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Abstract 

Organization, separation, and cellular regulation are all functions of 

membraneless organelles (MLOs), which arise by a biophysical phenomenon termed 

liquid-liquid phase separation (LLPS). By this process, macromolecules in a mixed liquid 

solution condense together to form liquid droplets within a liquid solution, comparable to 

oil droplets in water. Some known MLOs formed in cells via LLPS include nucleoli, 

stress granules, Cajal bodies, and processing-bodies, among other membrane-lacking 

liquid granules. Previous work has shown that many proteins which compose these 

liquid compartments also undergo LLPS isolated in vitro, and thus have become model 

systems to investigate the forces that drive these macromolecules to undergo phase 

transitions.  

 Currently, the LLPS field has identified key features of proteins which contribute 

to phase separation. Included in this are sequences of intrinsic disorder and structured 

sequences, prion-like regions, oligomerization, and multivalent interactions. In this 

thesis, the protein of interest, UBQLN2, contains all such features. Additionally, prior 

work in the Castañeda lab and others has shown that UBQLN2 is recruited to stress 

granules, and disease-related inclusion bodies. In vitro, UBQLN2 phase separates into 

spherical liquid droplets in a concentration and temperature-dependent manner. As 

UBQLN2 exhibits LLPS both in vitro and in vivo, it serves as a model system to 

uncover, on a molecular level, the driving forces of phase separation.  

 The studies provided herein, investigate the properties of UBQLN2 phase 

separation and how they are modified with the introduction of mutations and domain 

deletions. By identifying how molecular variations modify UBQLN2 LLPS properties, one 



 

 
 

 

can identify a molecular code which UBQLN2 follows to drive and modulate its LLPS. 

Through experimental investigation via turbidity assays, phase diagram construction, 

microscopy, and self-association studies, we elucidate the molecular foundations of 

UBQLN2 LLPS. 

 Here, I propose that UBQLN2 LLPS is driven by “sticker” sequences which 

contribute to interchain interactions, and that hydrophobic and polar interactions are 

important sequence-intrinsic features which drive LLPS and control material properties 

of UBQLN2 droplets. Additionally, I look at UBQLN2 on a domain-by-domain level to 

uncover how sequence features like structure, disorder, and prion propensity may 

contribute differently to phase separation. Finally, I propose a method of UBQLN2 

purification that potentially incorporates native post-translational modifications (PTMs) to 

create a more physiologically relevant system for study.   

  



 

 
 

 

 

Elucidation of UBQLN2 liquid-liquid phase separation mechanisms 

via point mutations and domain deletions 

 

 

 

By 

Holly Jones 

B.S. Eastern Illinois University, 2018 

 

 

Thesis 

Submitted in partial fulfillment of the requirements for the  

degree of Master of Science in Biology 

 

 

 

 

Syracuse University 

August 2020 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

Copyright Holly Jones 2020 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

V 

Acknowledgments 

 I would like to express my sincere gratitude for all of those who have made this 

dissertation possible, and to those who have assisted me as I have journeyed through 

graduate school. I wish to thank Dr. Carlos Castañeda first and foremost for giving me 

the opportunity to join his research team. I am truly grateful for all the ways he has 

shaped my time at graduate school—by allowing me to pursue my own research 

interests, for providing direction and support to my research projects, and for guiding me 

as I explore and define my own career interests and passions. I will always remember 

Dr. Castañeda’s encouragement and passion for our field. I would also like to thank my 

committee members, Dr. James Hougland, Dr. Eleanor Maine, and Dr. Heidi Hehnly. 

 I would also like to thank my current graduate lab members, Tongyin Zheng, 

Yiran Yang, and Peter Raymond-Smiedy for being of great assistance, and partners, in 

the lab. I am especially thankful to have had lab mates who have been incredibly 

helpful, and who have also become great friends. I am also grateful for the current and 

previous Castañeda lab undergraduates who, though younger in age, have left me with 

impressionable traits of great scientists. I consider it an honor to have worked alongside 

of, and learned from, great fellow researchers. I would like to give a special thanks to 

Thuy Dao, our lab manager, who has been of great assistance in teaching me lab 

procedures, and who has helped me appreciate the science behind them. 

 I also express my deepest gratitude for the Hougland lab, who welcomed me into 

their lab to learn and perform experiments, and who invited me on many needed coffee 

runs. I am genuinely thankful for Michelle Sieburg, the Hougland lab manager, who 

acted as a research mentor, and also a mentor in faith.  



 

 

 

VI 

 Finally, I would like to sincerely thank my family and friends who have supported, 

prayed for, and encouraged me along this journey. I undoubtedly have grown in skill, 

knowledge, and faith throughout my time at Syracuse University, by which much is 

owed to the guidance of my loved ones and mentors.  

  

 

 

  



 

 

 

VII 

Contents  

Abstract 

Copyright Notice 

Acknowledgments 

List of Illustrative Material 

Chapter 1: Introduction………………..……………………………………………………..1 

1.1 Membraneless organelles form via liquid-liquid phase separation…………………….2 

1.2  Multivalent interactions maintain phase-separated compartments…………….……..4 

1.3  Dysfunction of LLPS leads to pathological states……………………………….……...7 

1.4  In vitro analysis of phase-separating protein solutions………………………….……..8 

1.5 Ubiquilin-2 (UBQLN2) phase separates in vitro and is recruited  

to stress granules………………………………………………………………………….12 

1.6 Dissertation overview……………………………………………………………….……..13 

Chapter 2: Single Amino Acid Substitutions Substantially Alter UBQLN2 Droplet 

Morphology and Dense Phase Material Properties…….…………………….………..19 

2.1 Introduction………….….………………………………………………………….………21 

2.2 Results……………….……………………………………………………………..………23 

 2.2.1 Turbidity assay analyses describe effect of amino acid substitutions…..…23 

2.2.2 Dense phase properties and dynamics are altered by hydrophobic sticker 

but not spacer substitutions………………………………………………..…………27 

2.2.3 Effects of amino acid substitutions on LLPS properties can be explained by 

changes in oligomerization propensity……………………………………………...28 

2.2.4 SAXS analysis confirms presence of large oligomers in stickers…………29 



 

 

 

VIII 

2.3 Discussion and Conclusions………………………………..…………………………...31 

2.4 Materials and Methods…………………………………...………………………………41 

 2.4.1 Subcloning, Protein Expression, and Purification………………….…..……41 

 2.4.2 Spectrophotometric Absorbance/Turbidity Measurements…….……..……41 

 2.4.3 Phase diagram measurements……………………………..…………………42 

 2.4.4 Bright-field Imaging of Phase Separation…………………………………….43 

 2.4.5 Droplet Fusion Assays…………………………….……………………………43 

 2.4.6 Size Exclusion Chromatography………………………...…………………….44 

 2.4.7 Small Angle X-Ray Scattering……………………………..……………….….45 

Chapter 3: Domain Deletion Constructs Map Domain Contributions to UBQLN2 

Phase Separation…………………..…………...………………………………….………..46 

3.1 Introduction……………………………………………………………………...…………48 

3.2 Results…………………………………………………………………………………..…52 

 3.2.1 Generation of UBQLN2 Domain Deletion Constructs and Mutants……….52 

3.2.2 Turbidity Assays Screened for Differential Effects on UBQLN2 

LLPS.……………………………………………………………………………………53 

3.2.3 Phase Diagrams Quantitatively Describe the Effects of Domains on 

LLPS…………………………………………………………………………….………55 

 3.2.4 Phase Diagrams Quantitatively Describe the Effects of Mutations………..57 

3.2.5 Size Exclusion Chromatography Describes UBQLN2 Self-

Association………………………………………………….….………………………58 

3.3 Discussion and Conclusions……………………………………………………………..59 

3.4 Materials and Methods……………………………………………………………………74 

 3.4.1 Subcloning, Protein Expression, and Purification…….……………………..74 

 3.4.2 Spectrophotometric Absorbance/Turbidity Measurements…………………74 



 

 

 

IX 

 3.4.3 Phase diagram measurements…………………………………….….…..…75

 3.4.4 Size Exclusion Chromatography…………………………………….…..…...76 

Chapter 4: Eukaryotic Expression of UBQLN2 in Sf9 Insect Cells…………………77 

4.1 Introduction…………………………………………………………………………….….79 

4.2 Results………………………………………………………………………………….….83 

 4.2.1 Generation of UBQLN2 baculovirus………………………………………….83 

 4.2.2 Sf9 cell preparation and infection…………………………………………….85 

 4.2.3 Purification of UBQLN2………………………………………………………..85 

4.3 Conclusions and Future Studies………………………………………………………..85 

Chapter 5: Conclusions and future work…………………………………………….…96 

5.1 Conclusions……………………………………………………………………………….97 

5.2 Future Directions……………………………………………………...………………….99 

 

List of Abbreviations……………………………………………………………………..….103 

References…………………………………………………………...………………………104 

Publication “Single Amino Acid Substitutions in Stickers, but Not Spacers, Substantially 

Alter UBQLN2 Phase Transitions and Dense Phase Material Properties”…………….112 

Curriculum Vitae……………………………………………………………………………...124 

 

 

 
 
 
  



 

 

 

X 

List of Illustrative Materials  

1.1 Membraneless Organelles which arise via LLPS………………………………………15 

1.2 Schematic diagram of multivalent interactions which drive LLPS……………………16 

1.3 Microscopic imaging of UBQLN2 confirms LLPS and UBQLN2 domain map………17 

1.4 Temperature—ramp spectroscopic data is used to construct phase diagrams…….18 

2.1 UBQLN2 450C composition and experimental sticker residues……………...……...33 

2.2 Spectrophotometric turbidity assay results……………………………………………..34 

2.3 Temperature−Concentration phase diagrams for representative  

      sticker and spacer residues in UBQLN2………………………………………………..35 

2.4 Light microscopy probes dense phase droplet properties……………………………37 

2.5 Oligomerization propensities of different UBQLN2 mutants…………………………39 

2.6 Small angle x-ray scattering (SAXS) experiments reveal scattering  

      intensities of WT and mutant UBQLN2…………………………..…………….………40 

3.1 Structure and function of UBQLN2…………………………………………….……….64 

3.2 Phase separation properties of disease linked mutations in  

      UBQLN2 FL and 450C……………………………………………………….……….…66 

3.3 Domain deletion constructs of UBQLN2………….…………………..………….…....67 

3.4 Turbidity assays screen for LLPS in WT and P497L  

      domain deletion constructs. ……………………………………………..……….……68 

3.5 Phase diagrams map conditions of phase separation…………………..…..………69 

3.6 Temperature-concentration phase diagrams for domain deletion  

      constructs of wild-type and mutant UBQLN2……………………………...…..……..70 

3.7 Oligomerization propensity of UBQLN2 domain deletion constructs……….…...…72 



 

 

 

XI 

4.1 Phosphomimic mutant UBQLN2 perturbs LLPS properties. ……………….……..89 

4.2 Brightfield microscopy of WT and UBQLN2 mutants with  

      phosphomimetic substitutions………………………………………………………...90 

4.3 Schematic of the generation of recombinant baculovirus and  

      gene expression adapted from Bac-to-Bac Expression System…………………..91 

4.4 PCR product confirms successful production of recombinant  

      donor plasmid pFastBacDual with UBQLN2 and RFP…………………………..…92 

4.5 SDS-Page gel electrophoresis confirms successful transposition  

      of UBQLN2 into bacmid DNA……………………………………………….…………93 

4.6 Western blot confirms expression of UBQLN2…………………………………..…..94 

4.7 Purification of UBQLN2 from Sf9 cells……………………………….………….……95



 

 

 

1 

Chapter 1: Introduction 
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Membraneless organelles form via liquid-liquid phase separation 

Cellular organization is a key factor of normal cell function. Classically, the idea 

of membrane-bound organelles and compartments form the foundation of cellular 

organization. However, scientists have recently discovered the importance of 

membraneless organelles (MLOs), though the presence of MLOs has been recognized 

for nearly two centuries (Wilson, 1899). Membraneless organelles (MLOs) introduce a 

novel paradigm of cellular organization. MLOs add compartmentalization of cellular 

components through separation of cellular material, without a discrete external barrier 

like a lipid bilayer. Unlike their membrane-bound counterparts, these organelles are 

dynamic, allow constituents to easily enter and exit, and are thought to be regulated by 

various factors like cellular stressors, post-translational modifications (PTMs), or post-

transcriptional RNA modifications (Drino and Schaefer, 2018; Saito et al., 2019; 

Shapouri et al., 2016). Different MLOs hold distinct physiological functions which impact 

stress response, development, and regulation of gene expression (Drino and Schaefer, 

2018). Given different functions, MLOs must recruit different members, and thus can 

include proteins, mRNA, and DNA (Alberti and Carra, 2018). Largely, these MLOs 

function to allow sub-compartmentalization of biochemical reactions and biological 

processes (Nott et al., 2015). 

MLOs exist as liquid droplets within the cell and arise from condensation of 

cellular material (Gomes and Shorter). Observations have described these organelles 

as having liquid-like material properties such as fusion, dripping, and wetting, with 

molecules continuously entering and exiting (Alberti and Carra, 2018; Brangwynne, 

2011; Brangwynne et al., 2009). Membraneless organelles are advantageous to the 
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cellular environment due to their ability to sequester macromolecules and to 

spatiotemporally compartmentalize specific biochemical reactions, while also allowing 

diffusion of biomolecules into and out of the organelle. Nucleoli, Cajal bodies, P-bodies, 

and stress granules are all examples of MLOs in cells, and their function is largely 

contingent on the macromolecules they contain (Figure 1A). Functioning as more than 

just an organizational compartment, Cajal bodies, for example, can also tune 

biochemical reactions such as the assembly of U4/U6.U5 tri-snRNP, a spliceosomal 

complex (Novotnýa et al., 2011). Cajal bodies are able to accelerate this reaction and 

others, due to the high concentration of reactants sequestered inside the MLO. 

Processing bodies (P-bodies) play fundamental roles in mRNA degradation, storing, 

and repression, and thus contain many types of mRNAs and enzymes required for 

mRNA degradation (Kulkarni et al., 2010). Stress granules are MLOs which are thought 

to improve fitness during stressed conditions by stalling translation initiation, and by 

regulating signaling events (Alberti and Carra, 2018; Gomes and Shorter; Lin et al., 

2015). Stress granules contain an array of translation initiation factors, RNA binding 

proteins (RBPs), protein quality control regulators, and many other non-RBP proteins 

(Protter and Parker, 2016). Thus, MLOs add an important aspect of cellular organization 

and function in many systems and processes.  

Though common in the cellular environment, many questions remain as to how 

MLOs form, how they are regulated, and how their dysregulation may contribute to 

human disease. The formation and maintenance of membraneless organelles is thought 

to arise through a biological phenomenon called liquid-liquid phase separation (LLPS) 

(Hyman et al., 2014). LLPS is the thermodynamic process of converting a well-mixed 
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solution of interacting macromolecules into an energetically favored demixed state. This 

demixed state places liquid droplets, which contains a high concentration of 

macromolecules, in equilibrium with an aqueous solution, which is depleted of the 

macromolecules (Figure 1B) (Alberti and Carra, 2018). These droplets display liquid-like 

properties in that they are spherical in shape, are dynamic, have internal 

rearrangement, and fuse together with contact (Brangwynne et al., 2009). The field has 

recognized LLPS as a functional aspect of cell dynamics and molecular properties for 

many years. Indeed, protein crystallographers are well aware of LLPS, as the process is 

observed frequently at high protein concentrations required for crystallization. 

