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Yang-Mills theory. We examine in detail the four supercharge two dimensional theory and
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1. Introduction

The problem of putting supersymmetry on the lattice is an old one going back at least 25

years (see the review [4] and references therein). However most of the older work utilized

discretization schemes that break supersymmetry completely at the classical level. With a

few notable exceptions like N = 1 super Yang-Mills in D = 4 such an approach generically

leads to fine tuning problems – the couplings to a set of induced SUSY violating operators

must be tuned carefully to zero as the lattice spacing is reduced [5]. In low dimensions this

fine tuning may be manageable since the theories are super-renormalizable and hence all

divergences occur in low orders of perturbation theory [6, 7].

Recently, however, the field has seen a resurgence of activity due to the realization that

a certain subclass of theories could be discretized while preserving a fraction of the con-

tinuum supersymmetries [8, 1, 2, 3, 9, 10, 11]. Two main approaches have been followed;

obtaining a lattice theory by orbifolding a supersymmetric matrix model (for a good review

of this approach see [12]) and direct discretization of a reformulation of theory in terms of

twisted fields1. The twisting procedure goes back to Witten [14] in his seminal construction

of topological field theories but actually had been anticipated in earlier lattice work using

Kähler-Dirac fields [15]. The precise connection between the Kähler-Dirac fermion mecha-

nism and topological twisting was found by Kawamoto and collaborators [16, 17].

1A third approach based on deformation of the IIB matrix model appears to provide an independent

construction of the N = 4 theory which also preserves a scalar supersymmetry [13]
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While the orbifold constructions are essentially unique [18] various approaches to dis-

cretization of the twisted theories have been advocated in [19, 20, 21, 22, 23, 24]. Recent work

by Damgaard, Matsuura and Takimi has indicated that there are, in fact, strong connections

between these twisted theories and the orbifold models [25, 26, 27]. This had already been

anticipated by Unsal who showed that the naive continuum limit of the sixteen supercharge

orbifold model in four dimensions led to the Marcus twist of N = 4 Yang-Mills [28].

In this paper we complete this web of interconnections by showing that the orbifold

actions can be obtained by direct discretization of an appropriate twist of the supersymmetric

Yang-Mills theory. We consider first the two dimensional theory with four supercharges which

has been extensively discussed in the literature and for which numerical simulations have

already been attempted [29, 30, 31]. We then show how to rewrite the continuum Marcus

twist of N = 4 as the dimensional reduction of a very simple five dimensional theory which is

almost of the same form as the two dimensional theory. This simple five dimensional structure

allows us to use the geometric discretization prescription employed in two dimensions to write

down a supersymmetric lattice theory corresponding to this Marcus twist of N = 4 Yang-

Mills. The resulting theory is nothing more than the Q = 16 orbifold lattice theory in four

dimensions.

2. Four supercharge theory in two dimensions

2.1 Continuum twisted theory

Following the arguments given in [32, 17, 16] the continuum theory is first rewritten in twisted

form. The bosonic sector of the twisted theory comprises a single complexified gauge connec-

tion A and a scalar auxiliary field d. Fermionic degrees of freedom are naturally embedded

as components of a single complex Kähler-Dirac field Ψ = (η, ψµ, χµν) whose components are

antisymmetric tensor fields. We will take all these fields as living in the adjoint of a U(N)

gauge group. The twisted theory naturally possesses a nilpotent scalar supercharge Q whose

action on these fields is given by

Q Aµ = ψµ

Q ψµ = 0

Q Aµ = 0

Q χµν = −Fµν

Q η = d

Q d = 0 (2.1)

Notice that in this formulation of the twisted theory all the physical bosonic degrees of

freedom are carried by the complex gauge field. The scalar supercharge that is employed here

corresponds to a complex combination of the scalar supercharge Q employed in earlier twisted

lattice constructions [19, 33, 20, 21] and its 2-form dual Q12. Notice that this supersymmetry
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implies that the fermions are complex which is natural in a Euclidean theory. As in previous

constructions the twisted action in two dimensions can be written in Q-exact form S = βQ Λ

where Λ is

Λ =

∫

Tr

(

χµνFµν + η[Dµ,Dµ] −
1

2
ηd

)

