
Syracuse University Syracuse University

SURFACE SURFACE

Syracuse University Honors Program Capstone
Projects

Syracuse University Honors Program Capstone
Projects

Spring 5-1-2009

Synthesis Minimizations and Mesh Algorithm Selection: An Synthesis Minimizations and Mesh Algorithm Selection: An

Extension of the Ultrasonic 3D Camera Extension of the Ultrasonic 3D Camera

Taylor Johnson

Follow this and additional works at: https://surface.syr.edu/honors_capstone

 Part of the Digital Circuits Commons, and the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Johnson, Taylor, "Synthesis Minimizations and Mesh Algorithm Selection: An Extension of the Ultrasonic
3D Camera" (2009). Syracuse University Honors Program Capstone Projects. 457.
https://surface.syr.edu/honors_capstone/457

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=surface.syr.edu%2Fhonors_capstone%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=surface.syr.edu%2Fhonors_capstone%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/457?utm_source=surface.syr.edu%2Fhonors_capstone%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Synthesis Minimizations and

Mesh Algorithm Selection:

An Extension of the

Ultrasonic 3D Camera

A Capstone Project Submitted in Partial Fulfillment of the Requirements
of the Renée Crown University Honors Program at Syracuse University

Taylor Johnson

Candidate for B.S. Degree
and Renée Crown University Honors

May 2009

Honors Capstone Project in Computer Engineering

Capstone Project Advisor: ______________________________
 Duane Marcy

Honors Reader: __
 Ehat Ercanli

Honors Director: __
 Samuel Gorovitz

Date: __

Abstract

Statement of Purpose

The purpose of this Capstone project was to perform synthesis
minimizations and optimal mesh algorithm selection for some of the
digital components of a prototype Ultrasonic 3D Camera, the subject of
my group senior design project for computer engineering. Both of the
high-level design tasks that I performed were unnecessary for the scope
of the senior design class, whose focus was simply to perform a proof-of-
concept or create a basic, functioning prototype. The steps I took in
performing synthesis optimizations and mesh algorithm selection went
beyond the scope of the senior project, by doing the polishing that would
be most suited for a project that was eventually going to be turned into an
actual product.

Design Methodology

Synthesis optimizations were performed using the Altera Quartus II
software, available to me as a student of the L.C. Smith College of
Engineering and Computer Science. With the assistance of the Quartus II
sofware, I synthesized the behavioral VHDL code written for the project,
and inspected the resulting netlists for places where additional logic was
being unnecessarily included. In the places where unnecessary logic was
found, I eliminated it, by rewriting behavioral code as structural, or by
simply clarifying the definition of components.

Mesh algorithm selection was performed using the Microsoft Visual
Studio IDE (Integrated Design Environment) in conjunction with the
OGRE 3D graphics engine. Using Visual Studio and OGRE, I was able to
experiment with different mesh-forming algorithms and determine which
method was best suited for the Camera, given the nature of the incoming
data.

Outcome

The VHDL code for the project is now optimized for synthesis, such that if
my group were to take steps to have the VHDL code synthesized into a
netlist, and then eventually into a mask, and then turned into an actual
integrated circuit, that circuit would be almost minimally small, while still
performing all its necessary functions. Likewise, the mesh algorithm
selected, the naïve method, works perfectly well with the nature of the
data that the Camera obtains.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program

Table of Contents

INTRODUCTION .. 1

OPERATING PRINCIPLES ... 1
TRANSDUCERS ... 1
BEAM FORMING .. 2
BEAM STEERING ... 3
DATA COLLECTION ... 4

SYSTEM PARTITIONING ... 6

MODULE EXPLANATION .. 7
ANALOG DRIVING NETWORK ... 7
ANALOG RECEIVING NETWORK ... 8
DIGITAL DRIVING NETWORK.. 8
DIGITAL RECEIVING NETWORK .. 12
MODELING SOFTWARE ... 13

SYNTHESIS MINIMIZATIONS ... 14
COMPARATORS ... 14
TIMER .. 15
DECODER... 16
DIVIDER ... 16
REGISTER .. 17
COUNTER... 17
D FLIP FLOP ... 17

MESH ALGORITHM SELECTION .. 18
THE NAÏVE METHOD .. 18
CONFIGURATIONAL ENERGY METHOD .. 19
MARCHING CUBES METHOD .. 19
RESULTS .. 20

SOURCES CITED AND CONSULTED .. 21

APPENDIX A: VHDL SOURCE FILES FOR THE DIGITAL SYSTEM 22
COMPARATOR1 .. 22
COMPARATOR2 .. 22
COUNTER ... 23
DIVIDER ... 23
REGISTER ... 24
DECODER ... 24
FLIP FLOP .. 26
DRIVER ... 27
PINGER ... 28
COUNTER_EN .. 30
RECEIVER... 31

APPENDIX B: SYNTHESIZED RTL SCHEMATICS .. 33

WRITTEN CAPSTONE SUMMARY ... 38

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 1

Introduction

 The Ultrasonic 3D Camera is a device that creates a three-

dimensional model of an object or surface, by using a phased array of

ultrasonic transducers to collect distance data, and then using that

distance data to create a three-dimensional mesh representation of the

object or surface. The first part of this document describes the design and

operation of the Ultrasonic 3D Camera, which was designed as a group

project for the computer engineering senior design class, CSE 497. The

latter part of this document describes my additional individual

contributions to the project, which went above and beyond the scope of

the senior design project, and formed the basis of my Capstone project.