Nevertheless, the questions of what underpins LLPS, and how this is regulated in cells, 

still remain. 

 

Multivalent interactions maintain phase-separated compartments 

MLOs, with their many macromolecular components, require LLPS as the 

establishment of a network of interactions among macromolecules (Figure 2A) (Alberti 

and Carra, 2018). The network that drives the condensation of phase-separated 

macromolecules consists of multivalent binding domains, which transiently form intra- 

and intermolecular contacts. Here, multivalency refers to dynamically forming non-

covalent interactions between and within phase-separated molecules. Multivalency can 

arise from interactions between both ordered and disordered domains of proteins. 

Intrinsically disordered regions (IDRs), or regions which lack three-dimensional 

structure, are a common attribute of proteins which phase separate at physiological 
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conditions (Uversky, 2017). Evidence also supports that structured domains can 

contribute to and modulate LLPS (Dao et al., 2018; Li et al., 2012; Wang et al., 2018). 

FUS family proteins, which exhibit phase separation and have been studied 

extensively, are a good example of proteins with multivalent interactions between 

ordered and disordered regions (Wang et al., 2018). Included in this family are proteins 

FUS, hnRNPA1, and TDP-43, among others. These proteins are characterized together 

because they share similar domain structures. They have two key features: a low 

complexity, prion-like domain (PLD), and an RNA binding domain (RBD) which contain 

folded RNA recognition modules (Malinovska et al., 2013). Together, interactions 

among these domains are believed to work synergistically to drive LLPS. Additionally, 

with nuclear Overhauser effect (NOE) experiments, which are used to determine intra- 

and inter- molecular distances, the Fawzi group observed that all major residue types 

within the FUS PLD participate in interaction contacts, thus supporting the idea that 

FUS forms dynamic, multivalent interactions in its liquid phase (Murthy et al., 2019). 

Underpinning multivalency are classical modes of molecular interactions 

including p—p stacking, cation–p interactions, and charge–charge interactions between 

the proteins’ amino acid side chains (Figure 2B). p—p interactions can form between 

two amino acids which have aromatic side chains. Because aromatic molecules have 

planar geometry and contain delocalized p electrons, these molecules can form 

interactions in a stacked configuration. Several studies have uncovered the critical role 

of  p—p stacking in the phase separation of proteins such as nephrin, FUS, and 

hnRNPA2 (Boeynaems et al., 2017; Pak et al., 2016; Xiang et al., 2015). Charge—

charge interactions also contribute to phase separation through charge neutralization, 



 

 

 

6 

which occurs when a positively charged amino acid interacts with a negatively charged 

amino acid. These electrostatic interactions may arrange the proteins in a configuration 

that favors phase separation (Pak et al., 2016). Cation—p interactions provide points of 

contact between positively charged amino acids (lysine and arginine) and aromatic 

amino acids (tryptophan, tyrosine, and phenylalanine), which are rich in p electrons. 

FUS has emerged as a protein which is dependent on cation—p interactions to maintain 

its LLPS properties (Wang et al., 2018). 

Beyond this, it is sensible that domains which contribute to oligomerization also 

increase the propensity for LLPS. It is thought that oligomerization nucleates a locally 

high concentration of a protein to promote phase separation (Shin et al., 2017). 

Nucleophosmin (NPM1), a protein involved in ribosome biogenesis, for example, 

mediates LLPS with partner proteins through its N-terminal oligomerization domain in a 

pentameric state (Mitrea et al., 2016). Additionally, recent studies suggest that NPM1 

also can mediate LLPS itself via self-association under crowded conditions (Mitrea et 

al., 2018). Speckle-type POZ protein (SPOP) is a protein dependent on its ability to 

oligomerize in order to be recruited to MLOs (Marzahn et al., 2016). Interestingly, 

oligomerization has also been posed as a mechanism of solidification of liquid granules 

(Boke et al., 2016; Kato et al., 2012). Multivalency and oligomerization are currently 

suggested as main principles behind LLPS, however the exact biophysical mechanisms 

which drive molecules to phase separate, and what regulates this, is still under 

investigation.  

 Because of the prominent role multivalency plays in LLPS, researchers in the 

field have adopted the “sticker” and “spacer” framework from polymer physics to 
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describe these sites of dynamically forming contacts between phase-separated 

molecules. Stickers are the associative motifs which drive LLPS, or sequences that 

contribute to multivalency, and spacers connect the sticker regions (Harmon et al., 

2017; Rubinstein and Dobrynin, 1997; Semenov and Rubinstein, 1998). Importantly, 

spacers can tune LLPS by either enabling or suppressing contact between stickers 

(Martin et al., 2020). 

 

Dysfunction of LLPS leads to pathological states 

 Interestingly, LLPS, and the mechanism of how this transition occurs, may 

predispose MLOs to dysfunction. As a consequence of LLPS, and the network of 

interactions which it requires, MLOs tend to have very crowded and highly concentrated 

environments in comparison to the surrounding cytoplasm. Though these properties are 

necessary for proper, and beneficial, condensation, they can also increase the 

propensity for protein misfolding and aggregation. Additionally, IDRs and multi-domain 

proteins, both of which are common in key phase-separating proteins, increase the 

propensity for dysfunction (Alberti & Carra, 2018). As mentioned before, oligomerization 

may also predispose granules towards maturation to a solidified, dysregulated state 

(Boke et al., 2016; Kato et al., 2012). 

Indeed, various pathological states have been associated with MLO dysfunction. 

For instance, dysregulation within phase-separated MLOs has been closely tied to 

neurological disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal 

dementia (FTD). ALS is a neurodegenerative disease which leads to muscle weakness 

and paralysis, where FTD leads to progressive cognitive impairment. A pathological 
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hallmark of ALS is the presence and formation of aggregates which resemble 

cytoplasmic inclusions (Lin et al., 2015). Interestingly, disease-linked mutations in 

proteins such as FUS, hnRNPA1/2, TIA-1, which are recruited to stress granules, 

facilitate a liquid-to -solid transition (Lin et al., 2015; Mackenzie et al., 2017; Patel et al., 

2015). Importantly, each of these proteins undergo LLPS in vitro and in cells. Thus, it is 

suggested that disease-linked mutations alter the LLPS properties of these proteins, 

and may disrupt stress granule dynamics leading to ALS-associated pathological 

inclusions. The investigation of phase-separating proteins which harbor ALS-linked 

mutations has recently been prioritized, as their properties may reveal a central 

pathomechanism. 

 

In vitro analysis of phase-separating protein solutions 

The exact molecular mechanisms which link LLPS, MLOs, and cellular protein 

aggregates has yet to be discovered, and they are likely to be system- and context-

specific. In order to systematically address these questions, our lab and others, have 

directed studies towards identifying the specific interactions underlying LLPS. Using an 

array of biochemical and biophysical techniques, researchers have found that regional 

hydrophobicity, the lack of or presence of ringed amino acids and other amino acid-

based observations, and self-association have been identified as factors that may 

influence LLPS (Dao et al., 2018; Riback et al., 2017; Wang et al., 2018). In order to 

investigate how such variables may alter LLPS properties, a series of experiments can 

screen for, quantify, and describe phase-separating properties. 
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First, to screen for phase separation, many labs turn to brightfield microscopy. 

Phase-separated protein solutions contain micrometer sized droplets, which can be 

viewed under a microscope. Here, one can view liquid-like properties and 

characteristics of protein droplets in solution such as fusion events, sphericity, and 

mobility. By quantifying the size of the droplets after a specified amount of time, or the 

time it takes for two droplets to fuse, one can begin to describe the mobility of droplets. 

Fluorescent recovery after photobleaching (FRAP) is another technique often used in 

the field to describe the dynamic nature of phase-separated protein droplets. FRAP 

experiments can be performed on a microscope equipped with the necessary laser, 

where a region of interest is bleached with a laser, and the recovery of fluorescence is 

monitored. In a phase-separated system, this looks like photobleaching a small area of 

a fluorescently tagged protein droplet. The rate at which fluorescence recovers will be 

dependent on the dynamics of the protein exchange between the inside and outside of 

the droplet. For example, if fluorescence recovers quickly, the droplet is liquid-like, 

where if the fluorescence recovers slowly, the droplet is likely more gel-like, or 

aggregate-like. 

Additionally, UV-visible (UV-Vis) spectrophotometry can be used to screen for 

LLPS by measurement of the absorbance of a phase-separated solution. Upon the 

induction of LLPS, often with the addition of salt or a change in temperature, a solution 

will become turbid due to the presence of liquid droplets. Therefore, as droplets appear 

in solution, they scatter light which causes an increase in absorbance. Previous work 

from our lab and others showed that high A600 values are associated with droplet 

formation, while lower absorbance values are associated with droplet clearance (Dao et 
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al., 2018). Typically, turbidity assays measure absorbance as a function of temperature 

(e.g. from 4oC to 60oC), which begins to map the conditions where the solution phase 

separates into a demixed state. Turbidity assays are also useful as a means to 

construct temperature—concentration phase diagrams.  

The phase-separation field has adopted a method of quantifying LLPS at certain 

conditions through the construction of temperature—concentration phase diagrams 

(Figure 3). Temperature—concentration phase diagrams are valuable in that they map 

the conditions in which a protein solution is fully mixed and when a protein solution is 

demixed, or phase-separated. A technique commonly used to construct phase diagrams 

are temperature ramp turbidity assays, which are used herein and measure the 

absorbance of protein solutions of various concentrations across a specified 

temperature range (e.g. from 4oC to 60oC). At a protein concentration for which no LLPS 

is observed at the start of the experiment, temperature ramping turbidity assays are 

performed to determine Tcp, the temperature at the inflection point of the transition 

(Figure 3A). As this process is repeated over various concentrations, we are able to plot 

each Tcp as a function of protein concentration to construct the low-concentration arm of 

the phase diagram (Figure 3B). The low-concentration arm maps the phase boundary 

between the phase-separated and mixed states. For LCST (lower critical solution 

temperature) phase transitions, the solution changes from clear to turbid as temperature 

increases. Some phase-separating systems also exhibit an upper critical solution 

temperature (UCST), where the solution starts in a demixed state and returns to a fully 

mixed state as temperature increases. By constructing phase diagrams depicting the 

LCST and UCST arms, we can map phase transition behavior which describes the 
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conditions where the solution phase separates. Additionally, in these experiments we 

are able to test variables (such as pH, salt, protein concentration, or protein mutation) to 

quantify how they shift phase-separating conditions.  

As self-association is a prominent mechanism underpinning LLPS, it is also 

important to detect oligomerization states of the protein of interest. Biophysical 

techniques commonly utilized to probe and describe self-association and 

oligomerization of phase-separating proteins are size exclusion chromatography (SEC) 

and small angle x-ray scattering (SAXS). SEC uses a column of tightly packed beads to 

separate solutions based on protein size and shape. Larger molecules, and thus larger 

oligomeric species in the solution will elute more quickly than smaller molecules. SAXS 

measures small angle scattering to determine the size and shape of nanoscale particles 

and macromolecules in solution. If larger oligomeric species are present in the protein 

solution, we would expect to see an increase in scattering intensity (cm-1). Importantly, 

these experiments are performed with protein solutions in a non-phase-separating state.  

An additional technique used to probe phase-separating proteins in vitro is 

nuclear magnetic resonance (NMR) spectroscopy, a technique which uses a magnetic 

field to measure the interaction of nuclear spins to identify molecular content and 

structure. An NMR analysis, chemical shift perturbation (CSP), has classically been 

used to map changes in chemical shifts of resonances in a series of protein 

concentration-dependent NMR spectra, and is used to identify residues that are affected 

by self-association and oligomerization. This technique is especially valuable as it has 

been used to predict “sticker” regions, a framework used to describe associative motifs 

which promote interchain interactions via non-covalent links and phase separation. 
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Conversely, “spacers” are the regions which link stickers, and can either support or 

suppress the formation of these interactions to modulate LLPS (Martin et al., 2020). The 

identification of sticker and spacer regions in a phase-separating protein is vital to 

understanding the molecular drivers of LLPS for that system. Ultimately, the techniques 

discussed above allow scientist to probe phase-separating behavior in vitro and analyze 

the contributing factors to LLPS.  

 

Ubiquilin-2 (UBQLN2) phase separates in vitro and is recruited to stress granules 

Our lab has shown that the human protein Ubiquilin-2 (UBQLN2) phase 

separates in vitro under physiological conditions, and is recruited to stress granules 

(Dao et al., 2018) (Figure 4 A&B). UBQLN2, a member of the ubiquilin family, is 66kDa 

and is composed of 624 amino acids. It is one of five known paralogs of UBQLN (-1, -2, 

-3, -4, and -L). UBQLN2 is a protein quality control factor found abundantly in the 

nervous system, and functions to transport ubiquitinated substrates to the proteasome 

for degradation, as well as stress response (Kleijnen, 2000; Walters, 2002; N’Diaye, 

2009). UBQLN2 has an N-terminal ubiquitin-like domain (UBL) which associates with 

the proteasome, and a C-terminal ubiquitin-associating domain (UBA) which associates 

with ubiquitin (Ub) and polyubiquitin (Figure 4C). UBQLN2 also contains two heat shock 

chaperone-binding domains, STI1-I and STI1-II, which associate with chaperone 

proteins like HSP70 to further function in recycling proteins at the proteasome (Hjerpre, 

2016; Kaye, 2000). Our lab recently showed that UBQLN2 features structured domains 

(UBL and UBA) and low-complexity intrinsically disordered regions (IDRs), both of 

which contribute to its phase separation (Dao et al., 2018). NMR studies confirmed that 
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the UBA, PXX, and STI1-II domains all contribute to multivalent interactions which drive 

its LLPS (Dao et al., 2018).  

Importantly, UBQLN2 also is implicated in Amyotrophic Lateral Sclerosis (ALS). 

ALS is a proteinopathic disease where cytoplasmic inclusions, or protein aggregates, 

accumulate inside motor neurons. Liquid-liquid phase-separated MLOs like stress 

granules and P-bodies are thought to be precursors to cytoplasmic inclusions (Molliex et 

al., 2015). Notably, UBQLN2 is present in both stress granules and cytoplasmic 

inclusions (Alexander et al., 2018; Deng et al., 2011; Le et al., 2016). Additionally, 

mutations in UBQLN2 have recently been associated with familial ALS (Deng et al., 

2011). Our lab previously characterized 11 disease-linked point mutations of UBQLN2, 

and found that ALS-linked mutations disrupt UBQLN2 phase-separating properties to 

different extents (Dao et al., 2019). Therefore, UBQLN2 is a model system of LLPS 

because of its phase-separating behavior, its link to stress granules, and its involvement 

in disease-linked proteinopathy.  