(2.2)

and we have introduced the complexified covariant derivatives (we employ an antihermitian

basis for the generators of U(N))

Dµ = ∂µ + Aµ = ∂µ +Aµ + iBµ

Dµ = ∂µ + Aµ = ∂µ +Aµ − iBµ (2.3)

Doing the Q-variation and integrating out the field d yields

S =

∫

Tr

(

−FµνFµν +
1

2
[Dµ,Dµ]2 − χµνD[µψν] − ηDµψµ

)

(2.4)

The bosonic terms can be written

FµνFµν = (Fµν − [Bµ, Bν ])
2 +

(

D[µBν]

)2

1

2

[

Dµ,Dµ

]2
= −2 (DµBµ)2 (2.5)

where Fµν and Dµ denote the usual field strength and covariant derivative depending on the

real part of the connection Aµ. After integrating by parts the term linear in Fµν cancels and

the final bosonic action reads2

SB =

∫

Tr
(

−F 2
µν + 2BµDνDνBµ − [Bµ, Bν ]

2
)

(2.6)

Notice that the imaginary parts of the gauge field have transformed into the two scalars of

the super Yang-Mills theory! This is further confirmed by looking at the fermionic part of

the action which can be rewritten in 2 × 2 block form as

(

χ12
η
2

)

(

−D2 − iB2 D1 + iB1

D1 − iB1 D2 − iB2

)(

ψ1

ψ2

)

(2.7)

which is easily recognized as the dimensional reduction of N = 1 super Yang-Mills theory in

four dimensions in which a chiral representation is employed for the fermions. As usual the

scalar fields Bµ arise from the gauge fields in the reduced directions.

2.2 Lattice theory

The transition to the lattice theory is straightforward; we employ the geometrical discretiza-

tion scheme proposed in [19]. For completeness we summarize it here. In general continuum

p-form fields are mapped to lattice fields defined on p-subsimplices of a general simplicial

2The bosonic action is real positive definite on account of the antihermitian basis that we have chosen
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lattice. In the case of hypercubic lattices this assignment is equivalent to placing a p-form

with indices µ1 . . . µp on the link connecting x with (x + µ1 + . . . + µp) where µi, i = 1 . . . p

corresponds to a unit vector in the lattice. Actually this is not quite the full story; each link

has two possible orientations and we must also specify which orientation is to be used for a

given field. A positively oriented field corresponds to one in which the link vector has positive

components with respect to the coordinate basis.

Continuum derivatives on such a hypercubic lattice are represented by lattice difference

operators acting on these link fields. Specifically, covariant derivatives appearing in curl-like

operations and acting on positively oriented fields are replaced by a lattice gauge covariant

forward difference operator whose action on lattice scalar and vector fields is given by

D(+)
µ f(x) = Uµ(x)f(x + µ) − f(x)Uµ(x)

D(+)
µ fν(x) = Uµ(x)fν(x + µ) − fν(x)Uµ(x + ν) (2.8)

where x denotes a two dimensional lattice vector and µ = (1, 0), ν = (0, 1) unit vectors in

the two coordinate directions. Here, we have replaced the continuum complex gauge fields

Aµ by non-unitary link fields Uµ = eiAµ . The backward difference operator D
−
µ replaces

the continuum covariant derivative in divergence-like operations and its action on (positively

oriented) lattice vector fields can be gotten by requiring that it be adjoint to D+
µ . Specifically

its action on lattice vectors is

D
(−)
µ fµ(x) = fµ(x)Uµ(x) − Uµ(x − µ)fµ(x − µ) (2.9)

The nilpotent scalar supersymmetry now acts on the lattice fields as

Q Uµ = ψµ

Q ψµ = 0

Q Uµ = 0

Q χµν = FL†
µν

Q η = d

Q d = 0 (2.10)

Here we written the lattice field strength as

FL
µν = D(+)

µ Uν(x) = Uµ(x)Uν(x + µ) − Uν(x)Uµ(x + ν) (2.11)

which reduces to the continuum (complex) field strength in the naive continuum limit and is

automatically antisymmetric in the indices (µ, ν).

