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Abstract

We derive lattice actions for Yang-Mills quantum mechanics for models with Q = 4, 8 and 16

supercharges which possess an exact supersymmetry at non-zero lattice spacing. These are obtained

by dimensional reduction of twisted versions of the corresponding super Yang-Mills theories in

D = 2, 3 and 4 dimensions.
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I. INTRODUCTION

Supersymmetric Yang-Mills theories are interesting both as playgrounds for understanding quan-

tum field theory and as gauge theories which are conjectured to be dual to certain string theories

[1, 2]. Typically these dualities between string and gauge theory require that the gauge theory be

taken at strong coupling. This requirement motivates defining the theory on a lattice which would

allow for strong coupling expansions and Monte Carlo simulation. Perhaps the simplest of these

gauge-gravity dualties is exhibited by the conjectured equivalence of the type IIA string theory con-

taining N D0-branes and super Yang-Mills quantum mechanics with gauge group SU(N). More

specifically the large N limit of the gauge model at low temperature T or strong ‘t Hooft coupling

is thought to provide a description of the black hole that arises in the low energy supergravity limit

of the string theory. Initial investigations of this and related models have been reported in the

literature [3, 4, 5]. The numerical work so far has employed actions that do not possess an exact

supersymmetry [6]. The purpose of this work is to derive lattice actions which retain an exact

supersymmetry at non-zero lattice spacing which could be used in similar Monte Carlo studies.

Unfortunately, conventional discretizations of supersymmetric theories break supersymmetry

completely and the resultant lattice theories typically require a great deal of fine tuning in order

that supersymmetry is recovered in the continuum limit [7, 8, 9]. However, it has been shown that in

theories with a multiple of 2D supercharges, where D is the total number of spacetime dimensions,

one or more supersymmetries can be retained provided the discretization scheme is chosen carefully.

Two approaches have been successfully pursued based on either orbifolding a supersymmetric matrix

model [10, 11, 12] or direct discretization of a reformulation of the continuum supersymmetric theory

in terms of so-called twisted variables [13, 14, 15, 16, 17]. Recently, these two approaches have been

shown to be equivalent [18, 19, 20, 21, 22].

The idea of twisting goes back to the seminal paper of Witten in which the twisted formulation

was used to construct a topological field theory [23]. The process naturally exposes a nilpotent

scalar supersymmetry with the topological sector of the twisted theory corresponding to operators

invariant under the action of this scalar supersymmetry. In the context of creating supersymmetric

lattice theories this projection to the Q-invariant subspace is dropped and the twisting (in flat
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space) is simply regarded as a convenient change of variables - one more suitable for discretization.

Indeed, the fermionic content is then encoded by a series of antisymmetric tensor fields which can

be embedded as components of one or more Kähler-Dirac fields [24]. As was shown by Rabin

[25], theories involving Kähler-Dirac fields may be discretized without inducing fermion doubling

problems and indeed at the level of free field theory the resultant lattice theories are equivalent to

staggered fermions [26].

In addition to a geometrical treatment of the fermions the twisted formulation has the merit

of allowing the action to be written in Q-exact form. Thus the problem of translating the Q-

invariance of the continuum theory to the lattice is replaced by the simpler requirement of keeping

the scalar supercharge nilpotent when acting on the lattice fields. Typically this is a much simpler

proposition and is the one adopted by all discretizations of the twisted theories considered so far

[14, 15, 16, 17, 22, 27, 28].

In this paper, we start from the twisted forms of the gauge theories in two, three and four

dimensions which possess Q = 4, 8 and 16 supersymmetries and dimensionally reduce them to one

(Euclidean) dimension. The resultant continuum theories can be written in terms of multiples of

the basic Kähler-Dirac field which in one dimension which contains one scalar and one vector field.

We show also that each new scalar fermion is associated with an additional scalar supersymmetry

which is inherited from the dimensional reduction. Discretization then proceeds using a prescription

due to Sugino [27].

II. THE FOUR SUPERCHARGE MODEL

Consider the continuum twisted form of the two dimensional N = 2 (Euclidean) super Yang-

Mills model given in eg. [15]. The bosonic part of this theory contains two scalar fields φ, φ̄, a

vector Aµ and a tensor field Bµν . The fermionic part consists of an anticommuting scalar field η, a

vector ψµ and a field χµν . If Q is a scalar supercharge obtained by twisting the original Majorana

supercharges of the theory, the Q-variation of the gauge fermion

Λ = Tr

∫
d2x

(1

4
η[φ, φ̄] + χµνFµν +

1

2
χµνBµν + ψµDµφ̄

)
(1)
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will give us a twisted action

S = βQΛ, (2)

where β is a coupling constant. Dimensional reduction of the action to one dimension will then

yield a supersymmetric Yang-Mills quantum mechanics theory. Dimensionally reducing eqn. (1)

with respect to the x2-direction we find

Λ = Tr

∫
dx

(1

4
η[φ, φ̄] + 2χ12D1A2 + χ12B12 + ψ1D1φ̄+ ψ2[A2, φ̄]

)
. (3)

The scalar supercharge Q acts on the component fields as follows

Q A1 = ψ1,

Q A2 = ψ2,

Q ψ1 = −D1φ,

Q ψ2 = −[A2, φ],

Q φ = 0, (4)

Q χ12 = B12,

Q B12 = [φ, χ12],

Q φ̄ = η,

Q η = [φ, φ̄].

