lifting to M-theory where again one finds 11-d supergravity is valid.
However, we emphasize that provided we remain within the ’t Hooft scaling regime, we cannot
access such low temperatures.

B. Potentials on classical moduli space

We now derive the effective 1-loop actions for the classical zero modes. We compute first
the potential for the quenched theory, and derive the effective coupling controlling the 1-loop
integration. Then we proceed to the thermal theory, and finally the periodic theory.

B.1 Quenched case

The results in this subsection are a special case studied in Aharony et al [34]. We expand our
bosonic fields in fluctuations about the classical zero-modes,

Aab(τ) = Aaδab + δAab(τ)

Xi,ab(τ) = xai δab + δXi,ab(τ) (B.1)
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where the the classical bosonic moduli are Aa, xai . We take the fluctuations δA, δXi to have
no constant component in their diagonal terms. We will shortly expand these fluctuations in
harmonics so,

δAab(τ) =
1√
2π

∞∑
m=−∞

δA
(m)
ab e

2π
R
imτ

δXi,ab(τ) =
1√
2π

∞∑
m=−∞

δX
(m)
i,ab e

2π
R
imτ (B.2)

and thus δA(0)
ab , δX

(0)
i,ab vanish when a = b. Since Aab(τ), Xi,ab(τ) are Hermitian fields, we

have (δA(m)
ab )? = δA

(−m)
ba and (δX(m)

i,ab )? = δX
(−m)
i,ba . Since the gauge group is SU(N), the sums∑

aA
a,
∑

a x
a
i vanish. We define the dimensionless ∆Aab = R(Aa−Ab) and ∆xabi = R(xai−xbi),

and the following quantities,

δΦµ,ab = (δAab, δXi,ab)

Dab
µ =

(
R∂τ + i∆Aab, i∆xabi

)
(B.3)

We may now write the action to quadratic order in the perturbations, obtaining,

Squad =
N

λR2

∫
dτ
∑
a<b

δΦ?
µ,abM

ab
µνδΦν,ab (B.4)

where,

Mab
µν =

1
2

(
Dab
µ D

ab
ν − δµν(Dab

ρ )2
)
. (B.5)

We must take care with the action since we have not fixed a gauge. The gauge transfor-
mation generates a bosonic fluctuation δΦµ,ab = Dab

µ λab for arbitrary functions λab of τ and
correspondingly we see,

Mab
µνD

ab
ν = 0 ∀ a, b (B.6)

We choose to use the gauge freedom to fix the gauge δAab(τ) = 0, and hence the gauge field
is diagonal and constant in τ . This gauge fixing introduces a Jacobian factor of

∏
a,b detDab

τ

from the path integral measure. In the case of the constant modes on the circle, this is just
the familiar Vandermonde determinant. Now the quadratic action becomes,

Squad =
N

λR2

∫
dτ
∑
a<b

(
δX?

i,abM
ab
ij δXj,ab

)
−
∑
a,b

ln |detDab
τ | (B.7)

We may now expand in Fourier modes to obtain,

Squad =
N

λR

∑
a<b

∞∑
m=−∞

(
δX

?(m)
i,ab M

(m)ab
ij δX

(m)
j,ab

)
−
∑
a<b

∞∑
m=−∞

ln(D(m)ab
τ )2 (B.8)
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where D(m)ab
α = (2πim+ i∆Aab, i∆xabi ), and

M (m)ab
µν =

1
2

(
D(m)ab
µ D(m)ab

ν − δµν(D(m)ab
ρ )2

)
. (B.9)

For a given mode m, and colour indices ab, the eigenvalues of the 3 × 3 matrix M
(m)ab
ij are

−(D(m)ab
τ )2 once, and −

∑
α(D(m)ab

α )2 repeated twice. Now our quadratic action is positive
after our gauge fixing, we may integrate out the fluctuations yielding, up to terms independent
of the moduli,

Squad = 2
∑
a<b

∞∑
m=−∞

ln |D(m)ab
α |2

= 2
∑
a<b

∞∑
m=−∞

ln
(

(2πm+ ∆Aab)2 + |∆xab|2
)2

(B.10)

where |∆xab|2 =
∑

i(∆x
ab
i )2. We note that the constant m = 0 modes have an enhanced

SO(4) target spacetime global symmetry. This is explicitly broken by our gauge choice, but
the result should have this full invariance, and we indeed see that this is the case. We also
note that the effective action takes the form of a pair-wise interaction between the moduli
with colour labels a and b.