Notice that this supersymmetry transformation implies that the fermion fields ψµ have

the same orientation as their superpartners the gauge links Uµ and run from x to (x + µ).

However, the field χµν must have the same orientation as F
L†
µν and hence is to be assigned

to the negatively oriented link running from (x+ µ + ν) down to x i.e parallel to the vector
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(−1,−1). This link choice also follows naturally from the matrix representation of the Kähler-

Dirac field Ψ

Ψ = ηI + ψµγµ + χ12γ1γ2 (2.12)

which associates the field χ12 with the lattice vector µ1 + µ2 = µ + ν. We will see that the

negative orientation is crucial for allowing us to write down gauge invariant expressions for

the fermion kinetic term. Finally, it should be clear that the scalar fields η and d can be

taken to transform simply as site fields.

These link mappings and orientations are conveniently summarised by giving the gauge

transformation properties of the lattice fields

η(x) → G(x)η(x)G†(x)

ψµ(x) → G(x)ψµ(x)G†(x + µ)

χµν(x) → G(x + µ + ν)χµνG
†(x)

Uµ(x) → G(x)η(x)G†(x)

Uµ(x) → G(x + µ)Uµ(x)G†(x) (2.13)

Notice that this choice of link and orientation for the twisted lattice fields maps exactly

into their r-charge assignments in the orbifolding approach [1]. Furthermore, the above Q-

variations and field assignments are equivalent to the approach described in [24] provided

that we set the fermionic shift parameter a in that formulation to zero and consider only the

corresponding scalar superymmetry.

The lattice gauge fermion now takes the form

Λ =
∑

x

Tr

(

χµνD
(+)
µ Uν + ηD

(−)
µ Uµ −

1

2
ηd

)

(2.14)

It is easy to see that in the naive continuum limit the lattice divergence D
(−)
µ Uµ equals

[Dµ,Dµ]. Notice that with the previous choice of orientation for the various fermionic link

fields this gauge fermion is automatically invariant under lattice gauge transformations. There

is no need for the doubling of degrees of freedom necessary in previous approaches to geometric

discretization [19, 33]. In those constructions the nature of the gauge fermion and the scalar

supercharge led to the presence of explicit Yukawa interactions in the theory. These in turn

required the lattice theory to contain fermion link fields of both orientations and hence led to a

doubling of degrees of freedom with respect to the continuum theory. In the twist described in

this paper the Yukawa interactions are embedded into the complexified covariant derivatives

and successive components of the Kähler-Dirac field representing the fermions can be chosen

with alternating orientations leading to a Kähler-Dirac action which is automatically gauge

invariant without these extra degrees of freedom.

Acting with the Q-transformation shown above and again integrating out the auxiliary

field d we derive the gauge and Q-invariant lattice action

S =
∑

x

Tr

(

FL†
µνF

L
µν +

1

2

(

D
(−)
µ Uµ

)2
− χµνD

(+)
[µ ψν] − ηD

(−)
µ ψµ

)

(2.15)
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But this is precisely the orbifold action arising in [1] with the modified deconstruction step

described in [34] and [25]. The two approaches are thus entirely equivalent.

We can use this geometrical formulation to show very easily that the lattice theory

exhibits no fermion doubling problems. The simplest way to do this is merely to notice that

the lattice action at zero coupling U → I conforms to the canonical form required for no

doubling by the theorem of Rabin [35]. Explicitly, discretization of continuum geometrical

actions will not encounter doubling problems if continuum derivatives acting in curl-like

operations are replaced by forward differences in the lattice theory while continuum derivatives

appearing in divergence-like operations are represented by backward differences on the lattice.

