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Abstract

Superconducting resonators with high quality factors are of great interest in many areas.

However, the quality factor of the resonator can be weakened by many dissipation chan-

nels including trapped magnetic flux vortices and nonequilibrium quasiparticles which

can significantly impact the performance of superconducting microwave resonant circuits

and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing

resonator quality factors and qubit lifetimes. Vortices trapped near regions of large mi-

crowave currents also contribute excess loss. However, vortices located in current-free

areas in the resonator or in the ground plane of a device can actually trap quasiparticles

and lead to a reduction in the quasiparticle loss. In this thesis, we will describe exper-

iments involving the controlled trapping of vortices for reducing quasiparticle density

in the superconducting resonators. We provide a model for the simulation of reduc-

tion of nonequilibrium quasiparticles by vortices. In our experiments, quasiparticles are

generated either by stray pair-breaking radiation or by direct injection using normal-

insulator-superconductor (NIS)-tunnel junctions.



Vortices and Quasiparticles in Superconducting
Microwave Resonators

BY

IBRAHIM NSANZINEZA

Master of Science, Syracuse University, 2012

Master’s Diploma in Mathematical Sciences, University of Cape Town, 2008

Bachelor of Science, Kigali Institute of Education, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Physics

Syracuse University

May 2016



Copyright 2016 Ibrahim Nsanzineza

All rights Reserved



iv

Acknowledgments

I would like to express my wholehearted appreciation and thanks to my research advisor, Prof. B.

L. T. Plourde. I can’t say thank you enough for his tremendous help, support, assistance, valuable

discussions and encouragement at every stage of my PhD studies.

I would like to send my thanks to my academic advisor, Prof. Alan Middleton, for his advice and

interests in my progress during my Ph.D studies. He had many duties but he always checked with

me about my progress and gave me some advice.

I owe many thanks to the following people for their support and assistance: Prof. Christina

Marchetti, Prof. Mark Bowick, Prof. Saulson, Mrs Diane Sanderson, Mrs Penny Davies, Mrs Patti

Ford, Mrs Patricia Whitmore, Mrs Linda Terramiggi and Mrs Yudaisy Salomon. I am indebted

with plenty of thanks to members of physics department machine shop for their kindness and help

they provided me. Many thanks to Charlie Brown, Lou Bouda, Phil Arnold and Lester Schmutzer.

I would like to say thank you to Prof. Robert McDermott and Dr. Umesh Patel, from the

university of Wisconsin, for helping us to fabricate some of the devices we have used. I would like

to say thank you to all the superconducting group members at Syracuse University for their

informal discussions and assistance in any respect. Many blessings to Prof. Matthew LaHaye, Dr.

Francisco Rouxinol, Dr. Daniela F. Bogorin, Dr. Mathew Hutchings.

Many thanks are also extended to my fellow colleagues Caleb Howington, Yu Hugo Hao, Haozhi

Wang, and Kenneth Dodge Jr. I also worked with Chunhua Song during her final year of PhD, I

want to thank her for teaching me to use Helium-3 fridge and some techniques in data analysis.

I offer my regards and blessings to Dr. Michael Defoe for helping me learn some fabrication skills

and he gave me many rides to Cornell Nanoscale Science and Technology Facility (CNF) and

introduced me to many CNF users. Thanks to Dr. Matthew Ware and Dr. Joe Strand to give me

hand during initial wiring of the adiabatic demagnetization refrigerator.

I express thanks to my family for supporting me throughout my Ph.D. studies.

May God bless you all.



Contents

1 Introduction 1

2 Magnetic flux vortices and quasiparticles in superconductors 4

2.1 Introduction to superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Characteristic parameters of a superconductor . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 London equations and Meissner-Ochsenfeld effect . . . . . . . . . . . . . . . . 5

2.2.2 Coherence concept and Pippard’s non-local modification of the London theory 6

2.2.3 Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 BCS theory and the energy gap ∆ . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.5 Limiting cases for the electrodynamic response . . . . . . . . . . . . . . . . . 8

2.3 Type-I and Type-II superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Threshold field for trapping vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Vortex motion in superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Thermal and nonequilibrium quasiparticles . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Mattis-Bardeen equations for thermal quasiparticles . . . . . . . . . . . . . . 17

2.6.2 Nonequilibrium quasiparticles at millikelvin temperatures . . . . . . . . . . . 18

3 Coplanar waveguide resonators 20

3.1 Lumped-elements resonators circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Distributed transmission-line resonators . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Coplanar waveguide geometry: Half-wave and Quarter-wave resonators . . . 22

3.3 Loss mechanisms in microwave resonators . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Microwave losses due to radiation and coupling to feedline . . . . . . . . . . . 24

3.3.2 Microscopic Two-Level System (TLS) loss . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Quasiparticles loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 Microwave loss due to vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 26



CONTENTS vi

4 Experimental setup and device design and fabrication 28

4.1 Microwave setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Adiabatic Demagnetization Refrigerator . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Experimental wiring in cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Cryogenic microwave amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.4 Vector network analyzer and S-parameters . . . . . . . . . . . . . . . . . . . . 34

4.1.5 Shielding and generation of magnetic fields . . . . . . . . . . . . . . . . . . . 35

4.2 Microwave resonator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Resonator mask design and writing . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Chip fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 HF cleaning versus ion-milling of silicon wafer . . . . . . . . . . . . . . . . . . 39

4.3.2 Wet etch of aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Resonator measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Extracting resonator parameters with a 4-parameter fitting routine . . . . . . 42

4.4.2 Calibration of the input line and resonator input power . . . . . . . . . . . . 44

4.4.3 RRR and low temperature resistivity measurement . . . . . . . . . . . . . . . 45

5 Trapping a single vortex in the microwave resonator 46

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Design of structures for resolving a single vortex . . . . . . . . . . . . . . . . . . . . 47

5.3 Field-cooled measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Trapping vortices in the ground plane and reducing background quasiparticles

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Numerical simulations of reduction of density of nonequilibrium quasiparticles

due to trapped vortices 54

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Variation in loss with cryostat temperature . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Quasiparticle diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Resonator response against direct quasiparticle injection 63

7.1 Introduction to NIS tunnel junction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 I-V characteristics of the NIS junction . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS vii

7.2.2 Dependence of resonator quality factor on tunneling power . . . . . . . . . . 66

7.2.3 Effects of vortices on the quasiparticles loss . . . . . . . . . . . . . . . . . . . 67

7.3 Effects of cuts in the ground plane on the quasiparticles loss . . . . . . . . . . . . . . 69

8 Nonlinear microwave response of vortices 71

8.1 Larkin-Ovchinnikov flux-flow nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3 Power dependence of internal loss at various applied magnetic field . . . . . . . . . . 74

8.4 Dependence of vortex loss on microwave power . . . . . . . . . . . . . . . . . . . . . 76

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 Ongoing measurements, future directions, and conclusion 78

9.1 Ongoing measurements and future directions . . . . . . . . . . . . . . . . . . . . . . 78

9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 82



List of Figures

2.1 Variation of superconducting energy gap with temperature. Right: plot using Eq.

(2.12) for high temperature approximation and Left: plot using Eq. (2.14) for low

temperature approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A schematic illustrating the H-T diagrams of (a) Type-I and (b) Type-II supercon-

ductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Schematic representation of (a) magnetic field penetration of a type-II superconduc-

tor. The vortex is surrounded by screening currents. (b) The vortex represents a

singularity in the order parameter. (c) The maximum field is at the center of vortex.

From reference [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Gibbs free energy as a function of the applied magnetic field.The Gibbs free energy has

its first minimum at the magnetic field B0. With pinning defects, vortices penetrate

the superconductor at lower field Bp than the threshold field Bs when no pinning.

From Stan et al. 2004 [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Plot of threshold cooling fields Bth for different width segments on resonator from

[3] (filled circles) and Bth(W ) values for quarter-wave uniform-width resonators from

separate device as discussed in text (open squares). Curve corresponds to Eq. (2.23)

for ξ = 235 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Variation of thermal quasiparticles with temperature for Tc = 1.2K. Calculations

based on Eq. 2.33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Lumped elements in (a) parallel and (b) series resonant circuits. . . . . . . . . . . . 20

3.2 Geometry of the CPW transmission line. . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Temperatures vs. time for the 60K (Red) and 3K (Blue) stages of the pulse-tube

refrigerator during an initial cooldown of the ADR cryostat from room temperature. 30

4.2 Cooling of FAA salt pill coupled to sample during adiabatic demagnetization. . . . . 31



LIST OF FIGURES ix

4.3 Microwave measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Noise temperature (Blue) and gain (Red) of HEMT amplifier, for temperature below

17K. These curves are taken from the Caltech datasheet for this HEMT. . . . . . . 33

4.5 Left: Vector Network Analyzer (VNA). Right: a circuit diagram for a two-port network. 34

4.6 Left: Schematic of cryostat including sample brass box and mount along with Helmholtz

coil (not to scale). Right: Cryoperm shield mounted on the 3K plate. . . . . . . . . 35

4.7 Plot of calibration for converting applied current to magnetic field in the Helmholtz

coil, the slope is 3.23µT/mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Drawing of resonator design and simulated frequency response |S21|. . . . . . . . . . 37

4.9 Chip design in Cadence software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 Left: Optical micrographs of chip after wet etch. Right: Zoom-in of bulge region for

vortex trapping near center of resonator. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.11 Microwave measurement setup outside the ADR cryostat. . . . . . . . . . . . . . . . 40

4.12 Chip wirebonded on a printed circuit board. . . . . . . . . . . . . . . . . . . . . . . . 41

4.13 Magnitude and phase raw data of forward transmission S21 . The data was measured

for a small span of (0.5MHz) with 800 frequency points. . . . . . . . . . . . . . . . . 41

4.14 Magnitude and phase of background transmission. The blue points far away from the

resonance were used to find a polynomial and linear fit functions for the magnitude

and phase, respectively. The data was measured for a wide span of 6.0MHz. . . . . . 42

4.15 Plots of magnitude and phase after subtracting off the baseline transmission data. . 43

4.16 Calibrated complex transmission data fitted with a 4-parameter fit model in complex

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.17 Measurement of input coax cable attenuation from top to bottom of ADR cryostat.

The measurement was done at room temperature . . . . . . . . . . . . . . . . . . . . 44

5.1 Optical micrographs of (a) entire resonator including feedline, (b) close-up of bulge

region for vortex trapping near center of resonator, (c) close-up of coupling elbow and

feedline. Schematic of resonator without turns (not to scale) along with standing-

wave pattern of microwave current for (d) fundamental, (e) first-harmonic resonance.

From Nsanzineza & Plourde, Physical Review Letters 113, 117002(2014) [3]. . . . . . 47

5.2 Power dependence of total resonator loss for the fundamental resonance 3.0713GHz

and coupling quality factor Qc = 765, 000. All field-cooled measurements were per-

formed at sufficiently high powers, with ∼ 105 photons in the resonator. . . . . . . . 48



LIST OF FIGURES x

5.3 1/Qv(B) for fundamental resonance for cooling fields in the vicinity of Bth(8µm) for

the central bulge region. Vertical dashed lines correspond to field steps ∆B = 5µT.

From Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3]. . . . . . . . . . 49

5.4 1/Qv(B) for fundamental (blue circles) and first harmonic (red squares) resonance –

note different scales on loss axes. (insets) |S21(f)| for (left) fundamental; (right) har-

monic for B = 41.7µT (no vortices) and 46.2µT (one-vortex step). From Nsanzineza

& Plourde, Phys. Rev. Lett. 113, 117002(2014) [3]. . . . . . . . . . . . . . . . . . . . 50

5.5 Variation of current density along the width of the conductor trace of in middle of

resonator in the bulge region. The current density is minimum at center of the con-

ductor trace, and it is maximum along the edges. In the ground planes on either side

of the bulge, the current density falls quickly from the edges of the gaps. Calculations

based on equation 3.22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Vortex loss plotted as a function of applied magnetic field. Vortices trapped in ground

plane at vanishing current density reduce quasiparticles density. . . . . . . . . . . . . 53

6.1 Measurements of 1/Q vs. cryostat temperature for zero-field cooling for (a) fun-

damental, (b) harmonic resonance. The temperature of the cold-finger and sample

remained below 140mK during the measurements. Dashed line is a guide to the eye

for a quadratic dependence while the solid line corresponds to a linear dependence.

From Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3]. . . . . . . . . . 55

6.2 Variation of the quasiparticle diffusion constant with energy. The calculations are

based on equation 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 (a) Simulated nqp(x) for several example cooling fields. Labels indicate vortex number

in central bulge + coupling elbow. (b) Measured 1/Qi(B) for harmonic, normalized

by average of 1/Qi below threshold field (points);computed normalized quasiparticle

loss on harmonic from simulated nqp(x)(solid line). From Nsanzineza & Plourde,

Phys. Rev. Lett. 113, 117002(2014) [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Simulated normalized quasiparticle loss on harmonic for different intervortex spacings

for (i) 2 vortices in central bulge (circles), (ii) 5 vortices in central bulge (squares),

(iii) 7 vortices in central bulge that are fixed in place plus 2 vortices in coupling elbow

with variable spacing (diamonds). Red arrows indicate the intervortex spacing used

in Figure 6.3(b).From Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3]. 60



LIST OF FIGURES xi

6.5 (Color online) Measured 1/Qi(B) for harmonic, normalized by average of 1/Qi below

threshold field (points); simulations of normalized quasiparticle loss on harmonic for

different parameters (solid line): (a) D = 30 cm2/s, ΓR = 20µm3/s, Γv = 7×106 s−1;

(b) D = 150 cm2/s, ΓR = 40µm3/s, Γv = 2 × 106 s−1.From Nsanzineza & Plourde,

Phys. Rev. Lett. 113, 117002(2014) [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Optical photograph of the sample with 6 resonators coupled along same feedline.

The sample include two Cu/AlOx/Al junction with Copper traces used to inject

Quasiparticles into the ground plane of chip. . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Copper-Aluminum oxide-Aluminum junction with overlap area of 5× 5µm2. . . . . 64

7.3 Current-Voltage (I-V)characteristics of Cu/AlOx/Cu junction. The normal state re-

sistance of the junction is∼ 50Ω, and the superconducting energy gap is ∆ ∼ 200µeV.

Data was taken at 100mK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4 Resonator internal quality factor measured at different NIS injection powers in zero

magnetic field. Insert: Magnitude of complex transmission S21 as function of fre-

quency for two different injection powers (power = current× voltage). . . . . . . . . 66

7.5 Resonator internal quality factor measured at different NIS injection powers and mag-

netic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.6 Quasiparticles loss measured at different NIS injection powers and magnetic fields. . 68

7.7 Left: Optical image of a chip with a cut in the ground plane of the chip. Right:

Zoomed image optical image to aluminum strips that are designed to trap quasipar-

ticles at edge of the ground plane of NIS. . . . . . . . . . . . . . . . . . . . . . . . . 69

7.8 Quasiparticles loss a function of injected quasiparticles in NIS junction ground plane,

for various magnetic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1 Chip wirebonded on a printed circuit board. To minimize unintended spurious trans-

mission modes, we added some interconnections across each resonator and across the

feedline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Plot of resonator internal loss as function of internal power for various magnetic fields. 74

8.3 Plot of vortex loss and change of vortex loss as function of internal power for various

magnetic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.1 Copper traps engineered in the middle of the center conductor of resonator. . . . . . 79

9.2 Internal quality factor of resonator with and without copper traps. . . . . . . . . . . 80



List of Tables

6.1 The values of D, ΓR, Γv from the three simulations in figures 6.3 and 6.5 . . . . . . 61



Chapter 1

Introduction

Superconducting resonators with high quality factors are of great interest in many areas including

photon detectors for astrophysical applications [4], parametric amplifiers [5, 6], microwave filters

[7], and in the field of quantum information science, where microwave resonators play an extremely

important role in superconducting qubit design [8], interqubit coupling [9], quantum information

storage [10–12] and in the quantum-state dispersive readout [13–16]. Most of the applications of

superconducting resonators require that resonators have high quality factors. However, the quality

factor of the resonator can be weakened by many dissipation channels including trapped magnetic

flux vortices in the device, two-level system fluctuators at the metal-substrate or substrate-air in-

terfaces, energy loss due to coupling to external circuitry, and dissipation due to nonequilibrium

quasiparticles.

One other important application of microwave resonators is their use as probes to address the

above loss mechanisms that limit the quality factors of the resonator and hence the performance

of other devices that couple to these resonators. In fact, because resonators are fabricated using

the same materials as filters, amplifiers, or qubits, it is important to understand the fabrication-

dependent limits to the device parameters [17–22].

There have been several investigations that have demonstrated that without extensive shielding

of stray light, superconducting aluminum circuits measured at millikelvin temperatures can exhibit

a significant excess of nonequilibrium quasiparticles leading to significant quasiparticle loss [23–25].

Blackbody photons emitted by warmer regions of the measurement cryostat, even if only at a few

Kelvin, can be sufficiently energetic to break Cooper pairs in aluminum films due to the relatively

small superconducting energy gap, and this will result in a change of surface impedance of the

superconductor.
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Understanding the response of trapped flux is important because often microwave components

used in low-temperature experiments have strong magnetic fields and magnetic shielding may not

be ideal. From the physics point of view, we are interested in the study of the fundamental response

of single vortices and the dynamics of quasiparticles in the superconducting microwave resonators.