Operating Principles

Transducers

 The physical components that enable a device like the Ultrasonic

3D Camera to be a feasible are ultrasonic transducers. A transducer,

broadly speaking, is “a device for converting energy from one form to

another for the purpose of measurement of a physical quantity or for

information transfer”1. In the case of the Ultrasonic 3D Camera, ultrasonic

transducers are used. Transmitting ultrasonic transducers convert energy

in the form of an electrical signal (specifically, a 40kHz square wave) into

compressional ultrasonic waves that propagate through air. Receiving

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 2

ultrasonic transducers do the inverse conversion – from compressional

ultrasonic waves back into an electrical signal.

A single ultrasonic transmitter/receiver pair can be used to do

simplistic ultrasonic ranging, but for more complicated data collection,

the type of which is required for the Ultrasonic 3D Camera, a phased

array of ultrasonic transducers is needed. In a phased array arrangement,

a collection of transducers is placed together such that they will work

cohesively to perform beam forming and beam steering.

Beam Forming

For a phased array of ultrasonic transducers to perform the task of

producing directed sound, the individual elements of the phased array

must interact in a way that is complementary. Otherwise, the array would

simply be a collection of individual elements, and would not be of much

use for strategically directing sound.

To understand the way multiple elements can interact, consider

the analogy of two identical stones being dropped in a pool of still water

at the exact same time, from the exact same height, at some distance

apart. Each stone creates an outward ripple, and after some amount of

time the ripples of the two stones will encounter one another. In every

place where the ripples meet, they will combine to form a ripple whose

amplitude is the sum of the amplitude of the individual ripples. In some

places, the amplitudes will be equal but opposite and the ripples will

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 3

cancel each other out completely. It can be said that be said that the

ripples constructively interfere in places where the combined ripple has a

non-zero amplitude, and destructively interfere when the resultant

amplitude is zero.2

Let’s step back into the world of transducers. The analogy is

structured the following way: the stones are transmitting transducers, the

pool of water is the air, the height from which the stones are dropped is

the amplitude of the signal exciting the transducers, and the time at which

the stones hit the water is the time that the transducers begin

transmitting. Constructive and destructive interference also occurs with

the sound emitted from ultrasonic transducers, and it is this exact

behavior that the phased array of ultrasonic transducers uses to its

advantage. In order to focus the sound emitted from transducers into a

beam, we want the sound emitted from all 20 transducers to

constructively interfere where we want the beam to be formed, and

destructively interfere (or constructively interfere as little as possible)

everywhere else. This process is commonly referred to as beam forming.

Beam Steering

While beam forming is vital to the operation of any phased array,

it would not be of much use beyond precision ranging unless it was

paired with beam steering, a common way of referring to the act of

changing the direction in which the formed beam is emitted. Consider

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 4

again the scenario with the two stones and the pool of water. In the

original scenario, the stones were dropped at the exact same time. Now,

consider the situation where the stones are dropped at different times.

This time, when the ripples from the two stones meet, they will again

interfere, but in a different way than in the previous scenario. Specifically,

the combined ripple will propagate most strongly in an angled direction

angled away from the line that can be drawn between the two points.

Let’s move again back to the phased array of ultrasonic

transducers. When all of the transmitting transducers in the array are

excited at the same time, the resulting beam of sound is directed along

the normal to the plane in which the array exists. When the transducers

are excited at different times, a beam is still formed, but the direction in

which that beam propagates is no longer normal to the array, but some

number of degrees off of the normal, in the x-direction, y-direction, or

both. This effect is called beam steering, and is the physical basis for the

functionality of this project.

Data Collection

Now that we understand how beam forming and beam steering

work, we can address exactly how the ultrasonic transducers collect data.

The basic narrative of pinging is the following:

1. As soon as a ping is initiated, a timer begins counting and the

transducers begin to be excited by the 40kHz square wave.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 5

2. A beam of ultrasound is formed and steered in the direction of the

intended sample.

3. The transducers stop being excited as soon as enough time has

elapsed for a beam to form.

4. The beam propagates through the air, eventually contacting the

object that is the subject of the scan. While most of the sound is

absorbed (the amount of absorption depends on the acoustic

nature of the material), some of the sound is reflected back

towards the array.

5. As soon as the reflection of the ping is detected by one of the

receiving transducers, the timer stops counting.

6. The distance of the object that reflected the ping is calculated

using the half the timer value (since the sound traveled out and

then back) and the speed of sound.

To collect as much data as possible, the Ultrasonic 3D Camera

repeats this procedure again and again, iterating through every

combination of all possible x-angles and y-angles. With a maximum range

of 60 degrees in any direction off of the normal, and a resolution of 0.288

degrees, the array can collect a maximum of (416) * (416) = 173, 056 data

points. This is a large amount of data, especially for the size of the objects

that the Ultrasonic 3D Camera is meant to scan. One way to speed up the

amount of time it takes to perform a full scan is to only iterate through

some of the possible angles, which will keep the amount of data down.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 6

System Partitioning

Many things besides transducers are needed to construct a functioning

Ultrasonic 3D Camera. The non-transducer elements of the system are

partitioned into the following modules:

• Analog Driving Network – the analog components necessary to

provide a signal capable of exciting the transmitting transducers

• Analog Receiving Network – the analog components necessary to

take the signal detected by the receiving transducers and

transform it into a digital representation

• Digital Driving Network – the digital components necessary to

perform beam forming and beam steering with the phased array of

ultrasonic transducers

• Digital Receiving Network – the digital components necessary to

detect when a reflection of a beam has returned to the array

• Modeling Software – the software used to create and model

meshes based on the three-dimensional data points collected by

the Camera

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 7

Module Explanation

In this section, the purpose and operation of each of the individual

system modules is explained. The most detailed sections are the digital

driving network and digital receiving network, as they are the focus of the

synthesis minimization component of this Capstone project.