More precisely the continuum exterior derivative d is mapped to a forward difference while

its adjoint d† is represented by a backward difference.

However we can also see this by simply examining the the form of the fermion operator

arising in this construction.

(

χ12
η
2

)

(

−D
(+)
2 D

(+)
1

D
(−)
1 D(−)

)(

ψ1

ψ2

)

(2.16)

Clearly the determinant of this operator in the free limit is nothing more than the usual

determinant encountered for scalars in two dimensions and hence possesses no extraneous

zeroes that survive the continuum limit.

3. Sixteen supercharge theory in four dimensions

3.1 Continuum twisted theory

In the Q = 4 theory in two dimensions the physical degrees of freedom were encoded in

a complex gauge field. The same idea applied to the Q = 16 theory naturally leads us to

consider a theory of complex gauge fields Aa, a = 1 . . . 5 in five dimensions. Paralleling the

four supercharge theory we introduce an additional auxiliary bosonic scalar field d and a set

of five dimensional antisymmetric tensor fields to represent the fermions Ψ = (η, ψa, χab).

This latter field content corresponds to considering just one of the two Kähler-Dirac fields

used to represent the 32 fields of the five dimensional theory. Again, a nilpotent symmetry

relates these fields

Q Aa = ψa

Q ψa = 0

Q Aa = 0

Q χab = −Fab

Q η = d

Q d = 0 (3.1)
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and we may write down the same Q-exact action that was employed in two dimensions

S = βQΛ with

Λ =

∫

Tr

(

χabFab + η[Da,Da] −
1

2
ηd

)

(3.2)

where we have again employed complexified covariant derivatives. Carrying out the Q-

variation and subsequently integrating out the auxiliary field as for the Q = 4 theory leads

to the action

S =

∫

Tr

(

−FabFab +
1

2
[Da,Da]

2 − χabD[aψ b] − ηDaψa

)

(3.3)

Actually in this theory there is another fermionic term one can write down which is also

invariant under this supersymmetry taking the form

Sclosed = −
1

2

∫

ǫabcdeχabDcχde (3.4)

The invariance of this term is just a result of the Bianchi identity ǫabcdeDcFde = 0. The final

action we will employ is the sum of the Q-exact piece and this Q-closed term. The coefficient

in front of this term is determined by the requirement that the theory reproduce the Marcus

twist of N = 4 Yang-Mills.

Clearly to make contact with a twist of N = 4 in four dimensions we must dimensionally

reduce this theory along the 5th direction. This will yield a complex scalar φ = A5 + iB5 and

its superpartner η. The 10 five dimensional fermions χab naturally decompose into a 2-form

χµν and vector ψµ in four dimensions.

Aa → Aµ ⊕ φ

Fab → Fµν ⊕Dµφ
[

Da,Da

]

→
[

Dµ,Dµ

]

⊕
[

φ, φ
]

ψa → ψµ ⊕ η

χab → χµν ⊕ ψµ (3.5)

where we will employ the convention that Greek indices run from one to four and are reserved

for four dimensional tensors while Roman indices refer to the original five dimensional theory.

The reduced action takes the form

S =

∫

Tr

(

−FµνFµν +
1

2

[

Dµ,Dµ

]2
+

1

2

[

φ, φ
]2

+ (Dµφ)†(Dµφ) − χµνD[µψν]

− ψµDµη − ψµ [φ,ψµ] − ηDµψµ − η
[

φ, η
]

− χ∗
µνDµψν − χ∗

µν

[

φ, χµν

])

(3.6)

where the last two terms arise from dimensional reduction of the Q-closed term and χ∗ is

the Hodge dual of χ, χµν = 1
2ǫµνρλχρλ. Up to trivial rescalings this is the action (with gauge

parameter α = 1) of twisted N = 4 Yang-Mills in four dimensions written down by Marcus
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[36]3. This twisted action is well known to be fully equivalent to the usual form of N = 4

in flat space. Here, we have shown how to derive this theory by dimensional reduction of

a rather simple five dimensional theory employing a complex gauge field and integer spin

twisted fermions. It will be the basis of our lattice formulation to which we now turn.