The infinite sum over Fourier modes must be regulated in the quenched case. A Pauli-
Villars regulator can be utilized, giving a regularized 1-loop action,

Sreg = 2 lim
Ω→∞

∑
a<b

∞∑
m=−∞

ln
(

(2πm+ ∆Aab)2 + |∆xab|2

(2πm)2 + Ω2

)2

= 2
∑
a<b

ln
(

cosh |∆xab| − cos ∆Aab
)

(B.11)

where in the second line we have suppressed the trivial divergence going as RΩ.
When was this 1-loop integration valid? As with any dimensional reduction on a circle,

the strongest coupled modes are the ones that are constant on the circle. We should compare
our quadratic action (B.8) for these constant modes with the interaction terms,

Sint = −1
2
N

λ
R Tr

(
δΦ?(0)

µ δΦ(0)
ν δΦ?(0)

µ δΦ(0)
ν − δΦ?(0)

µ δΦ(0)
ν δΦ?(0)

ν δΦ(0)
µ

)
(B.12)

In order to obtain a canonical kinetic term in (B.8) we should rescale the constant fluctuation
fields,

δΦ̃(0)
µ,ab =

√
N |D(0)ab

α |2
Rλ

δΦ(0)
µ,ab (B.13)

Our interaction term now takes the schematic form,

Sint ∼ λR3

|D(0)ab
α |4

1
N3

(δΦ̃(0))4 = geff
1
N3

(δΦ̃(0))4 (B.14)
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where we have suppressed the obvious index and matrix structure. The factors of N are
associated with the ’t Hooft limit, leaving the effective coupling for the constant modes,

geff =
β3

((∆Aab)2 + |∆xab|2)2 (B.15)

Since RAa should be thought of as an angular variable the effective coupling is really char-
acterized by just the non-compact bosonic moduli,

geff ∼
β3

|∆xab|4
(B.16)

and hence we expect the 1-loop approximation is good provided,

|∆xab| >> β3/4. (B.17)

B.2 Thermal case

Again this case is straightforward, and closely follows the quenched calculation above. The
results in this section are a special case studied in Aharony et al [34]. We expand our fields
as before, now including the fermions with the appropriate boundary conditions, so,

Aab(τ) = Aaδab +
1√
2π

∞∑
m=−∞

δA
(m)
ab e

2π
R
imτ

Xi,ab(τ) = xai δab +
1√
2π

∞∑
m=−∞

δX
(m)
i,ab e

2π
R
imτ

Ψα,ab(τ) =
1√
2π

∞∑
m=−∞

δΨ(m)
α,abe

2π
R
i(m+ 1

2
)τ (B.18)

We see that due to the antiperiodicity the fermions can have no constant mode on the circle.
As before we take δA(0)

ab , δX
(0)
i,ab and now also δΨ(0)

α,ab to vanish when a = b. We gauge fix the
action in the same manner, and now arrive at a similar action to the quenched one above in
equation (B.8), but with a fermionic piece too,

Squad =
N

λR

∞∑
m=−∞

∑
a<b

(
δX

?(m)
i,ab M

(m)ab
ij δX

(m)
j,ab

)
+
∑
a,b

(
δΨ̄(m)

ab iσ̄
ρD

(m+ 1
2

)ab
ρ δΨ(m)

ab

)
−
∑
a<b

ln |D(m)ab
τ |2


(B.19)

Now performing the fermionic integral yields a determinant equal to
∏∞
m=−∞

∏
a,b(D

(m+ 1
2

)ab
α )2.

The bosonic fluctuation integral yields the same result as for the quenched theory. Putting
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this together we obtain the effective action for the bosonic zero modes,

Squad = 2
∑
a<b

∞∑
m=−∞

ln |D(m)ab
α |2 −

∑
a,b

∞∑
m=−∞

ln |D(m+ 1
2

)ab
α |2

= 2
∑
a<b

∞∑
m=−∞

ln
(

(2πm+ ∆Aab)2 + |∆xab|2

(2πm+ π + ∆Aab)2 + |∆xab|2

)2

= 2
∑
a<b

ln
(

cosh |∆xab| − cos ∆Aab

cosh |∆xab|+ cos ∆Aab

)
(B.20)

where no regulator is required to evaluate the infinite sum in the last line.

B.3 Periodic case

The results in this section are new, but follow straightforwardly from previous work in Aoki
et al and Aharony et al [40, 34]. Again we expand our fields,

Aab(τ) = Aaδab +
1√
2π

∞∑
m=−∞

δA
(m)
ab e

2π
R
imτ

Xi,ab(τ) = xai δab +
1√
2π

∞∑
m=−∞

δX
(m)
i,ab e

2π
R
imτ

Ψα,ab(τ) = ξaαδab +
1√
2π

∞∑
m=−∞

δΨ(m)
α,abe

2π
R
imτ (B.21)

but note that now with periodic boundary conditions we must include fermion zero modes
ξaα. As before we take δA