Analog Driving Network

 The analog driving network consists of twenty identical amplifying

and conditioning circuits, one for each of the driving transducers. The

analog driving network is necessary because the signals that excite the

transducers must be appropriately conditioned in order to provide the

maximum energy transfer, and also to get as much range out of the

transducer array as possible.

 The following is a detailed description of the amplification process

that each of the transducer excitation signals goes through: A signal is

initially emitted from the FPGA as a 3.3v square wave. This 3.3v square

wave is given as input to a Schmidt trigger, and is then output from the

Schmidt trigger as a stronger, 5v square wave (the Schmidt triggers are

powered by a 5v regulator). The signal is then sent to the gate of an nMOS

transistor, whose source is tied to ground and whose gate is tied to a

100Ω resistor, the other end of which is tied to the supply voltage of 30v.

At this point, the signal at the drain of the transistor is a strong 30v

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 8

square wave. A transducer is placed in parallel with the nMOS transistor,

and the final result of the configuration is that the transducers are each

driven by their very own 30v square wave.

Analog Receiving Network

 The analog receiving network consists of four identical

amplification circuits, one attached to each of the four receiving

transducers. Amplifiers are needed on the receiving end of the system

because the reflection of the beam of sound that returns to the array will

be extremely weak, on account of the fact that most of the sound is

absorbed by the air and the object which reflected the beam. The specific

job of the receiving amplifiers is to take a signal that is as low as 50mv

and turn it into a 3.3v square wave so that the digital receiving network

can detect the arrival of the reflection. To do this, each signal received by

a receiving transducer is amplified using an active band-pass filter with

the band centered around 40kHz, and then sent to a Schmidt trigger,

which digitizes the signal into a variable-duty cycle square wave.

Digital Driving Network

The digital driving network consists of everything necessary to

perform intermittent pinging (phase-shifted and non-phase-shifted) of

the transmitting ultrasonic transducers. Some components will have 20

instances (one for each transmitting transducer), and other components

will only have one instance for the entire digital driving network.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 9

The first component, of which there is only one instance, is a

frequency divider. The FPGA supplies a 50MHz clock, but the ultrasonic

transducers need to be driven with a 40kHz, and so a frequency divider is

used to create a 40kHz signal from a 50MHz signal. To accomplish this,

the first thing to do is calculate how many cycles of a 50MHz signal occur

during one cycle of a 40kHz signal. 50MHz / 40kHz = 1250. Now, to

accomplish the frequency division, it is simply a matter of counting 625

cycles of the 50Mhz signal, then setting the 40kHz signal high, then

counting another 625 cycles of the 50Mhz signal, then setting the 40kHz

signal low again, and then repeating the process. In other words, simply

invert a signal every 625 cycles of the 50MHz clock, and the resulting

signal will be a 40kHz square-wave signal, which is exactly what is

needed to drive the transmitting ultrasonic transducers. After a 40kHz

signal is obtained, it needs to be distributed to the each of the

transmitting transducers. However, since the array needs to be pinging

the transducers instead of driving them constantly, some additional

digital components are needed.

The next component needed is a timer, a component that begins

counting at zero whenever the array is going to begin pinging, and

increments by one for every rising edge of the 50Mhz clock signal. This

specific timer also should stay at its maximum value of 0xFFFFFFFF once

reached, instead of looping back around to 0 and counting up again. This

would cause the array to ping again prematurely. The timer is another

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 10

component that only needs to be included once in the entire driving

network. [I initially thought that a separate timer needed to be included

for each of 20 drivers in the driving network. However, after synthesizing

the driving network for the first time, I noticed the inclusion of all of the

timers, and it occurred to me that only one driver was necessary. I

should’ve noticed this earlier, but synthesis was necessary for me to

recognize this problem. One of the first optimizations I made after

performing synthesis was correcting this problem.]

The next component needed is a comparator, a component that

outputs a low signal or a high signal, based on the relative values of its

two inputs. In the digital network, two comparators are actually needed,

and instances of both are required for each of the 20 transmitting

transducers. One type of comparator outputs a high signal when input A

is greater or equal to input B, and a low signal otherwise. The other type

of comparator outputs a high signal when input A is less than or equal to

input B, and a low signal otherwise. [It is tempting to think that one type

of comparator could be used for both cases here, by simply flipping the

inputs, but the result of this would change a non-strict inequality into a

strict inequality, which is not the desired functionality for these two

comparisons. A compromising solution could be to create a comparator

component which is strict or non-strict depending on a control input, but

this would require additional controlling logic, not to mention that there

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 11

would still be two instances of this component, so no space would be

saved by adding this extra functionality.]

The next component is a 6-to-40 decoder, a component that takes

a 6-bit input and sets only one of its output bits high, based on the value

of the 6-bit input. There is only one instance of the decoder in the digital

driving network.

The final component needed is a register, a component with

memory, that either samples the data sent to it on the rising edge of a

clock, or simply maintains the value it most recently sampled, depending

on the state of an enable signal. Registers are often configured to be

resettable to some predetermined value, but this functionality is not

necessary in this design – the registers can simply be loaded with the

desired value at the most convenient time. In the digital driving network,

there are two instances of the same 32-bit register for each of the 20

transducers, for a total of 40 instances.

Now that I’ve described all of the components of the system, I’ll

describe how using all of these components collectively results in

successful pinging, beam forming, and beam steering:

• Two registers are instantiated for each transmitting transducer.

The first register is loaded with the delay value, which indicates

the number of clock cycles after the beginning of system wide

pinging a particular transducer should begin pinging. The second

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 12

register is loaded with the delay value plus the duration value, so

that the particular transducer will ping for the desired duration.

• The two comparator make sure that a ping is only let through to a

transducer when the time is between delay and duration + delay.

• Using different delays for each transducer results in beamsteering.