 

Thesis overview 

 The studies provided here aim to further elucidate the molecular drivers of 

UBQLN2 LLPS. By using an array of techniques including microscopy, temperature—

ramp turbidity assays, construction of temperature—concentration phase diagrams, 

SEC, and SAXS, I look at how mutations to UBQLN2 alter its phase separation, and 

how UBQLN2 domains contribute differently to its phase separation. First, I investigate 

how UBQLN2 stickers and spacers contribute to UBQLN2 LLPS via analysis of a library 

of UBQLN2 mutants. Chapter 3 focuses on domain-dependent interactions involved in 
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UBQLN2 LLPS via generation and analysis of six domain-deleted constructs. In Chapter 

4 I provide proof of principle that UBQLN2 can be expressed and purified from Sf9 

insect cells, which, importantly, yield post-translationally modified protein. Finally, I 

provide future directions for this work, and propose methods to further investigate 

UBQLN2 LLPS. 
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Figure 1. Membraneless organelles in cells and LLPS in vitro. (A) Membraneless 

organelles (MLOs) within the cell which arise via LLPS. Depicted here is a non-

exhaustive list of organelles which arise via LLPS. Reproduced from (Gomes and 

Shorter, 2019).  (B) A fully mixed solution of protein (grey) and buffer solution (blue and 

yellow) undergoes LLPS to a demixed state resulting in protein droplets. Below are 

brightfield microscopy images of UBQLN2 diffuse at time=0 in buffer solution and in a 

phase-separated state where time=30 min. Scale bar = 5 μm 
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Figure 2. Determinants of LLPS. (A) Sites of multivalent intra- and intermolecular 

interactions (highlighted in yellow) are critical in driving and maintaining a phase-

separated state between protein molecules (purple). (B) Depicted here is a protein 

phase-separated droplet (left) where purple represents protein molecules, and intra- 

and intermolecular interactions (stickers) are highlighted in yellow. View of droplet is 

zoomed in (right) to observe the interactions which contribute to multivalency. This non-

exhaustive list of interactions important in multivalency includes charge-charge, cation-

p, dipole-dipole, and p-p  stacking. (adapted from Shorter et al, 2016). 
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Figure 3. Temperature-concentration phase diagrams used to quantify LLPS. (A) 

Temperature—ramp spectroscopic data (colored lines) are fit with Four Parameter 

Logistic Regression analyses to determine the cloud point temperature (Tcp) at the 

inflection point of the transition at each concentration (in µM). (B) The LCST phase 

transition curve is mapped by plotting each Tcp, where the colored dots represent the 

experimental data points obtained. 
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Figure 4. UBQLN2 phase separates in vitro and is recruited to stress granules in 

cells. (A) Brightfield microscopy of WT UBQLN2 in buffer containing 20 mM 

NaPhosphate and 200 mM NaCl (pH 6.8) at 37 C using 100 μM protein. (B) 

Immunostaining for endogenous UBQLN2 in U2OS cells shows that UBQLN2 is diffuse 

in cytoplasm, but form puncta under stress condition tested. UBQLN2 colocalizes with 

eIF4G1, a stress granule (SG) marker. DAPI is used to stain nuclei. (adapted from Dao 

et al., 2018) (C) Domain architecture and associations of UBQLN2. 
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Chapter 2 
 
Single Amino Acid Substitutions Substantially Alter UBQLN2 Droplet Morphology 
and Dense Phase Material Properties  
 
Yiran Yang,† Holly B. Jones,‡ Thuy P. Dao,∥ and Carlos A. Castañeda,§,∥	
 
†Department of Chemistry, ‡Department of Biology, §Interdisciplinary Neuroscience 
Program, and ∥Departments of Biology and Chemistry, Syracuse University, Syracuse, 
New York, United States 
 
 
 
 
 
 
 
 
Note: This chapter was adapted from Single Amino Acid Substitutions in Stickers, but 
not Spacers, Substantially Alter UBQLN2 Phase Transitions and Dense Phase Material 
Properties published in The Journal of Physical Chemistry B and featured as an ACS 
Editors’ Choice article. The work included in this chapter was divided between Yiran 
Yang and the author, Holly Jones. 
https://doi.org/10.1021/acs.jpcb.9b01024 
 
 
In this chapter, I present my contributions to the manuscript. These include all 
microscopy and droplet fusion experiments, size exclusion chromatography, protein 
purification, and writing and editing of the final manuscript. Additionally, I completed 
small angle x-ray scattering (SAXS) experiments, including protein sample preparation 
and data analysis, while experiments were collected at NIST (Gaithersburg, MD) by Dr. 
Alex Grishaev. SAXS data were not included in the published article, but are presented 
here and noted accordingly.  
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Abstract 

UBQLN2 450−624 oligomerizes and undergoes temperature-responsive liquid−liquid 

phase transitions following a closed-loop temperature−concentration phase diagram. 

We recently showed that disease-linked mutations to UBQLN2 450−624 impart highly 

varying effects to its phase behavior, ranging from little change to significant decrease 

of saturation concentration and formation of gels and aggregates. However, how single 

mutations lead to these properties is unknown. Here, we use UBQLN2 450−624 as a 

model system to study the sequence determinants of phase separation. We 

hypothesized that UBQLN2 450−624 regions previously identified to promote its 

oligomerization are the “stickers” that drive interchain interactions and phase 

separation. We systematically investigated how phase behavior is affected by all 19 

possible single amino acid substitutions at three sticker and two “spacer” (sequences 

separating stickers) positions. Overall, substitutions to stickers, but not spacers, 

substantially altered the shape of the phase diagram and dense phase material 

properties. Within the sticker regions, increasing hydrophobicity decreased saturation 

concentrations at low temperatures and enhanced oligomerization propensity and 

viscoelasticity of the dense phase. Conversely, substitutions to acidic residues at all 

positions greatly increased saturation concentrations. Our data demonstrate that single 

amino acid substitutions follow a molecular code to tune phase transition behavior of 

biopolymers. 
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Introduction 
 

Liquid-liquid phase separation (LLPS) is a physical process whereby a fully 

mixed solution demixes into two different liquid states (Hyman et al., 2014). However, 

the exact mechanism which underpins this process is largely unknown. Emerging 

evidence points to a multitude of variables which work together to drive phase 

separation and tune its behavior. In a majority of phase-separating proteins, 

multivalency among intrinsically disordered regions and/or folded domains form the 

framework of protein phase separation (Banani et al., 2016; Li et al., 2012; Wang et al., 

2018). Here, multivalency refers to multiple, non-covalent, reversible crosslinks that 

form among “sticker” regions in macromolecules. These multivalent interchain 

interactions (often present intrachain as well) are driven by properties of amino acids. 

For instance, amino acids possessing a positive charge can interact with aromatic 

amino acids to form cation-p interactions. Likewise, different types of amino acids 

contribute to p—p stacking interactions, hydrophobic, and electrostatic interactions. 

Examples of these can be found in phase-separating proteins FUS, Pab1, and TDP-43, 

and Ddx4. Phase-separating proteins in the FUS family, for example, are highly 

dependent on cation-p interactions, while proteins like Pab1 display hydrophobic 

interactions which drive their LLPS (Riback et al., 2017b; Wang et al., 2018b). DNA-

binding protein, TDP-43, is highly dependent on aromatic residues for its ability to phase 

separate (Li et al., 2018). Charged residues in Ddx4 contribute to electrostatic 

interactions which contribute to its phase separation (Nott et al., 2015). These findings 

can be used to hypothesize how amino acid sequence can predict LLPS. Consequently, 
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it is hypothesized that phase-separating behavior is encoded in the amino acid 

sequence. 

In this study, we created a system to which we could experimentally map the 

effects of single amino acid mutations in sticker and spacer regions on LLPS behavior. 

Using a C-terminal construct of UBQLN2 450C, we recently determined residues that 

were involved in self-association, or oligomerization (Dao et al., 2018). These residues 

were identified using concentration-dependent chemical shifts from NMR spectroscopy. 

The shortened C-terminal construct of UBQLN2 was chosen for analysis because its 

small size (∼175 amino acids) enabled the use of nuclear magnetic resonance (NMR) 

spectroscopy to monitor backbone amide chemical shifts as a function of protein 

concentration on a residue-by-residue basis.  Significant concentration-dependent 

chemical shifts were observed for residues 450-509, 555-570, 592-596, and 615-620, 

meaning that these sites contribute to self-association (Figure 1A) (Dao et al., 2018). 

With these data we hypothesized that these regions act as sites of multivalent 

interactions, and therefore drive UBQLN2 phase separation. Using the “sticker” and 

“spacer” framework we have predicted these sites to be stickers, which are the motifs 

that drive LLPS (Harmon et al., 2017; Rubinstein & Dobrynin, 1997). The amino acids 

which comprise the sticker regions are largely hydrophobic and polar (Figure 1B). The 

regions in between stickers are characterized as spacers. Spacers impart flexibility and 

can tune LLPS behavior.  

We hypothesized that introducing mutations to sticker regions would significantly 

affect phase-separating properties, while mutations to spacers would affect phase-

separating properties to a lesser extent. We expected to see significant differences in 
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saturation concentration (csat), and droplet morphology and droplet fusion kinetics in 

UBQLN2 constructs with mutated sticker positions. To test this hypothesis, we 

generated all 19 possible amino acid substitutions at three sticker residues and two 

spacer residues in the UBQLN2 450C background. We considered positions P497, 

P506, and V564 as “stickers”, and positions P525 and V538 as “spacers”. The resultant 

95 constructs were subjected to temperature ramp turbidity assays to determine their 

saturation concentration, droplet morphology and kinetic studies via microscopy and 

droplet fusion assays, and self-association was observed via size exclusion 

chromatography (SEC) and small angle x-ray scattering (SAXS). Our data corroborate 

the hypothesis that sticker regions drive UBQLN2 phase separation given that sticker 

substitutions substantially altered temperature—concentration phase diagrams, droplet 

morphology and self-association propensity, whereas spacer substitutions altered these 

only marginally. Additionally, we show that individual amino acid substitutions modify 

phase transitions, and therefore show that phase-separating behavior is encoded in the 

amino acid sequence. With these data we hope to develop computational models 

and/or simulation to determine the molecular driving forces of phase separation.  

 

Results  

Turbidity assay analyses describe effect of amino acid substitutions 

Temperature ramp turbidity assays were used to screen the experimental 

conditions, specifically protein concentration, for each mutant construct to undergo 

LLPS (Figure 2). We monitored the change of absorbance between 16 and 60°C of 

protein samples at different protein concentrations. Previous work from our lab showed 
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that high A600 values are associated with droplet formation, while lower absorbance 

values are associated with droplet clearance (Dao et al., 2018). These experiments 

were also used to construct temperature—concentration phase diagrams (Figure 3). WT 

UBQLN2 exhibited a LCST and a UCST, indicating two temperature-responsive phase 

transitions between 16 and 60°C (Figure 3A). As temperature increases from 16 to 45°C 

UBQLN2 demixes into phase-separated droplets, and as temperature further increases 

from 45C to 60°C UBQLN2 returns to its fully mixed state. The first transition is a LCST 

transition, which means that there is a lower critical solution temperature (LCST) below 

which the solution is always mixed, and the second transition is a UCST transition, 

which means that there is an upper critical solution temperature (UCST) above which 

the solution is always mixed. Construction of turbidity profiles and phase diagrams allow 

for characterization of the conditions where phase transitions occur to compare across 

different protein samples. 

We introduced amino acid substitutions at three sticker positions (497, 506, and 

564) and two spacer positions (525 and 538) in UBQLN2 450C. First, using a fixed 

protein concentration of 50 μM, we screened their phase-separating conditions using 

turbidity assays (Figure 2). Phase diagrams were constructed at two representative 

positions, a sticker (506) and a spacer (538), for each amino acid mutation.  Across all 

positions, we initially noticed several major trends. When compared to the wild type 

amino acid at each position (proline at positions 497, 506, and 525, and valine at 

positions 525 and 538), substitutions impacted phase separation to different degrees 

(Figure 2, Figure 3B). In both turbidity assays and phase diagrams, substitutions to 

hydrophobic amino acids at sticker positions generally lowered the temperature at which 
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LLPS was first observed, or the LCST phase transition. As hydrophobicity increased 

with amino acid substitution, the protein concentration (csat) required for LLPS 

decreased and coexistence curves shifted to the left. Sticker position substitutions also 

widened the temperature range at which LLPS is observed. In contrast, spacer position 

substitutions generally reveal similar turbidity trends as wild type, except for some 

amino acid substitutions such as acidic amino acids D and E. Strikingly, temperature—

concentration phase diagrams recapitulate general observations seen in our initial 

turbidity profiles. Here, we note that introducing mutations to UBQLN2 sticker position 

506 shifted the position of the phase diagram and also changed the overall shape. In 

contrast, mutations at spacer position 538 generally left the phase diagram unchanged, 

with only mild perturbations from WT UBQLN2. These observations are consistent with 

our hypothesis that residues 497, 506, and 564 reside in sticker regions, where 525 and 

538 are in spacer regions.  

Beyond these general observations, there is considerable variation in droplet 

formation among the different types of amino acid substitutions. Our turbidity and phase 

diagram data are presented as amino acid type in decreasing hydrophobicity (Figure 2, 

Figure 3C). First, we have grouped amino acids by type: aromatic (F, W, Y), 

hydrophobic (A, G, I, L, M, P, V), polar (C, N, Q, S, T), basic (H, K, R), and acidic (D, E). 

We then organized these groups according to an experimentally determined 

hydrophobicity scale (Urry et al., 1992). We note the complication in assigning residues 

to these classes, particularly  glycine and proline, due to their roles in modulating 

protein structure via flexibility and solubility (Holehouse and Pappu, 2018). Interestingly, 

among sticker positions increasing hydrophobicity promoted LLPS by lowering the 
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temperature and protein concentration needed for LLPS. This is especially seen with 

aromatic substitutions, where the threshold for UBQLN2 LLPS is below 16°C. Notably, 

slight differences between sticker positions and amino acid type were observed. For 

instance, UBQLN2 mutants with Ile or Phe substitutions at position 506 remained turbid 

for the entire temperature range (16−60°C) at 50 μM, whereas phase-separating 

solutions of P497F and P497I began clarifying at 40°C. These observations illustrated 

that Ile and Phe substitutions to both P497 and P506 impact LCST and UCST phase 

transitions but via different mechanisms. Spacer position mutations did affect UBQLN2 

LLPS, however to a much lesser extent. Spacer mutations generally showed the same 

trend regarding the temperature onset of phase separation, however the absolute 

intensity of the absorbance signal increased after introducing a mutation, especially to 

aromatic and hydrophobic residues. It is possible that aromatic and hydrophobic 

residues increase sticker-like interactions, hence increasing the degree of phase 

separation of the solution. Interestingly, acidic mutations at both stickers and spacers 

greatly reduced the ability of UBQLN2 to phase separate. Together, these data show 

that LLPS properties are highly dependent on amino acid sequence, both in type of 

amino acid and position. Specifically, these data suggest the importance of hydrophobic 

amino acids in promoting UBQLN2 intermolecular interactions and driving its phase 

separation. Consistent with this idea, many amino acids found in sticker regions of 

UBQLN2 are hydrophobic. 

 

Dense phase properties and dynamics are altered by hydrophobic sticker but not spacer 

substitutions 
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Mapping phase diagrams allowed us to elucidate the effects of the substitutions 

on phase transitions and determine driving forces for UBQLN2 phase separation. In 

order to evaluate the consequences of substitutions on the dense phase we first used 

brightfield microscopy to investigate the morphology of UBQLN2 droplets. To do this, 

we chose representative substitutions of each amino acid type including W (aromatic), 

G and L (hydrophobic), R (basic), Q (polar), and E (acidic) across all five positions 

studied (Figure 4). In general, droplet morphologies correlated well with turbidity assay 

results. Mutants with turbidity profiles similar to WT UBQLN2 also displayed spherical 

droplets of similar size as WT UBQLN2. Those mutations which resulted in significantly 

increased turbidity or shifted phase diagrams, such as aromatics and hydrophobics in 

sticker positions, also generally formed amorphous droplets. This was exhibited with 

mutants P497W, P497L, P506W, and P506L. Mutant P497Q, which appeared to form 

visible aggregates during turbidity assays, also exhibited aggregate-like morphology 

when viewed under the microscope. Acidic mutation E, which displayed little turbidity 

across all positions, formed small and dispersed aggregate-like species. Interestingly, 

after 30 minutes at these conditions, V538E showed the presence of spherical droplets 

after first appearing only as small aggregates. Consistent with our hypothesis, spacers 

(with the exclusion of P525R, P525E, and V538E) had minimal effects on droplet 

morphology, while sticker position substitutions showed a greater susceptibility to alter 

droplet dynamics and morphology. Future experiments will investigate the role of E and 

R mutations on droplet assembly kinetics and morphology. 