Motivated by previous experiments on quasiparticle lifetime [26], tunnel junction photon detectors

[27] and Normal-insulator-superconductor coolers [28] at low temperatures in the presence of a

uniform distribution of many vortices, we designed experiments to trap only a single vortex and

reduce the density of nonequilibrium quasiparticles in the microwave resonators.

In this thesis we discuss our first experiments to quantify the response of a single vortex in a

superconducting coplanar waveguide resonator. We will describe a series of experiments that we

have conducted to study the dynamics of vortices and quasiparticles in superconducting microwave

resonators. We also made designs to study the resonator response against direct quasiparticle injec-

tion.

In Chapter 2 we introduce the fundamental properties of superconductors that form the basis for

the topics we cover in this thesis. We will give an introduction to superconductivity and we discuss

the characteristic length scales and energy gap of superconductors in the framework of the London

theory, Ginzburg-Landau theory, and also BCS theory. We discuss the characteristic parameters of

a superconductor and how they influence its electrodynamic response. We introduce the concept of

surface impedance of the superconductor and how it is influenced by the motion of vortices and also

by the change in the density of quasiparticles.

In chapter 3 we will discuss the fundamental properties of coplanar waveguide resonators (CPW).

We introduce lumped-element and distributed resonant circuits and describe the expressions for the

impedance, resonance frequency, and quality factor of these circuits. We will also review the current

understanding of the loss mechanisms in superconducting coplanar waveguide resonators, and we

focus on the loss due to vortices and nonequilibrium quasiparticles.

In Chapter 4 we will first describe the Adiabatic Demagnetization Refrigerator (ADR) and how

we use it to reach millikelvin temperatures. We describe our experimental wiring in the ADR cryostat

and devices involved in the measurements, such as a cryogenic microwave amplifier, a vector network

analyzer (VNA). We also describe how we generate the magnetic field for trapping vortices in the

resonators using a Helmholtz coil, as well as our technique for shielding any background fields. We

will also discuss the procedure for the design, fabrication, and measurement of our devices.

In Chapter 5 we discuss the experiments we have conducted to trap a single vortex in a supercon-

ducting coplanar waveguide resonator. We describe our strategy to trap a few vortices in the CPW

resonator and show our field-cooled results where we quantify the loss from just a single vortex.



3

We show that when vortices are trapped at locations of vanishing local current density, they do not

contribute loss and, most importantly, they can act as quasiparticle traps and, as a result of this

trapping, the resonator quality factor increases.

In Chapter 6 we discuss numerical simulations of the reduction of the density of nonequilibrium

quasiparticles due to trapped vortices. We describe all of the terms in the modified diffusion equation

and how we performed our simulations. We will present the results of our simulations for different

vortex distributions in the resonator and show that the results from the simulations are consistent

with our experimental results.

In Chapter 7 we will discuss our further efforts to understand the dynamics of nonequilibrium

quasiparticles in the the superconducting coplanar waveguide resonators. We describe our experi-

ments that we have conducted to study the resonator response under the direct injection density of

nonequilibrium quasiparticles using normal metal- insulator-superconductor (NIS) tunnel junctions.

We will show that in the presence of trapped vortices, there is a slowing down of the increase of loss

due to the increase of loss due to injected nonequilibrium quasiparticles.

In Chapter 8 we will discuss our experiments that we have conducted to study the nonlinearity

of vortex dynamics at microwave frequencies with strong driving.

In Chapter 9 we present some ongoing experiments and we conclude our discussion of this thesis.



Chapter 2

Magnetic flux vortices and

quasiparticles in superconductors

In this Chapter we describe the fundamental properties of superconductors that we will use through-

out this thesis. We will give an introduction to superconductivity, and we discuss the characteristic

length scales and energy gap of superconductors in the framework of London theory, Ginzburg-

Landau theory, and also the BCS theory. We use the length scales to define the fundamental classes

of superconductors, namely type-I and type-II superconductors, and we give conditions at which a

superconductor is considered to be in the dirty or clean limits and the expressions for the local and

nonlocal response of a superconductor. We discuss the dependence of surface impedance on the ap-

plied magnetic field, we also discuss vortex motion and quasiparticle excitations in superconductors.

2.1 Introduction to superconductivity

Superconductivity manifests itself mainly as a resistanceless flow of dc electrical current below some

critical temperature. It was discovered in Leiden in 1911 by Heike Kamerlingh Onnes, three years

after he first liquefied helium [29]. He performed measurements of the electrical resistance of mercury

and noticed a sharp decrease in the resistance near 4.2K (onset of superconductivity) when mercury

was cooled down. The electrical resistivity of normal metals generally decreases with decreasing

temperature. For typical metals, the resistivity decreases as the temperature is lowered and lattice

vibrations are reduced, but various types of defect scattering limit the resistivity at some non-zero

level for arbitrarily low temperatures [30]
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2.2 Characteristic parameters of a superconductor

2.2.1 London equations and Meissner-Ochsenfeld effect

In 1933, nearly 22 years after the discovery of superconductivity, Walther Meissner and Robert

Ochsenfeld first performed experiments that showed that a superconducting material is different from

a perfect conductor [29, 30]. They observed that for temperatures below the critical temperature of

the superconducting material, the magnetic flux density is zero inside the superconducting material,

independent of whether the superconductor was cooled in zero or nonzero magnetic field. This is

known as the Meissner-Ochsenfeld Effect or just simply the Meissner effect. The complete exclusion

of magnetic flux means that a superconducting material is a perfect diamagnet. Therefore, perfect

diamagnetism and zero dc resistivity are basic properties of the superconducting state.

In order to explain the Meissner effect and zero resistivity, the two brothers Fritz and Heinz

London proposed the following two phenomenological equations relating currents with electric and

magnetic fields in a superconductor [29, 31]

E =
∂

∂t

(
m

nse2
J

)
(2.1)

and

B = −∇×
(

m

nse2
J

)
. (2.2)

In the two London equations 2.1 and 2.2, J is the screening current density. It includes the nor-

mal current obeying Ohm’s law, the Maxwell’s displacement current, and the supercurrent. In a

superconductor, the normal current and the Maxwell’s displacement current are negligible for slowly

changing fields, but are important for rapidly changing fields [31]. Equation 2.2 leads to

∇2h =
1

λ2L
h. (2.3)

For a semi-infinite slab with its surface at x = 0, the applied magnetic field h(0) falls in its interior

as [31]

h(x) = h(0)e−x/λL . (2.4)

For x ≫ λ, H(x) = 0 in accordance with the Meissner-Ochsenfeld effect. Therefore, in stationary

conditions, a superconductor cannot sustain a magnetic field in its interior, but only within a narrow

surface layer. The magnetic field decays to 1/e of its value over a distance equal to λL, called the

London penetration depth [31]

λL =

(
m

µ0nse∗2

) 1
2

, (2.5)

where ns is the density of superelectrons. The superelectrons carry a double electronic charge

equal to e∗ = 2e. The penetration depth varies with temperature approximately as [29] λL(T ) =
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λL(0)
(
1− (T/Tc)

4
)1/2

. λL(0) is the penetration depth at zero temperature, and it is given by

equation 2.5.

2.2.2 Coherence concept and Pippard’s non-local modification of the Lon-

don theory

The magnetic penetration depth in superconductors predicted by the London equations was found

to be smaller than the values measured for pure superconductors [29]. In 1950, Pippard introduced

the concept of coherence of the superconducting state and provided a generalization of the London

theory by taking into account the effect of the electronic mean free path l. According to Pippard

[31], if the local electronic state is characterized by an order parameter ψ, any perturbation in ψ will

spread out over a distance ξ, called the coherence length, from the center of disturbance. Thus, the

coherence length ξ in the presence of scattering is related to the electronic mean free path l as [29]

1

ξ
=

1

ξ0
+

1

l
, (2.6)

where ξ0 is the coherence length for pure material.

2.2.3 Ginzburg-Landau theory

The Ginzburg-Landau (G-L) theory is a phenomenological treatment of the superconducting phase

transition, it is only valid near the critical temperature Tc. G-L theory considers that the free energy

of a superconductor in the vicinity of Tc can be described by a complex order parameter ψ [29] such

that |ψ|2 = ns, where ns is the local density of superelectrons. The Ginzburg-Landau free energy

density fsh in the presence of an applied magnetic field h is given by [29]

fsh = fs0(T, ψ) +
h2

8π
+

1

2m

∣∣∣− i~∇ψ − e∗

c
A
∣∣∣2, (2.7)

where fs0(T, ψ) is the free energy in the absence of magnetic field. It is given by

fs0(T, ψ) = fn(T ) + α(T )
∣∣∣ψ∣∣∣2 + 1

2
β(T )

∣∣∣ψ∣∣∣4. (2.8)

α(T ) and β(T ) are temperature dependent coefficients. At T = Tc, α(T )c = 0 and β(T )c > 0. But

for T < Tc, α(T )c < 0 and β(T )c > 0. The idea is to minimize the equation 2.7 with respect to ψ

and A over the all volume of the superconducting material. The main results of the derivation are

the Ginzburg-Landau penetration depth and coherence length, given by

λ =

(
m

4µ0e∗2ψ2
0

) 1
2

(2.9)
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Figure 2.1: Variation of superconducting energy gap with temperature. Right: plot using Eq. (2.12) for high

temperature approximation and Left: plot using Eq. (2.14) for low temperature approximation.

and

ξ =

(
~2

4m|α|

) 1
2

. (2.10)

The ratio of London penetration depth and the coherence length is called Ginzburg-Landau param-

eter κGL, Thus,

κGL =
λ

ξ
. (2.11)

2.2.4 BCS theory and the energy gap ∆

The G-L theory, like the London theory, could not answer to the fundamental question of why

a superconductor behaves according to the London equations. In other words, G-L and London

theory could not explain what are superelectrons whose behavior they were intended to describe.

This question was finally resolved in 1957 by the tremendous work by J. Bardeen, L. N. Cooper and

J. R. Schrieffer [32]. After the discovery of the isotope effect, it become clear that the vibrations of

the lattice of ions of a metal play a critical role in creating the superconducting state. What the BCS

theory considered is that the interaction between electrons and quantized excitations of the crystal

lattice, phonons, can lead to an attractive electron-electron attraction and hence to the formation

of Cooper pairs with zero total spin [33]. The Cooper pairs are able to condense into a ground state

with macroscopic phase coherence. All Cooper pairs in the condensate have same wave function

that depends on single spatial coordinate. The condensate can move through the material with no

dissipation. The key feature of the BCS theory is the prediction that there is an energy gap of ±∆

about the Fermi energy. The energy gap is a function of temperature, and at high temperature it is

written as

∆(T ) = ∆0

[
1−

(
T

Tc

)4
] 1

2

, (2.12)
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where ∆0 is the superconducting energy gap at zero temperature, that is the value of the supercon-

ducting energy gap with no quasiparticles and for a weak-coupling superconductor, it is given by

[29]

∆0 = 1.76kBTc, (2.13)

where kB is the Boltzmann constant, and Tc is the transition temperature of the superconductor.

For temperatures well below Tc, the superconducting energy gap varies slowly with temperature,

and the approximate expression for energy gap at low temperature is [34]

∆(T ) ∼= ∆0exp

[
−2πkBT

∆0
exp

(
− ∆0

kBT

)]
. (2.14)

The superconducting energy gap ∆0 is related to the coherence length ξ0 as follows [29]

ξ0 =
~vF
π∆0

, (2.15)

where vF is the fermi velocity of the condensate. The density nqp of the single-particle excitations

(quasiparticles) at an energy |E| > ∆ with respect to the Fermi level is given by [35, 36]

nqp = 4N(0)

∫ ∞

∆

ρ(E)f(E)dE, (2.16)

where N(0) is the single-spin density of electron states at the Fermi energy, for aluminum film it is

N(0) = 6.9 × 1028 J−1µm−3 [37]. ρ(E) = E√
E2−∆2

is the normalized density of the quasiparticles

states. For 0 ≤ |E| < ∆, ρ(E) = 0 , that is, the quasiparticle density of states is zero for energies

lower than gap energy. Note that these energies are measured with respect to the Fermi energy EF .

f(E) is the Fermi-Dirac distribution function.

2.2.5 Limiting cases for the electrodynamic response

The coherence length ξ, the penetration depth λ, the mean-free path l are very fundamental param-

eters that characterize a superconductor and defines its electrodynamic behavior. In fact, for clean

superconductors, ξ0 ≪ l, in which case we have ξ0 = ξ by using the equation 2.6. In contrast, dirty

superconductors have the mean free path that is much smaller than the coherence length, ξ0 ≫ l

[34].

According to Gao [34] and Zmuidzinas et al. [35], the extreme anomalous limit occurs when the

response of the superconductor is no longer local because the mean free path l is long compared to

the distance over which the field varies significantly. That means, in this limit, the effective
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Figure 2.2: A schematic illustrating the H-T diagrams of (a) Type-I and (b) Type-II superconductors.

penetration depth length λ is smaller than the mean free path l or the coherence length ξ0. The

penetration depth is given by λeff = 0.65(λξ0)
1/3

The local limit occurs when the effective penetration depth λeff is much longer than the coherence

length and the mean free path [34, 35, 38], in local limit the effective penetration depth is given by

λeff = λL
(
1 + ξ0/l

)1/2
for dirty superconductors and λeff = λL for clean superconductors.

For the case of a thin film, the penetration depth is smaller than the film thickness, d < λ. In

this case the thickness d plays a role. In fact, for thin films the screening currents are simply spread

out over larger distances. For applied magnetic field perpendicular to the thin film, the penetration

depth is given by [2] λ⊥ = 2λ2/d. For a thin film in the dirty limit, the effective penetration depth

and coherence length can calculated from the following expressions [39]

λeff = 1.05× 10−3 × (
ρ

Tc
)1/2 (2.17)

and

ξeff = 1.81× 10−8 × (Tc × S)−1/2, (2.18)

where S is the slope that can be obtained from the Tc−B plots. ρ is the low temperature resistivity

of the superconducting material.

2.3 Type-I and Type-II superconductors

The ratio of λ and ξ determines the energy for forming a domain wall between a superconducting

and normal region. This ratio κ = λ/ξ is called the Ginzburg-Landau parameter and gives us a
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crossover between two fundamental superconducting classes, namely type-I (κ < 1/
√
2) and type-II

(κ > 1/
√
2) superconductors [40].

Type-I superconductors, also known as Pippard superconductors, have one critical field which is

the same as thermodynamic critical field Hc. Below the critical magnetic field Hc and at tempera-

tures T < Tc, type-I superconductors with no demagnetizing effects show a complete Meissner effect

and zero resistance. The phase transition for type-I superconductor to normal state is of first order.

Type-II superconductors have two critical fields, a lower critical field Hc1 and an upper critical

field, Hc2. In the applied magnetic range 0 < H < Hc1 and in the absence of demagnetizing effects,

the magnetic flux is completely expelled and the Meissner effect is complete. The magnetic field

penetration in the form of vortices sets in at Hc1. Each flux vortex carries a single flux quantum

given by

Φ0 =
hc

2e
= 20.7 G− µm2. (2.19)

In the field range Hc1 < H < Hc2, the type-II superconductor resides in the mixed state and is no

longer a perfect diamagnetic material, that is, the magnetic field can penetrate the superconductor,

but not completely. All magnetic flux threading the superconductor in the mixed state is carried by

the Abrikosov vortices, which means the magnetic flux density can be written as B = nvΦ0, where

nv is the number of vortices per unit area. The superconducting order parameter is reduced to zero

in the core of a vortex over a length scale of ξ; this core then contains bound quasiparticle states

that cause the core to behave effectively like a cylindrical normal metal region of radius ξ [29]. The

magnetic flux extends out beyond the core as over a distance of order of penetration depth λ. The

magnetic field at the center of vortex is given by [41]

h(0) ≈ Φ0

2πλ2
lnκ. (2.20)

As the field is increased, the density of vortices increases also and at Hc2, the normal cores of vortices

overlap and as a consequence, the order parameter goes continuously to zero [42] and in the end, the

superconductivity is destroyed and the material goes into the normal state. The phase transition

from the vortex state to the normal state is of second order.
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Figure 2.3: Schematic representation of (a) magnetic field penetration of a type-II superconductor. The vortex is

surrounded by screening currents. (b) The vortex represents a singularity in the order parameter. (c) The maximum

field is at the center of vortex. From reference [1].

Transition from type-I to type-II in thin films: Critical thickness dc

Below some critical thickness , thin films of a bulk type-I superconductor in a perpendicular mag-

netic field can behave like a type-II superconductor, in that they develop a vortex lattice in which

each vortex carries a single-flux quantum [43–48]. Tinkham [49] was the first to point out that films
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of type-I superconductors with a thickness less than a critical thickness assume an Abrikosov vortex

state in a perpendicular magnetic field, the same as the mixed state of type-II superconductors.

Tinkham’s theory was motivated by experimental results that very thin film of type-I superconduc-

tors show a second order phase transition in a perpendicular magnetic field [40, 44, 50, 51]. Several

experiments have been carried out with thin films of Pb, Sn, In, and Al, and established the single-

quantum nature of the individual flux spots [52–57]. In the framework of G-L theory, the fluxoid

structure in superconducting films in the presence of a magnetic field has been studied in more detail

[58–61]. The main result is the derivation of the critical film thickness dc below which the Abrikosov

vortex lattice is energetically stable and the phase transition in perpendicular magnetic field is of

second order. The critical thickness is given by [40, 55–57, 62, 63]

dc ≈
Cδ

4(1−
√
2κ2)

, (2.21)

where C is a constant varying between 3.5 and 9 [51]. δ is the surface-energy parameter in the

Landau domain theory, it is related to penetration depth as δ/λ ≈ 1.13 − 1.6, with 0.1 < κ < 1.0

[64]. For aluminum, dc was found in the range 1.8− 2.0µm for T/Tc = 0.8− 0.96 [40, 51].