• The frequency divider turns the 50MHz clock of the FPGA into a

40kHz signal. This signal is then let through to a transducer

whenever the registers associated with the transducer indicate

that the transducer should be pinging.

• The decoder controls which register is written to at any given

point in time.

Digital Receiving Network

 The digital receiving network consists of a 32-bit counter, a D flip

flop, and some additional logic. The purpose of the digital receiving

network is to start timing as soon as a ping is initiated, and detect that a

ping has returned to the array.

To accomplish this task, the receiver ORs together the four inputs

from the analog receiver network, so that whenever any of the receiving

transducers picks up a reflected ping, the output of the OR gate, which is

attached to the input of the D flip flop, will go high. As soon as the D flip

flop reads a ‘1’, the timer will be inhibited, the control system will be

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 13

notified that a ping had returned, and the D flip flop will ignore all input

data until the receiving network is reset.

Modeling Software

 The modeling software used for the Ultrasonic 3D Camera was

OGRE, an object-oriented 3D graphics engine. OGRE was selected because

of its relative ease of use, and abundance of publicly available code

examples and tutorials.

 To get the data to OGRE, it was sent from the FPGA to a computer

via a serial port, and then sent directly to OGRE using UDP packets. Once

in OGRE, the data could be drawn as a point represented in three

dimensions.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 14

Synthesis Minimizations

Synthesis minimization is the first part of my Capstone project. The idea

behind synthesis minimization is to perform high-level synthesis on the

behavioral VHDL files that I wrote for the digital transmitting and

receiving networks and look for excess logic than can be removed, while

keeping all functionality intact. The following section describes the

synthesis results for each of the components of the digital system.

Comparators

There are two types of comparators included in the digital system,

denoted comparator1 and comparator2.

comparator1

Comparators are fairly simple logic components, so when I began

the synthesis process with the comparators, I didn’t expect to see any

places for simplification. And, sure enough, I didn’t find anything

unnecessary in the synthesized schematic for comparator1. There is a

LESS_THAN module, directly given the two inputs, and there is also a CIN

of 1, which confirms that the inequality will be of the non-strict variety.

comparator2

This comparator is very similar to the first comparator, so once

again I didn’t expect to see any places for simplification. Not surprisingly,

there was nothing unnecessary in the synthesized schematic for

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 15

comparator2. There is again a LESS_THAN module, directly given the two

inputs, and there is also a CIN of 1, which confirms that the inequality will

be of the non-strict variety.

Timer

When I synthesized the timer (counter) for the digital network, I

definitely expected to see some unnecessary logic – perhaps some

inferred latches or something of that nature. However, to my great

surprise, there was nothing of the sort. The synthesized schematic

consists of a 32-bit register whose data input is tied to an adder, which

adds the previous value of the register to 1. There is also an enable signal,

which enables the counter until the max value of 0xFFFFFFFF is reached,

at which point the counter stops counting. Finally, there is also a reset

signal that is simply an input to the module. There was nothing in the

schematic that could be taken out without changing the desired

functionality of the module.

While I did not find any unnecessary logic within the timer

module, I did notice that a timer was being instantiated for each of the

twenty driving transducers. This, of course, is completely unnecessary,

because of the region selection performed by the twenty sets of two

comparators in the system. So, essentially, only one instance of the timer

is needed for the entire digital driving network, and yet I was

instantiating twenty. [Please note that this is not something that

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 16

synthesis can uniquely identify – I should have noticed this design flaw

while writing the VHDL code. However, synthesis was useful in this

circumstance because seeing the actual schematic was what it took to get

me to realize that only one counter was necessary, instead of twenty.] As

an easy optimization, I removed the 19 superfluous timers from the

digital network, and saved a lot of space and hardware.

Decoder

 When I synthesized the decoder for the digital driving network, I

got what I expected – a long trail of logic. Luckily, all of it was necessary

for the decoder to function properly. So, with no work to do here, I moved

on to the next synthesis category.

Divider

 When I first synthesized the divider for the digital driving

network, it seemed to me to be already optimized. It was simply using a

counter to count up to 624, then flip its input, and then start counting up

from 0 again. However, after careful inspection I noticed that the

hardware used to store the counter value was 32-bits wide, which is quite

a lot of extra space for a number which only goes as high as 624. Then, I

realized that I had specified the use of a regular integer, instead of an

integer limited in size (in this case, to 10 bits, which is more than enough

to represent 624). So, I changed the VHDL code to incorporate the

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 17

minimally sufficient integer size, in the process saving space by

eliminating the need for several storage elements.

Register

 The 32-bit register synthesized to exactly what I expected – simply

an array of 32 D flip flops. This was exactly how a simple register should

be represented – no changes were needed to this module.

Counter

 This counter is essentially just like the timer mentioned earlier,

except that it also has an explicit enable signal accessible to the user. Just

like the timer, it synthesizes quite well – simply a 32-bit register with an

incrementing input.

D Flip Flop

 This D flip flop turned into exactly what I expected – a D flip flop.

Flip flops are among the most basic of circuit elements, so it comes as no

surprise that my description of a flip flop was turned into a flip flop.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 18

Mesh Algorithm Selection

 The second part of my Capstone project focused on the selection of

a suitable mesh algorithm to use on the point clouds created by the

Ultrasonic 3D Camera. There is a multitude of ways to connect a large

collection of data points, but only some of those ways will result in

something recognizable, or distinguishable. Mesh algorithms attempt to

connect a collection of points in such a way that a “mesh” is created that

highly resembles the object from which the data points were originally

obtained.

The Naïve Method

 The naïve method of mesh creation is fairly straightforward – it

assumes that the points are ordered in the way that they were collected,

and selects the first three points in the ordering, and connects them via a

triangle, which in three dimensions can be seen as a triangular section of

the plane in which all three of the points lie. Then, the algorithm iterates

through all of the remaining points one at a time, forming a new

triangular face between the new point and the two closest points that are

already part of a triangle. The following pseudo-algorithm describes this

process.