To quantitatively describe the effects of sticker and spacer mutations on the 

dense phase, we analyzed droplet fusion kinetics. To determine the rate of fusion, we 
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measured the time it took for two fusing droplets to return to a spherical shape. We 

analyzed the rates of droplet fusions since the sphericity of droplets reports on surface 

tension and viscosity (Feric et al., 2016). For WT UBQLN2, two fusing droplets relax 

into one spherical droplet within seconds (Figure 4B). However, we observed that other 

mutations relaxed at a slower rate, while some did not achieve a spherical shape within 

a 3 minute experimental window (Figure 4B and 4C). Relaxation times were extracted 

for each amino acid type, at a representative sticker position, 506, and at a 

representative spacer position, 538. Consistent with our sticker-spacer hypothesis, 

V538 mutants all fused with similar relaxation times as WT UBQLN2, despite the type of 

amino acid substitution. In contrast, position 506 mutants varied in relaxation times 

based on the amino acid substitution. Polar and ionizable substitutions fused quickly, 

like WT. However aromatic and hydrophobic substitutions substantially slowed droplet 

relaxation. Again, these data suggest that hydrophobic and aromatic amino acids 

significantly impact UBQLN2 phase separation. 

 

Effects of amino acid substitutions on LLPS properties can be explained by changes in 

oligomerization propensity 

Previous work from our lab highlighted the importance of oligomerization in 

phase separation. Because of this, we probed UBQLN2 self-association via size 

exclusion chromatography (SEC) under non-phase-separating conditions. We 

previously demonstrated that UBQLN2 at low concentrations (up to ~100 μM) is 

monomeric, but at higher concentrations (~500 μM) UBQLN2 forms large oligomers 

(Dao et al., 2018). Indeed, as WT UBQLN2 concentration increased from 10 μM to 500 
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μM, SEC elution volumes decreased, as expected for UBQLN2 oligomerization (Figure 

5). Therefore, we subjected representative mutants at each position to SEC using 

concentrations of 10, 100 and 500 μM (Figure 5).  

All representative substitutions, across all positions, exhibited concentration-

dependent oligomerization; increasing protein concentrations led to a decrease in 

elution volume (Figure 5). Again, consistent with our hypothesis, the SEC experiments 

for the spacer mutations were similar to those for WT UBQLN2. P525E was the only 

exception, as a small population of a large species eluted early in the SEC experiment. 

This is consistent with microscopy data, as P525E showed the most aggregates out of 

all other E mutants. At sticker positions 497 and 506 both W and L substitutions 

oligomerized substantially more than WT. At sticker position V564, W and L appeared to 

oligomerize more than WT but not as substantially as at other sticker positions. We 

suspect this difference is due to the fact that the WT amino acid at this position, valine, 

is already hydrophobic. These data further suggest that aromatic and hydrophobic 

residues promote UBQLN2 LLPS, as these substitutions also promote oligomerization 

and thus intermolecular interactions. 

 

SAXS analysis confirms presence of large oligomers in stickers 

To corroborate SEC conclusions, we also subjected representative UBQLN2 

mutants to analysis via small angle x-ray scattering (SAXS). SAXS is a technique 

classically used to determine size and shape of nanoscale particles and 

macromolecules in solution through a measure of light scattering angles. Here, SAXS is 

used to monitor oligomeric species under non-phase-separating conditions in solution. If 
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larger oligomeric species are present in the protein solution, we would expect to see an 

increase in scattering intensity (cm-1). Our studies herein pose that we will observe 

larger oligomeric species with increases in concentration and temperature, as well as 

with hydrophobic “sticker” UBQLN2 substitutions. In these experiments, we looked at 

WT UBQLN2 450C and mutations to sticker positions 497 and 506. We chose 497L 

because of its tendency to phase separate at lower temperatures and protein 

concentration as compared to WT, and we chose glutamic acid mutations because of 

their tendency to experience very little phase separation. We also did these experiments 

at two temperatures to show the relationship between oligomerization and temperature. 

Completely in line with our predictions, WT UBQLN2 had increased scattering intensity 

with increasing concentration (100 μM to ~250μM) and increasing temperature (4°C and 

25°C) (Figure 6A). Additionally, leucine substitutions in sticker positions P497 and P506 

drastically enhanced scattering when compared to WT at the same concentration 

(Figure 6B). The acidic substitution glutamic acid, at sticker positions 497 and 506, had 

a similar scattering profile as WT, which supports data from SEC (Figure 6C). All protein 

solutions displayed increased scattering with increased temperatures, consistent with 

previous data which describes oligomerization as a prerequisite for LLPS (Dao et al., 

2019). These results together confirm the role of self-association in UBQLN2 LLPS—

where we see greater oligomerization, phase separation is easier to promote at lower 

protein concentrations. 
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Discussion and Conclusions 

 Here, we have demonstrated that UBQLN2 phase separation can be modulated, 

to different extents, by single amino acid substitutions. The observations herein provide 

evidence that both substitution position and amino acid type are important in tuning the 

behavior of UBQLN2 LLPS. These data demonstrate that the sticker-spacer framework 

is useful in predicting the driving motifs of phase separation. Substitutions at sticker but 

not spacer positions elicited major changes to the overall shape and characteristics of 

the phase diagram, droplet morphologies and viscoelascity, and self-association. 

Therefore, we can conclude that stickers drive phase-separating properties, where 

spacers modulate LLPS to a lesser degree. Beyond this, we also confirmed trends 

across types of amino acids. It was observed that bulky aromatic, hydrophobic and 

some polar amino acids tend to alter LLPS properties more substantially than others. 

This was especially true from analyzing the strikingly different droplet morphologies and 

viscoelastic properties in the sticker position P506. Additionally, acidic mutations elicited 

major changes in phase separation by greatly increasing saturation concentration, 

which notably, occurred in both sticker and spacer substitutions. Because acidic 

mutations impart a negative charge similarly to a phosphate group, this specific finding 

highlights the potential impact of post-translational modifications such as 

phosphorylation on modulating phase separation behavior. 

 With these combined data, we have determined that UBQLN2 LLPS is driven by 

the hydrophobic effect and polar interactions. The interactions posed by these 

substitutions add to UBQLN2’s overall multivalency.  It is thought that the introduction of 

more hydrophobic residues increased the “stickiness” of both stickers and spacers. This 



 

 

 

32 

idea can be justified through self-association studies provided herein—those mutations 

which showed major deviation from WT in droplet morphology also showed the 

presence of higher-order oligomeric species. The particular trends witnessed in these 

experiments address a rich molecular code which governs UBQLN2 LLPS. Our work 

here provides a rich data set to be used as a benchmark for analytical and 

computational models of phase separation.  
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Figure 1. UBQLN2 450C experimental sticker residues and composition. (A) CSPs 

represent residue-specific chemical shift differences between low (45µM) and high (600 

µM) protein concentrations. Grey bars mark resonances only visible at 45µM. Domain 

map marks residues that exhibit concentration-dependent peak broadening or 

significant CSPs. All spectra were collected at 25°C in pH 6.8 buffer under non-LLPS 

conditions. Experimental sticker residues are highlighted and marked with asterisks in 

red, and experimental spacer residues are highlighted and marked with asterisks in 

blue. (B) Fraction of different types of amino acids in UBQLN2 450C, which is high in 

polar, hydrophobic, glycine and proline residues, and depleted in charged and aromatic 

residues. (C) UBQLN2 450C sequence where residues highlighted in color are found in 

sticker regions with colors corresponding to its type of amino acid. Sticker regions are 

high in hydrophobic and polar residues, and low in aromatic and charged residues. 
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Figure 2. Turbidity profiles at sticker and spacer positions. Results from 

spectrophotometric turbidity assay as a function of temperature comparing LLPS of 

different UBQLN2 mutants using 50 μM protein in 20 mM NaPhosphate and 200 mM 

NaCl (pH 6.8). The blue asterisks represent WT UBQLN2 turbidity profile for each 

position. The red asterisks represent mutants that form unevenly distributed aggregates 

at one point during the assay. P497H, S, N, and Q formed aggregates early in the 

experiment, whereas P506N and Q aggregated at temperatures above 44 °C. Turbidity 

profiles of amino acid substitutions at each position are separated by amino acid type: 

aromatic, hydrophobic, basic, polar, and acidic. Hypothesized stickers and spacers are 

color-coded red and blue, respectively, at the top. 
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Figure 3. Temperature−Concentration phase diagrams for representative sticker 

and spacer residues in UBQLN2. (A) Schematic of a closed-loop phase diagram 

showing both UCST and LCST behaviors. The black dots represent the experimental 

data points for the low concentration arm obtained in this study to partially map the 

phase diagram. (B) Effects of amino acid substitutions in the sticker (pink, P506) region 

and in the spacer (cyan, V538) region compared to WT UBQLN2 (black). Circled in 

black are D and E mutants for each position. (C) Effects of amino acid substitutions 

separated by amino acid type: aromatic (F, W, Y), hydrophobic (A, G, I, L, M, P, V), 

basic (H, K, R), polar (C, N, Q, S, T), and acidic (D, E). The dashed lines are guides that 

connect the UCST phase transition cloud-point temperatures to the LCST ones. Both 

arms of P506N and the UCST arm of P506Q are missing due to formation of 

aggregates during the assays. The UCST arms for V538W, V538Y, V538R, V538K, 

P506D, and P506E are missing, since we observed either no turbidity or nonzero 

turbidity values at 60 °C at all concentrations tested. 
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Figure 4. Amino acid substitutions in the sticker, but not spacer, regions affect 

droplet properties. (A) Light microscopy of different UBQLN2 mutants over 10 and 30 

min at 37 °C using 100 μM protein at sticker (P497, P506, V564) and spacer (P525, 

V538) positions. Scale bar = 5 μm. (B) Snapshots of droplet fusion over a nine second 

window (for WT and V538L and V538W) and a 36 s window (for P506L and P506W), 

indicating differences in droplet fusion kinetics between substitutions at a sticker 

position (P506) and a spacer position (V538). Droplets were imaged 10 min after 

incubating 100 μM protein (except for P506W (25 μM), P506E and V538E (300 μM)) at 

37 °C in buffer containing 20 mM NaPhosphate and 200 mM NaCl (pH 6.8). Scale bar = 

2 μm. (C) Average characteristic relaxation times for WT and mutant droplet fusion. 

Error bars represent the standard deviation over eight droplets. 
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Figure 5. Oligomerization propensities of different UBQLN2 mutants. 

Representative SEC profiles of UBQLN2 mutants at 10 μM (thinnest line), 100 μM 

(medium-thick), and 500 μM (thickest) protein concentrations. For each mutant, WT 

SEC curves were plotted in gray for visual comparison. 
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Figure 6. Small angle x-ray scattering (SAXS) experiments reveal scattering 

intensities of WT and mutant UBQLN2. (A) WT 4°C 100 μM (aqua), WT 25°C 100 μM 

(red), WT 4°C 254 μM (blue), WT 25°C 254 μM (green). (B) P497L (red), P497E 

(green), WT (black).  
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Materials and Methods 

Subcloning, Protein Expression, and Purification 

UBQLN2 mutants were generated from UBQLN2 450-624 using Phusion Site-Directed 

Mutagenesis Kit (Thermo Scientific). A tryptophan codon was added to the C-terminal 

end of all constructs to facilitate determination of protein concentration. UBQLN2 450-

624 and all the mutants were expressed and purified as described in (Dao et al., 2018). 

Briefly, the constructs were expressed in E. coli Rosetta 2 (DE3) pLysS cells in Luria-

Bertani (LB) broth at 37°C overnight. Bacteria were pelleted, frozen, lysed, then purified 

via a “salting out” process. NaCl was added to the cleared lysate to the final 

concentration of 0.5 M - 1 M. UBQLN2 droplets were pelleted and then resuspended in 

6 M urea, 20 mM NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP, 0.02% NaN3 (pH 6.8). 

Leftover NaCl and urea were removed through HiTrap desalting column (GE 

Healthcare). All the cysteine mutants were subjected to size exclusion chromatography 

over a Superdex 75 HiLoad 16/600 column (GE Healthcare) or an ENrichTM SEC 650 10 

x 300 column (Biorad) to remove dimer contaminations. SDS-PAGE gels were 

performed to confirm the purity of the proteins. The identity and molecular weight of 

each mutant was verified using electrospray mass spectrometry in positive mode on a 

Shimadzu 8040 MS. Purified proteins were frozen at −80°C. 

 

Spectrophotometric Absorbance/Turbidity Measurements 

Protein samples were prepared by adding protein (from stock to a final concentration of 

50 μM unless otherwise noted) to cold sodium phosphate buffer (pH 6.8, 20 mM 



 

 

 

42 

NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP, 0.02% NaN3) containing 200 mM NaCl 

and were kept on ice for at least 5 minutes before the assay. Absorbance at 600 nm 

was recorded as a function of temperature by a Beckman DU-640 UV/Vis 

spectrophotometer using a temperature ramp rate of 2°C/min increasing from 16°C to 

60°C and then ramped down to 16°C. Net absorbance values were recorded after 

subtracting the absorbance value of a buffer control. Results were averaged from data 

collected using proteins from at least two separate preps and four trials for each (total n 

≥ 8). Data were plotted using Mathematica (Wolfram Research). 

 

Phase diagram measurements 

For the LCST (lower critical solution temperature) phase transition, i.e. mapping the 

phase boundary as temperature is increased, protein samples were prepared as 

described for the turbidity measurements. For the UCST (upper critical solution 

temperature) arm, protein samples were prepared by mixing protein and buffer/salt 

solutions that were incubated at 63°C for at least 10 minutes. Absorbance at 600 nm 

was recorded as a function of temperature by a Beckman DU-640 UV/Vis 

spectrophotometer using a temperature ramp rate of 2°C/min decreasing from 60°C to 

16°C. Two trials (n = 2) were conducted using four to five different concentrations of 

wild-type and mutant UBQLN2 450-624 proteins for each arm. The protein 

concentrations were chosen to cover as wide a range as possible to allow observation 

of phase separation during the temperature ramps but not at the starting temperatures 

(16°C and 60°C for LCST and UCST arms, respectively). Cloud point temperatures 

were determined by fitting a Four Parameter Logistic Regression model to the data. 
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 $ = & +	 ()*
+,-./0

1  (Equation 1) 

Cloud point temperatures used were the point of inflection (c). Cloud point temperatures 

were then used to define the coexistence curve as a function of protein concentration. 

The temperature ramp rate was either 1°C or 2°C/min, whichever yielded the most 

reproducible, consistent turbidity profiles and phase diagrams. Fitting and plotting of 

data were done with Kaleidagraph (Synergy Software). 

 

Bright-field Imaging of Phase Separation 

UBQLN2 450-624 constructs were prepared to contain 100 μM protein in 20 mM 

NaPhosphate, 200 mM NaCl, 0.1 mM TCEP,and 0.5 mM EDTA (pH 6.8). Samples were 

added to MatTek glass bottom dishes that had been coated with 5% bovine serum 

albumin (BSA) to minimize changes as a result of surface interactions, and incubated at 

37 oC. Phase separation was imaged on an ONI Nanoimager (Oxford Nanoimaging Ltd, 

Oxford, UK) equipped with a Hamamatsu sCMOS ORCA flash 4.0 V3 camera using an 

Olympus 100×/1.4 N.A. objective. Images were prepared using Fiji (Schindelin et al., 

2012) and FigureJ plugin (Mutterer and Zinck, 2013). 