(0)
ab , δX

(0)
i,ab, δΨ

(0)
α,ab to vanish when a = b, and the SU(N) colour

symmetry implies that the sums
∑

aA
a,
∑

a x
a
i and also

∑
a ξ

a
α vanish. Using the notation

∆ξab = ξa − ξb for the fermion zero modes we may now write the action to quadratic order
in the perturbations, obtaining,

Squad =
N

λR

∑
a<b

∞∑
m=−∞

(
δΦ?(m)

µ,ab δΨ̄(m)
α̇,ab

)( M
(m)ab
µν ∆ξ̄abα̇ σ̄

µ,α̇α

σ̄ν,α̇α∆ξabα iσ̄ρ,α̇αD
(m)ab
ρ

)(
δΦ(m)

ν,ab

δΨ(m)
α,ab

)
(B.22)

We see now that there are off-diagonal terms that mix the fermion and boson fluctuations,
which are coupled together by the presence of the fermion zero modes. These can be removed
by the following transformation,

δΨ(m)
ab = δΛ(m)

ab − i
1

(D(m)ab
ρ )2

(σαD(m)ab
α )(σ̄β∆ξab)δΦ(m)

β,ab (B.23)

which we note is a simple shift in the fermion fluctuation, and hence does not alter the path
integral measure. Now we find the quadratic fluctuation action is diagonal,

Squad =
N

λR

∑
a<b

∞∑
m=−∞

(
δΦ?(m)

µ,ab δΛ̄(m)
ab

)(M (m)ab
µν + S

(m)ab
µν 0

0 iσ̄ρD
(m)ab
ρ

)(
δΦ(m)

ν,ab

δΛ(m)
ab

)
(B.24)

– 37 –



where,

S(m)ab
µν = −i 1

(D(m)ab
ρ )2

(∆ξ̄abσ̄µ)(σαD(m)ab
α )(σ̄ν∆ξab). (B.25)

It follows from δΦ(m)
µ,ab = δΦ(−m)?

µ,ba , and D
(m)ab
α = −D(−m)ba

α that the action actually projects

only onto the antisymmetric component S(m)ab
[µν] = 1

2

(
S

(m)ab
µν − S(m)ab

νµ

)
. This antisymmetric

part can be written as,

S
(m)ab
[µν] = −iεµναβ D

(m)ab
α

(D(m)ab
ρ )2

(∆ξ̄abσ̄β∆ξab), (B.26)

We may now write the quadratic action as,

Squad =
N

λR

∞∑
m=−∞

∑
a<b

P +
∑
a,b

iδΛ̄σ̄ρDρδΛ


P = δΦ?

µ

(
DµDν − δµνD2

α + εµναβDαJβ
)
δΦν (B.27)

where,

Jα = −2i
1

(Dρ)2
(∆ξ̄σ̄α∆ξ) (B.28)

and in these last two equations we have suppressed the Fourier index m, and colour indices
a, b for clarity. Again the bosonic operator in this action has a zero eigenvalue corresponding
to the gauge freedom. Correspondingly we see,

(M (m)ab
µν + S

(m)ab
[µν] )D(m)ab

ν = 0. (B.29)

Performing the same gauge fixing as before we have,

Squad =
N

λR

∞∑
m=−∞

∑
a<b

P g.f. +
∑
a,b

iδΛ̄σ̄ρDρδΛ

−∑
a<b

ln |detDτ |2

P g.f. = δΦ?
i

(
DiDj − δijD2

α + εijαβDαJβ
)
δΦj (B.30)

and now integrating over the bosons yields the determinant of the 3× 3 matrix in ij above,
giving the elegant result

Squad =
∞∑

m=−∞

∑
a<b

ln
(
(D2

µ)2 + (D2
µ)(J2

ν )− (DµJ
µ)2
)

+
N

λR

∞∑
m=−∞

∑
a,b

iδΛ̄σ̄ρDρδΛ (B.31)

where we again see that the SO(4) spacetime symmetry for the m = 0 constant modes is
restored after the gauge fixing had broken it. Performing the fermion integration then yields
the 1-loop action,

Squad =
∞∑

m=−∞

∑
a<b

ln
(

1 +
1

(D2
µ)2

(
(D2

µ)(J2
ν )− (DµJ

µ)2
))

(B.32)
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and we immediately see that if it where not for the fermion zero modes contributing to the
presence of Jµ, the action would vanish. Hence there has been almost total cancellation
between the boson and fermion determinants. Now since Jµ ∼ ∆ξ̄σ̄µ∆ξ and each spinor ξα
has only 2 components, the action can contain at most quadratic terms in Jµ. Hence we may
expand the logarithm above to give,

Squad = +
∞∑

m=−∞

∑
a<b

4(
(D(m)ab

ρ )2
)4

(
D(m)ab
α D

(m)ab
β − (D(m)ab

µ )2δαβ

)
(∆ξ̄abσ̄α∆ξab)(∆ξ̄abσ̄β∆ξab)