1. Place all collected points in a “collected” linked list.

2. Take the first three elements of the linked list, create

a face between them, remove them from the “collected”

linked list, and place them in the “added” linked list.

3. While the “collected” linked list is not empty

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 19

4. Search the “added” linked list for the two points

closest in distance to the head of the “collected”

linked list

5. Create a new face between the resulting three

points

6. Remove the head of the “collected” linked list and

add it to the “added” linked list

Configurational Energy Method

 The configurational energy method of mesh creation is a great deal

more complex than the naïve method. The algorithm sums the square of

the edge tensions, which are based on the predetermined optimal edge

length. In the case of the Ultrasonic 3D Camera, the optimal edge length is

the length of the base of the cone that represents the sound emitted by

the Camera. After determining these sums, the algorithm determines

tightly packed local areas where the mesh should begin, and then works

its way outward.

Marching Cubes Method

The marching cubes method is another complicated mesh creation

algorithm that works by drawing a large cube connected to the borders of

the point cloud, and then working inward with smaller and smaller cubes.

Then, eventually, triangular faces are identified between the points of the

inner cubes, and then the next outer cubes, and then finally back out to

the outermost cube. So, cubes “march” inward, and then triangular faces

force their way out to the borders using the cubes as guides.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 20

Results

 I didn’t get a chance to fully test these mesh algorithms, due to the

fact that the Ultrasonic 3D Camera was never entirely functional, and

therefore wasn’t generating point clouds with which I could experiment. I

was, however, still able to get a decent idea of which mesh algorithm

would be most likely to create meshes out of the point clouds created by

the Camera.

After much comparison, it turns out that the naïve method will

work just fine for our purposes. What I should’ve realized earlier is that

most sophisticated mesh algorithms are meant to deal with situations

where the mesh has little to no structural regularity. That is, they are

meant to function without any concept of the order in which points were

collected. The naïve method, however, works extremely well for

particular collection orders. Since we can control the order of data

collection simply by controlling the array, it follows that the best

approach would be to choose a data collection ordering which aligns

nicely with the nature of the naïve method. This approach should yield a

mesh algorithm that does a good job of recreating the original subject of

the scan, while being quite easy to implement.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 21

Sources Cited and Consulted

Citations:

1. Institute for Telecommunication Sciences. “Transducers.”

http://www.its.bldrdoc.gov/fs-1037/dir-037/_5539.htm

2. Henderson, Tom. “Behavior of Waves.”

glenbrook.k12.il.us/GBSSCI/PHYS/Class/waves/u10l3c.html

Consultants:

Dr. Duane Marcy
Dr. Fred Phelps
Dr. Ehat Ercanli
William Tetley
Charles Slominski

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 22

Appendix A: VHDL source files for the digital system

comparator1

-- comparator1.vhd

-- a comparator for the count and delay values

library ieee;

use ieee.std_logic_1164.all;

entity comparator1 is

 port (count : in std_logic_vector(31 downto 0);

 delay : in std_logic_vector(31 downto 0);

 comparison : out std_logic);

end comparator1;

architecture behavioral of comparator1 is

begin

 process (count, delay)

 begin

 if count >= delay then

 comparison <= '1';

 else

 comparison <= '0';

 end if;

 end process;

end behavioral;

comparator2

-- comparator2.vhd

-- a comparator for the count and duration values

library ieee;

use ieee.std_logic_1164.all;

entity comparator2 is

 port (count : in std_logic_vector(31 downto 0);

 duration : in std_logic_vector(31 downto 0);

 comparison : out std_logic);

end comparator2;

architecture behavioral of comparator2 is

begin

 process (count, duration)

 begin

 if count <= duration then

 comparison <= '1';

 else

 comparison <= '0';

 end if;

 end process;

end behavioral;

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 23

counter

-- counter.vhd

-- a timer for keeping track of how long a ping

-- takes to return to the array

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter is

 port (clk : in std_logic;

 reset : in std_logic;

 count : out std_logic_vector(31 downto 0));

end counter;

architecture behavioral of counter is

 signal count_internal : std_logic_vector(31 downto 0)

 := x"00000000";

begin

 process (clk, reset)

 begin

 if reset = '1' then

 count_internal <= x"00000000";

 elsif clk'event and clk ='1' then

 if count_internal = x"FFFFFFFF" then

 count_internal <= count_internal + x"00000000";

 else

 count_internal <= count_internal + x"00000001";

 end if;

 end if;

 end process;

 count <= count_internal;

end behavioral;

divider

-- divider.vhd

-- a frequency divider, that divides by 1250

-- 50MHz is turned into 40kHz

library ieee;

use ieee.std_logic_1164.all;

entity divider is

 port (in_clock : in std_logic;

 reset : in std_logic;

 out_clock : out std_logic);

end divider;

architecture behavioral of divider is

 signal cycles : integer range 0 to 624 := 0;

 signal clk : std_logic := '0';

begin

 process (in_clock, reset)

 begin

 if reset = '1' then

 cycles <= 0

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 24

 clk <= '0'

 elsif in_clock'event and in_clock = '1' then

 if cycles = 624 then

 clk <= not clk;

 cycles <= 0;

 else

 cycles <= cycles + 1;

 end if;

 end if;

 end process;

 out_clock <= clk;

end behavioral;

register

-- reg.vhd

-- a 32-bit register, with enable

library ieee;

use ieee.std_logic_1164.all;

entity reg is

 port (input : in std_logic_vector(31 downto 0);

 clk : in std_logic;

 enable : in std_logic;