2.4 Threshold field for trapping vortices

In geometries with large demagnetizing factors like a thin Superconducting sheet in a perpendicular

field, the screening currents are spread out over large distances so that the threshold field Bth for

establishing vortices can be lower thanHc1. The relationship between the width of a superconducting

strip and the value of Bth has been studied in references [2, 65] with field-cooling followed by imaging

of the vortex distributions. Stan [2] performed scanning Hall probe microscopy experiments to

study vortex nucleation in narrow-thin film superconducting strips and established that the first

flux penetration into the strip occurs when the vortex is absolutely stable in the center of the strip,

and this happens when the Gibbs free energy is zero in the middle of the strip. His results were in

reasonable agreement with theoretical predictions of Likharev and Clem, that the Gibbs free energy

G(W/2) at the middle of the superconducting strips of width W is [2]

G(W/2) =

(
Φ2

0

8π2λ

)
ln

(
2W

πξ

)[
1− B

Bth

]
. (2.22)
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Figure 2.4: Gibbs free energy as a function of the applied magnetic field.The Gibbs free energy has its first minimum

at the magnetic field B0. With pinning defects, vortices penetrate the superconductor at lower field Bp than the

threshold field Bs when no pinning. From Stan et al. 2004 [2].

The extracted values of Bth for strips of different width W were found to be in reasonable

agreement with the expression

Bth =
2Φ0

πW 2
ln

(
αW

ξ

)
, (2.23)

where Φ0 ≡ h/2e is the superconducting flux quantum and ξ is the coherence length at the temper-

ature at which the vortices freeze into their respective pinning sites, and α = 2/π in the Clem model

and α = 1/4 in the Likharev model [2]. The above expression pertains to field-cooling, therefore

the process for vortex entry into a zero-field cooled state is rather different. Because we will present

field-cooled experiments in chapters 5 and 6, the following discussion will be the focus in the two

chapters. In reference [3], we have extracted values of Bth for w = 3, 6, 8µm for the three character-

istic widths in the different regions of our resonator and we plot these values in figure 2.5. Because

this is a rather narrow range of W to compare with Equation 2.23, we have chosen to include some

previously unpublished Bth data from our lab on some other aluminum resonators with a different

geometry, but a wider range of linewidths. This other chip contained four quarter-wave coplanar

waveguide resonators with uniform-width center conductors, similar to the device in reference [66],

with widths W = 10, 12, 18, 26µm. Also, the thickness of the aluminum film on this other chip was

150 nm.
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Figure 2.5: Plot of threshold cooling fields Bth for different width segments on resonator from [3] (filled circles) and

Bth(W ) values for quarter-wave uniform-width resonators from separate device as discussed in text (open squares).

Curve corresponds to Eq. (2.23) for ξ = 235 nm.

We have extracted Bth for the four resonators of different widths and we include this data in

Figure 2.5 with the Bth(W ) points extracted from the measurements in [3] . We then include a curve

corresponding to Equation 2.23 by adjusting ξ. We find that for ξ = 235 nm, we obtained reasonable

agreement with the measured Bth(w) points, although the curve is not a perfect match to the data.

Differences between the measurements and the predicted dependence of equation 2.23 could be due

to the variations in the details of the vortex freezing process between the strips of different widths.

Also, for some of our features, such as the 6µm and 8µm regions of our resonator, the finite length

of these regions may change the details of Equation 2.23 as well. Nonetheless, the general trend of

Bth is clear and vortices trap at higher threshold fields for narrower superconducting traces.

2.5 Vortex motion in superconductors

In a field-cooled process, the application of a perpendicular magnetic field that is greater than the

threshold field Bth for trapping vortices introduces vortices into a type-II superconductor. Vortices

can move under the influence of a Lorentz force that could come from external currents or from

screening currents due to an external magnetic field [42, 64]. The Lorentz force acting on a single

vortex is related to the current density as [29]

fL = J ×Φ0. (2.24)
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The motion of the vortices will induce an electric field E according to Faraday’s law, and the induced

electric field is related to the vortex velocity v as

E = (B −Bth)× v, (2.25)

where B is the magnetic flux density, and is given by (B − Bth) = nvΦ0, Bth, given by equation

2.23, is the threshold field above which vortices penetrate into the superconducting film. Hence the

motion of vortices induce a resistive voltage and some power is dissipated. Assuming that there is no

pinning, the motion of vortices is retarded only by viscous force fv = ηv. A free-flux-flow (FFF) of

vortices is characterized by a balance between the Lorentz force jΦ0, where J is the current density,

and the viscous force ηv giving rise to the flux flow resistivity given by

ρf =
E

J
=

(B −Bth)v

J
= (B −Bth)

Φ0

η
= nv

Φ2
0

η
. (2.26)

Hence, the flux flow resistivity is proportional to the magnetic flux density, and therefore, to the

number of vortices per unit area. Thus, free-flux-flow consists of purely viscous motion of the vortices

in which the pinning effect on the vortices is negligible [67]. Recall that the vortex core contains

non-superconducting single-particle excitations, which leads to the vortex viscosity.

If a superconductor has pinning defects, which are often regions of weakened superconductivity

and that form a region where a vortex core can sit and lower the overall system free energy [41], vor-

tices will be pinned by these defects and they cannot move. The current flow in the superconductor

with vortices pinned by defects will result in vanishing resistance, which could be from crystalline

structure such as impurities or grain boundaries or they could be artificial pinning centers such as

holes (antidots), magnetic dots, arrays of dots or slots.

Vortices may become unpinned by a sufficient driving force produced by transport current and

the screening currents due to an external magnetic field and their motion also is subject to a damping

force which gives rise to dissipation as explained above. The dissipation associated with a moving

vortex is parameterized by a vortex viscosity η given by [68]

η(v) =
η(0)

1 + (v/v∗)2
, (2.27)

where η(0) is the viscous damping coefficient at zero vortex velocity. v∗ is the critical vortex velocity

at which the non-linear effects occurs as we will explain in detail in chapter 8.

The high-frequency ac currents lead to oscillatory motion of vortices about their equilibrium

positions in pinning sites. The vortex mass is small enough that for most materials it can be neglected

at microwave frequencies [69]. Assuming a harmonic form for pinning potentials characterized by

a spring constant, we write the simple equation of motion of a single vortex in a superconducting
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material as [70]

ηv + kpx = jΦ0. (2.28)

In equation 2.28, j is the applied oscillatory current density at frequency ω, kp is the restoring force

constant of a pinning potential and η is the vortex viscosity coefficient. The ratio kp/η of restoring

force constant and vortex viscosity defines the depinning frequency [66]. Thus, [70]

ωp =
kp
η
. (2.29)

For frequencies ω ≪ ωp the vortex response is mostly elastic and pinning will dominate. In contrast,

for high frequencies ω ≫ ωp, the vortex response is increasingly dissipative as the vortex viscosity

is more important.

At high frequencies ω ≫ ωp, the dissipation caused by the motion of vortices is reflected in the

change the surface impedance of the superconductor [71]. In fact, the surface impedance Zs of the

superconductor is defined as

Zz = Rs + iXs, (2.30)

where Rs is the surface resistance and Xs is the surface reactance. The surface impedance is related

to the complex resistivity by the following expression [72]

Zs =
√
iωµ0(ρ1 + iρ2). (2.31)

The vortex resistivity ρv can be used to model the surface impedance for a superconductor containing

vortices. Various models have been proposed to derive the vortex complex resistivity ρ̃v. In fact,

Gittleman and Rosenblum [73] considered the simple vortex equation 2.28, including pinning only.

The model was extended by Coffey and Clem [74] and then extended further by Brandt [75] to include

flux creep effects due to different thermal effects. In 2008, motivated by the various treatments of

the complex vortex resistivity, Pompeo and Silva showed that all of the previous models can be

described by the following expression [76]

ρ̃v(ω)

ρf
=
ϵ+ iω/ωp

1 + ω/ωp
, (2.32)

where ρf is the flux flow resistivity given by equation 2.26, is the microwave angular frequency, ϵ

is the flux creep factor and ωp is given by equation 2.29. The solution to equation 2.32 has a real

(dissipative) and the imaginary (reactive).
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2.6 Thermal and nonequilibrium quasiparticles

2.6.1 Mattis-Bardeen equations for thermal quasiparticles
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Figure 2.6: Variation of thermal quasiparticles with temperature for Tc = 1.2K. Calculations based on Eq. 2.33.

A phonon with energy greater than 2∆ can break a Cooper pair, and generate two single-particle

excitations, called quasiparticles. When two quasiparticles recombine into a Cooper pair, a 2∆

phonon is emitted. Therefore, in equilibrium, the state of a superconductor is formed by the Cooper

pairs with a density ncp and thermally excited quasiparticles with a density nqp [77]. The quasipar-

ticle density and recombination time as a function of temperature have been calculated in reference

[36, 37, 78] and given by

nqp = 2N(0) (2πkBT∆)
1
2 exp

(
− ∆

kBT

)
(2.33)

and

τqp =
τ0√
π

(
kBTc
2∆

)5/2(
Tc
T

)1/2

e∆/kBT . (2.34)

Recall that N(0) is the single-spin density of electron states at the Fermi energy. N(0) = 6.9 ×

1028J−1µm−3 for aluminum film [37]. τ0 is a material specific parameter, it describes the strength

of the electron-phonon coupling [37]. Therefore, in thermal equilibrium, the quasiparticle density

nqp in a superconductor follows an exponential temperature dependence while the quasiparticle

lifetime τqp has an inverse temperature dependence. As the temperature decreases, the quasiparticle

recombination time τ increases exponentially because of the reduced density of quasiparticles. The
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electrodyanamic behavior of a superconductor is often expressed in terms of its complex conductivity,

defined as

σ(ω) = σ1(ω)− iσ2(ω). (2.35)

The real part σ1 denotes the conductivity by quasiparticles and the imaginary part σ2 is due to the

superconducting condensate. Using BCS theory, Mattis and Bardeen derived the expression for the

real σ1 and imaginary part of the complex conductivity σ2 relative to the normal conductivity σn.

The Mattis-Bardeen equations reads [34, 35, 39]

σ1(ω, T )

σn
=

4∆0

~ω
exp

(
− ∆0

kBT

)
sinh(

~ω
2kBT

)K0(
~ω

2kBT
) (2.36)

σ2(ω, T )

σn
=
π∆0

~ω

[
1−

√
2πkBT

∆0
exp

(
− ∆0

kBT

)
− 2e−∆0/kBT e

− ~ω
2kBT I0(

~ω
2kBT

)

]
, (2.37)

where K0 and I0 are the modified Bessel functions of the first and second kind. Therefore, com-

paring equations 2.33, 2.36 and 2.37, we find that as T → 0, σ1 and nqp vanish. However, the

imaginary part of the conductivity, associated with the inertia of the superconducting electrons, re-

mains nonzero, σ2(ω, 0)/σn ≈ π∆0/~ω. Thus, at low temperature T ≪ Tc the dissipative response

of the quasiparticle system is very small compared to the reactive response of the cooper pairs. Fur-

thermore, σ1(ω, T ) ∝ nqp(T ) and σ2(ω, T )− σ2(ω, 0) = δσ2(ω, T ) ∝ nqp(T ). The surface impedance

in equation 2.30 can be expressed in terms of the complex conductivity σ(ω, T ) as [35]

Zs(ω, T ) = Zs(ω, 0)

(
1 + i

δσ(ω, T )

σ(ω, 0)

)γ

, (2.38)

where Zs(ω, 0) is the surface impedance of the superconductor at zero temperature. γ = 1, −1/2, −1/3

for the thin film limit, local limit, and extreme anomalous limit, respectively.

2.6.2 Nonequilibrium quasiparticles at millikelvin temperatures

Several experiments have reported that at millikelvin temperatures, there is a deviation from an

exponential temperature dependence for quasiparticles density [77]. At low temperatures below

roughly one tenth of the critical temperature Tc, various experiments have observed the quasiparticle

density to become independent of temperature and saturate at a value that is orders of magnitude

above the predicted thermal level[25, 79, 80]. Quasiparticles could be generated by various sources

of pair-breaking radiation, including stray infrared light, cosmic rays or energy relaxation in the

superconducting material [36, 81]. Motivated by the Rothwarf-Taylor coupled differential. equations

for the quasiparticle density and phonon density [82], Barends [23] proposed a simple model to take

into account the nonequilibrium quasiparticles, the rate equation for total number of quasiparticles

δNqp

δt
=
P

∆
+G− ΓRN

2
qp, (2.39)
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where P is the power absorbed for which hf > 2∆, G is the standard thermal generation term due

to pair breaking by phonons, and ΓR is a material-dependent recombination constant given by [37]

ΓR = 2

(
∆

kBTc

)3
1

N(0)∆τ0
. (2.40)

Without P/∆ term, equation 2.39 reduces to equation 2.33. nqp become proportional to P/∆ when

the quasiparticle density exceeds that of the thermal quasiparticles.



Chapter 3

Coplanar waveguide resonators

Superconducting coplanar microwave guide resonators with high quality factors are of great interest

in many areas including photon detectors for astrophysical applications [4], parametric amplifiers

[5, 6], microwave filters [7], and in the field of quantum information science where microwave res-

onators play an extremely important role in superconducting qubit design [8], interqubit coupling

[9], quantum information storage [10–12] and in the quantum-state dispersive readout [13–16]. The

other very important application of microwave resonators is their use as sensitive probes to study

the loss mechanisms that limit the quality factors of the resonator. In fact, because resonators are

fabricated using the same materials as filters, amplifiers, or qubits, it’s important to understand

the fabrication-dependent limits to device parameters [17–22]. In this chapter we give a survey on

lumped- and distributed-element resonators and we discuss key design parameters of a coplanar

waveguide resonator. Then we discuss the current understanding of the various loss mechanisms in

coplanar waveguide resonators.

3.1 Lumped-elements resonators circuits

Figure 3.1: Lumped elements in (a) parallel and (b) series resonant circuits.
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In this section we describe parallel and series lumped-elements resonator circuits. We describe the

input impedance, resonance frequency and quality factor of these circuits . Our discussion will follow

the analysis of [83].

Parallel RLC Resonator

The input impedance of a parallel RLC resonant circuit in figure 3.1(a) is given by

Zin =

(
1

R
+

1

jωL
+ jωL

)−1

. (3.1)

At resonance, Zin is minimum and, the resonance frequency ω0 is defined as

ω0 =
1√
LC

. (3.2)

The unloaded quality factor Q of the parallel resonant circuit, in the absence of loading effects

caused by external circuitry, is defined as

Q = ω
average energy stored

energy loss per unit of time
. (3.3)

Thus, the quality factor of a parallel resonant circuit is

Q = ω0RC =
R

ω0L
. (3.4)

Series RLC Resonator

The resonance frequency ω0 of a series RLC is also given by

ω0 =
1√
LC

. (3.5)

The unloaded quality factor Q of the series resonant circuit is

Q =
ω0L

R
=

1

ω0RC
. (3.6)

3.2 Distributed transmission-line resonators

The values of quality factors obtained using lumped elements are small. It is also difficult to achieve

lumped element resonant circuits with high frequencies as this requires small capacitors and induc-

tors. These limitations are resolved using distributed transmission lines resonators which can be

built to achieve quality factor of hundreds of thousands, and can be used at microwave frequencies.

We describe half-wave and quarter-wave transmission line resonators following the analysis of Pozar

[83].
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The distributed resonant circuit utilizes open or shorted transmission line. As the resonance oc-

curs in the form of standing waves, its dimensions are comparable with the wavelength, λ. Therefore,

any form of transmission line of suitable length can be used to form a resonator.

3.2.1 Coplanar waveguide geometry: Half-wave and Quarter-wave res-

onators

Figure 3.2: Geometry of the CPW transmission line.

CPW geometry is most appropriate for Superconducting thin-film devices fabricated on dielectric

substrates. The coplanar waveguide (CPW) geometry has all of the metal traces only on the top

surface of a dielectric substrate. It has a center conductor of width w and the ground planes on

either side. The gap g separates the ground planes and the center conductor. The dimensions of

the center strip, the gap, and the thickness and permittivity of the dielectric substrate determine

the effective dielectric constant εeff, characteristic impedance Z0, and internal losses (which could

be dielectric loss, metal loss, radiation loss, coupling loss, etc.).

The voltage and current on a transmission line are discussed in details in Pozar [83]. We review

the main results relevant to our discussions in the next chapters. In fact, the total voltage and

current on a transmission line are given by

V (z) = VI
[
e−γz + Γeγz

]
, (3.7)

and

I (z) =
VI
Z0

[
e−γz − Γeγz

]
, (3.8)

where we assumed the transmission is along the z-axis, VI is the voltage amplitude of the incident

wave referenced at z = 0, Γ = (ZL − Z0)/(ZL + Z0) is the reflection coefficient of the load, with

ZL is the impedance of the load, and Z0 is the characteristic impedance of the transmission line.