3.2 Lattice theory

The discretization scheme we use is precisely the same as for two supercharge theory. Complex

five dimensional gauge fields are replaced by complex gauge links Ua, a = 1 . . . 5. The Q-

supersymmetry is essentially the same as in the continuum and remains nilpotent

Q Ua = ψa

Q Ua = 0

Q ψa = 0

Q χab =
(

FL
ab

)†

Q η = d

Q d = 0 (3.7)

where the lattice field strength FL
ab is given by eqn. 2.11 as before. The chief difficulty re-

maining is to decide how the continuum tensor fields are to be assigned to lattice links after

dimensional reduction to four dimensions. For the moment let us base our discretization

scheme around a hypercubic lattice. Then the gauge links Uµ ≡ Ua, a = 1 . . . 4 should live

on elementary coordinate directions in the unit hypercube. This then implies that the super-

partners of those gauge links ψµ should also live on those links and be oriented in the same

fashion i.e running from x to (x+µ). We will adopt the notation that these four basis vectors

are labeled µa, a = 1 . . . 4.

However the assignment of ψ5 is not immediately obvious – a naive assignment to a site

field would result in two fermionic scalars which is not what is expected for a four dimensional

Kähler-Dirac field. The same line of reasoning suggests in fact that we associate ψ5 with the

4-form component of that field. An independent line of argument confirms this; the field ψ5

is part of the vector component of a five dimensional Kähler-Dirac field and is thus associated

with the five dimensional gamma matrix Γ5. This is usually represented by the chiral matrix

of the four dimensional theory Γ5 = γ5 = γ1γ2γ3γ4 and suggests a 4-form interpretation

for the field in the four dimensional theory. As for two dimensions this motivates assigning

the lattice field to the body diagonal of the unit hypercube. Actually we must be careful;

this same assignment will also apply to the field U5. To construct the bosonic action we

need to able to apply D
(+)
a to this link field and stay within the unit hypercube. Thus we

choose the fields to be oriented in the opposite direction corresponding to the basis vector

µ5 = (−1,−1,−1,−1). Notice that this assignment ensures that
∑5

a=1 µa = 0 which will be

seen to be crucial for constructing gauge invariant quantities.

3It is also the twist of N = 4 YM used in the Geometric Langlands program [37]
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As for two dimensions we will summarize these link and orientation assignments by

writing down a set of gauge transformations for the fields

η(x) → G(x)η(x)G†(x)

ψa(x) → G(x)ψa(x)G(x + µa)

χab(x) → G(x + µa + µb)χab(x)G†(x)

Ua(x) → G(x)Uµ(x)G†(x + µa)

Ua(x) → G(x + µa)Uµ(x)G†(x) (3.8)

(3.9)

In this form the reader will see that the gauge transformations of fields in this four dimensional

theory follow almost exactly the same form as their cousins in two dimensions. Notice also

that these link choices and orientations match exactly the r-charge assignments of the orbifold

action for the sixteen supercharge theory in four dimensions [3].