Carrying out the Q-variation on eqn. (3) and integrating over the multiplier field B12 we arrive at

the action

S = β Tr

∫
dx

(
−

3∑

i=1

(D1φ
i)2 −

3∑

i<j, i,j=1

[φi, φj ]2 − 2ψ1
1D1η

1 − 2ψ2
1D1η

2 + ψ1
1 [φ̄, ψ

1
1 ]

− ψ2
1 [φ,ψ

2
1 ] − η1[φ, η1] + η2[φ̄, η2] + 2ψ1

1 [φ
3, ψ2

1 ] − 2η1[φ3, η2]
)
. (5)
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Notice that we have relabelled the fields:

OLD → NEW

ψ1 → ψ1
1

χ12 → ψ2
1

η/2 → η1

ψ2 → η2

A2 → φ3

It will also prove convenient to decompose the scalar fields φ = −φ1 + iφ2 and φ̄ = −φ1 − iφ2.

In terms of the relabelled fields we write the part of the action comprising the fermionic and

Yukawa terms in the form

SF + SY =

∫
dx Tr Ψ†Γ4D1Ψ +

3∑

i=1

Ψ†[Γiφi,Ψ], (6)

where

Γ1 = 1⊗ σ3, Γ2 = −i 1 ⊗ 1, Γ3 = σ3 ⊗ σ1, Γ4 = σ1 ⊗ 1, (7)

and the spinor

Ψ† = (ψ1
1 ψ

2
1 η

1 η2) . (8)

This form of the twisted theory can be related to the usual action for N = 1 super Yang-Mills

theory reduced to one dimension by recognizing that the usual 4d Majorana matrices given by

γ1 = iσ1 ⊗ σ3, γ2 = i 1 ⊗ 1, γ3 = −iσ1 ⊗ σ1, γ4 = −iγ0 = iσ1 ⊗ σ2 (9)

may be transformed to the above Γ representation using the similarity transformation [30]

Γ1 = iSγ4γ3S−1, Γ2 = iSγ4γ4S−1, Γ3 = iSγ4γ1S−1, Γ4 = iSγ4γ2S−1, (10)

where

S =


 σ1 0

0 σ3


 . (11)

We see that the twisted fermions fill out the usual 4d Majorana spinor as expected.
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Notice that the twisted theory is actually equivalent to a dimensional reduction of the usual

N = 1 theory in four dimensional Minkowski space along one space and the time direction followed

by a Wick rotation of the original temporal direction. The latter corresponds to AMin
t → φMin

2 →

iφEucl
2 . The final Euclidean time direction is then associated with the Dirac matrix Γ4 =


 0 I

I 0


.

In this form it is easily discretized as we will see later while maintaining the antisymmetry of the

discrete Dirac operator.

The twist decomposition of N = 2 theory gives rise to four supercharges - two scalars and two

vectors. We have used only one scalar supercharge Q in deriving the above continuum action from

the gauge fermion Λ. Clearly the new scalar fermion that appears in the dimensionally reduced

theory is related to the existence of this second scalar supersymmetry. Its action on the fields can

be uncovered by noticing that the continuum action given in eqn. (5) is invariant under the field

transformations

ψ1
1 → ψ2

1

η1 → η2 (12)

φ3 → φ3

φ → −φ

This set of field transformations is a symmetry of the continuum action. We can combine this

with the action of the scalar supercharge Q to derive an additional supersymmetry, say Q′ of the

theory. It corresponds to the vector supercharge Q2 of the two dimensional parent theory before

dimensional reduction. In the continuum the theory can then also be written in a Q′-exact form.

However, we will see that in our lattice construction this second supersymmetry is broken by terms

of order the lattice spacing. However, using the arguments given in [4] it should be recovered

without fine tuning in the continuum limit. This supersymmetry will transform component fields
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of the continuum theory in the following way

Q′ A1 = ψ2
1 ,

Q′ φ3 = η1,

Q′ ψ1
1 = B12,

Q′ ψ2
1 = D1φ̄,

Q′ η1 = −[φ̄, φ3], (13)

Q′ η2 = −1

2
[φ, φ̄],

Q′ φ̄ = 0,

Q′ φ = −2η2,

Q′ B12 = −[φ̄, ψ1
1 ]

This method for deriving additional twisted supersymmetries is described in some detail in [29].