 output : out std_logic_vector(31 downto 0));

end reg;

architecture behavioral of reg is

 signal intermediate : std_logic_vector(31 downto 0) :=

x"00000000";

begin

 process (clk)

 begin

 if clk'event and clk = '1' then

 if enable = '1' then

 intermediate <= input;

 end if;

 end if;

 end process;

 output <= intermediate;
end behavioral;

decoder

-- decoder.vhd

-- a 6-to-40 decoder

library ieee;

use ieee.std_logic_1164.all;

entity decoder is

 port (input : in std_logic_vector(5 downto 0);

 output : out std_logic_vector(39 downto 0));

end decoder;

architecture behavioral of decoder is

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 25

begin

 process (input)

 begin

 case input is

 when "000000" =>

 output <= "0000000000000000000000000000000000000001";

 when "000001" =>

 output <= "0000000000000000000000000000000000000010";

 when "000010" =>

 output <= "0000000000000000000000000000000000000100";

 when "000011" =>

 output <= "0000000000000000000000000000000000001000";

 when "000100" =>

 output <= "0000000000000000000000000000000000010000";

 when "000101" =>

 output <= "0000000000000000000000000000000000100000";

 when "000110" =>

 output <= "0000000000000000000000000000000001000000";

 when "000111" =>

 output <= "0000000000000000000000000000000010000000";

 when "001000" =>

 output <= "0000000000000000000000000000000100000000";

 when "001001" =>

 output <= "0000000000000000000000000000001000000000";

 when "001010" =>

 output <= "0000000000000000000000000000010000000000";

 when "001011" =>

 output <= "0000000000000000000000000000100000000000";

 when "001100" =>

 output <= "0000000000000000000000000001000000000000";

 when "001101" =>

 output <= "0000000000000000000000000010000000000000";

 when "001110" =>

 output <= "0000000000000000000000000100000000000000";

 when "001111" =>

 output <= "0000000000000000000000001000000000000000";

 when "010000" =>

 output <= "0000000000000000000000010000000000000000";

 when "010001" =>

 output <= "0000000000000000000000100000000000000000";

 when "010010" =>

 output <= "0000000000000000000001000000000000000000";

 when "010011" =>

 output <= "0000000000000000000010000000000000000000";

 when "010100" =>

 output <= "0000000000000000000100000000000000000000";

 when "010101" =>

 output <= "0000000000000000001000000000000000000000";

 when "010110" =>

 output <= "0000000000000000010000000000000000000000";

 when "010111" =>

 output <= "0000000000000000100000000000000000000000";

 when "011000" =>

 output <= "0000000000000001000000000000000000000000";

 when "011001" =>

 output <= "0000000000000010000000000000000000000000";

 when "011010" =>

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 26

 output <= "0000000000000100000000000000000000000000";

 when "011011" =>

 output <= "0000000000001000000000000000000000000000";

 when "011100" =>

 output <= "0000000000010000000000000000000000000000";

 when "011101" =>

 output <= "0000000000100000000000000000000000000000";

 when "011110" =>

 output <= "0000000001000000000000000000000000000000";

 when "011111" =>

 output <= "0000000010000000000000000000000000000000";

 when "100000" =>

 output <= "0000000100000000000000000000000000000000";

 when "100001" =>

 output <= "0000001000000000000000000000000000000000";

 when "100010" =>

 output <= "0000010000000000000000000000000000000000";

 when "100011" =>

 output <= "0000100000000000000000000000000000000000";

 when "100100" =>

 output <= "0001000000000000000000000000000000000000";

 when "100101" =>

 output <= "0010000000000000000000000000000000000000";

 when "100110" =>

 output <= "0100000000000000000000000000000000000000";

 when "100111" =>

 output <= "1000000000000000000000000000000000000000";

 when others =>

 output <= "00";

 end case;

 end process;

end behavioral;

flip flop

-- flop.vhd

-- a D flip-flop, with reset

library ieee;

use ieee.std_logic_1164.all;

entity flop is

 port (input : in std_logic;

 clk : in std_logic;

 reset : in std_logic;

 output : out std_logic);

end flop;

architecture behavioral of flop is

 signal intermediate : std_logic := '0';

begin

 process (clk, reset)

 begin

 if reset = '1' then

 intermediate <= '0';

 elsif clk'event and clk = '1' then

 intermediate <= input;

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 27

 end if;

 end process;

 output <= intermediate;

end behavioral;

driver

-- driver.vhd

-- a driver, consisting of two registers and two comparators

library ieee;

use ieee.std_logic_1164.all;

entity driver is

 port (clock : in std_logic;

 reset : in std_logic;

 data : in std_logic_vector(31 downto 0);

 count : in std_logic_vector(31 downto 0);

 ping_in : in std_logic;

 reg_enable : in std_logic;

 delay_enable : in std_logic;

 duration_enable : in std_logic;

 ping_done : out std_logic;

 ping_out : out std_logic);

end driver;

architecture structural of driver is

signal delay_out : std_logic_vector(31 downto 0); -- a

signal duration_out : std_logic_vector(31 downto 0); -- b

signal comparator1_out : std_logic; -- c

signal comparator2_out : std_logic; -- d

signal enable1 : std_logic;

signal enable2 : std_logic;

component reg is

 port (input : in std_logic_vector(31 downto 0);

 clk : in std_logic;

 enable : in std_logic;

 output : out std_logic_vector(31 downto 0));

end component;

component comparator1 is

 port (count : in std_logic_vector(31 downto 0);

 delay : in std_logic_vector(31 downto 0);

 comparison : out std_logic);

end component;

component comparator2 is

 port (count : in std_logic_vector(31 downto 0);

 duration : in std_logic_vector(31 downto 0);

 comparison : out std_logic);

end component;

begin -- structural

enable1 <= (reg_enable and delay_enable);