= −
∞∑

m=−∞

∑
a<b

24(
(D(m)ab

ρ )2
)3 (∆ξ̄ab1 ∆ξ̄ab2 ∆ξab1 ∆ξab2 ) (B.33)

where we have written the expression out fully. The partition function is then given by the
functional integral over the bosonic and fermionic zero modes of this action,

Z '
∫
dAdXidξdξ̄e

−Squad

=
∫
dAdXidξdξ̄

∞∏
m=−∞

∏
a<b

1 +
24(

(D(m)ab
ρ )2

)3 (∆ξ̄ab1 ∆ξ̄ab2 ∆ξab1 ∆ξab2 )


=
∫
dAdXidξdξ̄

∏
a<b

1 +
∞∑

m=−∞

24(
(D(m)ab

ρ )2
)3 (∆ξ̄ab1 ∆ξ̄ab2 ∆ξab1 ∆ξab2 )

 (B.34)

where we will not keep track of the overall normalization of Z. It is implicit in the measure
that the gauge group is SU(N) and hence there is the constraint

∑
a ξ

a
α,
∑

a ξ̄α̇a = 0, and
this is important in giving the form of the expression below. For example, if we had instead
taken the gauge group U(N), the partition function would vanish as the trace of the adjoint
fermion matrices that are constant on the circle decouple and since give fermion zero modes
at 1-loop. After integrating these, the partition function will vanish.

Following Aoki et al [40], we may perform the integral over the fermionic zero modes
to give an effective 1-loop action for the bosonic moduli. In their analysis they express the
answer in terms of sums over maximal trees with various valences as they consider 4,8 and
16 supercharge matrix models. However as they note, the case of 4 supercharges is somewhat
simpler than the others, and the ‘tree’ machinery is somewhat redundant. The answer can
in fact simply be written as,

Z =
∫
dAdXi

∑
(a1,a2,...,aN )∈P

Ma1a2Ma2a3 . . .MaN−2aN−1MaN−1aN (B.35)

where P is the set of permutations of (1, 2, . . . , N) and,

Mab =
∞∑

m=−∞

1(
(m+ ∆Aab)2 + (∆xabi )2

)3 . (B.36)
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This gives rise to the effective action given in the main text. We note that the infinite sum
over Fourier modes is finite, and can simply be evaluated explicitly, although the expression
obtained is unilluminating.

C. Simulation details

Both naive and supersymmetric lattice actions take the form

S = κ
(
SB(X) + SF (ψ,ψ,X)

)
(C.1)

where

SB =
M∑
x=0

−1
2

3∑
i

(D+Xi(x))2 − 1
2

3∑
i>j

[Xi(x), Xj(x)]2 (C.2)

has the same form in both cases except for a different definition of the covariant derivative.
Notice that the scalar fields in the above action are expanded on the traceless antihermitian
matrix basis of SU(N). The lattice coordinates x are equally distributed with spacing a on a
circle of length R = Ma and R can be identified with 1

T in the case of non-zero temperature.
The fermion action takes the generic form

SF =
∑
x,y

ψ(x)M(X)x,yψ(y) (C.3)

where the fermion operator M(X) depends on the discretization. An immediate question
arises as to how to scale κ as the lattice spacing is reduced and the continuum limit ap-
proached. Clearly the relevant dimensionless parameter in the continuum is λR3 where the
’t Hooft coupling λ = g2

physN is used to access the large N limit. Equating the inverse of this
parameter to the corresponding lattice quantity κ

M3 yields the needed scaling of κ

κ =
NM3

λR3
=
NM3

β3
(C.4)

To simulate this system we must first integrate out the Grassmann fields yielding either
det(M) or det

1
2 (M) for naive or supersymmetric actions. In practice this is accomplished by

introducing complex commuting pseudofermion fields F with the same quantum numbers as
the fermions ψ and modifying the action as

S = κ
(
SB + F †(M†M)−pF

)
(C.5)

where p = 1
2 or p = 1

4 in the two cases. Notice that this requires the determinants be real
and positive definite.

Thus we now require an algorithm which can efficiently handle fields coupled through a
fractional inverse power of the fermion operator – realized as a P ×P matrix with dimension
P = 2(N2 − 1)M in the naive discretization (and twice this in the supersymmetric case).
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To proceed further requires that we use an approximation for the fractional power. Most
effective is a partial fraction realization of a rational function approximation in some interval

xp ∼ a0 +
Q∑
i=1

ai
x+ bi

ε < x < 1 (C.6)

The optimal coefficients {ai, ba} can be determined offline using the remez algorithm which
seeks to minimise the absolute value of the relative error for fixed (Q, ε). In practice we have
used approximations with Q = 10 − 15 and intervals ranging from ε = 10−12 − 10 which
conservatively covers the range needed and yields relative errors O(10−4 − 10−8). The latter
systematic error is far below the statistical errors of the Monte Carlo calculation and can thus
be ignored. The action we have simulated thus takes the form

S = κ

(
SB(φ) + a0F

†F +
Q∑
i=1

aiF
† 1
M†M+ bi

F

)
(C.7)

which resembles the contribution of a number of doublets of degenerate fermions each with
different mass parameters.