Turning now to the lattice, it is straightforward to discretize this theory in a way which preserves

the nilpotency of Q. The prescription was given by Sugino [14] in the context of the two dimensional

model. Here, we trivially extend it to discretization of a one dimensional model. We place all the

fields on sites of a regular one dimensional lattice except the gauge field A1(x), which is replaced

by a unitary variable U1(x) living on the link (x, x + 1̂). We write the lattice gauge fermion Λ in

terms of lattice variables

ΛL = Tr
∑

x

( 1

4
η(x)[φ(x), φ̄(x)] + 2χ12(x)D

+
1 A2(x) + χ12(x)B12(x) + ψ1(x)D

+
1 φ̄

+ ψ2(x)[A2(x), φ̄(x)]
)
, (14)

where the forward difference operator is defined as

D+
µ f(x) = Uµ(x)f(x+ µ)U †

µ(x) − f(x). (15)
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The scalar supersymmetry transformation rules on the lattice take the form [14]

Q U1(x) = ψ1(x)U1(x),

Q A2(x) = ψ2(x),

Q ψ1(x) = ψ1(x)ψ1(x) −D+
1 φ(x),

Q ψ2(x) = −[A2(x), φ(x)],

Q φ(x) = 0, (16)

Q χ12(x) = B12(x),

Q B12(x) = [φ(x), χ12(x)],

Q φ̄(x) = η(x),

Q η(x) = [φ(x), φ̄(x)].

These transformations reduce to their continuum counterparts in the limit of vanishing lattice

spacing where, for example, the term quadratic in ψµ is suppressed by an additional power of the

lattice spacing. Notice that Q2 is still nilpotent up to lattice gauge transformations. In dimensions

two or greater this prescription is problematic in that it leads to a gauge action which possesses

many vacua all but one of which are absent in the continuum theory. However, in one dimension

this term is missing and the lattice prescription is well defined.

Applying the lattice Q-variation to eqn. (14) and integrating out the multiplier fields we get

the lattice action

S = SB + SF + SY + SR , (17)

where the bosonic part of the action

SB = β Tr
∑

x

(
−

3∑

i=1

(D+
1 φ

i(x))2 −
3∑

i<j, i,j=1

[φi(x), φj(x)]2
)
, (18)

the fermionic kinetic term is

SF = β Tr
∑

x

−2
(
ψ1

1D
+
1 η

1(x) + ψ2
1(x)D

+
1 η

2(x)
)
, (19)

and the Yukawa part

SY = β Tr
∑

x

(
ψ1

1(x)[
˜̄φ(x), ψ1

1(x)] + 2ψ1
1(x)[φ̃

3(x), ψ2
1(x)] − ψ2

1(x)[φ(x), ψ2
1(x)]

− η1(x)[φ(x), η1(x)] − 2η1(x)[φ3(x), η2(x)] + η2(x)[φ̄(x), η2(x)]
)
. (20)
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In addition, the lattice action picks up a residual part

SR = −β Tr
∑

x

ψ1
1(x)ψ

1
1(x)D+

1 φ
1(x) + iψ1

1(x)ψ
1
1(x)D+

1 φ
2(x) . (21)

Here also we have rescaled and relabelled the fields as in the continuum case. Notice that the fields

φ and φ̄ appear in an unusual way in the Yukawa part of the action:

φ̃(x) = U1(x)φ(x+ 1̂)U1(x)
†

and

˜̄φ(x) = U1(x)φ̄(x+ 1̂)U †
1 (x).

This smearing of certain scalar Yukawa terms is due to the non-trivial Q-transformations we defined

on U1(x) and ψ1(x). The residual part of the lattice action is also a consequence of these non-trivial

transformations. Furthermore, the presence of these point smeared Yukawas and this residual piece

in the lattice action break the Q′-symmetry introduced earlier.

The fermion kinetic term can be expressed in the form

D1 =


 0 (I2×2)D

+
1

(I2×2)D
−
1 0


 (22)

which has the same Γ4 structure as appeared in the continuum case and is explicitly antisymmetric

as required. However, the Yukawa interactions cannot be put in such a simple form as a result of

the appearance of terms depending on the smeared scalar fields as described above. Instead the

Yukawa part takes the form

Ψ
†[Õ,Ψ], (23)

where the matrix

Õ =




˜̄φ φ̃3 0 0

φ̃3 −φ 0 0

0 0 φ̄ −φ3

0 0 −φ3 −φ




(24)
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III. THE EIGHT SUPERCHARGE MODEL

Here we consider the twisted version of N = 4 super Yang-Mills theory in three (Euclidean)

dimensions. The theory contains eight supercharges. The bosonic part consists of a gauge potential

Aµ, where µ = 1, 2, 3, two scalars φ and φ̄, and two fields Bµν and Wµνλ. The fermionic part of the

theory consists of one anti-commuting scalar η, a vector ψµ, a tensor χµν and the 3-form field θµνλ.