 

Droplet Fusion Assays 

UBQLN2 450-624 constructs were prepared to contain 100 μM protein in 20 mM 

NaPhosphate, and 0.5 mM EDTA (pH 6.8), with the exception of P506W at 25 μM 

protein and P506E and V538E at 300 μM protein. Samples were added to MatTek glass 

bottom dishes that had been incubated with 5% BSA (to minimize changes as a result 

of surface interactions), and incubated at 37 oC. Phase separation was initiated with the 
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addition of NaCl to a final concentration of 200 mM. After 10 minutes of incubation, 

droplet formation was imaged as time-lapsed sequences for three minutes on an ONI 

Nanoimager (Oxford Nanoimaging Ltd, Oxford, UK) equipped with a Hamamatsu 

sCMOS ORCA flash 4.0 V3 camera using an Olympus 100×/1.4 N.A. objective. Five 

trials were performed for each mutant. Droplets chosen for analysis were of similar size 

and ranged between 2 and 4 microns, except for V538E (8 microns) and P506E (5 

microns). For each mutant, eight fusion events were chosen for analysis and saved as 

separate .tif images including frames from the initial fusion event.  

Relaxation times (time it takes for two fusing droplets to return to a round shape) 

were determined by manually measuring the major axis (a) and the minor axis (b) in 

pixels using Fiji software (Schindelin et al., 2012) and calculating the aspect ratio as 

(a)=a/b.(Schindelin et al., 2012) We monitored the fusion events in this way until the 

droplets reached their most relaxed state, or until the aspect ratio was approximately 

equal to 1. The aspect ratio for each fusion event was fit to an exponential decay curve 

in Matlab (Mathworks). 

$ = 	 (34))6∗8	 + 9 (Equation 2) 

where 34 is the initial aspect ratio, : is time, and 1/= gives the characteristic relaxation 

time. 

 

Size Exclusion Chromatography (SEC) 

Purified UBQLN2 constructs at different concentrations (10 μM, 100 μM, 500 μM) were 

subjected to chromatography over a ENrichTM SEC 650 10 x 300 column (Biorad) on a 

Biorad NGC system. Experiments were conducted using 250 μL of protein at ambient 
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temperature using 1 mL/min flow rate in pH 6.8 buffer containing 20 mM NaPhosphate, 

0.5 mM EDTA, 0.1 mM TCEP with no added NaCl. 

 

Small Angle X-ray Scattering (SAXS) 

Purified UBQLN2 constructs were prepared in pH 6.8 buffer containing 20 mM 

NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP with no added NaCl. SAXS experiments 

were performed at NIST (Gaithersburg, MD) by Dr. Alex Grishaev. SAXS data analysis 

was performed on SASview. 
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Abstract 

The human protein UBQLN2 undergoes temperature-responsive liquid-liquid phase 

separation driven by sticker amino acid sequences which contribute to intra- and 

intermolecular multivalent interactions. Previously, hydrophobicity and enhanced 

oligomerization have been identified as drivers of UBQLN2 phase separation. 

Additionally, it was demonstrated by single amino acid substitutions, that UBQLN2 

follows a molecular code to tune phase behavior. However, how UBQLN2 domains 

contribute to this behavior is unknown. UBQLN2 features a mix of structured, disordered 

low-complexity regions, and prion-like regions. All of these regions are believed to 

modulate phase behavior via different mechanisms. In this study, we created six N-

terminally domain deleted constructs in order to investigate the role of UBQLN2 

domains and linkers in its phase separation. By obtaining temperature-concentration 

phase diagrams, we determined that some domain deletion constructs promoted phase 

separation while others inhibited phase separation. Additionally, two representative 

disease-linked mutations were introduced to these constructs, and we found that 

mutations further modulate the phase boundaries for UBQLN2 phase separation. We 

propose that domain deletion constructs may differentially expose or conceal sticker 

sequences, which then modulates its phase separation behavior. The investigation of 

these constructs creates the opportunity to mimic various bound states of UBQLN2 in 

the cell. We speculate that UBQLN2 phase separation will be modulated as UBQLN2 

associates with different partners at various domains.  
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Introduction 

In the cell UBQLN2 acts as a proteasomal shuttle factor through the ubiquitin-

proteasome system and autophagy (Ko et al., 2004). Misfolded proteins and/or proteins 

destined for degradation are covalently modified with ubiquitin (ubiquitination) and later 

bound to UBQLN2. UBQLN2 then shuttles these proteins to the proteasome to be 

recycled by the cell. This one function of UBQLN2 portrays its different “binding states” 

in the cell. First, unbound, full length UBQLN2 likely exists in the cytosol. Next, 

UBQLN2’s ubiquitin-associated (UBA) domain binds the ubiquitin tag of the protein 

marked for degradation (Ko et al., 2004). Then, the ubiquitin-like (UBL) domain binds 

the regulatory cap of the 26S proteasome (Ko et al., 2004). In this scenario, UBQLN2 is 

observed in three different bound states: 1) unbound 2) ubiquitin-bound and 3) ubiquitin 

and proteasome bound (Figure 1A). As presented in previous chapters, UBQLN2 alone 

phase separates under physiological conditions (Dao et al., 2018). As UBQLN2 phase-

separating properties are highly dependent on multivalent interactions among amino 

acids in its sequence, it is expected that domain interactions with other binding partners 

would modulate UBQLN2 phase separation properties. Upon binding, domains of 

UBQLN2 are no longer available to partake in interactions driving and modulating LLPS. 

Therefore, it is important to identify how different domains may contribute to or modulate 

UBQLN2 LLPS behavior. 

 In addition to shuttling proteins to the proteasome for degradation, UBQLN2 

functions in other protein quality control (PQC) mechanisms. Via UBQLN2’s central 

STI1 domains, UBQLN2 binds chaperone proteins, autophagy components, and 

ubiquitinated substrates (Hjerpe et al., 2016; Kaye et al., 2000; Kurlawala et al., 2017; 
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Yun Lee et al., 2013). Evidence suggests that UBQLN2 associates with HSP70, a 

stress-induced protein involved in disaggregase machinery, via the middle STI1 

domains in order to chaperone misfolded proteins to the proteasome (Hjerpe et al., 

2016). Corroborating this, mutations to UBQLN2 hindered association with HSP70 

chaperone proteins (Hjerpe et al., 2016). Additionally, UBQLN2 is believed to bind Stch, 

a heat-shock protein similar in structure and sequence to HSP70 (Kaye et al., 2000). As 

a part of the ubiquilin family, UBQLN2 shares high sequential similarity with its 

homologs UBQLN1 and UBQLN4. UBQLN1 also associates with proteins BCLb and 

LC3, an anti-apoptotic protein and an autophagy component, respectively via 

UBQLN1’s middle STI1 domains, therefore UBQLN2 may interact with these same 

proteins as well (Beverly et al., 2012; Kurlawala et al., 2017). Figure 1A highlights the 

domain architecture of UBQLN2, and its associations with potential binding partners. 

 UBQLN2 contains both structured domains and intrinsically disordered low-

complexity domains (LCDs). Intrinsically disordered LCDs are domains which do not 

hold a fixed three-dimensional structure. Its 71-residue UBL and 44-residue UBA 

domains are structured and function in the ubiquitin-proteasome system, and both have 

been biophysically characterized (Figure 1) (Walters et al., 2004; Zhang et al., 2008). 

The majority of the rest of the sequence (residues 1-58, 105-267, 283-363, 373-466, 

and 486-586) is predicted to be disordered based on the average of three disorder 

prediction algorithms (Figure 1B) (Li et al., 1999; Obradovic et al., 2003; Romero et al., 

1997; Xue et al., 2010). Often, disordered LCDs are important drivers for the phase 

separation of macromolecules, but both folded and disordered domains contribute to 

LLPS. However, in some systems, disease-linked mutations in LCDs promote 
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maturation of phase-separated droplets into pathological fibrils (Molliex et al., 2015). 

Depending on the phase-separating system, domains with three-dimensional structure 

can contribute to or drive phase separation, though their exact role is currently unclear 

(Milkovic et al., 2020). Interestingly, NMR studies identified structured and unstructured 

domains (UBA, PXX, and STI1-II) that contribute to UBQLN2 self-association, and 

mutational studies confirmed these as driving regions of phase separation (Dao et al., 

2018; Yang et al., 2019). Beyond these C-terminal regions, UBQLN2 offers other 

distinct sequence regions which likely contribute to its phase-separating profile. PLAAC 

prion predictions suggest prion-like domains between linker residues 105-143, linker 

and STI1-II residues 337-461, and residues 555-574. Prion-like sequences are 

classically thought to be especially prone to aggregation (Figure 1B) (Lancaster et al., 

2014; Sabate et al., 2015). Notably, recent findings suggest that prion-like sequences 

have chaperone-like functions and are a key regulator of LLPS by enhancing self-

association (Franzmann and Alberti, 2019). A phase separation predictor algorithm, 

from the Forman-Kay group, is based on amino acid propensity for p-p contacts and 

predicts UBQLN2 to phase separate (Fig 1B) (Vernon et al., 2018). Here, positive P-

score values represent a higher probability of phase separation. Interestingly, the higher 

P-score values are seen in all linker regions of UBQLN2. As we investigate UBQLN2 

LLPS, it is vital to understand how such features contribute to its phase-separating 

ability. 

 Furthermore, elucidating how disease-linked mutations modulate domain-domain 

interactions could further inform on the mechanism of UBQLN2 LLPS and how 

mutations disrupt LLPS. Our lab has previously characterized effects of disease-linked 
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mutations at positions 487, 497, and 506 using the C-terminal construct UBQLN2 450-

624 (Dao et al., 2019). These mutations altered UBQLN2 450C phase separation in that 

they 1) lowered phase transition temperatures and decreased saturation concentrations 

(csat) necessary for LLPS, 2) disrupted droplet morphology wherein some cases gel-like 

and amorphous aggregates were observed, and 3) increased oligomerization propensity 

of UBQLN2. Interestingly, in a preliminary study, we found that the same mutations in 

full length UBQLN2 altered LLPS to a much less severe extent (data not shown). Thus, 

we hypothesize that mutations modulate phase separation differently in various bound-

states of UBQLN2. 

 For this study, we purified and expressed six N-terminal domain deletions (full-

length (FL), 109C, 178C, 248C, 379C, and 450C) to identify how different domains, and 

domain features, may contribute to, or modulate UBQLN2 LLPS behavior (Figure 3). 

Additionally, we introduced two representative ALS-linked mutations, T487I and P497L, 

one at a time, into full-length UBQLN2 and each domain deletion construct. We 

hypothesize that that disease-linked mutations differentially tune LLPS across these six 

domain deletion constructs. By analyzing the phase-separating behavior of domain 

deletion constructs via temperature-ramp turbidity assays and size exclusion 

chromatography, we have begun to understand how each domain differentially tunes 

phase separation.  
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Results 

 

Generation of UBQLN2 Domain Deletion Constructs and Mutants 

 UBQLN2 constructs were designed to successively remove each N-terminal 

domain and linker region (Figure 3A). First the full-length protein was expressed and 

purified using established protocols (Dao et al., 2018, 2019). Removal of the UBL 

domain generated the 109C construct. The UBL domain and the first linker region was 

removed with the 178C construct. Deletion of successive N-terminal domains and linker 

regions was continued up to the STI1-II region (constructs 248C and 379C) (Figure 3B). 

Construct 450C was also included in our domain-deletion library as it is the smallest 

construct of UBQLN2 that undergoes LLPS similarly to FL, (Dao et al., 2018).  All 

domain deletion constructs were subjected to brightfield microscopy under phase-

separating conditions to verify that all constructs do indeed phase separate (Figure 3C). 

All protein constructs were expressed in E. coli. We took advantage of the ability of 

each construct to phase separate with increasing salt to purify UBQLN2 from the rest of 

E. coli cell lysate (see methods) (Dao et al., 2018, 2019). No construct contains any 

affinity tag for purification. After generation of the domain deletion constructs for wild-

type UBQLN2, we introduced ALS-linked mutations, T487I and P497L, one at a time 

into each domain deletion construct via site-directed mutagenesis. The resulting 

proteins were expressed in E. coli and purified via a similar salting-out method as wild-

type since all mutated constructs phase-separated with increasing salt concentration.  
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Turbidity Assays Screened for Differential Effects on UBQLN2 LLPS 

 To systematically investigate the differences in phase separation properties of 

UBQLN2 domain deletion constructs, we subjected each protein to temperature-ramp 

turbidity assays at conditions which induced phase separation. We previously adopted 

this technique to monitor LLPS of UBQLN2 450C constructs as a function of 

temperature (Chapter 2) (Yang et al., 2019). We monitored the change of absorbance 

(A600) values between 16 and 60°C of protein samples at a fixed protein concentration. 

These assays were repeated for a minimum of four times to ensure reproducibility. 

Initially, we observed two major trends—a class of constructs which significantly 

promoted phase separation in that they lowered the protein saturation concentration 

needed for LLPS, and a class of constructs which decreased phase separation in that 

they increased the saturation concentration. Because of this, we screened those which 

promoted LLPS (109C, 178C, and 379C) using a low protein concentration of 10 µM, 

and we screened those with decreased LLPS (FL, 248C, and 450C) using 50 µM 

protein (Figure 4A). However, 450C phase-separated much less in comparison to FL 

and 248C. Using 10 µM protein, 109C, 178C, and 379C were clustered together, though 

with decreasing cloud point temperatures, respectively. All constructs exhibited an 

increase in turbidity (phase separation) as temperature was raised from 16 to 45oC. 

This transition is called a LCST (lower critical solution temperature) phase transition, as 

there is a temperature below which the solution is well mixed, and above this 

temperature the protein solution is demixed, or phase-separated. Consistent with 

previous findings, as temperature is further increased from 45 to 60°C, the 450C 

construct exhibits a second phase transition. This transition is called UCST (upper 
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critical solution temperature), as there is a critical temperature below which the solution 

is phase-separated and above which the solution is mixed and single-phase (Yang et 

al., 2019). Interestingly, 248C presents relatively diminished absorbance from 45 to 

60°C, though we do not see a return to a completely mixed solution. This indicates 

248C may also have a UCST phase transition, though it would be outside of these 

experimental conditions. This initial screen informs us that UBQLN2 domains modulate 

phase separation properties to different extents. Moreover, we can postulate that N-

terminal domains and linkers contribute to UBQLN2 multivalency to different capacities.  

 Given the differences observed across N-terminal domain deletion constructs, we 

hypothesized that mutations to these constructs would also modulate the phase-

separating properties incongruously. Disease-linked mutation P497L was introduced 

into each domain deletion construct, and subsequently purified and screened for LLPS 

in the same manner as WT constructs presented above (Figure 4B). It should be noted 

that turbidity assays for P497L mutant constructs were performed over a temperature 

range of 4-60°C since they phase-separated at lower temperatures than WT. 