This is still a non-local action and to simulate it efficiently requires the use of an auxiliary
classical dynamics. To be precise one replaces the original partition function Z =

∫
Dqe−S(q)

depending on a generic set of fields denoted by {q} by another comprising {q, p} with partition
function Z ′ =

∫
DqDpe−H where

H = S +
∑ 1

2
p2 (C.8)

Clearly expectation values derived from Z ′ and Z are identical. Furthermore (approximate)
Hamiltonian evolution in this phase space can be used to generate a series of global moves
on {q, p} which, when subjected to the usual metropolis test, will generate the canonical
ensemble needed to simulate Z ′.3 The resulting algorithm is termed Hybrid Monte Carlo
[49].

In detail one starts from some initial set of coordinates q, draws new momenta p from a
gaussian distribution and then evolves the fields {p, q} according to Hamilton’s equations

∂q

∂t
= p (C.9)

∂p

∂t
= −∂S

∂q
= f

In practice a leapfrog integration with finite timestep dt is used to advance the fields along a
classical trajectory of length τ

pn+1/2 = pn +
∆t
2
fn (C.10)

qn+1 = qn + ∆tpn+1/2

pn+1 = pn+1/2 +
∆t
2
fn+1

3This requires that the finite time step classical evolution be reversible and area preserving which is true

for the leapfrog integrator used here
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In practice we have used this update nT times corresponding to trajectory lengths τ =
nT∆t = 0.05 − 1. After this we expect the lattice Hamiltonian to be conserved to O(∆t2).
We can then remove this ∆t dependence by treating the final configuration as a potential
global update in a metropolis simulation and accept the new configuration with probability
e−∆H . Subsequently the momenta are refreshed and a new trajectory commenced.

In our case q = {X,U1, ψ} and the major inputs to this algorithm are the forces ∂S
∂φ ,

∂S
∂U1

and ∂S
∂F . Of these the most computationally expensive are the pseudofermion terms. For

example the force term ∂SPF
∂X is given by

∂SPF
∂X

= −
Q∑
i=1

aiχ
i†∂(M†M)

∂X
χi (C.11)

where χi is the solution of the auxiliary problem

(M†M+ bi)χi = F (C.12)

The final trick required to render this approach computationally feasible is to utilize a multi-
mass solver to solve this set of Q equations iteratively and with a computational cost similar
to the case when Q = 1. We have implemented a multimass CG-solver for our work [50].
Implementing the rational approximation for the fractional fermion operator in conjunction
with the multimass solver in the way described is termed the Rational Hybrid Monte Carlo
algorithm [51].

D. Continuum limits

In this section we show the bosonic action observable SB and the Polyakov loop observable
P for increasing lattice sizes using the naive implementation for the quenched (figure 10),
periodic (figure 11) and thermal theories (figure 12). We see that in all cases, over the range
of β of interest, 5 lattice points already appears to give results that are close to the continuum
limit. Note that for the periodic theory, the continuum limit of the bosonic action is discussed
in the main text in the results section.

We have observed that the thermal theory exhibits large lattice artifacts for small values
of N and the number of lattice points M . This is true both for the naive and supersymmetric
actions. To illustrate this figure 13 shows a plot of the Monte Carlo history of the maximal
fermion eigenvalue λmax for the SU(2) theory at β3 = 10.0 obtained using the supersymmetric
implementation. The plot includes data for lattice sizes M = 5, 10, 20. The data is shown as
a function of physical time measured in units of τ = 1 RHMC trajectories. Data is plotted
every 100 units of time with short time fluctuations being removed by plotting a running
average obtained using a temporal window of 10 units of time. This fermion eigenvalue is
strongly correlated with the rms value of the scalar eigenvalues. Very large fluctuations are
seen with extremely large autocorrelation times for M = 5 lattice points. These fluctuations
are not manifest in the bosonic action SB and appear to derive from large fluctuations of the
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Figure 10: Plots of quenched theory action SB , Polyakov loop P and scalar width W for N = 5 with
varying lattice points M = 5, 8, 12.

scalars in the classical moduli space. These motions are strongly suppressed in the periodic
theory on account of the presence of superpartner fermion zero modes. Of course as the
number of lattice sites is increased the masses of these would be zero modes are lowered and
once again they act so as to inhibit fluctuations of the scalars in the zero mode directions. We
see this in the data which shows a marked reduction in the amplitudes of these fluctuations
as the number of lattice points M increases. Of course the dimension of the moduli space
varies like N and so we would also expect these effects to be suppressed at large N which is
also observed.