The twisted action can again be written in a Q-exact form

S = β QΛ, (25)

where the gauge fermion Λ takes the form

Λ =

∫
d3x Tr

(
χµν(Fµν +

1

2
Bµν +DλWλµν) + ψµDµφ̄+

1

4
η[φ, φ̄] +

1

3!
θµνλ[Wµνλ, φ̄]

)
. (26)

Dimensional reduction of this action to one dimension will give a supersymmetric quantum

mechanics with eight supercharges. The gauge fermion Λ, after dimensionally reducing along x2-

and x3-directions

Λ =

∫
d3x Tr

(
χ12D1A2 + χ13D1A3 + χ23[A2, A3] + χ12B12 + χ13B13 + χ23B23

+ χ12[A3,W312] + χ13[A2,W213] + χ23D1W123 + ψ1D1φ̄+ ψ2[A2, φ̄]

+ ψ3[A3, φ̄] +
1

4
η[φ, φ̄] + θ123[W123, φ̄]

)
. (27)

Again it is straightforward to we write down the scalar supercharge transformation rules for the
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component fields

QAµ = ψµ,

Qψ1 = −D1φ,

Qψi = −[Ai, φ], i 6= 1,

Qφ = 0,

Qφ̄ = η,

Qη = [φ, φ̄], (28)

QBµν = [φ, χµν ],

Qχµν = Bµν ,

QWµνλ = θµνλ,

Qθµνλ = [φ,Wµνλ].

After integrating out the multiplier field Bµν , and using the Bianchi identity, the bosonic part

of the action can be written in the following form

SB = β

∫
dx Tr

(
− (D1A2)

2 − (D1A3)
2 − [A2, A3]

2 − (D1W123)
2 − [A2,W231]

2 − [A3,W312]
2

− (D1φ
1)2 − (D1φ

2)2 − [A2, φ
1]2 − [A2, φ

2]2 − [A3, φ
1]2 − [A3, φ

2]2

− [φ1, φ2]2 − [φ1,W123]
2 − [φ2,W123]

2
)

(29)

where we have decomposed the fields φ = φ1 + iφ2 and φ̄ = φ1 − iφ2.

Relabelling the fields

φ3 = A2

φ4 = A3 (30)

V 1 = W123

the bosonic part of the action becomes

SB = β

∫
dx Tr −

4∑

i=1

(D1φ
i)2 − (D1V

1)2 −
4∑

i<j; i,j=1

[φi, φj ]2 −
4∑

i=1

[φi, V 1]2. (31)
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Dimensional reduction of the fermionic kinetic part of the action will give pure kinetic part

SF corresponding to the x1-direction together with Yukawa couplings SFY from the x2- and x3-

directions

SF = −2β

∫
dx Tr

[
χ12D1ψ2 + χ13D1ψ3 + χ23D1θ123 +

η

2
D1ψ1

]
, (32)

SFY = 2β

∫
dx Tr

[
χ12[A2, ψ1] − χ23[A2, ψ3] + χ13[A2, θ123] −

η

2
[A2, ψ2] + χ13[A3, ψ1]

+ χ23[A3, ψ2] − χ12[A3, θ123] −
η

2
[A3, ψ3]

]
. (33)

The Yukawa part of the action being

SY = β

∫
dx Tr

(
− η

2
[φ,

η

2
] − χ12[φ, χ12] − χ13[φ, χ13] − χ23[φ, χ23] + ψ1[φ̄, ψ1]

+ ψ2[φ̄, ψ2] + ψ3[φ̄, ψ3] + θ123[φ̄, θ123] + 2
η

2
[θ123,W123] + 2χ12[W123, ψ3]

− 2χ13[W123, ψ2] + 2χ23[W123, ψ1]
)
. (34)

Relabelling the fermionic fields

OLD −→ NEW

−ψ1 −→ ψ1
1

χ12 −→ ψ2
1

χ13 −→ ψ3
1

θ123 −→ ψ4
1

−η
2

−→ η1

ψ2 −→ η2

ψ3 −→ η3

χ23 −→ η4

the action for the supersymmetric Yang-Mills quantum mechanics can be written in a more compact

form

S = β

∫
dx Tr Ψ† Γ6D1Ψ +

4∑

i=1

Ψ†[Γiφi,Ψ] + Ψ†[Γ5V 1,Ψ], (35)
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where the spinor

Ψ† = (ψ1
1 ψ

2
1 ψ

3
1 ψ

4
1 η

1 η2 η3 η4), (36)

and the Γ’s

Γ1 = σ3 ⊗ σ3 ⊗ σ3, Γ2 = −i 1 ⊗ 1 ⊗ 1, Γ3 = −σ3 ⊗ σ3 ⊗ σ1,

Γ4 = −σ3 ⊗ σ1 ⊗ 1, Γ5 = σ2 ⊗ σ1 ⊗ σ2, Γ6 = −σ1 ⊗ 1 ⊗ 1.

Dimensional reduction of the eight supercharge action leads to four scalar fermions and thus four

scalar supercharges. So far we have made use of only one of them, the supercharge Q, to construct

the action. The remaining scalar supersymmetries may be revealed using the scalar supercharge

Q and additional symmetries of the action. For example, to obtain another scalar supersymmetry

say Q′, we look at the invariance of the action under the field transformations

V 1 → −V 1, φ3 → −φ3, (37)

along with

ψ1
1 → ψ4

1 , η1 → η4,

ψ2
1 → ψ3

1 , η2 → η3,

ψ3
1 → ψ2

1 , η3 → η2, (38)

ψ4
1 → ψ1

1 , η4 → η1.