γ = α + i β is the complex propagation constant, with α the attenuation constant and β is the

phase constant or wave number. Applied to a half-wave resonator which has both ends open, the
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equations 3.7 and 3.8 are given by V (z) = 2VIcos(βz) and I(z) = (−2iVI/Z0)sin(βz). For a quarter-

wave resonator that has one end open and the opposite end shorted to ground, the expressions for

voltage and current are V (z) = −2iVIsin(βz) and I(z) = (2VI/Z0)cos(βz) [83]

The characteristic impedance of a CPW transmission line resonator can be calculated according

to Simmons [84]

Z0 = 30π

(
1 + ϵ

2

)− 1
2 K(k

′

0)

K(k0)
, (3.9)

where ϵ is the relative permittivity of the substrate. K(k0) and K(k
′

0) are the complete elliptic

integrals with modulus k0 and k
′

0, respectively, given by k0 = w/(w + 2g) and k
′

0 =
√
1− k20, with

w the width of the center conductor and g the width of the gap, as shown in figure 3.2. For a silicon

substrate, ϵ ≈ 11.9 and for a sapphire substrate ϵ ≈ 9.9. Once we choose the substrate we will use,

we can solve Equation 3.9 in Mathematica by adjusting the values of the width of center conductor

w and the value of the gap g between the center conductor and ground planes in order to get the

50Ω impedance. The length l of the CPW resonator can be calculated from the dielectric constant

of the substrate ϵ and resonator center frequency f0 as follows

l =
c

mf0

(
2

1 + ϵ

) 1
2

, (3.10)

where m = 2 for a half-wave resonator and m = 4 for a quarter-wave resonator. c is the speed

of light. All the resonator designs that we will discuss in this thesis have a CPW geometry. The

half-wave resonators we fabricate are open at both ends; that is the center conductor and ground

planes are not connected. We fabricated also quarter-wave resonators with one end open, and the

other end shorted to ground.

Very high quality factors can be achieved in these resonators once we have taken care of the

various sources of microwave loss. We briefly review the various loss mechanisms in CPW resonators.

The analysis of equations 3.7 and 3.8 leads to the expressions for the coupling quality factor. For a

half wave resonator, the coupling quality factor is given by [85, 86]

Qc =
nπ

4Z0ZL (2πf0nCc)
2 , (3.11)

where n =1, 2, 3, etc. gives the mode number. f0n is the resonance frequency of the resonator mode

that is excited. Cc is the coupling capacitance that is determined by the length of the elbow. For a

quarter-wave resonator, the coupling quality factor is [87]

Qc =
π

2Z0ZL (2πf0nCc)
2
(2n− 1)

, (3.12)

where n =1, 2, 3, etc. gives the the different modes. The total quality factor Q of a resonator is
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related to the coupling quality factor Qc as

1

Q
=

1

Qi
+

1

Qc
, (3.13)

where Qi is the internal quality factor defined by equation 3.4. The ratio Qi/Qc defines three

coupling regimes, Thus,

Qi

Qc


> 1, overcoupled regime

= 1, critical regime

< 1, undercoupled regime .

(3.14)

3.3 Loss mechanisms in microwave resonators

The coplanar waveguide resonator performance is sensitive to both the details of its geometry and

the materials and processes that are used in its fabrication. Low losses are important for applications

of superconducting resonators in quantum information or detectors. The resonator quality factor is

determined by various energy loss mechanisms, namely, two-level system loss in dielectrics, the dis-

sipation by quasiparticles, energy leaking out of the resonator through the capacitors, and radiation

into free space produced by a transmission line [88]. Over the last decade, there have been many

efforts to identify and minimize the individual dissipation mechanisms. In this section we describe

the current understanding of the various loss mechanisms in CPW resonators. The internal loss in

the resonator can be summarized as

1

Qi
=

1

Qrad
+

1

QTLS
+

1

Qqp
+

1

Qv
+ · · · , (3.15)

where 1/Qrad is the loss due to radiation, 1/QTLS is the loss due to two-level system in dielectric,

1/Qqp is the loss due to quasipartices, and 1/Qv gives the dissipation due to vortices.

3.3.1 Microwave losses due to radiation and coupling to feedline

The coupling loss 1/Qc is due to energy that leaks out of the CPW resonator through the coupling

capacitors to the external measurement circuitry. Equations 3.11 and 3.12 tell us that the coupling

loss is inversely proportional to the square of coupling capacitance and resonance frequency as

1

Qc
∝ (2πf0Cc)

2
. (3.16)

Radiation loss 1/Qrad is given by the radiation produced by a transmission line. The radiation loss

is proportional to the square of the ratio between the distance S separating the ground planes and

the length L of the CPW resonator, thus [39]

1

Qrad
∝
(
S

L

)2

. (3.17)
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Therefore, for properly designed coplanar waveguide resonators, 1/Qc and 1/Qrad can be engineered

with a high degree of control, and hence these two loss channels are not the limiting factors.

3.3.2 Microscopic Two-Level System (TLS) loss

The primary source of energy dissipation at low powers and low temperatures in superconducting

CPW resonators are two-levels defects (TLS) on the various surfaces. TLS are abundant in amor-

phous dielectrics such as native oxides. Previous studies of two-level system distribution and loss

[17, 18, 36, 77, 89–93] have shown that TLS mostly reside at metal-substrate and substrate-air in-

terfaces. Gao et al. [90] showed that TLS loss has a strong dependence on resonator geometry, with

larger loss observed for narrow CPW resonator. Typical defects in amorphous dielectrics often have

two possible levels with a characteristic energy difference, and there is a broad distribution of these

energy differences. But a significant fraction of TLS can have their energy difference near the energy

of a typical resonator, thus providing a path for energy to leak out of the resonant mode and into

the TLS. Because they have electrical dipole moments, TLS can couple to the electric fields of the

coplanar waveguide resonators. At low temperatures such that ~ω > kBT , the internal loss due to

TLS can be approximated as [17, 90]

1

QTLS
∝

tanh
(
~ω/2kBT

)√
1 +

(
E/Es

)2 , (3.18)

where Es = ~/p
√
T1T2 is the saturation field, The numerator in right hand side reflects the thermal

population difference between lower and upper level. As E increases, more TLS get driven into

the excited state and saturated where they can no longer absorb energy from the resonator, thus

resulting in a decrease in the internal loss due to TLS. The internal loss is expressed in terms of

standing wave voltage as

1

QTLS
∝

tanh
(
~ω/2kBT

)√
1 +

(
Vrms/Vs

)1.6 , (3.19)

where Vs ∼ gEs is the saturation voltage which is proportional to the width of resonator gap.

TLS loss saturates at low powers corresponding to excitations of only a few photons, and at very

high powers all TLS are saturated, and do not contribute loss. Some efforts to reduce TLS loss

include thorough substrate cleaning and deposition process [94], the use of low-loss substrate such

as crystalline sapphire and removing the substrate from regions with a high electric field density

[22].
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3.3.3 Quasiparticles loss

In chapter 1, we found that at low temperatures the density of nonequilibrium quasiparticles satu-

rates, i.e, they vanish. Experiments have measured a significant quasiparticle density in the range

10− 100µm−3. Martinis et al. [79] derived an expression for the energy dissipation due to nonequi-

librium quasiparticles in qubits and resonators. According to his model, the internal loss due to

nonequilibrium quasiparticles in the resonator can be written as [79]

1

Qqp
=

α
π

(
2∆

~ω

) 1
2 1

D(EF )

 nqp, (3.20)

where ∆ is the superconducting energy gap, α = Lk/(Lk + Lg) is the fractional kinetic inductance

equal to kinetic inductance Lk divided by total inductance, with Lg the geometric inductance.

D(EF ) is the two-spin density of states at the fermi energy. nqp is the density of nonequilibrium

quasiparticles. ω is the angular frequency. To reduce the effects of excessive quasiparticles, some

traps can be engineered to restrict quasiparticles away from the resonator and thus reduce the

dissipation.

3.3.4 Microwave loss due to vortices

In chapter 2 we showed that the motion of vortices in a superconductor can cause depairing of Cooper

pairs and lead to energy dissipation [40, 64] and hence to a reduction of resonator quality factor

[66]. In an effort to prevent vortex motion, several methods have been studied over the last decade

related to controllably pinning magnetic flux vortices by use of microfabricated structures so as to

reduce power dissipation and hence improve the resonator quality factor in magnetic fields. Some of

these methods include the use of narrow slots [95], micropatterned holes (antidots) [96, 97] in ground

planes and center conductors to reduce the degrees of freedom of vortices in the superconducting

film [98]. The pinning of vortices is due to the variation in vortex energy with the length of the

vortex, since vortices tend to pin in thinner regions of a superconductor so as to lower their energy

[41]. We define the vortex quality factor as [66]

Qv =
ωL

′

Rv
, (3.21)

where L
′
is the inductance per unit length, Rv = j(x)ρvl/Wd is the vortex resistance. W and d are

the width of film and the thickness of the film, respectively. l is the length of the resonator and ρv

is the vortex resistivity we defined in equation 2.32. d is the thickness of the superconducting film

and j(x) is a dimensionless factor that takes into account the variation of current density Js along
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the width of the center conductor of the resonator. It is given by [39]

j(x) =
J2
s (x)

⟨Js⟩2
=

4

π2

W 2

W 2 − 4x2
, (3.22)

where ⟨Js⟩ is the average current density along the width of center conductor. Therefore we can

write the vortex loss in terms of the complex resistivity as

1

Qv
= j(x)

Re [ρ̃v]

ω0WdL′ . (3.23)

We can expand the equation 2.32 and separate real and imaginary parts,

ρ̃v(ω0)

ρf
=

(
ω0/ωp

)2
+ ϵ

1 +
(
ω0/ωp

)2 + i

(
ω0/ωp

)
(1− ϵ)

1 +
(
ω0/ωp

)2 . (3.24)

Therefore, the vortex loss 1/Qv in equation 3.23 can be rewritten as

1

Qv
= nvj(x)

Φ2
0

ω0ηWdL′

(ω0/ωp

)2
+ ϵ

1 +
(
ω0/ωp

)2
 , (3.25)

where nv is the density of vortices per unit area, given by nv = (B−Bth)/Φ0. Therefore, the vortex

loss increases with the number of vortices as expected. When vortices are trapped at the location of

vanishing current density, they do not cause any dissipation as the Lorentz force is zero. In contrast,

vortices cause dissipation when trapped at nonzero local current density. For a superconducting

coplanar wave guide resonator with a center conductor of width w and gap g, the current density is

maximum at the edges of the center conductor and is smaller at the center line. Therefore, vortices

trapped in middle of the resonator cause less dissipation compared to the case when they are trapped

near the edges of the center conductor. In the ground planes, the current density is maximum near

the edges of the gaps to the center conductor and is reduced to zero far away from the gap to the

center conductor.

Furthermore, the standing wave current density varies along the length of the resonator and the

value of current density depends on the type of resonator and the resonator mode that is excited.

In fact, for a fundamental mode, the current density is maximum at middle of resonator and is zero

at the ends of half-wave resonator, while for the quarter wave-guide resonator the current density

is maximum at shorted end and zero at open end. Thus, when vortices are trapped at middle of

half-wave resonator, we expect maximum vortex loss for the fundamental mode and no vortex loss

when the first harmonic mode is excited.

In order to reduce the dissipation due to the moving vortices, any sort of pinning sites has to be

engineered at locations of vanishing current density such as in middle of a half-wave resonator or in

the ground plane far way from the resonator gaps.



Chapter 4

Experimental setup and device

design and fabrication

In this chapter we will describe our microwave measurement setup, resonator design and chip fab-

rication, and measurement strategies. we will describe our Adiabatic Demagnetization Refrigerator

and how it works, then discuss the wiring of all the microwave components we use in our measure-

ments. we will discuss our device design using the Sonnet and Cadence tools. Then we will describe

the processes that we follow to fabricate our devices. Finally we will discuss how we perform our

measurements and analyze the results.

4.1 Microwave setup

4.1.1 Adiabatic Demagnetization Refrigerator

The adiabatic demagnetization, proposed by Peter Debye in 1926 and independently by William

Francis Giauque in 1927 [99–101] is a process used to lower the temperature of the material. The

material is first polarized in a large magnetic field at a certain temperature, then the opening of a

thermal switch prevents any heat from flowing into the magnetic material while the magnetic field

is reduced. With this procedure, we cooldown our devices that are pre-cooled, from 3K to ∼ 44mK.

4.1.1.1 Brief description of ADR 106 Cryostat

We have conducted our experiments using a pulse-tube driven Adiabatic Demagnetization Refrig-

erator (ADR, Model 106) cryostat from High Precision Devices, Inc. (HPD). The cryostat consists
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of four temperature stages at approximately 60K, 3K, 500mK and 50mK. The three stage plates

(300K, 60K, and 3K) of the cryostat are connected by thermally isolating supports. The cryostat

has a vacuum jacket, 60K shield, and a 3K shield. The cryostat connects to a Cryomech Pulse-

Tube Refrigerator (PTR). The PTR is a closed loop system consisting of a water-cooled compressor

connected to the remote motor by helium gas flex lines, the PTR provides the cooling of the 60K

and 3K stages.

ADR 106 contains a superconducting 4T magnet within a Hiperco 50 magnetic shield, a Kevlar

suspension system, and two paramagnetic salt pills. The paramagnetic salt pills used are Gadolin-

ium Gallium Garnet (GGG) pill that can cool to 500mK and the Ferric Ammonium Alum (FAA)

salt pill that can cool to a base temperature a ∼ 44mK. The salt pills are connected to copper

cold fingers that we then attach our experimental hard ware onto. A Kevlar suspension system

isolates the salt pills from warmer stage temperatures while supporting experimental loads of a few

pounds (Maximum recommended weight be about 2 kg). The superconducting magnet generates

the magnetic field necessary for the operation of the ADR. It has a large inductance of 32.17H, a

room-temperature resistance of 11.25 kΩ, and a fieldto-current ratio of 4.364 kG/A. A gold-plated

copper thermal shield reduces the radiative load on the Hiperco 50 shield and magnet [102]

When the heat switch is closed, the 3K stage is shorted thermally to both colder stages of the

ADR (FAA and GGG). When the heat switch is open, the 3K stage and both FAA and GGG stages

are disconnected thermally from each other. There are Ruthenium Oxide (RuO2) thermometers

mounted on both the 500mK and 50mK stages, while a silicon diode thermometer is mounted on

each of the 60K and 3K stages.

4.1.1.2 ADR 106 cryostat cooldown procedure

The cryostat volume must be under vacuum during operation to avoid gaseous thermal conduction

between the room-temperature vacuum jacket and the various stages. We use a portable turbo

pump cart with a scroll backing pump. Initially we use the scroll pump to reach the pressure of

∼ 10−3 Torr. Then we turn on the turbo pump, initially at low-speed mode and then switch to

the high-speed mode, to pump the cryostat down to high-vacuum (∼ 3 × 10−5 Torr). To get good

vacuum we usually handle the cryostat shield with gloves to avoid any fingerprint buildup or particle

contaminants on the vacuum sealing surfaces.

Once the cryostat has reached a sufficiently high vacuum level (∼ 3 × 10−5 Torr), we open and

close the heat switch. Then we open the water valve to allow cooling water to flow through the

compressor. Note that, due to a slow leak in the high-pressure helium system for this particular

ADR, it is important to check that the helium pressures in the flex lines reads ∼ 220 psi when
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the compressor is not running. Otherwise if the static pressure is low, the compressor needs to be

recharged with ultra-high purity helium gas. We turn on the pulse tube compressor and run the

LabVIEW program to record the temperatures of 60K and 3K stages as the cryostat cools down

from room temperature.

Figure 4.1: Temperatures vs. time for the 60K (Red) and 3K (Blue) stages of the pulse-tube refrigerator during

an initial cooldown of the ADR cryostat from room temperature.

After approximately 15-16 hours, the 3K stage temperature should have fallen below 50K, and

the cryostat will have reached a high vacuum level (∼ 4 × 10−8 Torr). We close the vacuum valve,

then we turn off the pump cart and disconnect it. At temperatures below 50mK the cryostat’s

ability to cryopump any slowly leaking gas is more effective than the turbo pump cart.

4.1.1.3 Magnetization process

When the temperature of the ADR magnet has reached around 3K, we cycle (open and close) the

heat switch to ensure functionality before beginning the first magnetization cycle. For the initial

cooldown from room temperature, we let the compressor run about 18-20 hours before starting an

ADR cycle to allow for better thermal equilibration of the GGG and FAA salt pills.

With the heat switch kept closed, we gradually increase the current flowing in the superconduct-

ing magnet using an Agilent system DC power supply (Model 6641A, 0-13 V/ 0-15.3 A) operated in

a constant voltage mode, until reaching the full field. We typically apply 620mV using the power

supply to reach the maximum magnetic field, corresponding to a current flowing in the magnet of
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9.06A and a magnetic field of about 4T. Note that for the ADR cryostat Model 106 the maximum

current the superconducting magnet can withstand is 9.17A. During the next re-magnetization

cycles, we close the heat switch after the salt pill temperatures reach that of the 3K stage. Doing

that will prevent any heat flow from 3K stage to cold finger that could potentially quench the super-

conducting magnet. To prevent the magnet from quenching, we ramp up the voltage of system DC

power supply at a rate of 0.07mV/s for the voltage developed across the superconducting magnet

not to exceed 0.1V. At the full field, we cycle the heat switch (open and close), so as to free any

thermal stresses in the switch mechanism and Kevlar suspension system. We then wait for the salt

pill to soak for enough time (1-4 hours) before beginning demagnetization.

4.1.1.4 Adiabatic demagnetization process

We keep the heat switch closed to let the salt pills soak for more than an hour. The purpose of

the soaking process is to allow the salt pills to equilibrate at their maximum magnetization at the

lowest temperature of the pulse tube cooler. We then open the heat switch and unplug its power

cord in order to start the demagnetization process. Recall that when the switch is open, the 3K

stage and both 500mK and 50mK stages of the ADR are disconnected thermally from each other.