Interestingly, the same group of constructs that exhibited phase separation at lower 

concentrations in WT (109C, 178C, and 379C) also exhibited phase separation at lower 

concentrations in the P497L mutant domain deletion constructs (Figure 4B). Likewise, 

the group of WT constructs that required higher concentrations for phase separation 

(FL, 248C, and 450C) also required higher concentrations with the introduction of the 

mutation. Interestingly, WT FL behaves similarly to P497L FL (Figure 4B). However, the 

introduction of P497L mutation to construct 450C resulted in phase separation at 

significantly lower temperatures. Similarly, the P497L 248C begins to phase separate at 
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lower temperatures than WT 248C. Interestingly, mutation P497L to constructs 109C, 

178C and 379C results in a downward shift in the temperature which initiates phase 

separation, though the overall absorbance was diminished in each mutant construct. In 

general, the mutation P497L appears to shift phase separation initiation to a lower 

temperature in all constructs. However, this is not the case in FL. This further suggests 

that mutations have differential effects on UBQLN2 phase separation, dependent on 

which domain-deleted construct to which it is introduced.  

 

Phase Diagrams Quantitatively Describe the Effects of Domains on LLPS 

To quantitatively describe how domains and linkers alter the conditions which 

induce phase separation, and how mutations may also alter this, we experimentally 

obtained the low protein concentration arm of temperature—concentration phase 

diagrams. (The high protein concentration arm would reveal the protein concentration 

inside the protein droplets.) At a protein concentration which did not induce phase 

separation at the beginning of the experiment (4°C), I performed temperature-ramp 

turbidity assays and obtained the cloud-point temperature (Tcp) at the inflection point of 

the phase transition (Figure 5A). This was repeated using a series of four protein 

concentrations to map the phase boundary (Figure 5B). This process was repeated with 

all six WT domain deletion constructs, and was repeated a minimum of four times at 

each protein concentration to ensure reproducibility (Figure 6). With WT full-length 

UBQLN2 as a point of reference, we observed that domain deletion constructs impacted 

LLPS both positively and negatively, in terms of promoting (lowering saturation 

concentration) and inhibiting (raising saturation concentration) phase separation. The 
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248C and 450C constructs do not phase separate as readily as they significantly 

increased saturation concentration necessary for LLPS. Conversely, constructs 109C, 

178C, and 379C all tend to promote UBQLN2 LLPS. From these three constructs, 109C 

and 178C behave strikingly similar within error. Construct 379C, though only 71 amino 

acids longer than 450C, shows a greatly increased propensity to phase separate, as 

this construct is observed to have the lowest saturation concentrations at all 

temperatures tested.  

Overall, domain deletion constructs do not follow a specific pattern, but rather 

suggest distinct tendencies for each construct (Figure 6). For instance, starting with the 

smallest construct, 450C, we observe the least amount of phase separation. This is 

plausible since 450C, being the shortest, has the least amount of residues available to 

partake in multivalent interactions. Moving forward, 379C shows much more phase 

separation at the temperatures and concentrations tested. Reasonably, this makes 

sense given it incorporates the second prion-rich region, and has more residues 

potentially involved in multivalency. However, 248C has far less phase separation 

tendency even though it is longer than 379C. With the addition of the first STI1-I region 

(178C), we again observe increased phase separation. Construct 109C is longer still, 

and contains the first proline rich region, though no appreciable change is observed. 

Finally, with the incorporation of the UBL domain in the FL construct, we again observe 

decreased phase separation at the conditions tested. This back-and-forth nature 

suggest that UBQLN2 domains and linkers differentially tune LLPS in a non-

straightforward manner.  
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Phase Diagrams Quantitatively Describe the Effects of Mutations 

To investigate how mutations alter phase separation in a domain-dependent 

manner, ALS-linked mutations P497L and T487I were introduced to UBQLN2, and 

temperature—concentration phase diagrams were obtained (Figure 6). When P497L 

was introduced into full-length UBQLN2, there was no appreciable change to the overall 

phase diagram as compared to wild-type FL UBQLN2. However, this trend did not hold 

for any of the domain deletion constructs tested here. In general, the introduction of the 

P497L mutation appears to shift the phase transition to lower protein concentrations and 

temperatures for all domain deletion constructs (Figure 6). For P497L constructs 109C, 

178C, 379C, and 450C, phase separation was drastically promoted, in that phase 

separation was observed at low temperatures even at a low concentration of 5 µM. 

P497L 248C was particularly interesting in that the shape of the phase boundary 

remained generally the same between mutant and WT, but the phase transition was 

observed at lower temperatures for P497L, shifting its phase diagram in a downward 

manner.  

Previous data produced by the lab indicated that disease-linked mutation T487I 

drastically altered phase-separating properties for the 450C domain deletion construct 

(Dao et al., 2019). We introduced this mutation into domain deletion constructs 109C, 

178C, 248C, 379C, and 450C. In accordance with data presented above, constructs 

109C, 178C, and 379C exhibited a significantly large downward shift in saturation 

concentrations (data not shown). Because of this, it was not experimentally feasible to 

acquire reproducible temperature—concentration turbidity data at such low 

concentrations (<5 µM). However, in constructs 248C and 450C, this mutation lowered 
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saturation concentrations to different degrees (Figure 6). In 248C we observed a mild 

downward shift of the phase boundary. Interestingly, the phase boundaries for both the 

T487I and P497L mutations overlap at some protein concentrations (Figure 6). Based 

on these conditions, we can broadly say that mutations T487I and P497L affect 248C 

phase separation in a similar manner. However, mutation T487I drastically shifts 450C 

phase diagram when compared to both WT and P497L (Figure 6). The T487I mutation 

in the 450C background shifts the saturation concentrations to 5-15 µM, with cloud point 

temperatures between 15 and 20°C, a significant shift from WT and P497L 450C. 

 

Size Exclusion Chromatography Describes UBQLN2 Self-Association 

 Under non-phase-separating conditions, we probed UBQLN2 domain deletion 

constructs for self-association since oligomerization is a prerequisite for UBQLN2 LLPS 

(Dao et al., 2018). All purified WT constructs were subjected to size exclusion 

chromatography (SEC) in increasing protein concentrations (10 and 100 µM) over an 

Enrich SEC 650 10 X 200 column (Biorad). The lab previously confirmed that WT 450C 

UBQLN2 is monomeric at low concentrations (10 µM and 100 µM) but forms large 

oligomers at higher concentrations (500 µM), consistent with concentration-dependent 

oligomerization. As expected, FL and all five domain deletion constructs exhibited a 

decrease in elution volume with increasing protein concentration from 10 to 100 µM 

(Figure 7). Interestingly, most constructs (109C, 379C and 450C) appear to elute in a 

similar trend as WT FL UBQLN2, based on their relative differences in size. However, 

constructs 178C and 248C have a population of large species which elutes around 9 

mL. Interestingly, the 178C construct has a much larger population of this species, 
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whereas 248C also shows the presence of mixed oligomeric species at the 9 mL elution 

volume peak. Notably, the 248C construct exhibits a broad peak at 12 mL, indicative of 

numerous oligomeric species.  

 

Discussion 

 Elucidating the role that each domain plays in UBQLN2 phase separation is 

critical to understanding how UBQLN2 behaves in cells and how phase separation 

contributes to UBQLN2 function in vivo. In these studies, we have demonstrated how 

domains contribute differently to UBQLN2 phase separation. We postulate that various 

domain deletion constructs mimic different bound states of UBQLN2. For instance, the 

109C construct, which does not contain the UBL domain, may mimic the state which 

UBQLN2 is engaged with the proteasomal receptors Rpn10 or Rpn13 (Chen et al., 

2016). The 248C, 379C, and 450C constructs could all possibly mimic the association of 

UBQLN2 with a client protein via the STI1-I or STI1-II domains. While the in vitro data 

herein cannot predict the precise behavior of UBQLN2 when introduced to the cellular 

milleu, we suggest that bound states of UBQLN2 may alter the available multivalent 

interactions for phase separation, which therefore likely tunes UBQLN2 behavior in 

cells.   

Recent literature describes phase-separating proteins as containing stickers, 

regions which drive LLPS via interchain interactions, and spacers, those sequences 

which connect stickers and can modulate LLPS in a manner that exposes stickers, or 

conceals stickers (Martin et al., 2020). Similarly, the field has adopted terms like primary 

driving regions (PDRs) and modulating regions (MRs), which describe sequences as 
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those which largely contribute to LLPS, and those which modulate LLPS properties, 

respectively (Bratek-Skicki et al., 2020). The data herein begin to uncover which 

domains of UBQN2 may act more as stickers, and those which may be spacers. We 

have observed trends which lead us to several general conclusions.   

Based on these data, we hypothesize that the structured UBL domain may modulate 

UBQLN2 LLPS in a way that hinders the formation of multivalent contacts. The 109C 

construct, which deletes only the UBL domain, exhibits enhanced phase separation in 

comparison to FL at the same concentration and temperature, regardless of whether the 

protein is WT or mutated (Figure 6). Therefore, it is sensible to suggest that the 

structured UBL domain may sterically hinder the formation of intra- and intermolecular 

contacts which drive LLPS. Supporting this, the 178C construct also presents a similar 

phase-separating profile as 109C, which is sensible considering 109C and 178C only 

differ by the linker region between the UBL and STI1-I regions (Figure 6). With this 

theory in mind, it is plausible that UBQLN2 has a greater phase-separating propensity 

as it contacts the proteasome via its UBL domain in the cell. 

The 109C and 178C constructs both present increased phase separation when 

compared to FL UBQLN2. This informs us that the UBL domain may modulate LLPS 

such that it diminishes multivalent contacts resulting in a reduced propensity to phase 

separate. This may stem from UBL interactions with other parts of the UBQLN2 

sequence. However, the linker between UBL and STI1-I domains (residues 109-177) 

does not significantly change LLPS behavior, indicating that this region may minimally 

tune phase separation. In contrast to this idea, SEC results reveal that the 178C 

construct has greater propensity for self-association, which would predict a greater 
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degree of phase separation (Yang et al., 2019). Additionally, the predicted prion-like 

sequence between residues 100-150 would suggest this linker as a site of self-

association (Figure 1B). However, this prediction was not supported by SEC data, nor 

did the region appear to significantly alter phase behavior between constructs 109C and 

178C (Figure 6 and 7). Alternatively, SEC data could be corroborated in that UBQLN2 

oligomerization is mainly dependent upon the STI1-II region, which is present in all 

constructs except 450C (Dao et al., 2018; Ford and Monteiro, 2006; Kurlawala et al., 

2017) 

Similarly, the linker region between the two STI1 domains appears to hinder LLPS to 

a degree. This is shown by the vast difference in phase-separating profiles of the 248C 

and 379C constructs. We hypothesize that the enhanced phase-separating behavior of 

construct 379C could be linked to the full exposure of the predicted prion-like sequence 

between residues 350 and 450 in the STI1-II domain (Figure 1). Supporting this, NMR 

studies have previously identified the STI1-II as a domain contributing to UBQLN2 self-

association (Dao et al., 2018). Thus, it is reasonable to suggest that the 248-378 linker 

region blocks interaction contacts at the prion-like STI1-II domain.  

In these experiments, we have also introduced mutations T487I and P497L. 

Generally, mutation T487I induced higher phase separation tendencies to all 

constructs—so much so that phase diagrams could not experimentally be constructed 

for T487I 109C, 178C, and 379C. Interestingly, in constructs 248C and 450C, mutation 

T487I tuned LLPS to very different degrees. In 450C we observe an enormous 

increased in phase separation, indicated by decreased cloud point temperature at 

decreased concentrations. In 248C an increase in phase separation is observed, 
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however to a much lesser degree than what is observed in 450C. The difference in 

effect of this mutation suggests that mutations alter phase behavior via a different 

mechanism in different constructs. Similarly, mutation P497L also induced higher phase 

separation tendency, though this was also seen to different extents in different 

constructs. Therefore, we can insinuate that in cells, disease-linked mutations may alter 

phase behavior differently, dependent on the binding state of UBQLN2.  

We also must consider that domain deletion constructs vary in size and shape, and 

consequently may not be directly comparable. By successively deleting N-terminal 

domains, UBQLN2 obviously becomes smaller in size, and also likely changes the 

three-dimensional shape for the remaining part of the construct. A conformational 

change of shape to UBQLN2 may expose or conceal sites of multivalent interactions, or 

stickers. For instance, if the UBL domain interacts with the UBA domain on the C-

terminal end of UBQLN2, the protein could fold over the inner domains, sterically 

hindering the inner domains from making multivalent contacts. In this case, the 

construct deleting the UBL would expose this section, resulting in more multivalent 

contacts, and thus a higher propensity for phase separation. Additionally, successive 

deletion of domains and linkers removes residues involved in multivalency. With this 

rationale, longer constructs have more residues partaking in multivalent contacts, where 

shorter constructs have fewer residues involved in contact. 

 These data suggest that UBQLN2 domains modulate LLPS differentially, though 

additional investigation is warranted to fully elucidate how these domains, and their 

respective characteristics contribute to LLPS as a whole. Importantly, these data can be 

interpreted to suggest that the structured UBL domain and the disordered linker region 
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between STI1- domains may hinder UBQLN2 LLPS. Additionally, we can predict that 

the prion-like region in the STI1-II domain is a main site of multivalent interactions, and 

thus drives UBQLN2 LLPS. Importantly, these data further confirm that liquid-liquid 

phase separation is not straight forward, and is highly dependent on a variety of factors.  
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Figure 1. Structure and Function of UBQLN2. (A) Domain architecture and 

associations of UBQLN2. (B) Sequence-based disorder, prion-like predictions, and P-

score predictions of UBQLN2. Disorder probability was calculated using PONDR-FIT, 

Pondr-VLXT, and Disprot-VL3H, where the average of the three is shown in black (Li et 

al., 1999; Obradovic et al., 2003; Romero et al., 1997; Xue et al., 2010). Prion-like 

probability was calculated using PLAAC, and identified prion-like regions are highlighted 

in yellow on the domain map (Lancaster et al., 2014). P-score values predict phase 

separation propensity, and were calculated using Phase Separation Predictor (Vernon 

et al., 2018). (C) Disordered (gray), prion (yellow), and positive P-score (orange) 

residues are highlighted along UBQLN2 domain map, and residues are labeled below. 
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Figure 2. Disease-linked mutant phase separation properties are different in 

UBQLN2 450C and FL. Protein concentration for 450C is 50 µM and FL is 20 µM. 

Protein is in 200 mM NaCl, 20 mM HEPES pH7 buffer. Data collected by Thuy Dao.  