The scalar supersymmetry, Q′ associated with this invariance of the action is

Q′ψ1
1 = [φ, V 1], Q′η1 = B23, Q′B12 = [φ,ψ3

1 ], Q′φ = 0,

Q′ψ2
1 = B13, Q′η2 = [φ, φ4], Q′B13 = [φ,ψ2

1 ], Q′φ̄ = −η4,

Q′ψ3
1 = B12, Q′η3 = −[φ, φ3], Q′B23 = [φ, η1], Q′φ3 = −η3,

Q′ψ4
1 = D1φ, Q′η4 = [φ, φ̄], Q′A1 = ψ4

1 , Q′φ4 = η2,

Q′V 1 = ψ1
1 .
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The lattice action is obtained by the Q-variation of the gauge fermion

Λ =
∑

x

Tr
(
χ12(x)D

+
1 A2(x) + χ13(x)D

+
1 A3(x) + χ23(x)[A2(x), A3(x)] + χ12(x)B12(x)

+ χ13(x)B13(x) + χ23(x)B23(x) + χ12(x)[A3(x),W312(x)] + χ13(x)[A2(x),W213(x)]

+ χ23(x)D
−
1 W123(x) + ψ1(x)D

+
1 φ̄(x) + ψ2(x)[A2(x), φ̄(x)] + ψ3(x)[A3(x), φ̄(x)]

+
1

4
η(x)[φ(x), φ̄(x)] + θ123(x)[W123(x), φ̄(x)]

)
, (39)

where the backward difference operator is defined as

D−
µ gµ(x) = gµ(x) − U †

µ(x− µ)gµ(x− µ)Uµ(x− µ), (40)

and the Q-transformation rules for fields on lattice are similar to the Q = 4 model

QU1(x) = ψ1(x)U1(x) QAµ(x) = ψµ(x)

Qψ1(x) = ψ1(x)ψ1(x) −D+
1 φ(x), Qψi(x) = −[Ai(x), φ(x)], i 6= 1,

Qη(x) = [φ(x), φ̄(x)], QBµν(x) = [φ(x), χµν(x)]

Qχµν(x) = Bµν(x), QWµνλ(x) = θµνλ(x) (41)

Qθµνλ(x) = [φ(x),Wµνλ(x)], Qφ(x) = 0,

Qφ̄(x) = η(x).

Carrying out the Q-variation we write down the action

S = SB + SF + SY + SR. (42)

In terms of the relabelled fields

ψ1
1(x) = −ψ1(x), η1(x) = −η

2
(x),

ψ2
1(x) = χ12(x), η2(x) = ψ2(x),

ψ3
1(x) = χ13(x), η3(x) = ψ3(x),

ψ4
1(x) = θ123(x), η4(x) = χ23(x),

φ3(x) = A2(x), φ4(x) = A3(x),

V 1(x) = W123(x), φ(x) = φ1(x) + iφ2(x).
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the bosonic part takes the form

SB = β
∑

x

Tr
[
−

(
D+

1 φ
3(x) +D+

1 φ
4(x) + [φ3(x), φ4(x)]

)2
−

(
D−

1 V
1(x) − [φ3(x), V 1(x)]

+ [φ4(x), V 1(x)]
)2

−
(
D+

1 φ
1(x)

)2
−

(
D+

1 φ
2(x)

)2
− [φ3(x), φ1(x)]2

− [φ3(x), φ2(x)]2 − [φ4(x), φ1(x)]2 − [φ4(x), φ2(x)]2 − [φ1(x), φ2(x)]2

− [φ1(x), V 1(x)]2 − [φ2(x), V 1(x)]2
]
. (43)

Notice that unlike the continuum case this cannot be further simplified since the lattice theory

does not possess an exact Bianchi identity. The fermionic kinetic term can be expressed in a matrix

form similar to the Γ6 matrix in the continuum, with the same spinor structure as eqn. (36),

D1 =


 0 (I4×4)D

−
1

(I4×4)D
+
1 0


 (44)

The Yukawa part of the action SY can also be expressed in a matrix form

Ψ
†[Õ,Ψ], (45)

where

Õ =




˜̄φ −φ̃3 −φ̃4 0 0 0 0 −Ṽ 1

−φ̃3 −φ 0 −φ4 0 0 V 1 0

−φ̃4 0 −φ φ3 0 −V 1 0 0

0 −φ4 φ3 φ̄ V 1 0 0 0

0 0 0 V 1 −φ φ3 φ4 0

0 0 −V 1 0 φ3 φ̄ 0 φ4

0 V 1 0 0 φ4 0 φ̄ −φ3

−Ṽ1 0 0 0 0 φ4 −φ3 −φ




(46)

We cannot decompose the Yukawa matrix as given in the continuum case because of the specific

form of the latticization procedure we have chosen.