The problems seem most acute with the supersymmetric action and so for data presented
in the main text we have concentrated on using the naive implementation for the bulk of our
thermal runs. In this case to avoid these strong artifacts we require N ≥ 5, M ≥ 5 for the
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Figure 11: Plots of periodic theory Polyakov loop P and scalar width W for N = 3 with varying
lattice points M = 5, 8, 12.

range of β we are studying, β3 ≤ 10.0, and as we see in the figure 12 we obtain a good
continuum limit.

We conclude with figure 14 which shows data from the naive implementation of the
fermion action SF for the naive theory for representative values of N and 5 lattice points.
Scaling arguments imply this quantity should equal unity and we see the data confirms this
to within statistical errors, providing a non-trivial check of the RHMC routines. A similar
check was performed on the supersymmetric implementation.

References

[1] A. Strominger and C. Vafa, Microscopic origin of the bekenstein-hawking entropy, Phys. Lett.
B379 (1996) 99–104, [hep-th/9601029].

[2] J. D. Bekenstein, Black holes and the second law, Nuovo Cim. Lett. 4 (1972) 737–740.

[3] A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009,
[hep-th/9712251].

[4] J. R. David, G. Mandal, and S. R. Wadia, Microscopic formulation of black holes in string
theory, Phys. Rept. 369 (2002) 549–686, [hep-th/0203048].

[5] S. D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115,
[hep-th/0510180].

[6] J. M. Maldacena, The large n limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231–252, [hep-th/9711200].

[7] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, Supergravity and the large n
limit of theories with sixteen supercharges, Phys. Rev. D58 (1998) 046004, [hep-th/9802042].

– 44 –

http://xxx.lanl.gov/abs/hep-th/9601029
http://xxx.lanl.gov/abs/hep-th/9712251
http://xxx.lanl.gov/abs/hep-th/0203048
http://xxx.lanl.gov/abs/hep-th/0510180
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802042


0 0.5 1 1.5 2
β

-1

-0.8

-0.6

-0.4

-0.2

0

< 
S 

  >

M = 5

M = 8

M = 12

Thermal SU(5)

B

0 0.5 1 1.5 2
β

0

0.2

0.4

0.6

0.8

1

P

M=5

M=8

M=12

Thermal SU(5)

0 0.5 1 1.5 2
β

0.4

0.5

0.6

0.7

0.8

0.9

1

W

M = 5

M = 8

M = 12

Thermal SU(5)

Figure 12: Plots of thermal theory action SB , Polyakov loop P and scalar width W for N = 5 with
varying lattice points M = 5, 8, 12.

[8] J. A. Minahan and K. Zarembo, The bethe-ansatz for n = 4 super yang-mills, JHEP 03 (2003)
013, [hep-th/0212208].

[9] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, An index for 4 dimensional super
conformal theories, hep-th/0510251.

[10] D. Kabat and G. Lifschytz, Approximations for strongly-coupled supersymmetric quantum
mechanics, Nucl. Phys. B571 (2000) 419–456, [hep-th/9910001].

[11] D. Kabat, G. Lifschytz, and D. A. Lowe, Black hole entropy from non-perturbative gauge theory,
Phys. Rev. D64 (2001) 124015, [hep-th/0105171].

[12] J. R. Hiller, S. S. Pinsky, N. Salwen, and U. Trittmann, Direct evidence for the maldacena
conjecture for n = (8,8) super yang-mills theory in 1+1 dimensions, Phys. Lett. B624 (2005)
105–114, [hep-th/0506225].

– 45 –

http://xxx.lanl.gov/abs/hep-th/0212208
http://xxx.lanl.gov/abs/hep-th/0510251
http://xxx.lanl.gov/abs/hep-th/9910001
http://xxx.lanl.gov/abs/hep-th/0105171
http://xxx.lanl.gov/abs/hep-th/0506225


0 5000 10000 15000 20000 2500
tau

0

2

4

6

8
lam

bda
ma

x
M=5
M=10
M=20

Monte Carlo time series -thermal SU(2)

Figure 13: Monte Carlo history of maximal fermion eigenvalue for SU(2) and supersymmetric action

0 0.5 1 1.5 2 2.5
β

0.99

0.995

1

1.005

1.01

< 
S 

  >

Periodic SU(3) with 5 lattice points

F

0 0.5 1 1.5 2
β

0.99

0.995

1

1.005

1.01

< 
S 

  >

Periodic

Thermal

SU(5) with 5 lattice points

F

Figure 14: Plots of the fermion action SF for periodic theory with N = 3 (left) and periodic and
thermal with N = 5 (right), both for 5 lattice points.