 



 

 

 

67 

 

Figure 3. Domain Deletion constructs of UBQLN2. (A) N-terminally domain deleted 

constructs. (B) Purified UBQLN2 protein samples on SDS-PAGE gel are loaded as: 1: 

450C, 2: 379C, 3: 248C, 4: 178C, 5: 109C, 6: FL. Molecular weight markers are labeled 

on the left side in kDa. (C) Brightfield microscopy imaging of UBQLN2 domain deletion 

constructs. Protein concentration is 50 µM for FL, 109C, 178C, and 379C, and 200 µM 

for 248C and 175 µM for 450C. Protein is in 200 mM NaCl, 20 mM Hepes pH7 buffer, at 

30oC after 10 minutes. Microscopy images are from Thuy Dao.   
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Figure 4. Turbidity assays screen for LLPS in WT and P497L domain deletion 

constructs. (A) Spectrophotometric turbidity assay results for WT UBQLN2 domain 

deletion constructs at 50 µM (FL, 248C, 450C) and 10 µM (109C, 178C, 379C) in 20 

mM NaPhosphate and 200 mM NaCl (pH 6.8). (B) Spectrophotometric turbidity assay 

results from mutant P497L UBQLN2 domain deletion constructs at 50 µM (FL, 248C, 

and 450C) and 10 µM (109C, 178C, 379C) in 20 mM NaPhosphate and 200 mM NaCl 

(pH 6.8). Darkness of the square correlates with cloudiness of the solution, such that 

black squares are phase-separated samples. 
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Figure 5. Phase diagrams map conditions of phase separation. (A) Temperature—

ramp spectroscopic data is fit to a Four Parameter Logistic Regression model to 

determine the cloud point temperature (Tcp) at the inflection point of the transition at 

each concentration (in µM). (B) The phase boundary (dotted) is mapped, where the 

colored dots represent the experimental cloud point temperatures obtained. UBQLN2 

samples above the phase boundary are in the phase-separated state, whereas samples 

below the phase boundary are completely miscible and clear (one phase).  
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Figure 6. Temperature-concentration phase diagrams for domain deletion 

constructs of wild-type and mutant UBQLN2. (A) Phase diagrams for full-length and 

domain deletion constructs of wild-type UBQLN2 and disease-linked P497L and T487I 

mutants. (B) Phase diagrams as in panel A, except they are organized according to 

domain deletion construct. Experimental cloud point temperatures are plotted which 

map the LLPS phase boundary, and the lines connecting points are guides to visualize 

the low-concentration arm of the phase boundary. Domain deletion constructs are color-

coded (black: full-length (FL), etc.) Error bars represent standard deviation of cloud 

point temperatures using n=4 trials from two separate protein purifications, with the 
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exception of P497L 379C and P497L 450C, which both had n=2 trials from one protein 

purification. All protein was in buffer containing 20 mM NaPhosphate and 200 mM NaCl 

(pH 6.8). 
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Figure 7. Oligomerization propensity of UBQLN2 domain deletion constructs. Size 

exclusion chromatography (SEC) profiles of (A) FL, 109C, and 178C and (B) FL, 248C, 

379C, and 450C domain deletion constructs. The thinnest lines represent protein 

concentration of 10 µM, and the thickest lines represents 100 µM. Plots were divided by 

those constructs with higher molecular weights and lower molecular weights, where FL 

was plotted in black on both plots for visual comparison. Proteins were in pH 6.8 buffer 

containing 20 mM NaPhosphate. 
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Methods 

Subcloning, Protein Expression, and Purification 

UBQLN2 mutants were generated from UBQLN2 using Phusion Site-Directed 

Mutagenesis Kit (Thermo Scientific). A tryptophan codon was added to the C-terminal 

end of all constructs to facilitate determination of protein concentration. UBQLN2 

constructs and all mutants were expressed and purified as described in (Dao et al., 

2018). Briefly, the constructs were expressed in E. coli Rosetta 2 (DE3) pLysS cells in 

Luria-Bertani (LB) broth at 37°C overnight. Bacteria were pelleted, frozen, lysed, then 

purified via a “salting out” process. NaCl was added to the cleared lysate to the final 

concentration of 0.1 M - 1 M. UBQLN2 droplets were pelleted and then resuspended in 

20 mM NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP, 0.02% NaN3 (pH 6.8). Leftover 

NaCl was removed through HiTrap desalting column (GE Healthcare). SDS-PAGE gels 

were performed to confirm the purity of the proteins. Purified proteins were frozen at 

−80°C. 

 

Spectrophotometric Absorbance/Turbidity Measurements 

Protein samples were prepared by adding protein (from stock to a final concentration 

noted for each experiment) to cold sodium phosphate buffer (pH 6.8, 20 mM 

NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP, 0.02% NaN3) containing 200 mM NaCl 

and were kept on ice before the assay. Absorbance at 600 nm was recorded as a 

function of temperature by an Agilent Cary 3500 UV-visible (UV-Vis) spectrophotometer 

using a temperature ramp rate of 1°C/min increasing from 16°C or 4°C to 60°C. Net 

absorbance values were recorded after subtracting the absorbance value of a buffer 
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control. Results were averaged from data collected using proteins from at least two 

separate preps and two trials for each (total n ≥ 4) for most constructs. Data were 

plotted using Mathematica (Wolfram Research). 

 

Phase diagram measurements 

For the LCST (lower critical solution temperature) phase transition, i.e. mapping the 

phase boundary as temperature is increased, protein samples were prepared as 

described for the turbidity measurements. Absorbance at 600 nm was recorded as a 

function of temperature by a Beckman DU-640 UV/Vis spectrophotometer using a 

temperature ramp rate of 1°C/min increasing from 4°C to 60°C. Four trials (n = 4) were 

conducted using three to five different concentrations of wild-type and mutant UBQLN2 

protein constructs for each arm. The protein concentrations were chosen to cover as 

wide a range as possible to allow observation of phase separation during the 

temperature ramps but not at the starting temperature of 4°C. Cloud point temperatures 

were determined by fitting a Four Parameter Logistic Regression model to the data. 

 $ = & +	 ()*
+,-./0

1  (Equation 1) 

Cloud point temperatures used were the point of inflection (c). Cloud point temperatures 

were then used to define the coexistence curve as a function of protein concentration. 

Fitting and plotting of data were done in Matlab. 
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Size Exclusion Chromatography 

Purified UBQLN2 constructs at different concentrations (10 μM and 100 μM) were 

subjected to chromatography over a ENrichTM SEC 650 10 x 300 column (Biorad) on a 

Biorad NGC system. Experiments were conducted using 300 μL of protein at ambient 

temperature using 1 mL/min flow rate in pH 6.8 buffer containing 20 mM NaPhosphate, 

0.5 mM EDTA, 0.1 mM TCEP with no added NaCl. 
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Abstract 

A principle advantage of membraneless organelles (MLOs), which form via liquid-liquid 

phase separation (LLPS), is that they rapidly and dynamically respond to cellular and 

environmental cues. In response to biological signals, MLOs can assemble, 

disassemble, and change their own material properties, for example. The dynamic 

nature of MLOs requires that they have regulatory mechanisms to condense and 

dissipate upon response. Post-translational modifications (PTMs) have emerged as one 

of these regulators. PTMs are common in physiological environments, and previous 

work has shown that PTMs play a large role in LLPS regulation in vivo. Recent studies 

using glutamic acid mutations to UBQLN2 as a phosphomimetic illustrate that PTMs 

have the ability to alter UBQLN2 LLPS properties. A disadvantage of bacterial 

expression of UBQLN2 is that bacteria do not possess machinery to install PTMs. Here, 

I propose experimental methods to examine PTMs in UBQLN2 by recombinantly 

expressing and purifying UBQLN2 from eukaryotic Sf9 insect cells. Insect cells contain 

machinery to add ‘mammalian-like’ PTMs. Through in vitro studies of post-translationally 

modified UBQLN2, we can determine if UBQLN2 is modified by PTMs, how PTMs may 

alter its LLPS properties, and begin to understand how PTMs regulate UBQLN2 phase 

separation.  
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Introduction 

Membraneless organelles are distinct from their membrane-bound counterparts 

in that they can readily form and dissolve within the cytoplasm in response to 

environmental signals (Bah and Forman-Kay, 2016). MLO components regulate their 

inter- and intramolecular contacts such that these recruited molecules either condense, 

or dissipate into the cytoplasm. Certain physiological mechanisms must be responsible 

for varying the concentration at which the proteins or other macromolecules phase 

separate in order to regulate controlled dissolution and condensation of MLO 

components. Though the regulation of MLO formation and dissolution is widely 

unknown, groups have begun to discover what types of cellular mechanisms may be 

responsible for the reversible nature of MLOs.  

Early on, Brangwynne and colleagues described P granules in germline cells of 

Caenorhabditis elegans as controlled liquid droplets. They found that these P granules 

localize via a physicochemical mechanism controlled by the dispersion of polarity 

proteins (Brangwynne et al., 2009). Another MLO commonly studied, the stress granule, 

rapidly assembles upon the presentation of cellular stress (Dao et al., 2018). Many of 

the proteins found inside stress granules also undergo LLPS. Significant knowledge of 

ribonucleoprotein granule regulation has been discovered through the study of the 

protein FUS, a phase-separating protein driven by its intrinsically disordered low-

complexity (LC) domain. Cell studies have shown that FUS granule condensation can 

be regulated by manipulating the number of arginine and tyrosine residues within the 

protein (Wang et al., 2018). Furthermore, post-translational arginine methylation 

modulates these interactions, and thus its phase separation, wherein removal of methyl 
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groups on arginine promotes condensation (Qamar et al., 2018). Dissolution of FUS 

granules was found to be modulated by transportin, a molecular chaperone (Qamar et 

al., 2018). 

As mentioned above with arginine methylation, PTMs have emerged as a major 

regulator of condensates. Since PTMs of specific amino acids modify physicochemical 

properties of proteins by altering charge, bulkiness, and sterics, it is not surprising that 

they are an important regulator of LLPS (Bah and Forman-Kay, 2016). Therefore, 

modifications to key phase-separating proteins have the ability to modulate the 

condensation and dissolution of cellular MLOs. Several groups have studied how 

phase-separating proteins are modified, and have analyzed how these modifications 

alter their phase-separating properties and their recruitment into MLOs. Phosphorylation 

of serine-rich IDPs has been shown to regulate RNA granules (Wang et al., 2014). 

Additionally, the Bonini lab has shown that the addition of ADP-ribose to the protein 

TDP-43 instigates recruitment of the protein into stress granules, while phosphorylation 

of TDP-43 is required for TDP-43 recruitment into cytoplasmic inclusions and leads to 

neurodegeneration (McGurk et al., 2018). Even studies which investigate phase 

separation in vitro have exposed PTMs as modulators of LLPS properties (Ferreon et 

al., 2018; Li et al., 2012). 

Interestingly, UBQLN2 possesses nine disease-linked mutations which reside within 

its unique proline-rich (PXX) region (Dao et al., 2019; Deng et al., 2011). These 

mutations have been shown to cause dominant X-linked inheritance of amyotrophic 

lateral sclerosis (ALS) and ALS/dementia, and facilitate the formation of cytoplasmic 

inclusions (Deng et al., 2011; Lin et al., 2015; Mackenzie et al., 2017; Molliex et al., 
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2015). Of these nine PXX mutations, six are mutated to either a serine, or threonine, 

both of which are residues which can be phosphorylated. These features make the 

UBQLN2 PXX region and phosphorylation interesting avenues for investigation of 

UBQLN2 regulation via PTMs. Notably, mass spectrometry (MS) experiments do not 

find that the PXX region is PTM-modified. However, this is largely due to the fact that 

UBQLN2 cannot be digested in typical ways for PTM analysis, as trypsin is typically 

used as a protease which cleaves at lysine and arginine residues, and the PXX region 

does not contain lysine or arginine residues. 

In an effort to recapitulate the effect of phosphorylation on UBQLN2 properties, we 

have used glutamic acid substitutions as phosphomimetic substitutions for preliminary 

studies on the effect of PTMs on UBQLN2 phase separation. Because glutamic acid 

mutations introduce a negative charge much like a phosphate group, researchers have 

used Glu residues to introduce phosphomimetic modifications to phase-separating 

proteins (Wang et al., 2018). In a recent study, glutamic acid mutations at positions 

P497, P506, P525, V538, and V564, incorporating both “sticker” and “spacer” positions 

and three positions within the PXX region, were expressed and purified via site directed 

mutagenesis in the UBQLN2 C-terminal construct, 450C (Chapter 2). The resulting 

protein was screened for LLPS with temperature ramp turbidity assays. Strikingly, all 

glutamic acid mutations show extremely diminished phase separation in comparison 

with WT 450C UBQLN2 (Figure 1A). It is interesting to note that the phosphomimetic 

mutation resulted in diminished phase separation at both sticker (P497, P506, and 

V564) and spacer (P525 and V538) positions. Self-association of phosphomimetic 

UBQLN2 was also investigated, as self-association is known to be a pre-requisite of 
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UBQLN2 LLPS (Dao et al., 2018). However, SEC revealed little difference between WT 

UBQLN2 and glutamic acid mutants, with the exception of P525E, where a small 

population eluted near void volume (Figure 1B). Additionally, phosphomimetic protein 

was subjected to analysis via microscopy, which largely showed disperse, micron-sized 

‘granules’, rather than spherical fusing droplets which appears after 10 minutes in WT 

UBQLN2 (Figure 2). Mutant V538E formed phase-separated droplets after 30 minutes, 

and mutant P525E formed large aggregates after 30 minutes. Though these preliminary 

studies were not conducted in the full-length protein, it portrays the ability of a 

phosphomimetic substitution to significantly alter phase-separating behavior. 

As PTMs have emerged as important modulators of LLPS, and as preliminary 

studies have shown that phosphorylation has the capacity to significantly alter LLPS, it 

is important that studies on UBQLN2 phase separation include native PTMs. Pioneers 

in the field, Alberti and Hyman, have suggested that phase separation assays be 

performed with protein expressed from insect cells, which ensures that they receive 

PTMs (Alberti et al., 2018). Studying the effect of native PTMs on UBQLN2 phase 

separation in vitro could give insight into how PTMs regulate condensation, dissolution, 

or material properties of UBQLN2-containing condensates in vivo. With this in mind, it is 

also important to note that UBQLN2 features intrinsically disordered regions (IDRs) 

which are regions often modified with PTMs (Hofweber and Dormann, 2019). 

Databases also suggest sites for modification via phosphorylation, ubiquitylation, and 

acetylation (Hornbeck et al., 2015). 

Here, I describe the novel expression and purification of full length UBQLN2 in 

Sf9 insect cells, an isolate of Spodoptera frugiperda, via a baculoviral expression 
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system. Baculoviral expression in Sf9 cells was chosen because: 1) proteins receive the 

post-translational modifications that are required for normal protein activity and 

behavior, 2) recombinant proteins are processed, modified, and targeted to their 

appropriate cellular location in insect cells, which makes them functionally similar to 

their authentic counterparts, 3) genes are abundantly transcribed during late stages of 

infection, as opposed to other eukaryotic expression systems  and  4) the insect cell 

expression system is safe in that baculoviruses have limited host range, specific to 

invertebrates (Invitrogen, 2015). 

 

Results 

 The methods presented below provide a proof of principle that full length 

UBQLN2 can be expressed and purified from Sf9 insect cells. In overview, UBQLN2 is 

first cloned into pFastBacDual + RFP (red fluorescent protein), the donor plasmid. This 

plasmid is transformed and transposed into DH10Bac cells, and the resulting 

recombinant bacmid DNA is used to transfect Hi5 cells for the production of passage 1 

(P1) baculovirus. P1 virus is used to infect Sf9 cells for passage 2 (P2) baculoviral 

production. Finally, P2 baculovirus infects Sf9 cells for expression, and later purification. 

 

Generation of UBQLN2 baculovirus 

UBQLN2 baculoviral stock was generated using the Bac-to-Bac Baculoviral 

Expression System and the pFastBac Dual plasmid containing UBQLN2 under the 

control of the polyhedron promoter and RFP under the p10 promoter. RFP is used here 

as a visual marker of baculovirus production and processing, not of UBQLN2 specific 
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expression. Baculovirus stocks were prepared according to the manufacturer’s protocol, 

and slightly adapted to the Hougland lab protocol (Figure 3) (Invitrogen, 2015; Sieburg 

et al., 2019). 

pFastBacDual plasmid was supplied by the manufacturer, and RFP was cloned 

under the p10 promoter by the Hougland lab. PCR-amplified UBQLN2 was cloned into 

this plasmid downstream of the polyhedron promoter and transformed into DH5alpha 

cells. These cells were grown overnight on selection plates; single colonies were 

miniprepped from overnight liquid cultures, and the DNA was eluted in water (Figure 4). 

pFBD p10RFP UBQLN2 was then transformed into DH10BacTM E. coli cells, and plated 

on Bac plates, which are prepared with kanamycin, gentamycin, tetracycline, Bluo-gal, 

and IPTG. UBQLN2 transposition was confirmed with a x-gal blue-white screen, PCR 

amplification of the transposed region using pUCM13 rev/for primers, and gel 

electrophoresis (Figure 5). DH10BacTM competent cells were used for bacmid extraction 

and amplification. Bacmid DNA was used for transfection of Hi5 cells (Passage 1; P1). 