The action has a residual part also

SR = β Tr
∑

x

ψ1
1(x)ψ

1
1(x)D+

1 φ
1(x) − iψ1

1(x)ψ
1
1(x)D

+
1 φ

2(x). (47)
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IV. THE SIXTEEN SUPERCHARGE MODEL

Starting from the form of the four dimensional gauge fermion Λ of twisted N = 4 super Yang-

Mills theory given in [28] we find

Λ =

∫
d4x Tr

[
χµν

(
Fµν +

1

2
Bµν − 1

4
[Wµλρ,Wνλρ] +

√
2DλWλµν

)
+ ψµDµφ̄+

1

4
η[φ, φ̄]

+
1

2

1

3!
θµνλ[Wµνλ, φ̄] − 1

3!
κµνλρD[µWνλρ] +

1

2

1

4!
κµνλρCµνλρ

]
. (48)

To construct a 16 supercharge Yang-Mills quantum mechanics, we dimensionally reduce eqn.

(48) with respect to the x2-, x3- and x4-directions. The reduced scalar supercharge transformation

rules are

QAµ = ψµ, Qψ1 = −D1φ,

Qψi = −[Ai, φ], i 6= 1 , Qφ = 0,

Qφ̄ = η, Qη = [φ, φ̄],

QBµν = [φ, χµν ], Qχµν = Bµν , (49)

QWµνλ = θµνλ, Qθµνλ = [φ,Wµνλ],

QCµνλρ = [φ, κµνλρ], Qκµνλρ = Cµνλρ.

After Q-variation and integrating out the multiplier fields we find the action

S = SB + SF + SY + SR. (50)

In terms of the relabelled fields

ψ1
1 = ψ1, η1 = η, V 1

1 = W123,

ψ2
1 = χ12, η2 = ψ2, V 2

1 = W124,

ψ3
1 = χ13, η3 = ψ3, V 3

1 = W134,

ψ4
1 = θ123, η4 = χ23, φ1 = W234, (51)

ψ5
1 = χ14, η5 = ψ4, φ2 = A2,

ψ6
1 = θ124, η6 = χ24, φ3 = A3,

ψ7
1 = θ134, η7 = χ34, φ4 = A4,

ψ8
1 = κ1234, η8 = −θ234, φ = φ5 + iφ6,
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the bosonic part of the action takes the form

SB = β Tr

∫
dx

(
−

6∑

i=1

(D1φ
i)2 −

3∑

i=1

(D1V
i
1 )2 −

6∑

i<j, i,j=1

[φi, φj ]2

−
3∑

i<j, i,j=1

[V i
1 , V

j
1 ]2 −

3∑

i=1

6∑

j=1

[V i
1 , φ

j ]2
)
, (52)

where we have made use of integration by parts and the Bianchi identity in simplifying the original

expression. If we were to relabel the fields V i
1 , i = 1 . . . 3 as additional scalars this would be the

usual bosonic action of N = 1 super Yang-Mills in D = 10 reduced to one dimension.

The fermion kinetic term and Yukawa interactions can then be put in the compact form

SF+Y = β Tr

∫
dx Ψ

† Γ10D1Ψ +

6∑

i=1

Ψ
†[Γiφi,Ψ] +

9∑

j=7

Ψ
†[ΓjV j

1 ,Ψ] , (53)

where the spinor

Ψ
† = (ψ1

1 ψ
2
1 ψ

3
1 ψ

4
1 ψ

5
1 ψ

6
1 ψ

7
1 ψ

8
1 η

1 η2 η3 η4 η5 η6 η7 η8 ), (54)

and the Γ’s,

Γ1 = −σ3 ⊗ σ2 ⊗ σ1 ⊗ σ2, Γ2 = σ3 ⊗ 1⊗ 1 ⊗ σ1, Γ3 = σ3 ⊗ 1⊗ σ1 ⊗ σ3,

Γ4 = σ3 ⊗ σ1 ⊗ σ3 ⊗ σ3, Γ5 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3, Γ6 = −i1⊗ 1 ⊗ 1⊗ 1,

Γ7 = −σ2 ⊗ 1 ⊗ σ2 ⊗ σ1, Γ8 = −σ2 ⊗ σ2 ⊗ σ3 ⊗ σ1, Γ9 = −σ2 ⊗ σ2 ⊗ σ1 ⊗ 1,

Γ10 = σ1 ⊗ 1⊗ 1 ⊗ 1

As we have seen dimensional reduction of the 16 supercharge action leads to eight scalar fermions

and hence also eight scalar supercharges among which we have made use of only one. Using the

scalar supercharge Q and the symmetries of the action, one can derive the remaining supersymme-

tries. For example, to obtain another scalar super symmetry say Q′, we look at the invariance of

the action under the field transformations

V 1
1 → −V 1

1 , φ1 → −φ1,

V 2
1 → −V 2

1 , φ3 → −φ3, (55)

along with
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ψ1
1 → ψ4

1 , ψ5
1 → ψ8

1 , η1 → η4, η5 → η8

ψ2
1 → ψ3

1 , ψ6
1 → ψ7

1 , η2 → η3, η6 → η7

ψ3
1 → ψ2

1 , ψ7
1 → ψ6

1 , η3 → η2, η7 → η6

ψ4
1 → ψ1

1 , ψ8
1 → ψ5

1 , η4 → η1, η8 → η5. (56)