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 28

enable2 <= (reg_enable and duration_enable);

C1 : reg port map (data, clock, enable1, delay_out);

C2 : reg port map (data, clock, enable2, duration_out);

C4 : comparator1 port map (count, delay_out, comparator1_out);

C5 : comparator2 port map (count, duration_out,

comparator2_out);

ping_done <= not comparator2_out;

ping_out <= ((comparator1_out and comparator2_out) nand

ping_in);

end structural;

pinger

-- pinger.vhd

-- the pinger consists of 20 drivers, a decoder, a divider,

-- and a timer

library ieee;

use ieee.std_logic_1164.all;

entity pinger is

 port (clock : in std_logic;

 data : in std_logic_vector(31 downto 0);

 address : in std_logic_vector(5 downto 0);

 reset : in std_logic;

 enable : in std_logic;

 pings : out std_logic_vector(19 downto 0);

 pings_completed : out std_logic);

end pinger;

architecture structural of pinger is

 signal register_enables : std_logic_vector(39 downto 0);

 signal completed_pings : std_logic_vector(19 downto 0);

 signal counter_out : std_logic_vector(31 downto 0);

 signal ping_clock : std_logic;

 component counter is

 port (clk : in std_logic;

 reset : in std_logic;

 count : out std_logic_vector(31 downto 0));

 end component;

 component driver is

 port (clock : in std_logic;

 reset : in std_logic;

 data : in std_logic_vector(31 downto 0);

 count : in std_logic_vector(31 downto 0);

 ping_in : in std_logic;

 reg_enable : in std_logic;

 delay_enable : in std_logic;

 duration_enable : in std_logic;

 ping_done : out std_logic;

 ping_out : out std_logic);

 end component;

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 29

 component divider is

 port (in_clock : in std_logic;

 reset : in std_logic;

 out_clock : out std_logic);

 end component;

 component decoder is

 port (input : in std_logic_vector(5 downto 0);

 output : out std_logic_vector(39 downto 0));

 end component;

begin -- structural

 C1 : divider port map (clock, reset, ping_clock);

 C2 : decoder port map (address, register_enables);

 CX : counter port map (clock, reset, counter_out);

 C3 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(0), register_enables(1),

completed_pings(0), pings(0));

 C4 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(2), register_enables(3),

completed_pings(1), pings(1));

 C5 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(4), register_enables(5),

completed_pings(2), pings(2));

 C6 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(6), register_enables(7),

completed_pings(3), pings(3));

 C7 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(8), register_enables(9),

completed_pings(4), pings(4));

 C8 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(10),

register_enables(11), completed_pings(5), pings(5));

 C9 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(12),

register_enables(13), completed_pings(6), pings(6));

 C10 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(14),

register_enables(15), completed_pings(7), pings(7));

 C11 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(16),

register_enables(17), completed_pings(8), pings(8));

 C12 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(18),

register_enables(19), completed_pings(9), pings(9));

 C13 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(20),

register_enables(21), completed_pings(10), pings(10));

 C14 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(22),

register_enables(23), completed_pings(11), pings(11));

 C15 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(24),

register_enables(25), completed_pings(12), pings(12));

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 30

 C16 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(26),

register_enables(27), completed_pings(13), pings(13));

 C17 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(28),

register_enables(29), completed_pings(14), pings(14));

 C18 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(30),

register_enables(31), completed_pings(15), pings(15));

 C19 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(32),

register_enables(33), completed_pings(16), pings(16));

 C20 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(34),

register_enables(35), completed_pings(17), pings(17));

 C21 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(36),

register_enables(37), completed_pings(18), pings(18));

 C22 : driver port map (clock, reset, data, counter_out,

ping_clock, enable, register_enables(38),

register_enables(39), completed_pings(19), pings(19));

 pings_completed <= (completed_pings(0) and

completed_pings(1) and completed_pings(2) and

completed_pings(3) and completed_pings(4) and

completed_pings(5) and completed_pings(6) and

completed_pings(7) and completed_pings(8) and

completed_pings(9) and completed_pings(10) and

completed_pings(11) and completed_pings(12) and

completed_pings(13) and completed_pings(14) and

completed_pings(15) and completed_pings(16) and

completed_pings(17) and completed_pings(18) and

completed_pings(19));

end structural;

counter_en

-- counter_en.vhd

-- a 32-bit counter with reset and enable

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity counter_en is

 port (clk : in std_logic;

 reset : in std_logic;

 enable : in std_logic;

 count : out std_logic_vector(31 downto 0));

end counter_en;

architecture behavioral of counter_en is

 signal count_internal : std_logic_vector(31 downto 0) :=

x"00000000";

begin

 process (clk, reset, enable)

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 31

 begin

 if reset = '1' then

 count_internal <= x"00000000";

 elsif clk'event and clk ='1' and enable = '1' then

 if count_internal = x"FFFFFFFF" then

 count_internal <= count_internal + x"00000000";

 else

 count_internal <= count_internal + x"00000001";

 end if;

 end if;

 end process;

 count <= count_internal;

end behavioral;

receiver

-- receiver.vhd

-- the receiver logic, which keeps track of TOF

library ieee;

use ieee.std_logic_1164.all;

entity receiver is

 port (ping1 : in std_logic;

 ping2 : in std_logic;

 ping3 : in std_logic;

 ping4 : in std_logic;

 clock : in std_logic;

 reset : in std_logic;

 found : out std_logic;

 count : out std_logic_vector(31 downto 0));

end receiver;

architecture structural of receiver is

 signal a : std_logic := '0';

 signal b : std_logic := '0';

 signal c : std_logic := '0';

 signal d : std_logic := '0';

 component counter_en is

 port (clk : in std_logic;

 reset : in std_logic;

 enable : in std_logic;

 count : out std_logic_vector(31 downto 0));

 end component;

 component flop is

 port (input : in std_logic;

 clk : in std_logic;

 reset : in std_logic;

 output : out std_logic);

 end component;

begin

 b <= ((not reset) and (clock) and (not a));

 c <= (ping1 or ping2 or ping3 or ping4);