However, one should note that with these conventions not all fields lie in the positively

oriented unit hypercube. The problematic fields all possess a tensor index a = 5. However

they can be mapped into the hypercube by a simple lattice translation. The transformation

is

χ5µ(x− µ5 − µ) →
1

3!
ǫµνλρθνλρ(x)

ψ5(x − µ5) →
1

4!
ǫµνλρκµνλρ(x) (3.10)

where we have relabeled the mapped fields so as to match their corresponding link assignment

in the unit hypercube. Notice that χ5µ contains the field θνλρ which plays the role of the 3-

form component of a four dimensional Kähler-Dirac field. The 2-form and 4-form components

are then supplied by χab, a, b = 1 . . . 4 and κµνλρ. Furthermore the θνλρ and κµνλρ fields have

positive and negative orientation. Thus, as for two dimensions, successive components of the

resultant fermionic Kähler-Dirac field alternate in orientation which will be the key to writing

down gauge invariant fermion kinetic terms. Clearly any expression which is summed over all

lattice points will be invariant under such a translation and we will use this freedom later to

recast the lattice action in a way which makes clear why the fermionic action does not suffer

from doubling problems.

The advantage of the 5D variables is that they allow easy comparison with the analogous

orbifold expressions and are compatible with our previous expressions for gauge covariant

finite differences which can now be written in the general form

D(+)
c fd(x) = Uc(x)fd(x + µc) − fd(x)Uc(x + µd) (3.11)

D(−)
c fc(x) = fc(x)U c(x) − Uc(x− µc)fc(x − µc) (3.12)

– 9 –



Using these ingredients the lattice action arising from the Q-exact piece of the continuum

action takes the form

S =
∑

x

Tr

(

F
L†
ab F

L
ab +

1

2

(

D
(−)
a Ua

)2
− χabD

(+)
[a ψ b] − ηD

(−)
a ψa

)

(3.13)

There is one remaining subtlety in this identification. Exactly how does the Q-closed term

remain supersymmetric under discretization ? A natural lattice analog of Dcχab is given by

D
(−)
c χab(x) = χab(x)Uc(x − µc) − Uc(x + µa + µb − µc)χab(x− µc) (3.14)

Using this it is straightforward to write down a gauge invariant lattice analog of the continuum

Q-closed term

Sclosed = −
1

2

∑

x

Tr ǫabcdeχde(x + µa + µb + µc)D
(−)
c χ(x + µc) (3.15)

Notice that the ǫ-tensor forces all indices to be distinct and the gauge invariance of this result

follows from the fact that
∑5

i=1 µi = 0. It is easy to see that it is equal to third fermionic

term of the orbifold action appearing in eqn. (3.18) of reference [3].

In the continuum the invariance of this term under Q-transformations requires use of the

Bianchi identity. Remarkably, the lattice difference operator satisfies a similar identity (see

[38] for the four dimensional result)

ǫabcdeD
(+)
c FL

de = 0 (3.16)

Thus the discretization of the Q-closed term in eqn. 3.15 is indeed invariant under the lattice

Q-transformation given in eqn. 3.7. This completes the proof of the equivalence. The connec-

tion between the naive continuum limit of the orbifold lattice and the Marcus twist of N = 4

super Yang-Mills was shown earlier by Unsal [28]; in this paper we make this connection

explicit by discretizing the latter theory in a way which maintains the scalar supersymmetry

and obtain the orbifold action directly.

Finally to obtain the hypercubic lattice discretization of the continuum Marcus theory

requires setting U5 = φ a complex field with vanishing expectation value. Notice though that

this discretization contains elementary links of varying length. Actually the lattice action we

have derived is clearly supersymmetric for arbitrary deformations of the lengths and orien-

tations of the five basic vectors µa, a = 1 . . . 5. Thus it is possible to consider the symmetric

situation in which the lattice in spacetime is constructed from a unit cell in which these basis

vectors are equivalent – they point out from the center of a four-dimensional hypertetrahedron

to its five vertices. These vectors ei, i = 1 . . . 5 are given explicitly in [3]. At the same time we

must set U5 to the exponential of a complex matrix to maintain symmetry with the other link

fields Uµ, µ = 1 . . . 4. This construction necessitates introducing a map between the abstract

lattice used to build the supersymmetric theory and spanned by the integer component vec-

tors x = (n1, n2, n3, n4) and the physical spacetime coordinates R. Explicitly R =
∑5

i=1 niei.
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Such a lattice has the point group symmetry S5 which is much larger than the S4 symmetry

of the hypercubic lattice - a factor which may prove to be important when examining the

restoration of rotational invariance and the other supersymmetries of the continuum N = 4

theory.