We reduce the current through the superconducting magnet by decreasing the voltage of the system

DC power supply. The salt pill cools because the magnetic field is being reduced and the process is

adiabatic since the heat switch is open. Because no heat can flow, the temperature must decrease

as B is reduced.
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Figure 4.2: Cooling of FAA salt pill coupled to sample during adiabatic demagnetization.

We slowly ramp down the voltage of the magnet power supply at a rate of 0.07mV/s, and
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eventually no current flows through the superconducting magnet and the magnetic field is zero.

Reducing the magnetic field from 4T to zero takes about 1 hour and a half. With the magnetic

reduced to zero, the temperature of the FAA stage that supports the experimental loads (sample

and connectors) will have reached the base temperature of around 44mK. In order to keep the

temperature of the cold finger above the base value 44mK, we increase the magnet field above zero.

Therefore, If the sample starts to warm up, to compensate for any heat absorbed by salt pill, we

slowly decrease the applied magnetic field whereas, if the sample temperature drops, we increase

the applied magnetic field to compensate for any heat reduction in the salt pill. The ADR model

106 cryostat that we use can maintain the sample at temperatures below 150mK for at least 24

hours. After that time, as we can no longer hold the temperature constant we must repeat the

magnetization-demagnetization cycle.

4.1.2 Experimental wiring in cryostat

Figure 4.3: Microwave measurement setup.
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The ADR cryostat microwave input and output coax cables are made of copper nickel (CuNi) coax,

with a silver-clad inner conductor (SC-086/50-SCN-CN). All the measurements were done in the

ADR described above, using the vector network analyzer (VNA, model N523A, 300kHZ-20GHz).

The microwave input signal sent from the input port of the VNA goes through 20 dB of attenuation

at the 60K stage, followed by 10 dB at 3K stage and 6 dB at 500mK stage. It then enters a low-pass

filter that has a roll-off at ∼ 11GHz mounted at 500mk. Before entering the sample holder, the input

signal passes through a final 20 dB attenuator anchored to the cold finger near the sample holder.

In total we have 56 dB of cold attenuation on the input line in addition to the frequency-dependent

coax cable loss (Figure 4.3). Note that we distribute the attenuators at different stages of ADR to

minimize any thermal noise and also interference from room temperature. The output microwave

signal passes through a second low-pass filter, mounted also at 500mK, followed by a circulator at

3K. The signal is then amplified by a high electron mobility transistor (HEMT) amplifier mounted

at 3K. The circulator and low-pass filter on the output line attenuate any noise from the HEMT

before it reaches the sample. Before entering the output port of the VNA, the signal is further

amplified by a 35 dB-gain room temperature amplifier.

4.1.3 Cryogenic microwave amplifier
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Figure 4.4: Noise temperature (Blue) and gain (Red) of HEMT amplifier, for temperature below 17K. These curves

are taken from the Caltech datasheet for this HEMT.
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We are interested in measuring the resonators at very weak microwave powers, so we require signif-

icant amplification to be able to have a measurable signal. At the same time, we need amplifiers

with extremely low added noise in order to have a reasonable signal-to-noise ratio. The output mi-

crowave signal is amplified by a high electron mobility transistor (HEMT, model SN479D) amplifier

from Caltech. It is mounted at 3K stage. The HEMT has a constant gain over a wide range of

frequencies 1 − 12GHz. The noise temperature of the HEMT is about 5K. We bias the HEMT

using a homemade bias box. We use one voltage power supply to apply the drain-source bias and

the voltage bias for the two gates. We apply a drain voltage equal to 1.2V which produces 23.5mA

of current. The bias voltages for the gates are the same, and equal to 0.25V. These bias points

correspond to the optimum gain and noise performance for this particular HEMT.

4.1.4 Vector network analyzer and S-parameters

Figure 4.5: Left: Vector Network Analyzer (VNA). Right: a circuit diagram for a two-port network.

We measure resonators using a vector network analyzer (VNA, Agilent model N5230A, 300kHZ-

20GHz). The data from the VNA consists of the complex transmission S21 for the 800 frequency

points in the desired frequency span. We briefly discuss the scattering parameters (S-parameters)

for a two-port network. These parameters define relations between variables (ai, bi). The indepen-

dent variables ai and dependent variables bi are normalized complex voltage waves incident on and

reflected from the port i of the network, respectively. They are defined in terms of the terminal

voltages Vi. For a two-port network, they defined as follows [83, 103, 104]

a1 =
Vi1√
Z0

(4.1)

a2 =
Vi2√
Z0

(4.2)

b1 =
Vr1√
Z0

(4.3)
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b2 =
Vr2√
Z0

. (4.4)

where Z0 is the characteristic impedance. S-parameters are dimensionless and that they are typically

measured in decibels. For a two-port network, the S-parameters are defined by the following linear

equations

b1 = S11a1 + S12a2 (4.5)

b2 = S21a1 + S22a2 (4.6)

or in matrix notation  b1

b2

 =

 S11 S12

S21 S22

 a1

a2

 . (4.7)

S11 is the input reflection coefficient with the output port terminated by a matched load set by

ZL = Z0 , S11 = b1/a1 for a2 = 0. S22 is the output reflection coefficient with the input port

terminated by a matched load set by ZS = Z0 , S22 = b2/a2 for VS = 0. S21 is the forward

transmission with the output port terminated in a matched load, S21 = b2/a1 for a2 = 0. S12 is the

reverse transmission with the input port terminated in a matched load, S12 = b1/a2 for a1 = 0. In

our experiments, we measure the magnitude and phase of the complex forward transmission S21.

4.1.5 Shielding and generation of magnetic fields

3K stage of cryostat

3K heat 

shield

Cryogenic mu-metal

shield (3K)

cold-finger 

(~100 mK)

brass sample box 

(~100 mK)

Helmholtz 

coil (3K)

Figure 4.6: Left: Schematic of cryostat including sample brass box and mount along with Helmholtz coil (not to

scale). Right: Cryoperm shield mounted on the 3K plate.
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We would to apply a magnetic field to the sample in order to trap vortices in the microwave res-

onators. The magnetic field is applied perpendicular to the sample and we have used a homemade

Helmholtz coil that has same dimensions as the one described in reference [39]. At 3K stage, the

superconducting wire is made of niobium titanium CuNi-clad with a diameter of 0.005 inch. The

coil wire at upper stages and outside of ADR is made of copper wire. The helmholtz coil frame is

made of Oxygen-free high thermal conductivity (OFHC) copper. The radius of the coil is 1.25 inch

we have made 115 turns on each coil, so the total number of turns in the two coils is 230. At room

temperature, the resistance of the superconducting wire is 1050Ω and the resistance is ∼ 0.5− 1Ω

at millikelvin temperatures. We typically apply small fields in the range 0−220µT without noticing

any heating of the cold finger or 3K stage. A cryogenic mu-metal can at 3K shields the resonator

from stray magnetic fields outside of the cryostat as well as any residual stray fields from the ADR

magnet. We cooled down a test device and measured both positive and negative magnetic fields

applied from the Helmholtz coil, and we estimated the component of the background magnetic field

perpendicular to our sample to be less than 2µT. This value is much smaller the threshold fields to

introduce vortices in all of the devices that we have studies.

-5 0 5

-20

-10

0

10

20

Current HmAL

F
ie

ld
HΜ

T
L

Figure 4.7: Plot of calibration for converting applied current to magnetic field in the Helmholtz coil, the slope is

3.23µT/mA.

Using the Lakeshore Gaussmeter (Model 450), we calibrated the Helmholtz coil to convert current

in mA that we apply using a current source to the resulting magnetic field in µT. We calculated the

conversion factor to be 3.23µT/mA by fitting the calibration data as shown in figure 4.7. We recall

that the current and magnetic field in a Helmholtz coil are related as B = (4/5)3/2(µ0nI/R) where
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n is the number of turns, I is the applied current, µ0 is the magnetic permeability in free space,

and R is the coil radius. This expression gives B/I ≈ 3.27µT/mA, which is close to our measured

slope. We place our sample mounted on the cold finger (∼ 44mK) in the middle of the Helmholtz

coil that is attached on the 3K stage. We minimize any stray background magnetic field by using a

cryoperm shield mounted also on 3K plate.

4.2 Microwave resonator design

Figure 4.8: Drawing of resonator design and simulated frequency response |S21|.

We are using superconducting resonators to study the dynamics of trapped vortices and nonequi-

librium quasiparticles. Each type of experiment that we perform drives the design of the resonator

layout such as the resonance frequency, the coupling quality factor Qc, resonator linewidth, etc. We

decide on the structures and dimensions of each resonator and substrate that we want to use for our

experiments. Using Mathematica we compute some of the resonator parameters such as the gaps

on both side of resonator and feedline center conductor that would give a 50Ω impedance, using

the equations 3.10 and 3.9. We then draw and simulate the resonator using Sonnet and AWR tools.

We come up with final resonator designs that meet our needs such as range of resonance frequen-

cies or lengths of the resonator, resonator coupling quality factor or resonator coupling capacitance.

By including the kinetic inductance, calculated based on results from our previous resonator mea-

surements and simulations, we obtained good match between designed and measured resonance

frequencies. We designed half-wave and quarter wave CPW resonators, with fundamental resonance
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frequencies in the range 3-7 GHz. To avoid trapping vortices everywhere in the ground planes, we

include holes of 5.6µ2 in the ground plane to trap magnetic flux. The spacing of holes is designed

to be less than the linewitdh of the center conductor of the resonator as shown in figure 4.9 and also

in figure 4.10.

4.2.1 Resonator mask design and writing

Figure 4.9: Chip design in Cadence software.

Once we have finished the simulations of the resonator using Sonnet, we use the Cadence computer-

aided design software tool to draw the designs in a layout appropriate for one of the photosteppers

at the Cornell NanoScale Facility. From Cadence we export a gds file that we will transfer to the

mask writer tool. We have written the sample patterns using the Heidelberg Instruments DWL

2000 using a 4 mm lens on a photosensitive chrome mask plate. We write the masks to use with

GCA Autostep 200 DSW i-line stepper and masks to use with ASML 300C DUV Stepper. After

writing the patterns, we use Hamatech-Steag HMP900 Mask processor to develop automatically

(using MIF-726 developer) and then etch (chrome etch) the mask. Before using the mask, we soak it

in a resist hot strip bath that contains heated solvent for photoresist stripping for about 30 minutes.

We use a dump rinser and double-stack rinse dryer for easy stripping of the photomask.

4.3 Chip fabrication

We evaporated a 60 − 150 nm thick aluminum layer over the whole 4 inch, (100)-oriented high

resistivity (10 kΩ− cm) Silicon substrate, purchased from Addison Engineering, Inc. and patterned

using photolithography. We fabricated resonators at Cornell NanoScale Science and Technology

Facility (CNF). The resonators we discussed in chapter 5and 6 were patterned using GCA Autostep

200 DSW i-line Stepper. All other resonators we describe in this thesis were patterned using ASML



4.3 Chip fabrication 39

300C DUV Stepper. ASML mask is much bigger than Autostep mask, and in addition to this, ASML

tool offers an option to choose which patterns to expose, and we can pattern more sample designs.

We have used SPR220-3.0 resist to pattern aluminum layer on Autostep. On ASML, we have used

two layers of resists, a bottom layer of the anti-reflective resist DSK101-312 that is 120 nm thick and

a top layer of DUV210-0.6 that is 700 nm thick.

4.3.1 HF cleaning versus ion-milling of silicon wafer

Prior to aluminum evaporation onto the silicon wafer we carefully clean the silicon substrate surface

to remove any residues or oils or to remove/decrease native oxides present on the silicon substrate

surface. We briefly review here the standard recipe to treat the silicon surface. One way to clean

the silicon surface is in-situ ion-milling of wafer surface between 6−13 seconds. We perform the ion-

milling step in the evaporation chamber at Syracuse University immediately before the aluminum

evaporation. During ion-mill, argon ions are accelerated by the ion gun towards the wafer and

bombard the surface of the wafer and gradually remove organic residues, oils and native oxides that

are present on the silicon surface. HF/RCA clean is an alternative that we haven’t pursued for

this fabrication because the HF/RCA cleaning area is at the CNF and our deposition system is at

Syracuse.

4.3.2 Wet etch of aluminum

Figure 4.10: Left: Optical micrographs of chip after wet etch. Right: Zoom-in of bulge region for vortex trapping

near center of resonator.

The wafer with patterned Aluminum layer is structured using wet etch into 4 to 6 half-wave (λ/2)

resonators of different frequencies f0 and coupling quality factors Qc. All the resonators we fabricate

have the CPW geometry. For each chip the resonators are coupled through the elbows to a feedline.

We wet etch Aluminum using Aluminum etchant type-A, a standard Aluminum etchant for use on
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silicon devices. One of the advantages of aluminum etchant type-A is that it does not attack silicon

or silicon dioxide. After fabrication, we cover the wafers with a polymethyl methacrylate (PMMA)

or SPR220-3.0 layer to protect them during dicing. We dice the wafer at a speed of 3.25mm/sec

into chips of 6.5mm2 using the dicing saw DISCO at Syracuse University. We then remove the resist

layer covering the chips prior to mounting in sample holders for measurements. We strip off the

protective resist using acetone followed by isopropanol and a deionized water rinse. An alternate

recipe we often use to strip off resist is 1165 resist stripper heated to 60 Celcius degrees, followed by

a deionized water rinse.

Figure 4.11: Microwave measurement setup outside the ADR cryostat.
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4.4 Resonator measurement

Figure 4.12: Chip wirebonded on a printed circuit board.

The device is wire-bonded to a microwave board and enclosed in a brass box. We adjust the cold-

finger to position the sample at the center of the Helmholtz coil. The arrangement of the various

components and their associated temperatures is shown in figure 4.6. We add room temperature

amplifier with a Gain of 35 dB to further amplify the microwave output signal.
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Figure 4.13: Magnitude and phase raw data of forward transmission S21 . The data was measured for a small span

of (0.5MHz) with 800 frequency points.

We measure the forward transmission S21 of the resonators directly using the vector network

analyzer by sweeping the frequency of the microwave signal applied along the feedline. To allow the

ADR to remain at the measurement temperature for as long as possible while minimizing thermal

quasiparticles, we have chosen to do our resonator measurements at 100mK.
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4.4.1 Extracting resonator parameters with a 4-parameter fitting routine

The transmission signal S21(f) through the sample, attenuators, filters, amplifiers and cables can

be written as follows [92]:

S21(f) = ae−2πifτ

[
1− Qe−iθ/Qc

1 + 2iQδx

]
. (4.8)

The parameters a, τ and θ account for the gain, cable delay, and rotation of the resonance circle

in the complex plane, respectively. δx = (f − f0)/f0 is the fractional frequency shift, with f0 the

resonance frequency. In chapter 3 we showed that the resonator total quality factor Q is related to

coupling quality factor Qc as in equation 3.13

1

Q
=

1

Qi
+

1

Qc
,

whereQi is the resonator total internal quality factor. The fitting model in 4.8 contains 6 parameters.

In our fitting routine, we calibrate out the two parameters a and τ by performing a subtraction of

a separate baseline measurement of the magnitude and phase of the background transmission [3].
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Figure 4.14: Magnitude and phase of background transmission. The blue points far away from the resonance were

used to find a polynomial and linear fit functions for the magnitude and phase, respectively. The data was measured

for a wide span of 6.0MHz.

We use the vector network analyzer to measure the magnitude of S21 for a wide span (6.0MHz)

centered on each resonance, and we find a polynomial fit and linear fit functions for points away, for

the magnitude and phase of S21, respectively,
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Figure 4.15: Plots of magnitude and phase after subtracting off the baseline transmission data.

We then subtract off the polynomial fit function from the magnitude of S21 taken for a small

frequency span zoomed in on each resonance of frequencies (0.5MHz) in figure 4.13. We follow a

similar procedure for the phase by using a linear fit function instead of polynomial fit function. After

we have corrected for the gain and cable delay, we can now rewrite the expression 4.8(by setting

a = 1 and τ = 0) as follows

S21(f) = 1− Qe−iθ/Qc

1 + 2iQδx
. (4.9)

The expression has a Lorentzian shape. From the magnitude and phase of S21 we calculate the real

and imaginary parts of the transmission signal, and when plotted in the complex plane, this function

forms a circle.
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Figure 4.16: Calibrated complex transmission data fitted with a 4-parameter fit model in complex plane.

After the calibration of the magnitude and phase, we now have only four fitting parameters.
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We fit the inverse of S21(f) as described in [94] in the complex plane to extract the resonator total

internal quality factor Qi, the resonance frequency f0 and the coupling quality factor Qc. We have

written a mathematica routine to perform the above four parameter fit procedure.

4.4.2 Calibration of the input line and resonator input power
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Figure 4.17: Measurement of input coax cable attenuation from top to bottom of ADR cryostat. The measurement

was done at room temperature

The coax cables contribute a frequency-dependent loss in addition to the significant amount of

cold attenuation that we add on the line. We have done the calibration of the input coax cable

to find the total attenuation of the input line and then calculated the internal power inside the

resonator following the same procedure as detailed in references [86, 105]. In figure 4.17 we plot the

baseline transmission of the input cabling as a of frequency. We perform numerical interpolation of

the baseline transmission in Mathematica in order to find the interpolation function for frequency

range 0.3− 11GHz and evaluated the total attenuation for each resonator mode that we measured.