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 32

 d <= not a;

 C1 : flop port map (c, b, reset, a);

 C2 : counter_en port map (clock, reset, d, count);

 found <= a;

end structural;

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 33

Appendix B: Synthesized RTL schematics

comparator1 RTL schematic

comparator2 RTL schematic

timer RTL schematic

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 34

counter_en RTL schematic

decoder partial RTL schematic

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 35

divider RTL schematic

driver RTL schematic

flip flop RTL schematic

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 36

pinger partial RTL schematic

receiver RTL schematic

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 37

register RTL schematic

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 38

Written Capstone Summary

My Capstone project is based on a device called the Ultrasonic 3D

Camera, a prototype of which was created to satisfy the requirements of

the group project for CSE 497, the computer engineering senior design

class. My Capstone project is an extension of the Ultrasonic 3D Camera, so

please permit me to first describe the basic concept behind the Ultrasonic

3D Camera.

The Ultrasonic 3D Camera is a device that uses ultrasound, which

is simply sound at a frequency higher than humans can hear, to create a

three-dimensional model of a surface or object, through the air, from

some distance. This is a significant accomplishment, as most ultrasonic

technologies do not work through the air – they are generally used

through the body or through water, both of which propagate sound much

better than air.

To produce and detect ultrasound, the Camera makes use of

ultrasonic transducers, which come in two varieties, transmitting and

receiving. Transmitting ultrasonic transducers can be considered a type

of special speaker that, when turned on, only plays one sound, and at a

fixed frequency. Receiving ultrasonic transducers can be considered a

type of special microphone that is tuned to only pick up the specific sound

emitted by one of the transmitting transducers.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 39

The way ultrasonic transducers collect data is really quite simple

to understand – the transmitting transducers produce a directed beam of

sound, which leaves the array, hits an object or surface, and then returns

to the array, where it is detected by the receiving transducers. By timing

how long it takes for sound to leave and return, a calculation can be

performed (using the already known speed of sound through air) to see

how far away the object that reflected the sound is.

Besides a large collection of ultrasonic transducers, the Ultrasonic

3D Camera has several other parts. There is an analog driving network,

which is a collection of circuitry that assures that the sound being

transmitted by the transducers is loud and focused. There is an analog

receiving network, which is a collection of circuitry devoted to taking the

weak signal that the array could potentially pick up and turning it into

something usable. There is a digital driving network, which controls the

order in which the driving transducers are used, and there is a digital

receiving network, which detects exactly when a ping has returned to the

camera. Both of the digital networks are described by VHDL code and

implemented on an FPGA, a device that allows a user to write software,

and then use the software to program the FPGA with hardware

functionality. Finally, there is a software component, featuring the 3D

modeling software OGRE. The Ultrasonic 3D Camera collects many points

of data, but these points need to be connected into a mesh and displayed

in a rendering environment – this is where OGRE comes into play.

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 40

There are many practical uses for a device like the Ultrasonic 3D

Camera. The most obvious choice is on-the-fly modeling. Consider a video

game artist who is required to make a realistic model of an object so that

it can be used in the video game they are working on. Normally, to be

assured that they have an accurate model, they would have to take many

measurements of the object they were modeling, and then spend several

hours faithfully recreating the object as a model. With the Ultrasonic 3D

Camera, an artist could take a quick “snapshot” of the object they are

charged with modeling, and then spend their time refining the model

generated by the Camera, instead of making the entire model from

scratch.

Another exciting application of the Ultrasonic 3D Camera is

navigation for robots. Presently, there are many techniques for enabling

robots to traverse unknown terrains, but none of them provide the robot

with an actual distance map of its surroundings. Integrating a functional

Ultrasonic 3D Camera with a robot would have a significant positive

impact on the nature of robotic navigation, allowing new algorithms to be

written to enable the robot to master its surroundings.

Now that a sufficient understanding of the Ultrasonic 3D Camera

has been given, I’d like to describe exactly what I did for my Capstone

project. First, I performed synthesis optimizations on the VHDL code

written to describe the digital components of the system. VHDL code can

be used multiple ways – for the group project, it was simply used for

Synthesis Minimizations and Mesh Algorithm Selection Taylor Johnson
An Extension of the Ultrasonic 3D Camera Computer Engineering Capstone

Renée Crown University Honors Program 41

rapid prototyping with the FPGA. However, VHDL code can also by

synthesized and eventually used to produce an actual integrated circuit.

For my Capstone I took the VHDL code that I alone wrote for the group

project, and conditioned it for synthesis, by removing ambiguities and

unnecessary logic.

Second, I selected a mesh algorithm to be used with the array. The

point cloud collected by the array needs to be turned into a mesh (a

collection of points with triangles whose vertices are the points) so that,

when rendered, it looks like an actual object or surface and not simply a

floating collection of points. For my Capstone project, I experimented

with several mesh algorithms in an attempt to find one that fit well with

the Ultrasonic 3D Camera.

The results of my Capstone project were quite good. I successfully

minimized all of the digital components of the system, and I determined

what I call the “naïve method” of mesh generation to be the best method

for the Ultrasonic 3D Camera.

	Synthesis Minimizations and Mesh Algorithm Selection: An Extension of the Ultrasonic 3D Camera
	Recommended Citation

	Microsoft Word - 394449-convertdoc.input.382580.6z1ms.docx