The scalar supersymmetry, Q′ associated with this invariance of the action is

Q′ψ1
1 = [φ, V 1

1 ], Q′η1 = B23, Q′B12 = −[φ,ψ3
1 ], Q′φ1 = η5,

Q′ψ2
1 = B13, Q′η2 = −[φ, φ3], Q′B13 = [φ,ψ2

1 ], Q′φ2 = η3,

Q′ψ3
1 = B12, Q′η3 = [φ, φ2], Q′B14 = [φ,ψ8

1 ], Q′φ3 = −η2,

Q′ψ4
1 = −D1φ, Q′η4 = [φ, φ̄], Q′B23 = [φ, η1], Q′φ4 = η8,

Q′ψ5
1 = C1234, Q′η5 = [φ, φ1], Q′B24 = [φ, η7], Q′V 1

1 = −ψ1
1 , (57)

Q′ψ6
1 = [φ, V 3

1 ], Q′η6 = B34, Q′B34 = [φ, η6], Q′V 2
1 = ψ7

1 ,

Q′ψ7
1 = −[φ, V 2

1 ], Q′η7 = B24, Q′A1 = ψ4
1 , Q′V 3

1 = ψ6
1,

Q′ψ8
1 = B14, Q′η8 = [φ, φ4], Q′φ = 0, Q′φ̄ = η4,

Q′C1234 = [φ,ψ5
1 ].

In principle Ward identities corresponding to these additional scalar supersymmetries can be com-

puted in lattice Monte Carlo simulations to test for a restoration of full supersymmetry in the

continuum limit.

Finally, to construct the lattice version of the theory, we again write down the dimensionally

reduced Λ on a lattice. The Q-transformation rules for fields on lattice are similar to the Q = 4

and Q = 8 models
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QU1(x) = ψ1(x)U1(x) QAµ(x) = ψµ(x)

Qψ1(x) = ψ1(x)ψ1(x) −D+
1 φ(x), Qψi(x) = −[Ai(x), φ(x)], i 6= 1,

Qη(x) = [φ(x), φ̄(x)], QBµν(x) = [φ(x), χµν(x)]

Qχµν(x) = Bµν(x), QWµνλ(x) = θµνλ(x) (58)

Qθµνλ(x) = [φ(x),Wµνλ(x)], QCµνλρ(x) = [φ(x), κµνλρ(x)]

Qκµνλρ(x) = Cµνλρ(x), Qφ(x) = 0,

Qφ̄(x) = η(x).

Carrying out the Q-variation we write down the action

S = SB + SF + SY + SR. (59)

In terms of the relabelled fields

ψ1
1(x) = ψ1(x), η1(x) = η(x), V 1

1 (x) = W123(x),

ψ2
1(x) = χ12(x), η2(x) = ψ2(x), V 2

1 (x) = W124(x),

ψ3
1(x) = χ13(x), η3(x) = ψ3(x), V 3

1 (x) = W134(x),

ψ4
1(x) = θ123(x), η4(x) = χ23(x), φ1(x) = W234(x), (60)

ψ5
1(x) = χ14(x), η5(x) = ψ4(x), φ2(x) = A2(x),

ψ6
1(x) = θ124(x), η6(x) = χ24(x), φ3(x) = A3(x),

ψ7
1(x) = θ134(x), η7(x) = χ34(x), φ4(x) = A4(x),

ψ8
1(x) = κ1234(x), η8(x) = −θ234(x), φ(x) = φ5(x) + iφ6(x),

the bosonic part takes the form
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SB = β

∫
dx Tr

[
−

(
D+

1 φ
2 − [φ1, V 3

1 ] + [φ3, V 1
1 ] − [φ4, V 2

1 ]
)2

−
(
D+

1 φ
3 − [φ1, V 2

1 ] + [φ4, V 3
1 ]

− [φ2, V 1
1 ]

)2
−

(
D+

1 φ
4 − [φ1, V 1

1 ] + [φ2, V 2
1 ] − [φ3, V 3

1 ]
)2

−
(
[φ2, φ3] − [V 3

1 , V
2
1 ]

+D−
1 V

1
1 − [φ4, φ1]

)2
−

(
[φ2, φ4] − [V 3

1 , V
1
1 ] + [φ3, φ1] −D−

1 V
2
1

)2
−

(
[φ3, φ4]