[13] A. G. Cohen, D. B. Kaplan, E. Katz, and M. Unsal, Supersymmetry on a euclidean spacetime
lattice. i: A target theory with four supercharges, JHEP 08 (2003) 024, [hep-lat/0302017].

[14] A. G. Cohen, D. B. Kaplan, E. Katz, and M. Unsal, Supersymmetry on a euclidean spacetime

– 46 –

http://xxx.lanl.gov/abs/hep-lat/0302017


lattice. ii: Target theories with eight supercharges, JHEP 12 (2003) 031, [hep-lat/0307012].

[15] D. B. Kaplan and M. Unsal, A euclidean lattice construction of supersymmetric yang- mills
theories with sixteen supercharges, JHEP 09 (2005) 042, [hep-lat/0503039].

[16] P. H. Damgaard and S. Matsuura, Classification of supersymmetric lattice gauge theories by
orbifolding, arXiv:0704.2696 [hep-lat].

[17] J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J.
Mod. Phys. A21 (2006) 3039–3094, [hep-lat/0602007].

[18] F. Sugino, A lattice formulation of super yang-mills theories with exact supersymmetry, JHEP
01 (2004) 015, [hep-lat/0311021].

[19] F. Sugino, Super yang-mills theories on the two-dimensional lattice with exact supersymmetry,
JHEP 03 (2004) 067, [hep-lat/0401017].

[20] A. D’Adda, I. Kanamori, N. Kawamoto, and K. Nagata, Exact extended supersymmetry on a
lattice: Twisted n = 2 super yang-mills in two dimensions, Phys. Lett. B633 (2006) 645–652,
[hep-lat/0507029].

[21] S. Catterall, A geometrical approach to n = 2 super yang-mills theory on the two dimensional
lattice, JHEP 11 (2004) 006, [hep-lat/0410052].

[22] S. Catterall, Lattice formulation of n = 4 super yang-mills theory, JHEP 06 (2005) 027,
[hep-lat/0503036].

[23] M. Unsal, Twisted supersymmetric gauge theories and orbifold lattices, JHEP 10 (2006) 089,
[hep-th/0603046].

[24] T. Takimi, Relationship between various supersymmetric lattice models, arXiv:0705.3831
[hep-lat].

[25] S. Catterall and S. Karamov, Exact lattice supersymmetry: the two-dimensional n = 2
wess-zumino model, Phys. Rev. D65 (2002) 094501, [hep-lat/0108024].

[26] S. Catterall, Lattice supersymmetry and topological field theory, JHEP 05 (2003) 038,
[hep-lat/0301028].

[27] J. Giedt, R-symmetry in the q-exact (2,2) 2d lattice wess-zumino model, Nucl. Phys. B726
(2005) 210–232, [hep-lat/0507016].

[28] S. Catterall and S. Ghadab, Twisted supersymmetric sigma model on the lattice, JHEP 10
(2006) 063, [hep-lat/0607010].

[29] G. Bergner, T. Kaestner, S. Uhlmann, and A. Wipf, Low-dimensional supersymmetric lattice
models, arXiv:0705.2212 [hep-lat].

[30] J. Giedt, R. Koniuk, E. Poppitz, and T. Yavin, Less naive about supersymmetric lattice
quantum mechanics, JHEP 12 (2004) 033, [hep-lat/0410041].

[31] M. Campostrini and J. Wosiek, High precision study of the structure of d = 4 supersymmetric
yang-mills quantum mechanics, Nucl. Phys. B703 (2004) 454–498, [hep-th/0407021].

[32] M. Campostrini and J. Wosiek, Exact witten index in d = 2 supersymmetric yang-mills quantum
mechanics, Phys. Lett. B550 (2002) 121–127, [hep-th/0209140].

– 47 –

http://xxx.lanl.gov/abs/hep-lat/0307012
http://xxx.lanl.gov/abs/hep-lat/0503039
http://xxx.lanl.gov/abs/arXiv:0704.2696 [hep-lat]
http://xxx.lanl.gov/abs/hep-lat/0602007
http://xxx.lanl.gov/abs/hep-lat/0311021
http://xxx.lanl.gov/abs/hep-lat/0401017
http://xxx.lanl.gov/abs/hep-lat/0507029
http://xxx.lanl.gov/abs/hep-lat/0410052
http://xxx.lanl.gov/abs/hep-lat/0503036
http://xxx.lanl.gov/abs/hep-th/0603046
http://xxx.lanl.gov/abs/arXiv:0705.3831 [hep-lat]
http://xxx.lanl.gov/abs/arXiv:0705.3831 [hep-lat]
http://xxx.lanl.gov/abs/hep-lat/0108024
http://xxx.lanl.gov/abs/hep-lat/0301028
http://xxx.lanl.gov/abs/hep-lat/0507016
http://xxx.lanl.gov/abs/hep-lat/0607010
http://xxx.lanl.gov/abs/arXiv:0705.2212 [hep-lat]
http://xxx.lanl.gov/abs/hep-lat/0410041
http://xxx.lanl.gov/abs/hep-th/0407021
http://xxx.lanl.gov/abs/hep-th/0209140


[33] O. Aharony, J. Marsano, S. Minwalla, and T. Wiseman, Black hole - black string phase
transitions in thermal 1+1 dimensional supersymmetric yang-mills theory on a circle, Class.
Quant. Grav. 21 (2004) 5169–5192, [hep-th/0406210].