3.3 Absence of fermion doubling

Finally this geometric approach makes it easier to understand why this lattice theory does not

suffer from doubling problems. We will analyze this question in the context of the hypercubic

lattice discretization. Clearly most of the fermionic kinetic terms manifestly satisfy the double

free discretization prescription given by Rabin [35]. The only difficult terms arise when one or

more tensor indices of the fields equal a = 5. Expressions involving these fields are not located

wholly in the positively oriented unit hypercube and must be translated into the hypercube

before they can examined from the perspective of this prescription. As an example, consider

the term

∑

x

Tr χ5µD
(+)
µ ψ5 =

∑

x

Tr χ5µ(x) (Uµ(x)ψ5(x + µ) − ψ5(x)Uµ(x + µ5)) (3.17)

We first shift the coordinates x → (x−µ5 −µ) and then use the previous change of variables

given in eqn. 3.10 to rewrite this as

1

3!

∑

x

Tr θνλρ(x) (Uµ(x − µ5 − µ)κµνλρ(x) − κµνλρ(x − µ)Uµ(x − µ)) (3.18)

In the limit of zero coupling U = I this takes the form

1

3!

∑

x

Tr θνλρ(x)D(−)
µ κµνρλ(x) (3.19)

which now has the correct canonical form to exclude doubles according to the theorem of

Rabin [35]. Notice that the original forward difference has become a backward difference

operator after the change of variables.

The only other term requiring this more careful analysis arises from the Q-closed term.

The problematic term looks like

ǫabcd5χ5d(x + µa + µb + µc)
(

χ12(x + µc)U c(x) − Uc(x + µa + µb)χab(x)
)

(3.20)

Using the result
∑5

a=1 µa = 0 this can be written for zero coupling (U → I) as

1

3!
θabc(x)D

(+)
[c χab](x) (3.21)

where the presence of the epsilon symbol ensures the complete antisymmetrization of the

derivative. This final form has the form required by Rabin’s theorem. The theory is thus

manifestly free of doubles.
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4. Conclusions

In this paper we have shown how to derive the supersymmetric orbifold lattices of Cohen et

al. [1] and Kaplan et al. [3] by geometrical discretization of the continuum twisted super-

symmetric Yang-Mills theory. This connection is not unexpected – Unsal showed earlier [28]

that the naive continuum limit of the Q = 16 orbifold theory in four dimensions corresponded

to the Marcus twist of N = 4 and more recent work by Damgaard et al. [25] and Takimi

[27] have exhibited the strong connections between discretizations of the twisted theory and

orbifold theories. Our new work makes the connection complete – the two approaches are

in fact identical provided one chooses the exact lattice supersymmetry carefully and uses

the geometric discretization proposed in [19]. In fact, as was pointed out in [26] this lattice

theory is essentially equivalent to the one proposed in [24] provided that the fermionic shift

parameter employed in that model is chosen to be zero and we restrict our attention solely

to the corresponding scalar supercharge.

The case of Q = 16 is particularly interesting. We have shown that the continuum

theory can be recast as the dimensional reduction of a very simple five dimensional theory.

The Q-exact part of the action is essentially identical to the two dimensional theory with

the primary difference between the two theories arising because of the appearance of a new

Q-closed term which was not possible in two dimensions. Nevertheless discretization proceeds

along the same lines, the one subtlety being the lattice link assignment of the fifth component

of the complex gauge field after dimensional reduction. The key requirement governing dis-

cretization is that successive components of the Kähler-Dirac field representing the fermions

have opposite orientations. This allows the fermionic action to be gauge invariant without

any additional doubling of degrees of freedom. It seems likely that all the orbifold actions in

various dimensions can be obtained in this manner.
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