− [V 2
1 , V

1
1 ] +D−

1 V
3
1 − [φ2, φ1]

)2
+

1

2

(
D+

1 φ
1
)2

+
1

2
[φ2, V 3

1 ]2 +
1

2
[φ3, V 2

1 ]2

+
1

2
[φ4, V 1

1 ]2 −
(
(D+

1 φ
5)2 + (D+

1 φ
6)2 + [φ2, φ5]2 + [φ2, φ6]2 + [φ3, φ5]2

+ [φ3, φ6]2 + [φ4, φ5]2 + [φ4, φ6]2
)
− [φ5, φ6]2 −

(
[φ5, φ1]2 + [φ6, φ1]2 + [φ5, V 3

1 ]2

+ [φ6, V 3
1 ]2 + [φ5, V 2

1 ]2 + [φ6, V 2
1 ]2 + [φ5, V 1

1 ]2 + [φ6, V 1
1 ]2

)]
. (61)

Notice that here also this cannot be further simplified since the lattice theory does not possess an

exact Bianchi identity. The fermionic kinetic term can be expressed in a matrix form similar to the

Γ10 matrix in the continuum, with the same spinor structure as eqn. (54),

D1 =


 0 (I8×8)D

−
1

(I8×8)D
+
1 0


 (62)

The Yukawa part of the action SY can also be expressed in a matrix form

Ψ
†[Õ,Ψ], (63)

where Õ is a 16 × 16 matrix:
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˜̄φ φ̃2 φ̃3 0 φ̃4 0 0 φ̃1 0 0 0 Ṽ 1
1 0 Ṽ 2

1 Ṽ 3
1 0

φ̃2 −φ 0 −φ3 0 −φ4 −φ1 0 0 0 V 1
1 0 V 2

1 0 0 V 3
1

φ̃3 0 −φ φ2 0 φ1 −φ4 0 0 −V 1
1 0 0 V 3

1 0 0 −V 2
1

0 −φ3 φ2 φ̄ −φ1 0 0 φ4 −V 1
1 0 0 0 0 V 3

1 −V 2
1 0

φ̃4 0 0 −φ1 −φ φ2 φ3 0 0 −V 2
1 −V 3

1 0 0 0 0 V 1
1

0 −φ4 φ1 0 φ2 φ̄ 0 −φ3 −V 2
1 0 0 −V 3

1 0 0 V 1
1 0

0 −φ1 −φ4 0 φ3 0 φ̄ φ2 −V 3
1 0 0 V 2

1 0 −V 1
1 0 0

φ̃1 0 0 φ4 0 −φ3 φ2 −φ 0 −V 3
1 V 2

1 0 −V 1
1 0 0 0

0 0 0 −V 1
1 0 −V 2

1 −V 3
1 0 −φ −φ2 −φ3 0 −φ4 0 0 −φ1

0 0 −V 1
1 0 −V 2

1 0 0 −V 3
1 −φ2 φ̄ 0 φ3 0 φ4 φ1 0

0 V 1
1 0 0 −V 3

1 0 0 V 2
1 −φ3 0 φ̄ −φ2 0 −φ1 φ4 0

Ṽ 1
1 0 0 0 0 −V 3

1 V 2
1 0 0 φ3 −φ2 −φ φ1 0 0 −φ4

0 V 2
1 V 3

1 0 0 0 0 −V 1
1 −φ4 0 0 φ1 φ̄ −φ2 −φ3 0

Ṽ 2
1 0 0 V 3

1 0 0 −V 1
1 0 0 φ4 −φ1 0 −φ2 −φ 0 φ3

Ṽ 3
1 0 0 −V 2

1 0 V 1
1 0 0 0 φ1 φ4 0 −φ3 0 −φ −φ2

0 V 3
1 −V 2

1 0 V 1
1 0 0 0 −φ1 0 0 −φ4 0 φ3 −φ2 φ̄




Notice that here also we cannot decompose the Yukawa matrix as given in the continuum case

because of the specific form of the latticization procedure we have chosen.

Here also the lattice action picks up a residual part

SR = β Tr
∑

x

ψ1
1(x)ψ

1
1(x)D+

1 φ1(x) − iψ1
1(x)ψ

1
1(x)D

+
1 φ2(x). (64)

V. CONCLUSIONS

In this paper we have derived twisted actions for Q = 4, 8 and 16 supercharge Yang-Mills quan-

tum mechanics by dimensionally reducing the corresponding Q-exact actions in D = 2, 3 and 4

dimensions. The dimensional reduction is done in the continuum but the final theories may be trans-

lated to the lattice using a simple discretization prescription that preserves the Q-supersymmetry.
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We show that the reduced twisted theories contain two, four or eight one dimensional Kähler-Dirac

fields respectively. Correspondingly the continuum models contain additional nilpotent scalar su-

percharges all but one of which are softly broken by the descretization procedure adopted here.

These lattice theories should prove useful in studies of the holographic correspondence between

maximally supersymmetric Yang-Mills quantum mechanics and D0-branes in type IIA string the-

ory. It would also be interesting to compare these lattice actions with those derived by orbifold

methods as detailed in [8, 10].
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