Therefore, for each resonator mode the microwave readout power Pf at input of the sample’s feedline

is calculated as

Pf = PV NA + dp, (4.10)

where dp is the total attenuation on the input line and PV NA is the power sent from the vector

network analyzer. In equation 4.10, we assumed that the changes in attenuation that likely occur

upon cooling down the coax cables, attenuators, etc. are so small and can be neglected. We recall

that to convert power in Watts, we use P(Watts) = 10

[
(P(dBm)−30)/10

]
, or convert back to dBm as

P (dBm) = 10 log10 P (Watts) + 30. The internal power inside the resonator is given by

Pint = α
Q2

Qc
Pf , (4.11)

where α = 2/π for a half-wave resonator, and α = 1/π for a quarter-wave resonator [86].
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4.4.3 RRR and low temperature resistivity measurement

The residual resistivity ratio of a metal film, i.e RRR, is defined as the ratio of resistance at 293K to

the resistance at 4.2K [66]. We have measured the resistance of the feedline using a 4-wire measure-

ment technique. For one particular aluminum film with the thickness t = 60nm, we measured the

resistance equal to R293K = 295.3Ω. We dip the test sample into liquid helium, and measure the

resistance of the feedline at 4.2K, we find R4K = 34.5Ω. Therefore, RRR is equal to ∼ 9. The total

length L of feedline trace is 2965µm and its width w is 6µm ( and hence the feedline cross-section

area A is equal to t × w). We deduct that the low temperature resistivity of our aluminum film is

0.5µΩ− cm (ρ = R × A/L). For the various aluminum films that we have measured, RRR values

range between 8− 10, and the low temperature resistivity values are in the range 0.3− 0.7µΩ− cm.



Chapter 5

Trapping a single vortex in the

microwave resonator

5.1 Introduction

The microwave response of superconducting coplanar waveguide resonators can be affected by the

conditions in which they are operated. In fact, microwave components often have strong magnetic

field or the magnetic shielding may not be ideal, therefore vortices can penetrate in the center

conductor of resonators or in the ground plane of the chip. The response of magnetic flux vortices in

superconducting thin-film has been studied in several previous field-cooled experiments in the context

of vortex viscosity as well as pinning of vortices [66]. In general, when magnetic flux vortices are

trapped in the resonator, they can cause a reduction in resonator quality factor, and the magnitude

of the effect scales with the total number of vortices. Vortices also can cause a downwards shift

in the resonance frequency. Several techniques have been proposed in an efforts to reduce power

dissipation and hence improve the resonator quality factor in the circuits that require operation

in large magnetic fields. Many of these techniques consist of microfabricated structures such as

the use of narrow slots [95], micropatterned holes (antidots) [96, 97] in ground planes and center

conductor to reduce the degrees of freedom of vortices in the superconducting film [98]. All of these

experiments involved microwave resonators with many trapped vortices. In this chapter, we present

our first experiments aimed to quantify the response of a single vortex in such a microwave circuit.
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5.2 Design of structures for resolving a single vortex
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Figure 5.1: Optical micrographs of (a) entire resonator including feedline, (b) close-up of bulge region for vortex

trapping near center of resonator, (c) close-up of coupling elbow and feedline. Schematic of resonator without turns

(not to scale) along with standing-wave pattern of microwave current for (d) fundamental, (e) first-harmonic resonance.

From Nsanzineza & Plourde, Physical Review Letters 113, 117002(2014) [3].

We want to study the microwave response of few vortices in the CPW resonator. To do that, we

have designed a device based on the fact that the threshold field to trap vortices goes like ∼ 1/w2.

We introduced a bulge in the middle of our half-wave resonator to control the location of the trapped

vortices upon field-cooling. The bulge is 8µm wide and 50µm long. The width of the elbow coupler

is 6µm and its length determines the coupling quality factor as we explained in chapter 4. The rest

of resonator is designed to be 3µm wide. Therefore, the bulge region will begin trapping vortices at

a smaller applied magnetic field compared to the rest of the resonator.

To resolve the microwave dissipation from just a single vortex, we also needed to optimize some

other parameters. We needed to do our measurements at low temperatures, 50− 100mK to reduce

the density of hot quasiparticles, and hence we suppress any dissipation from these quasiparticles. As

discussed in chapter 4, we can achieve millikelvin temperatures with the Adiabatic demagnetization

refrigerator (ADR). With a vanishing loss from hot quasiparticles, we now have the flexibility to

design weakly coupled resonators, we designed resonators with coupling quality factors in the range

500k−1M . Our device is shown in figure 5.1. It is intended to have reasonably high internal quality

factor Qi so that we can resolve the influence of individual vortices. Furthermore, to prevent any
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vortices to be trapped outside of the center conductor of the resonator, we designed holes in the

ground plane that are 5.6µm wide and separated by a superconducting web that has a linewidth of

2.8µm.

The resonator we discuss in this chapter is 17.1mm long and is capacitively coupled to the

feedline through an elbow-style capacitive coupler at one end, the other end is an open circuit as

shown in figure 5.1. For the fundamental resonance, we expect that a vortex trapped in the middle of

the resonator at the center of the bulge will experience a strong Lorentz force, and hence contribute

to more loss. On the contrary, from the standing-wave current pattern of the first harmonic in figure

5.1 we can notice that the middle of resonator corresponds to a current node, and a vortex sitting

there do not feel Lorentz force, and hence no vortex loss. Therefore, for applied magnetic field to

trap vortices only in bulge we expect zero vortex loss and, therefore, no change in the quality factor

for first harmonic, and an increase in vortex loss for fundamental resonance. We have evaporated

60 nm of aluminum film and fabricated the resonators following the procedure as discussed in chapter

4. The CPW resonator that we measured in this experiment is quite narrow (3µm) along most of its

length and, therefore, should have a large superconducting kinetic inductance contribution. So, the

nonlinear effects of the superconducting resonator itself dominate the frequency response to changes

in the magnetic field [106]. Because of that, we have chosen to focus our analysis on the changes in

vortex loss, rather than changes in the resonance frequency.

Figure 5.2: Power dependence of total resonator loss for the fundamental resonance 3.0713GHz and coupling quality

factor Qc = 765, 000. All field-cooled measurements were performed at sufficiently high powers, with ∼ 105 photons

in the resonator.
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5.3 Field-cooled measurement

We discuss the field-cooled measurements of a CPW resonator with a geometry that we designed so

that we can trap vortices in only a small region over a range of applied magnetic fields. We measured

the device on an adiabatic demagnetization refrigerator (ADR) as discussed in Chapter 4. We recall

that in field-cooled measurements, we repeatedly heat up the cold-finger to ∼ 1.5K to exceed the

aluminum film transition temperature Tc ∼ 2K to apply a different magnetic field with the Helmholtz

coil. We then cooldown to 100mK. Upon reaching 100mK for each field-cooling point, we measure

the microwave transmission S21 through the feedline using a vector network analyzer (VNA, model

N5230A, 300kHZ-20GHz). We perform the measurements of the transmission at sufficiently high

powers, with ∼ 105 photons in the resonator, to minimize the dissipation due to two-level defects

on the surfaces and interfaces [17]. We have measured the fundamental resonance at 3.0713GHz

and the measured coupling quality factor is Qc = 765, 000, extracted from measured data following

the fitting routine we described in Chapter 4. In zero-field cooled measurements, we measured the

total quality factor Q = 185, 000. This resonator is significantly under-coupled, the internal losses

dominate the coupling losses as 1/Q = 1/Qi + 1/Qc.
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Figure 5.3: 1/Qv(B) for fundamental resonance for cooling fields in the vicinity of Bth(8µm) for the central bulge

region. Vertical dashed lines correspond to field steps ∆B = 5µT. From Nsanzineza & Plourde, Phys. Rev. Lett.

113, 117002(2014) [3].

At each cooling field, we define the loss due to vortices as [66]

1

Qv
=

1

Q

∣∣∣
B ̸=0

− 1

Q

∣∣∣
B=0

. (5.1)
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That means we subtracted out the contributions from all the other loss mechanisms. In figure 5.3,

we show the plot of vortex loss 1/Qv(B) for fundamental resonance for various applied magnetic

fields in the vicinity of the threshold field to trapping vortices in the bulge region. For sufficiently

small B, we observe 1/Qv = 0 as there are no vortices trapped in the resonator. As we applied the

magnetic field past the threshold field 42µT corresponding to the width of the central bulge, we

can observe the effect of single vortex trapped in the resonator through field cooling, from the plot

we notice steps at regular field intervals. We can scale the flux quantum carried by a single vortex

by the effective area of the central bulge and see that this field interval matches the steps in our

measurements. In fact, if assume that each step is due to an increase in the number of vortices by

one, we calculate the effective area for vortex trapping as effective area = Φ0/∆B ≈ 400µm2 which

matches with the bulge region in our resonator. We recall that Φ0 = 20.7G− µm2 is the magnetic

flux quantum.

Thus, the abrupt first step upwards in 1/Qv we attribute it to the trapping of one vortex in the

central bulge. This value of Bth(8µm) for the central bulge is consistent with the vortex-trapping

expression studied in reference [2]. As we further increase magnetic field, we observe a series of other

steps spaced by ∆B ≈ 5µT. a second vortex is trapped in the bulge, which is translated into the

second step of the plot, the third vortex trapped in the bulge will give rise to a third step, and so

on. When we keep increasing the magnetic field, in the end vortices are trapped everywhere,
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Figure 5.4: 1/Qv(B) for fundamental (blue circles) and first harmonic (red squares) resonance – note different

scales on loss axes. (insets) |S21(f)| for (left) fundamental; (right) harmonic for B = 41.7µT (no vortices) and

46.2µT (one-vortex step). From Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3].
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in the bulge and outside of the bulge, steps are washed out as we have many vortices, a rapid

increase in the vortex loss with the field is observed (Figure 5.4). We notice that the step widths

are quantized, but the step heights are clearly not constant as we would expect for the sequential

addition of one vortex. Also, the sequential addition of one vortex does not always have the same

sign, as we notice in the step from 4 to 5 vortices. In fact, the vortex loss 1/Qv depends on the local

current density that is not uniform across the width of the bulge as shown in figure 5.5. The current

density is a minimum at the center of the conductor trace, and it is maximum along the edges. In

the ground planes on either side of the bulge, the current density falls quickly from the edges of the

gaps as shown in figure 5.5.

Figure 5.5: Variation of current density along the width of the conductor trace of in middle of resonator in the bulge

region. The current density is minimum at center of the conductor trace, and it is maximum along the edges. In the

ground planes on either side of the bulge, the current density falls quickly from the edges of the gaps. Calculations

based on equation 3.22.

Therefore, we can say that vortices that are located near the edge of the bulge will contribute
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more dissipation compared to a vortex near the centerline. In fact, the random pinning potential

governs the positions of the vortices in the aluminum film. The distribution of vortices is also

affected by the inter-vortex interactions that are present immediately below Tc when the vortices

are still mobile before they become pinned somewhat further below Tc [107]. At our measurement

temperature 100mK, the penetration depth is less than 100 nm and we think that the vortices will

no longer interact with one another. We can estimate an approximate loss per vortex using equation

3.25 for our aluminum film on this device. We obtained a value between 1 − 5 × 10−6 depending

on the vortex location along the width of the bulge region. Our estimate is consistent with the

measured steps in 1/Qv.

In addition to measuring the vortex response for the fundamental mode of the resonator, we

measured the first harmonic at 6.13513GHz, with Qc = 341, 000. As we discussed above, this

corresponds to a full-wavelength resonance with a current node at the middle of the resonator in

bulge region. For the first harmonic, we expect no loss from vortices that are trapped in the bulge

as there is no current to drive these vortices. Interestingly, our measurements of the vortex loss

1/Qv for the first harmonic resonance show a decrease in the loss at the same Bth(8µm) where

we observed the first step upwards in the 1/Qv for the fundamental mode (Figure 5.4). Thus, the

quality factor for the first harmonic goes up as we trap vortices in the bulge.

The downwards trend for the first harmonic, although clearly visible, is not as sharp as the

upwards step for the fundamental. The changes in the vortex loss 1/Qv for the first harmonic

are about one order of magnitude less than those on the fundamental. Any slight changes in the

extracted loss, due possibly to fluctuations in the temperature of our ADR cryostat or variations in

the electromagnetic environment for measuring the CPW resonator over the course of measurements,

tend to smooth out small features in the vortex loss 1/Qv(B) plot for the harmonic. The vortex

loss 1/Qv continues to decrease for larger applied magnetic fields until a field of ∼ 90µT. As we

further increase the magnetic field, we started to observe a significant increase in vortex loss of the

first harmonic. We associate this increase at large fields to vortices that begin to trap along the

entire length of the resonator for B > Bth(3µm), where there are significant microwave currents to

drive the vortices. For applied magnetic fields B > 110µT, the resonator internal losses due to the

vortices is large compared to the coupling loss 1/Qc and because of that we were not able to fit the

data to get value for the quality factor Q.
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5.3.1 Trapping vortices in the ground plane and reducing background

quasiparticles density

Figure 5.6: Vortex loss plotted as a function of applied magnetic field. Vortices trapped in ground plane at vanishing

current density reduce quasiparticles density.

We have shown that we can reduce the background quasiparticles density by vortices located at

vanishing current density in the resonator, resulting in an enhancement of resonator quality factor.

We have performed field-cooled measurement to trap magnetic vortices in aluminum traces that

are 10µm wide (figure 5.6). We fabricated a sample with 150 nm-thick Aluminum. We designed

aluminum traces to be at locations of vanished current density in the ground plane of the chip, at

∼ 35µm far away from the center conductor of the resonator. For fields that are above the threshold

field for trapping vortices in a 10µm in ground plane but below the threshold for trapping vortices

in the resonator center conductor (that is 4µm wide), we observed an enhancement of resonator

quality factor for a wide range of fields. This enhancement of quality factor is consistent with a

decrease in background nonequilibrium quasiparticles originated from stray infrared radiation from

warmer parts of the ADR cryostat, as discussed in detail in Chapter 6. Once vortices are trapped

in the center conductor of the resonator at locations with nonzero local current density, the value of

extracted resonator quality factor decreases as magnetic vortices contribute more loss, and hence a

decrease in quality factor.



Chapter 6

Numerical simulations of reduction

of density of nonequilibrium

quasiparticles due to trapped

vortices

6.1 Introduction

In chapter 5, we showed that there is dramatic difference in the effects of the first several trapped

vortices on the various resonance mode that we excited. When the vortices are trapped near an

antinode of the current standing-wave pattern, we observed a stepwise increase in the vortex loss.

However, we have seen that vortices located near a current node contributed no extra dissipation,

and, in fact, lead to an enhancement of the resonator quality factor.

We interpret the decrease in vortex loss 1/Qv for the first harmonic resonance as a signature of

a reduction in the loss due to nonequilibrium quasiparticles 1/Qqp due to interactions between the

quasiparticles and the vortex cores. As we pointed out in chapter 3, at millikelvin temperatures the

density of thermal quasiparticles should be vanishingly small. However, because of nonequilibrium

sources, the superconducting aluminum circuits can exhibit a significant excess of nonequilibrium

quasiparticles with a typical volume density nqp ∼ 10 − 100µm−3 [23–25]. Blackbody photons

emitted by warmer parts of the ADR cryostat, even at milliKelvin temperatures, can be sufficiently

energetic to break Cooper pairs because aluminum films exhibit a relatively small value of the
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superconducting energy gap. The quasiparticles dissipation 1/Qqp increases as the density of quasi-

particles rises. In this chapter we describe our numerical simulations of the reduction of the density

of nonequilibrium quasiparticles due to trapped vortices.

6.2 Variation in loss with cryostat temperature

Figure 6.1: Measurements of 1/Q vs. cryostat temperature for zero-field cooling for (a) fundamental, (b) harmonic

resonance. The temperature of the cold-finger and sample remained below 140mK during the measurements. Dashed

line is a guide to the eye for a quadratic dependence while the solid line corresponds to a linear dependence. From

Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3].

Barends et al. [23] have performed experiments to investigate the effectiveness of different levels

of infrared shielding of aluminum resonators, where the cryostat temperature on an ADR was in-

creased while the cold-finger was maintained below 150mK. With minimal shielding, comparable

to our experimental setup, the high-power resonator loss was observed to increase with the cryostat

temperature, as we would expect from a blackbody source.

We have performed a similar measurement to reference [23] for our standard sample shielding

techniques to confirm the presence of a significant density of nonequilibrium quasiparticles in our

resonators due to pair-breaking radiation from warmer parts of the cryostat. By changing the

temperature of the cryostat, separate from the cold-finger and sample, one can change the radiation

power and spectrum that is influencing the resonator. For this test, we cooled the resonator with

no magnetic field applied with our Helmholtz coil to avoid trapping any vortices. By turning off

the pulse-tube compressor with the sample at the base temperature, the pulse-tube stage warmed

up, thus also warming the Helmholtz coil, magnetic shield, and 3K thermal shield. Even once these

components reached 18K, the sample temperature increased no higher than 140mK.

We recorded S21 along with the cryostat temperature during this warming process. In figure

6.1 we show the plot of the loss 1/Q for the fundamental and harmonic resonance vs. the ADR

cryostat temperature. For both resonance modes, the loss increased significantly as the ADR cryostat
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temperature was raised. For a blackbody source with the full spectrum of radiation shining on the

resonator, one would expect 1/Q ∝ T 2
cryostat according to reference [23].