[34] O. Aharony et al., The phase structure of low dimensional large n gauge theories on tori, JHEP
01 (2006) 140, [hep-th/0508077].

[35] M. Hanada, J. Nishimura, and S. Takeuchi, Non-lattice simulation for supersymmetric gauge
theories in one dimension, arXiv:0706.1647 [hep-lat].

[36] W. Krauth, H. Nicolai, and M. Staudacher, Monte carlo approach to m-theory, Phys. Lett.
B431 (1998) 31–41, [hep-th/9803117].

[37] S. Catterall, Simulations of n = 2 super yang-mills theory in two dimensions, JHEP 03 (2006)
032, [hep-lat/0602004].

[38] G. T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys.
Rev. D55 (1997) 6189–6197, [hep-th/9612146].

[39] E. Witten, Anti-de sitter space, thermal phase transition, and confinement in gauge theories,
Adv. Theor. Math. Phys. 2 (1998) 505–532, [hep-th/9803131].

[40] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, and T. Tada, Space-time structures from iib matrix
model, Prog. Theor. Phys. 99 (1998) 713–746, [hep-th/9802085].

[41] W. Krauth and M. Staudacher, Eigenvalue distributions in yang-mills integrals, Phys. Lett.
B453 (1999) 253–257, [hep-th/9902113].

[42] P. Austing, Yang-mills matrix theory, hep-th/0108128.

[43] J. Ambjorn, K. N. Anagnostopoulos, W. Bietenholz, T. Hotta, and J. Nishimura, Monte carlo
studies of the iib matrix model at large n, JHEP 07 (2000) 011, [hep-th/0005147].

[44] D. J. Gross and E. Witten, Possible third order phase transition in the large n lattice gauge
theory, Phys. Rev. D21 (1980) 446–453.

[45] J. W. Elliott and G. D. Moore, Three dimensional n = 2 supersymmetry on the lattice, PoS
LAT2005 (2006) 245, [hep-lat/0509032].

[46] H. Suzuki and Y. Taniguchi, Two-dimensional n = (2,2) super yang-mills theory on the lattice
via dimensional reduction, JHEP 10 (2005) 082, [hep-lat/0507019].

[47] S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics,
Phys. Lett. B487 (2000) 349–356, [hep-lat/0006013].

[48] S. Catterall, On the restoration of supersymmetry in twisted two- dimensional lattice yang-mills
theory, JHEP 04 (2007) 015, [hep-lat/0612008].

[49] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid monte carlo, Phys. Lett.
B195 (1987) 216–222.

[50] B. Jegerlehner, Krylov space solvers for shifted linear systems, hep-lat/9612014.

[51] M. A. Clark, A. D. Kennedy, and Z. Sroczynski, Exact 2+1 flavour rhmc simulations, Nucl.
Phys. Proc. Suppl. 140 (2005) 835–837, [hep-lat/0409133].

– 48 –

http://xxx.lanl.gov/abs/hep-th/0406210
http://xxx.lanl.gov/abs/hep-th/0508077
http://xxx.lanl.gov/abs/arXiv:0706.1647 [hep-lat]
http://xxx.lanl.gov/abs/hep-th/9803117
http://xxx.lanl.gov/abs/hep-lat/0602004
http://xxx.lanl.gov/abs/hep-th/9612146
http://xxx.lanl.gov/abs/hep-th/9803131
http://xxx.lanl.gov/abs/hep-th/9802085
http://xxx.lanl.gov/abs/hep-th/9902113
http://xxx.lanl.gov/abs/hep-th/0108128
http://xxx.lanl.gov/abs/hep-th/0005147
http://xxx.lanl.gov/abs/hep-lat/0509032
http://xxx.lanl.gov/abs/hep-lat/0507019
http://xxx.lanl.gov/abs/hep-lat/0006013
http://xxx.lanl.gov/abs/hep-lat/0612008
http://xxx.lanl.gov/abs/hep-lat/9612014
http://xxx.lanl.gov/abs/hep-lat/0409133

	Towards Lattice Simulation of the Gauge Theory Duals to Black Holes and Hot Strings
	Recommended Citation

	tmp.1323724331.pdf.OsoNl