For increased levels of IR shielding surrounding the sample, the radiation spectrum can be cut

off, leading to smaller exponents for the increase [23]. Our observed increase in 1/Q is closer to

linear rather than quadratic, suggesting that our brass sample box that encloses our resonator chip

provides some attenuation of the IR radiation. The immediate increase in 1/Q with Tcryostat strongly

suggests that nonequilibrium quasiparticles due to stray IR radiation in our ADR cryostat dominate

the loss in our CPW resonator measurements.

6.3 Quasiparticle diffusion equation

The interactions between quasiparticles and vortices have been reported previously, in the measure-

ments of quasiparticle lifetime in aluminum films at low temperatures [26]. These studies were also

performed in the experiments involving tunnel junction photon detectors [27] and Normal metal-

Insulator-Superconductor (NIS) coolers [28]. All these experiments were carried out in the presence

of a uniform distribution of many vortices. The superconducting energy gap gradually decreases in

the vicinity of the vortex core, hence providing a pathway for quasiparticle relaxation and trapping.

In reference [26], quasiparticles were injected with a tunnel junction at one end of an aluminum strip,

and they diffuse along the strip. A second tunnel junction some distance away was used to measure

the diffusion of the quasiparticles. When the magnetic field was applied, the density of quasipar-

ticle reaching the detector junction was significantly reduced. Ullom et al. modeled this process

by a diffusion equation with an addition of a recombination term that depends on the fraction of

non-superconducting regions, related to the density of vortices in the aluminum film.

We consider a similar picture to model the quasiparticle diffusion in our CPW resonator, and we

added discrete regions of enhanced recombination localized around each vortex in our simulations.

We will consider one-dimensional diffusion equation model for quasiparticles, neglecting variations

in the width of the center conductor of the resonator. We modify the diffusion equation to include

a spatially-dependent enhanced recombination from the vortex. We focus on steady state solution,

assuming that nonequilibrium quasiparticles are generated uniformly at a constant injection rate. We

can take values of the diffusion constant and uniform background recombination rate for aluminum

films from the literature, and we can then use the recombination rate parameter together with

the measured value of internal loss when no vortex is present to estimate the generation rate for

quasiparticles in our system. Our modified diffusion equation reads

D∇2nqp − ΓRn
2
qp + γi − Γvnqpe

−(x−xi
v)

2/l2v = 0. (6.1)
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D is the quasiparticle diffusion constant, which varies with energy [26]

D(E) = Dn(1− (∆/E)2)1/2 (6.2)

where Dn is the normal metal diffusion constant. The normal metal diffusion constant Dn directly

affects D and there is a range of reported values of Dn for aluminum films, including 49 cm2/s [108]

and 140 cm2/s [89]. Of course, such variations can be caused by different electronic mean free paths

depending on the film quality in the various experiments.
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Figure 6.2: Variation of the quasiparticle diffusion constant with energy. The calculations are based on equation

6.2.

The diffusion constant D(E) has the strongest variation for quasiparticles with energies that are

just above the gap, ∆, while D only varies by ∼ 15% for energies above 2∆.

The Cooper-pair breaking radiation in our system is possibly originating from the 3K shield and

warmer regions of our ADR cryostat. Therefore, the significant part of this spectrum will lead to

the majority of the nonequilibrium quasiparticles that have energies that are a few times ∆ and

above. Consequently, to simplify our analysis while still capturing the essential dynamics, we use

D = D(2∆). However, even after accounting for the reduction in D due to the quasiparticle energy,

there is evidence that the effective D is typically reduced further still [109]. For our Al film, we

estimate Dn = 150 cm2/s based on the measured resistivity at 4K of 0.5µΩ-cm. In order to account

for the anomalous reduction described in reference [109], we used Dn = 60 cm2/s, combined with an



6.3 Quasiparticle diffusion equation 58

estimate for the approximate quasiparticle energy, to determine D for the simulations presented in

Figure 6.3(b).

ΓR is the effective background quasiparticle recombination rate and is position-independent, and

is calculated using the equation 2.40. However, the exact value of ΓR depends on details of phonon

trapping; we can estimate it based on the values extracted by others for aluminum thin films, but

ΓR can be constrained to 10 − 100µm3/s [26]. γi, which is also independent of position, is the

quasiparticle generation rate due to photons. We adjust the value of γi to match the value of nqp

with no vortices present that we obtained from our measured 1/Qi for zero-field cooling.

The last term in equation (6.1) represents the vortex- quasiparticle interaction, with the vortex

centered at xiv, where the superscript i labels a particular vortex in the bulge. Γv corresponds

to the rate of the quasiparticle trapping and relaxation in the vicinity of the vortex. Because

the superconducting energy gap varies in the vicinity of the vortex core, this term should have a

strong spatial variation to take into account the variation of gap energy near the vortex core. We

have assumed a Gaussian profile for the vortex-enhanced recombination term with a length-scale of

lv = 0.5µm. Our estimate is based on a the treatment in reference [27] of suppression of the gap in

the vicinity of vortex using the Usadel equations with a prediction of an effective radius of ∼ 2.7ξ.

The qualitative outcome of our simulation would be the same if we used a different functional form

other than Gaussian profile or if we used a different value for lv, but this could impact the value of

Γv that we extract from comparisons with our data.

We have solved equation 6.1 with MATLAB R⃝ using a numerical package involving piecewise

Chebyshev polynomial interpolants [110]. In our simulation, we apply a damped Newton method

iteratively with an adaptive mesh approach to deal with the sharp, micron-scale features in the

vicinity of each vortex while solving the nonlinear differential equation over the entire L = 17.1mm

length of the resonator. Because the open-ended geometry of our resonator avoids quasiparticle out-

diffusion from the center conductor, we apply the boundary condition ∂nqp/∂x = 0 at both ends. In

our simulation of the field-dependence of the quasiparticle density nqp(x), for a particular magnetic

field range we include one vortex term for each vortex in the distribution. From the analysis of the

steps in 1/Qv for the fundamental mode, we obtain the number of trapped vortices for each magnetic

field range. Then we assign the position xiv for each vortex to space them evenly in the middle of

the resonator in the central bulge region that is 50µm long. For example, in our simulations with

two vortices, x1v = −25µm and x1v = +25µm. For a three-vortex case, x1v = −25µm, x2v = 0

and x3v = +25µm. Figure 6.3 contains several resulting nqp(x) profiles for four different vortex

configurations.
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Figure 6.3: (a) Simulated nqp(x) for several example cooling fields. Labels indicate vortex number in central

bulge + coupling elbow. (b) Measured 1/Qi(B) for harmonic, normalized by average of 1/Qi below threshold field

(points);computed normalized quasiparticle loss on harmonic from simulated nqp(x)(solid line). From Nsanzineza &

Plourde, Phys. Rev. Lett. 113, 117002(2014) [3].

At a cooling magnetic field of 72µT, following the addition of the sixth vortex to the central bulge,

we notice a rapid decrease in 1/Qv for the harmonic (Figure 6.3). We remind that the resonator

elbow has a width equal to6µm. The rapid decrease in loss corresponds to the intermediate threshold

field Bth(6µm) for trapping vortices in 6µm-wide coupling elbow, which also corresponds to at a

current node in the current density standing wave pattern. Bth(6µm) is in between Bth(8µm) for

the bulge and Bth(3µm) for the rest of the resonator. The area of the resonator elbow region is

about three times larger than that of the central bulge. Therefore, beyond 72µT we added one

vortex to the elbow every 1.7µT, while continuing to add one vortex to the bulge region every 5µT.

Note that for each vortex-number increment in our simulations, we have spaced the vortices evenly

within each trapping region, and for each trapped vortex, we include a separate vortex-related terms

in equation 6.1. However, we are unable to determine the precise location of each vortex within the

bulge or elbow or in the elbow.
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Figure 6.4: Simulated normalized quasiparticle loss on harmonic for different intervortex spacings for (i) 2 vortices

in central bulge (circles), (ii) 5 vortices in central bulge (squares), (iii) 7 vortices in central bulge that are fixed in

place plus 2 vortices in coupling elbow with variable spacing (diamonds). Red arrows indicate the intervortex spacing

used in Figure 6.3(b).From Nsanzineza & Plourde, Phys. Rev. Lett. 113, 117002(2014) [3].

We verified that our simulated reduction in density of quasiparticles does not depend significantly

on the detailed locations of each vortex in the distribution. In fact, we have chosen three example

steps in the field-dependence from figure 6.3(b). We checked the simulations for three cases: (i) 2

vortices in the bulge and none in the elbow, (ii) 5 vortices in the bulge and none in the elbow, (iii)

7 vortices in the bulge and two in the elbow. And for each case we have repeated the simulation

for several different values of the intervortex spacing, within the constraints of the size of the bulge

and elbow. In figure 6.4, we show the variation in the simulated normalized quasiparticle loss on

the harmonic with intervortex spacing for each of these three cases. The arrows indicate the spacing

values that we used to the corresponding points in Figure 6.3(b). We observed that there was no

significant dependence on the intervortex spacing. Therefore, we conclude that detailed knowledge

of the vortex positions in the central bulge and coupling elbow is not necessary for our current

modeling of the vortex-quasiparticle interactions.

We have compared the simulation results with our measured internal loss for the harmonic

1/Qi(B). To do that, we take into account for the variation of the standing-wave current along the

length of the resonator because the quasiparticles density nqp(x) is proportional to the local effective

resistivity. We computed
(∫ L/2

−L/2
I2(x)nqp(x)dx

)
/
(∫ L/2

−L/2
I2(x)dx

)
, where I(x) is a full period of

a sine wave for the harmonic, then we divide by the value of quasiparticles nqp that we obtained

from zero-field cooling measurements. We can compare this with the measured 1/Qi(B) for the

harmonic, normalized by the average of 1/Qi(B) corresponding to all data we measured with for

B < Bth(8µm). We then adjust Γv to get the closest agreement between the simulations and the
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experiments.

Simulation in fig 6.5 (a) Simulation in fig 6.3 (b) Simulation in fig 6.5 (b)

D(cm2/s) 30 60 150

ΓR(um
3/s) 20 30 40

Γv(1/s) 7× 106 3.5× 106 2× 106

Table 6.1: The values of D, ΓR, Γv from the three simulations in figures 6.3 and 6.5

Figure 6.5: (Color online) Measured 1/Qi(B) for harmonic, normalized by average of 1/Qi below threshold field

(points); simulations of normalized quasiparticle loss on harmonic for different parameters (solid line): (a) D =

30 cm2/s, ΓR = 20µm3/s, Γv = 7× 106 s−1; (b) D = 150 cm2/s, ΓR = 40µm3/s, Γv = 2× 106 s−1.From Nsanzineza

& Plourde, Phys. Rev. Lett. 113, 117002(2014) [3].

We have found that ΓR = 30µm3/s, which is consistent with earlier work for aluminum films

[26], combined with Γv = 3.5× 106 s−1 provides a good match with the experiment [Figure 6.3(b)].

The value of Γv that we obtained from the simulations is in the range of typical electron-phonon

scattering rates for aluminum thin films at low temperatures [111, 112] while it is likely that electron-

electron scattering in the vicinity of the vortex core may play a role as well [26]. Our simulations

of the quasiparticles nqp in the presence of vortices produce a reasonable qualitative description

of our internal loss measurements on the harmonic, they do not provide a perfect match to the

data. For example, the initial decrease in internal loss 1/Qi for the harmonic with the very first few

trapped vortices is not as rapid in our simulations compared to our experiment. We have explored

the sensitivity of our model to the value of D used in the simulations by running our simulations

from figure 6.3(b) for different values of diffusion constants. We choose two values of Dn: 30 and

150 cm2/s (figure 6.5). In each case, we adjusted the values of ΓR and Γv to give the best agreement

between the simulated curve and the normalized measured loss vs. field for the harmonic. The

resulting values in the table above.

We found that for smaller Dn, we obtained the best match to the data for smaller ΓR and larger
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Γv. Therefore, our simulation model of the quasiparticle diffusion and interaction with vortices

can provide a reasonable description of our experimental measurements over a range of parameters

for quasiparticle dynamics, consistent with the variation in values for quasiparticle dynamics in

aluminum films reported in the literature.

6.4 Conclusion

Using a variable-linewidth geometry for a weakly coupled resonator, we observed the effects of a

single vortex trapped in the resonator through field cooling. For resonant modes where the vortex is

near a current antinode, the presence of even a single vortex leads to a measurable decrease in the

quality factor. For modes with the vortex located at a current node, the presence of the vortex results

in no detectable excess loss and, in fact, produces an increase in the quality factor. We attribute

this enhancement to a reduction in the density of nonequilibrium quasiparticles in the resonator due

to their trapping and relaxation near the vortex core. In our simulation we used a modified diffusion

equation with discrete regions of enhanced recombination localized around each vortex. We treat the

diffusion process in 1D, neglecting variations in the width of the center conductor of the resonator

and we were able to obtain good agreement between simulations of this simple quasiparticle diffusion

model and our measured loss vs. cooling field data.



Chapter 7

Resonator response against direct

quasiparticle injection

In this Chapter we describe further efforts to understand the dynamics of nonequilibrium quasiparti-

cles in the superconducting coplanar waveguide resonators. We want to explore further the reduction

of quasiparticle loss by vortices. In addition to the constant background non-equilibrium quasipar-

ticle density, which comes from stray light from warmer parts of the cryostat breaking Cooper pairs

in the film, we intentionally inject quasiparticles at a constant injection rate by using the normal

metal-insulator- superconductor, NIS junction that is connected to the ground plane on the chip.

We introduce the NIS junction, and we describe our measurements of quality factor as a function of

injected power, and we define the loss due to quasiparticles.

7.1 Introduction to NIS tunnel junction

Normal-Insulator-Superconductor (NIS) junctions are formed by normal metal and superconducting

electrodes separated by a thin insulator. Their applications are based on the existence of the Bardeen-

Cooper-Schrieffer (BCS) energy gap ∆ in the density of states of the superconductor. One of the

useful properties of NIS junctions is in the study of quasiparticles dynamics in aluminum resonators.

A current through a NIS junction creates quasiparticles in the superconducting resonator ground

plane; some quasiparticles can enter directly into the center conductor of the quarter-wave resonator

as it is connected to ground plane. Phonons from recombining quasiparticles can enter and travel

through the silicon substrate and eventually reach the center conductor of the half-wave resonator.

For an ideal NIS junction, there is no single-electron current flow through the NIS junction at
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low temperature as long as the absolute value of bias voltage |V | is smaller than ∆/e, with ∆

the superconducting energy gap. In this chapter we present our measurements in which we look

at microwave resonator response when we inject nonequilibrium quasiparticles using NIS tunnel

junction.

7.2 Sample fabrication

Figure 7.1: Optical photograph of the sample with 6 resonators coupled along same feedline. The sample include

two Cu/AlOx/Al junction with Copper traces used to inject Quasiparticles into the ground plane of chip.

Figure 7.2: Copper-Aluminum oxide-Aluminum junction with overlap area of 5× 5µm2.
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We designed our chip to include an NIS junction and the current and voltage leads that we needed.

The chip has two junctions. In the data we present here, we measured only one junction. Our

NIS junction is made of copper (normal metal), aluminum oxide (insulator) and superconducting

aluminum film, Cu/AlOx/Al. The overlap area of the junction is 5×5µm2. The fabrication process

is a two-layer process. In the first layer, we use optical lithography to pattern resonators, followed by

wet etch, the film thickness we used is 150 nm. In the second layer, after patterning photolithography

we perform in-situ gentle ion-mill the copper traces and junction area followed by evaporation of a

very thin layer of aluminum that is oxidized to make AlOx insulating layer on top of the aluminum.

With the wafer still loaded in evaporation chamber at a high vacuum, we then evaporate copper on

top of AlOx layer followed by lift-off. Note that during the fabrication of second layer, the resonator

and some parts of the ground plane are covered with resist. The optical image of the sample and a

zoom-in image of the Cu/AlOx/Al junction is shown in figure 7.2. The copper thickness is chosen

in such a way that we have a nice overlapping at the junction area. The thickness of copper we used

is ∼ 100 nm

7.2.1 I-V characteristics of the NIS junction
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Figure 7.3: Current-Voltage (I-V)characteristics of Cu/AlOx/Cu junction. The normal state resistance of the

junction is ∼ 50Ω, and the superconducting energy gap is ∆ ∼ 200µeV. Data was taken at 100mK.

Our measurement setup is described in section 4.4. First we measured the current-voltage charac-

teristics of the normal-insulator-superconductor tunnel junction by biasing the device with a current

source and reading out the voltage with a room temperature pre-amplifier. We use a three-point

technique for the I-V measurement. The current passes through the junction and goes to the ground
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plane of the resonators. We then measure the voltage across the NIS junction on the same sample’s

ground plane. For the current line, we added a 100 kΩ resistor at 3K stage, and an ecosob filter

at the cold-finger. On the dc voltage line that we use for reading out the voltage across the junc-

tion, we have added 5.6 kΩ at 3K stage, and also an ecosob filter at cold-finger. We cooled down

using ADR and measured our sample at 100mK. The energy gap of the superconductor electrode is

∆ ∼ 200µeV. The measured normal-state resistance of the junction turned out to be 50Ω. In figure

7.3, we notice that our NIS junction behaved well. In fact, no current tunnel through the junction

until the voltage across the junction has reached a value close to the gap energy ∆ ∼ 200µeV.

7.2.2 Dependence of resonator quality factor on tunneling power

Figure 7.4: Resonator internal quality factor measured at different NIS injection powers in zero magnetic field.

Insert: Magnitude of complex transmission S21 as function of frequency for two different injection powers (power =

current× voltage).

We have performed resonator measurements for different quasiparticles injection powers (injected

current times measured voltage across junction). Quasiparticles are injected into an Aluminum

superconductor using the NIS tunnel junction. These excitations diffuse throughout the sample’s

ground plane and eventually reach the resonator center conductor. We measured the resonator

response for each injection power utilizing the same measurement techniques as detailed in chapter

4. We measure the complex transmission S21 by recording its magnitude and phase for reasonably

high resonator internal power (∼ 105 photons in the resonator) and frequency span using vector

network analyzer. With our 4-parameter fitting routine, we extract the resonator parameters (Qi, Qc,

f0).We have performed resonator measurements for different quasiparticles injection powers (injected
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current times measured voltage across junction). Quasiparticles are injected into an aluminum

superconductor using the NIS tunnel junction. These excitations diffuse throughout the sample’s

ground plane and eventually reach the resonator center conductor. We measured the resonator

response for each injection power utilizing the same measurement techniques as detailed in chapter

4. We measure the complex transmission S21 by recording its magnitude and phase for reasonably

high resonator internal power (∼ 105 photons in the resonator) and frequency span using vector

network analyzer. With our 4-parameter fitting routine, we extract the resonator parameters (Qi,

Qc, f0).

7.2.3 Effects of vortices on the quasiparticles loss
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Figure 7.5: Resonator internal quality factor measured at different NIS injection powers and magnetic fields.

We have measured the resonator response against direct quasiparticles injection at different injection

powers for various applied magnetic fields. For each plot in figure 7.6 we define the loss due to injected

quasiparticles as

1

Qqp
=

1

Qi

∣∣∣
P ̸=0

− 1

Qi

∣∣∣
P=0

. (7.1)

Therefore, the quasiparticles loss in the resonator is given by the total resonator internal loss for

nonzero injected NIS power by subtracting off the internal resonator loss measured at zero power.

We therefore simply subtract off all other loss mechanisms such as dielectric loss, coupling loss,

radiation loss or loss from trapped magnetic vortices. In figure 7.6, we plot the quasiparticles loss

as a function of injected NIS power.
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Figure 7.6: Quasiparticles loss measured at different NIS injection powers and magnetic fields.

The quasiparticles loss increases as we increase NIS injection power. The increase in quasiparticles

loss with injected power is reduced when we perform the measurements with the vortices trapped

in the ground plane and the center conductor of the resonator. As we increase the injection power,

the density of injected quasiparticles also increases. The quasiparticles density nqp is related to the

loss due to quasiparticles in a superconducting microwave resonator via the equation 3.20.

1

Qqp
=

α
π

√
2∆

hf0

1

D(EF )∆

nqp. (7.2)

For the applied magnetic field that are greater than the threshold field for trapping the vortices in

the 10µm wide aluminum traces, the quasiparticles loss decreases as we increase vortex density in

the ground plane. Moreover, we observe further decrease in quasiparticles loss when vortices start to

appear in the 4µm wide center conductor of the resonator. The increase in loss due to the injection

current indicates an interplay of diffusion at energies well above the gap, scattering, and trapping

in the vicinity of the vortex core.
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7.3 Effects of cuts in the ground plane on the quasiparticles

loss

Figure 7.7: Left: Optical image of a chip with a cut in the ground plane of the chip. Right: Zoomed image optical

image to aluminum strips that are designed to trap quasiparticles at edge of the ground plane of NIS.

In the experiments with a chip with a continuous ground plane, we found that the quality factor of

half-wave resonator decreases as we inject more and more nonequilibrium quasiparticles. The half-

wave resonator is not shorted to ground, therefore, the only way quasiparticles diffusing in the ground

plane can reach to the resonator is through recombination. Two quasiparticles recombine and emit

a 2∆ phonon. This phonon can travel through the silicon substrate and reach the center conductor

of the resonator, hence and can break the Cooper pair. As more phonons reach the resonator

center conductor of the resonator and break Cooper pairs, the quality factor of the resonator should

decrease.

We have performed experiments using a device that has a cut in the ground plane to test the

loss due the phonons that break Cooper pairs. The cut is 100µm wide and separates the ground

planes of the resonators from that of NIS-tunnel junctions. Therefore, injected quasiparticles will

not directly diffuse to the resonators. Along the edge of the cut, in the ground plane of the junction,

we added aluminum strips to slow down quasiparticle recombination (7.7).
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Figure 7.8: Quasiparticles loss a function of injected quasiparticles in NIS junction ground plane, for various magnetic

fields.

In figure 7.8, we observed that, although we physically disconnect the ground planes of the

NIS junction to that of resonators, nonequilibrium quasiparticles can still diffuse and reach to the

devices, by recombination and then Cooper-pair breaking process. Furthermore, in this experiment

we observe that with vortices trapped at the edge of the cut on same side as the NIS junction, the

quasiparticles loss is lower when vortices are present. Which means many of the quasiparticles that

are injected through the junction scatter or relax their energies in the vicinity of the vortex core

before they can recombine to produce phonons.



Chapter 8

Nonlinear microwave response of

vortices

In this chapter, we present the experiments of the vortex nonlinearity at microwave frequencies,

a regime yet to be explored. All previous measurements of the Larkin-Ovchinnikov nonlinearity

have all involved dc measurements; we are not aware of experiments looking at this nonlinearity

for microwave driving of the vortices. When vortices are subject to a microwave drive, instead of a

uniform net flux flow, they will oscillate back and forth with a quite small amplitude (of the order of

nm) about their equilibrium positions. Nonetheless, when they cross this equilibrium position (twice

on each cycle) they will be traveling at their maximum velocity, which could in principle approach

the critical velocity v∗, where one would again expect to see the Larkin-Ovchinnikov nonlinearity

play a role. We introduce the Larkin-Ovchinnikov nonlinearity and then we describe our device we

used to study the vortex nonlinearity. We show the results of our measurements of power dependance

of internal quality factor for various magnetic fields. We show how the vortex loss depends on the

microwave driving power.

8.1 Larkin-Ovchinnikov flux-flow nonlinearity

Magnetic vortices in type-II superconductors can move under the action of the Lorentz driving force

FL that is proportional to a current density J . If there is no vortex pinning present, a constant

Lorentz force will result in the free flux-flow of vortices. The vortex flux flow is characterized by a

balance between Lorentz force jΦ0 and viscous drag force ηv where η is the coefficient of viscosity,

v the vortex velocity and Φ0 is the flux quantum. In this linear-response regime jΦ0 = ηv, the
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vortex velocity is proportional to the current driven through the superconductor and the viscous

coefficient and the conductivity are constant [67]. At high vortex velocities, a nonlinear flux-flow

behavior due to the nonequilibrium distribution of quasiparticles in the vicinity of the vortex core

was predicted in 1980 by Larkin and Ovchinnikov [113]. When the vortex moves, the electric field

that develops across the vortex core accelerates quasiparticles in the inside of the vortex core. Once

these quasiparticles have gained enough energy from the electric field, they escape from the vortex

core and can diffuse into the surrounding superconducting region. The reduction of quasiparticles

from the vortex results in a reduction of the vortex viscosity, and thereby in an increase of the

flux-flow velocity. Larkin and Ovchinnikov considered a uniform distribution of quasiparticles to

study the instability of vortex motion caused by the change in the quasiparticles distribution near

the vortex core. They showed that the non-linear flux flow viscosity η(v) and the critical velocity

v∗ at which the flux flow instability occurs are related as

η(v) =
η(0)

1 + (v/v∗)2
, (8.1)

where η(0) is the viscous damping coefficient at zero vortex velocity. The magnetic and temper-

ature dependence of the critical velocity v∗ has been studied extensively via DC measurements of

Current-Voltage (I-V) characteristics [68, 114–117]. The LO theory was extended to include these

dependencies and the vortex critical velocity v∗ takes the form [68, 118]

v∗ =

(
ϕ0∆(T )

η(0)τE(T )
nqp

) 1
2

B− 1
2 , (8.2)

where nqp is the quasiparticles number density in the vortex core. Therefore, the critical velocity

varies with the magnetic field as v∗ ∼ B− 1
2 and it also changes with temperature and quasiparticles

relaxation time as v∗ ∼ [(1 − T/Tc)
1/2/τE(T )]

1/2. Pinning strength also influences the vortex

dynamics, particularly the vortex critical velocity, v∗ decreases as the pinning strength increases

[119–122]. The vortex critical velocity goes up as the thickness of the superconducting material is

reduced [123].
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8.2 Sample design

Figure 8.1: Chip wirebonded on a printed circuit board. To minimize unintended spurious transmission modes, we

added some interconnections across each resonator and across the feedline.

We use the microwave resonators to study the power dependence of vortex loss and focus our dis-

cussion on the high microwave powers where we observed the vortex nonlinearity. We evaporated

65 nm-thick aluminum on an ion-milled silicon wafer, and we fabricated the resonators with the

ASML 300C DUV Stepper at Cornell NanoScale Science and Technology Facility, using our fabri-

cation techniques as we described in Chapter 4. The wafer was diced, and a chip was wire bonded

using a PCB as shown in figure 8.1. The measured coupling quality factor of resonator we describe

in this chapter is Qc ∼ 250000.
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8.3 Power dependence of internal loss at various applied mag-
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Figure 8.2: Plot of resonator internal loss as function of internal power for various magnetic fields.

We have explored the vortex response in an aluminum film at low temperatures and at microwave

frequencies. For the CPW resonators being driven at high microwave powers in the presence of

vortices, we expect that the effect of Larkin-Ovchinnikov nonlinearity would be an increase of the

microwave loss. In our measurements, we have never gone to high enough powers where we see the

instability and an abrupt transition out of the Superconducting state.

Using the vector analyzer we record the magnitude and phase of the complex transmission S21

for a wide range of microwave readout powers and we fit calibrated data in complex plane using a

4-parameter fitting model to get the resonator parameters f0, Qc, and Qi. As we described in section

4.4.2, for each readout microwave power from the input of the vector network analyzer we extract

the internal power inside the resonator using the equation 4.11. We performed these measurements

on various magnetic fields, each field being applied when the sample temperature is larger than

the transition temperature. We applied field corresponding to one, two, three, or more vortices

trapped in the bulge region in the middle of the resonators; we also performed power dependence

measurements where we trap vortices everywhere in the volume of the resonator. In figure 8.2 we
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plot the internal loss a function of resonator internal power for various applied magnetic fields. In

zero-field-cooled measurements, the internal loss goes up as we decrease the resonator internal power.

We also noticed similar behavior at low powers when we perform power dependence measurements

of internal loss with vortices trapped in the resonator. Nonlinearity signatures occur at high powers

for measurements with vortices trapped in the resonator. This nonlinear behavior is due to vortices

being driven by the high microwave powers. Vortices oscillate around their mean position, and

induce electric field which accelerates the bound quasiparticles in the inside of the vortex core. The

quasiparticles escape the vortex core once they have gained enough energy, resulting in a reduction

of vortex viscosity, and hence the vortex velocity increases. In our experiments, the increase in

vortex velocity shows up as an increase in vortex loss at high power drive. Therefore, the power

dependence of the loss is due to nonlinear viscosity.
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8.4 Dependence of vortex loss on microwave power
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Figure 8.3: Plot of vortex loss and change of vortex loss as function of internal power for various magnetic fields.
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We define the vortex loss as 1/Qv = 1/Qi(B)−1/Qi(B = 0) [66], therefore subtracting off other loss

mechanisms such as loss from TLS systems, radiation loss, coupling loss, quasiparticles loss. For each

plot in figure 8.2 measured at a different field-cool, we subtract off the internal loss measured in zero

field-cool, and we do subtraction point by point at same internal power for field-cool and nonzero

field-cool measurements. The internal power is function of total Q and Qc as we explained in section

4.4.2, we use interpolation function to find 1/Qi(B = 0) for each measured internal power. We then

make a plot of vortex loss and change of vortex loss as a function of internal power in the resonator

as shown in figure 8.3. Below the threshold field Bth ∼ 42µT for trapping the vortices in the middle

of the resonator, vortex loss is zero for all internal powers. For the power dependence measurements

with vortices, the vortex loss is power-independent at low powers. At very high microwave powers,

the change in vortex loss increases as we increase the resonator internal power.

8.5 Conclusion

We have measured the power dependence of resonator quality factor at various applied perpendicular

magnetic fields. For each applied magnetic field, we extracted the vortex loss as a function of internal

power in the resonator. We observed that vortex nonlinearity occurs at very high microwave powers

at which the vortex viscosity decreases, resulting in an increase of vortex velocity, and hence an

increase in vortex loss.



Chapter 9

Ongoing measurements, future

directions, and conclusion

9.1 Ongoing measurements and future directions

Reduction of quasiparticle density with metal traps

We are currently exploring other methods to reduce the density of nonequilibrium quasiparticles.

Because the superconducting energy gap decreases in the vicinity of the vortex and vanishes at the

center of the vortex core, quasiparticles can scatter and relax their energy at these regions of reduced

or vanishing energy gap. Therefore, as an alternative to trapping vortices in the superconductor,

we can artificially engineer some regions of reduced energy gap in the superconducting coplanar

waveguide resonators to trap nonequilibrium quasiparticles and hence, the loss due to quasiparticles

will be reduced. To make regions of reduced energy gap we are using bilayer film of copper and

aluminum. We want to make small regions that have this bilayer structure, while most of the circuit

remains aluminum as before. We apply our knowledge from the vortex-quasiparticle experiments to

determine how big the normal metal traps should be and where they should be located.

we use the fact that the transition temperature of a bilayer film can be lowered by appropriate

choice of the thicknesses of the bottom and top film. Martinis et al. [124] have derived a model

for the transition temperature in a normal-superconductor bilayer film using the microscopic-based

Usadel theory [125, 126], and proposed the following expression for the transition temperature

Tc = Tc0

[
ds
d0

1

1.13
(
1 + 1/α

) 1
t

]
, (9.1)
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where t is a transmission factor that depends on the details of the interface layer, and it takes a value

of order of one for most clean metals and interfaces. 1/d0 = (π/2)kBTc0λ
2
fns and α = dnnn/dsns

where dn and ds are the thickness of the normal and superconducting films, respectively. nn and ns

are the density of electronic states in the normal and superconducting films. λf = 0.478 nm is the

Fermi wavelength for copper.

Figure 9.1: Copper traps engineered in the middle of the center conductor of resonator.

We have used a Matlab routine, developed by John Martinis group at the University of California

Santa Barbara, that incorporates eqn.(9.1) to estimate the thickness of copper film we should use for

a given thickness of aluminum film in order to reduce the Tc of aluminum by about 50%. From the

numerical prediction of the Usadel solution, we used 65 nm of aluminum and 30 nm of copper. The

copper traps are squares with area 4µm2 and patterned in the center conductor of the resonator.
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Figure 9.2: Internal quality factor of resonator with and without copper traps.

The spacing between the copper traps is 12µm, and we chose the dimensions and spacing of traps

to avoid any the metallic loss from copper in locations with large microwave currents. To check the

transition temperature Tc of the bilayer film, we evaporated 30 nm of copper onto whole silicon wafer

and on top of it we evaporated 65 nm of aluminum. Note that before we evaporate copper we used

an adhesion layer of 2.5− 3.5 nm of titanium. Next we patterned resonators on this bilayer film and

measured Tc using ADR and the measured Tc = 0.6K is consistent with our Matlab simulations.

The metallic loss of the copper in this case prevented us from measuring any resonances, but we

could still measure Tc from the step in S21 through the feedline at different temperatures. Therefore,

we are confident that the Tc of the copper traps we engineered was more than 50% less than the Tc

value at locations where we do not put copper traps. Using the equation for the energy gap in terms

of Tc, ∆0 = 1.76kBTc, we can find that the energy gap of the copper traps is reduced by more than

half the value of energy gap for aluminum film. With this procedure we find that the quasiparticles

traps can actually reduce the density of nonequilibrium quasiparticles as shown in figure 9.2. Future
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experiments could reveal the optimal dimensions and spacing of these copper traps as well as their

locations in the device for efficient reduction of quasiparticles.

9.2 Conclusions

We have described our field-cooled experiments of the superconducting coplanar waveguide res-

onators made of thin films of aluminum evaporated onto a silicon substrate. We showed that we

can trap single vortices one at a time and we quantified the microwave loss due to a single vortex.

The measured loss from a single vortex in the microwave resonator is consistent with the theoretical

predictions. We showed that when vortices are trapped at locations of vanishing local current den-

sity, they can actually reduce the density of nonequilibrium quasiparticles. We performed numerical

simulations of the reduction of nonequilibrium quasiparticles by taking into account recombination

of quasiparticles and their trapping by vortices. The simulation results are consistent with our

finding in experiments. By injecting nonequilibrium quasiparticles using normal metal-insulator-

superconductor (NIS) tunnel junction, we again showed that vortices reduce the microwave loss due

to quasiparticles. We are currently exploring alternative methods to reduce the density of nonequi-

librium quasiparticles, among techniques we are exploring are cuts in ground plane and the use

of copper traps. In addition, we have qualitatively studied the vortex nonlinearity at microwave

frequencies. In fact, when vortices are driven by high microwave currents, their fast back-and-forth

motion induces an electric field. This accelerates quasiparticles in the vortex core such that they

gain energy and can escape from the inside of vortex cores which results in the reduction of the

vortex viscosity and hence in an increase of vortex velocity. In our experiments, this nonlinear pro-

cess results in an increase in the vortex loss with microwave drive power. We have found that the

increase in loss depends on the details of vortex distributions or pinning in the microwave resonator.
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