Hi5 cells were used for P1 because they have a very good viral yield, and adhere better 

to a flask than our stock of Sf9 cells. When cells were ~80% lysed, and media was 

visibly pink, Passage 1 UBQLN2 baculoviral stock was collected. Passage 1 UBQLN2 

baculoviral stock was used for the infection of Sf9 cells for the generation of Passage 2 

UBQLN2 baculovirus, which is necessary for the virus to be in the same media as the 

final expression. When the Sf9 cells were ~80% lysed, and media was visibly pink, P2 

UBQLN2 baculoviral stock was harvested and stored for the infection of Sf9 cells for 

recombinant gene expression.  
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Sf9 cell preparation and infection 

 Sf9 cells were propagated and grown in Sf900-III medium at 28oC with shaking at 

140rpm. This expression culture was inoculated with P2 UBQLN2 baculovirus particles. 

UBQLN2 was expressed for 48 hours at 28oC with shaking (140 rpm). A western blot 

confirmed UBQLN2 expression, though the blot appeared to be overloaded (Figure 6A). 

For visual comparison, a western blot of various volumes of purified UBQLN2 is 

included (Figure 6B). The expression culture was harvested, and the cells were pelleted 

via centrifugation at 500 x g for 5 minutes at room temperature. The supernatant, which 

contained UBQLN2 as the cells were lysed, was aspirated from the pink-colored pellet, 

which was stored at -80°C until purification.  

 

Purification of UBQLN2 

Cells were lysed and purified via a “salting out” process. NaCl was added to the lysate 

to a final concentration of 1M, which produced UBQLN2 droplets in solution. UBQLN2 

droplets were pelleted and then resuspended in 20 mM NaPhosphate, 0.5 mM EDTA 

(pH 6.8). Leftover salt was removed through a HiTrap desalting column (GE 

Healthcare). A SDS-PAGE gel was performed to confirm the identity and purity of 

UBQLN2 (Figure 7). These experiments indicate that full-length UBQLN2 was 

expressed and purified from insect cells. 

 

Conclusions and Future Studies 

Eukaryotic expression of UBQLN2 will begin the development of a more 

physiologically-based expression system for the study of post-translationally modified 
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UBQLN2. The work presented in this chapter is a proof of principle study to show that 

we can express and purify full-length UBQLN2 from insect cells. Further experiments 

are required to examine the PTM state of UBQLN2 (discussed below). The expression 

system discussed herein will permit us to determine the effect of PTMs on its phase-

separating behavior. These studies have the potential to direct future in vivo 

investigation of PTMs on the ability of UBQLN2 to form stress-induced condensates in 

the cell as well as examine how UBQLN2 recruitment to stress granules affect stress 

granule condensation and dissipation.  

Initially, as a screen for post-translational modification, the molecular weight of 

purified UBQLN2 would be analyzed via mass spectroscopy. In an effort to identify sites 

and types of modification, chymoptrypsin and glutamyl peptidase can be used to cut 

UBQLN2 in optimal pieces for proteomics. These proteases were chosen because their 

specificity for the hydrolysis of peptide bonds at tryptophan, tyrosine, phenylalanine, or 

leucine. By cutting the sequence at these residues, the resulting fragments are small 

enough for a residue-by-residue analysis. High resolution mass spectroscopy can be 

used to localize sites and identify types of post-translational modification. It is important 

to note that eukaryotic-expressed UBQLN2 may result in populations of mixed 

modification, or populations of unmodified UBQLN2. Hypothesized from UBQLN2 

phosphomimetic data, some modified protein may not phase separate, which would 

require a different method of purification, since our existing purification method is 

dependent on the ability of UBQLN2 to phase separate. In this case, an affinity tag (e.g. 

His-tag) could be added to UBQLN2 to ensure a viable method of purification. 
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Post-translationally modified UBQLN2 may then be investigated via in vitro 

biochemical and biophysical techniques utilized in the Castañeda lab including 

structural studies via NMR, temperature—concentration phase diagram analysis, self-

association analysis via SEC, and droplet properties via microscopy. By comparing 

these results to those from unmodified UBQLN2, we can tease out what effect PTMs 

have on UBQLN2 LLPS in vitro. As we have shown that UBQLN2 LLPS is modulated in 

an amino acid-dependent manner, we hypothesize that the addition of a PTM would 

also vary LLPS phase behavior and droplet properties.  

Importantly, the data from these experiments could inform how PTMs may 

regulate MLO condensation and dissolution. For instance, if insect cell expression 

resulted in a population of hyperphosphorylated UBQLN2, which showed severely 

diminished phase-separating properties, we could hypothesize that phosphorylation of 

UBQLN2 could be a mechanism for UBQLN2 to exit stress granules or regulate the 

dissolution of stress granules. We then could propose future in vivo studies to test this 

hypothesis. Based on the outcomes of experiments performed on modified UBQLN2, 

we can better direct our in vitro experiments to assess the role of PTMs. Future 

investigation of UBQLN2 post-translational modification would focus on its function in 

MLO condensation/dissolution regulation and its effects on the physical properties of 

stress granules. Investigation of PTM-modified UBQLN2 and its implications in disease-

linked aberrant phase transition is of specific interest as many ALS-linked mutations 

result in residues which can be phosphorylated. Notably, these mutations have been 

shown to disrupt LLPS by facilitating a liquid-to-solid transition, and the formation of 

cytoplasmic inclusions (Dao et al., 2019; Lin et al., 2015; Mackenzie et al., 2017; Molliex 
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et al., 2015; Patel et al., 2015). These observations suggest that disease mutations alter 

LLPS properties of MLOs, and PTMs may be a worthwhile mechanism to investigate 

how this may occur.  
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Figure 1. Effects of phosphomimetic substitutions on UBQLN2 LLPS and self-

association. (A) Turbidity assays screen for phase separation in UBQLN2 mutants with 

phosphomimetic substitutions. Results from spectrophotometric turbidity assay as a 

function of temperature comparing LLPS of UBQLN2 mutants using 50 μM protein in 20 

mM NaPhosphate and 200 mM NaCl (pH 6.8). (B) Oligomerization propensities of 

phosphomimic UBQLN2 mutants (red). Representative SEC profiles of UBQLN2 

mutants at 10 μM (thinnest line), 100 μM (medium-thick), and 500 μM (thickest) protein 

concentrations. For each mutant, WT SEC curves were plotted in gray for visual 

comparison. 
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Figure 2. Brightfield microscopy of WT and UBQLN2 mutants with 

phosphomimetic substitutions. Samples were collected at 10 and 30 min at 37 °C 

using 100 μM protein in 20 mM NaPhosphate and 200 mM NaCl (pH 6.8). Scale bar = 5 

μm. 
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Figure 3. Schematic of the generation of recombinant baculovirus and gene 

expression adapted from Bac-to-Bac Expression System (Invitrogen, 2015). 

UBQLN2 is cloned into pFastBacDual (pFBD) + RFP (red fluorescent protein) donor 

plasmid, and the recombinant plasmid is transformed into DH10Bac E. coli competent 

cells which contain the bacmid with a mini-attTn7 target site and the helper plasmid. 

The mini-Tn7 element on the pFastBacTM donor plasmid can transpose to the mini-

attTn7 target site on the bacmid in the presence of transposition proteins provided by 

the helper plasmid. Colonies containing recombinant bacmids are identified by 

disruption of the lacZα gene. High molecular weight mini-prep DNA is prepared from 

selected E. coli clones containing the recombinant bacmid, and this DNA is then used to 

transfect hi5 cells. Once these cells lyse (represented by circles with dashed-line) the 

passage 1 virus is collected (star shaped particles). Passage 1 virus is used to infect 

Sf9 cells. Once the Sf9 cells lyse, passage 2 virus is collected and used to infect Sf9 

cells for the expression of UBQLN2.  
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Figure 4. Preparation of pFastBacDual plasmid with UBQLN2 and RFP. (A) PCR 

product confirms successful production of recombinant donor plasmid pFastBacDual 

with UBQLN2 and RFP at 2 KB (product labeled in red). Lanes: 1) digested pFBD 

p10RFP; 2) ladder; 3) PCR product. (B) DNA miniprep confirms successful molecular 

cloning of UBQLN2 into pFBD + RFP. Lanes: 1) ladder; 2) undigested DNA; 3) DNA 

digested with BamH1; 4) DNA digested with HindIII; 5) DNA digested with BamH1 and 

HindIII. 
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Figure 5. SDS-PAGE confirms successful transposition of UBQLN2 into bacmid 

DNA using pUCM13 for/rev primers. Lanes 2-6 show PCR product of bacmid 

transposed with pFastBacDual with UBQLN2 + RFP (~ 4560 base pairs). Lanes: 1) 

ladder; 2-6) individual DH10BacTM E. coli cell colonies with UBQLN2 bacmid DNA.  
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Figure 6. Western blot confirms expression of UBQLN2. (A) Mouse-Anti Ubiquilin2 

western blot of UBQLN2 expression time points. Lanes are outlined in blue and are 

loaded as: 1) 0 hrs; 2) 24 hrs; 3) 48 hrs; 4) 72 hrs; 5) 96 hrs post baculoviral infection. 

(B) Western blot of full-length UBQLN2 at various loading volumes for visual 

comparison of overloaded UBQLN2. Lanes were loaded with 1) 10 ng; 2) 20 ng; 3) 50 

ng; 4) 100 ng; and 5) 200 ng purified UBQLN2.  
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Figure 7. Purification of UBQLN2 from Sf9 cells. SDS-PAGE gel lanes were loaded 

as: 1) total protein; 2) post-salt supernatant 1; 3) post-salt supernatant 2; 4) elution 1; 

and 5) elution 2. UBQLN2 was identified in elution 1, lane 4. 
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Chapter 5: Conclusions and Future Directions 
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Conclusions 

Regarding the molecular underpinnings of UBQLN2 LLPS, the research provided 

herein identifies several driving mechanisms which largely contribute to the ability of 

UBQLN2 to phase separate. Our research on C-terminal construct, 450C, corroborates 

the “sticker” and “spacer” framework, which predicts that “stickers” are sequences which 

drive interchain interactions and phase separation, where “spacers” are sequences 

separating stickers which modulate phase separation properties by either enabling or 

suppressing contact between stickers (Chapter 2) (Yang et al., 2019). Within these 

stickers, we have shown that LLPS can be modulated by single amino acid 

substitutions, and that UBQLN2 LLPS follows a molecular code. For instance, mutations 

to hydrophobic amino acids and polar amino acids decreased cloud point temperatures, 

seemingly promoting LLPS at lower temperatures and lower concentrations. Therefore, 

the hydrophobic effect and polar interactions likely are the driving forces underlying 

UBQLN2 phase separation. This idea is also supported in that more than 25% of the 

UBQLN2 450C sequence consists of polar residues, and almost 50% of the construct 

consists of hydrophobic residues. In contrast, mutations to acidic mutations resulted in 

diminished phase separation. As acidic mutations introduce negative charges much like 

phosphorylation, and glutamic acid mutations have classically been used as 

phosphomimetic substitutions, this highlights the potential for regulation of LLPS via 

post-translational modifications, and highlighting the importance of electrostatics in 

phase-separating systems.  

 We have also initiated investigation of the specific role of UBQLN2 domains in its 

phase separation (Chapter 3). By obtaining temperature-concentration phase diagrams 
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of six successive N-terminal domain deletion UBQLN2 constructs, we have discovered 

that each domain, does indeed tune phase separation differently. Interestingly, our data 

corroborate evidence that prion-like regions contributes to phase separation. However, 

in the case of UBQLN2, deletion of prion-like domains did not significantly alter self-

association behavior as expected, since prion regions have been shown to act as sites 

of oligomerization. This project helped identify how sequence features such as disorder, 

structure, and prion-like propensity may govern UBQLN2 LLPS. 

 Additionally, in chapter 4, I have proposed a method of UBQLN2 purification via 

insect cell expression, which would include the incorporation of native post-translational 

modifications (PTMs). Insect cells were chosen for expression because they possess 

the eukaryotic machinery necessary to modify recombinant proteins in a functionally 

similar way as their authentic counterparts. A baculoviral expression system was 

chosen because it ensures a high level of transcription and is safe in that baculoviruses 

have a host range limited to invertebrates (Invitrogen, 2015). PTMs are an important 

factor to consider when studying LLPS because several studies have demonstrated that 

PTMs regulate phase separation, and that many phase-separating proteins are 

modified. Here, I have described successful expression of full length UBQLN2 in Sf9 

insect cells, which provides various avenues for future research.  

 Furthermore, investigation of UBQLN2 in a domain-by-domain manner indicates 

the importance of studying full-length protein in phase separation studies. Currently in 

the field, it is common to perform experiments on smaller protein constructs due to ease 

of protein purification, and the ability to do certain in vitro analyses on smaller proteins, 

like nuclear magnetic resonance (NMR). As the domain-deletion studies herein have 
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suggested that each segment of UBQLN2 plays a direct role in driving or modulating 

LLPS, it would be most physiologically significant to study phase-separating behavior of 

full-length protein.  

 

Future Directions 

 In the previous chapters, I have discussed the role of mutations and domain-

deletions on UBQLN2 LLPS, with the overarching goal to elucidate the molecular 

mechanisms which drive UBQLN2 phase separation in vitro. Here, I propose methods 

and potential directions to further investigate UBQLN2 LLPS in terms of analytical 

modeling, its behavior in cells, and its role in neurodegenerative pathology.  

The experimental data contributed here provides a benchmark for future 

analytical modeling and/or molecular simulation. By obtaining experimental phase 

diagrams, we determined that UBQLN2 exhibits LCST (lower critical solution 

temperature) phase transitions. With our experimental data, we can provide a basis for 

which simulations can reproduce sequence-specific LCST behavior. Ultimately, these 

data would provide key input for machine-learning algorithms to model phase behavior 

(Ruff et al., 2018). In addition to predicting phase behavior, an interesting application of 

these data is to the design of thermoresponsive biopolymers. Thermoresponsive 

polymer design is of recent interest due to their application in cell sheet fabrication, drug 

delivery, and 3D-printing (Suntornnond et al., 2017; Ward and Georgiou, 2011).  

Indeed, much is left to discover concerning the molecular foundation of UBQLN2 

LLPS. Questions remain as to how UBQLN2 facilitates interactions to drive its phase 

separation in vitro, and great questions remain as to how this is translated into cellular 
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behavior. Specifically, how mutated UBQLN2 behaves in vivo is of specific interest due 

to its link to human disease. Current and future studies in our lab aim to introduce 

disease-linked mutations into cells to understand how this may alter its phase-

separating properties. Disease-linked mutations studied here (Chapter 2), P497H and 

P497S are of particular interest as they visibly aggregated in turbidity assays using the 

450C C-terminal construct (Chapter 2, Figure 2). Similarly, disease-linked mutation 

P497L showed significantly slower droplet fusion rates compared to WT, characterizing 

it as an additional mutation of interest. These in vitro experiments suggest that disease-

linked mutations could perturb phase behavior in vivo. Experiments to study these 

mutations would include live cell imaging and analysis of the dynamics of fluorescently 

tagged proteins. Understanding how these mutations may alter UBQLN2 recruitment 

into stress granules, change MLO dynamics and material properties, impair protein 

quality control (PQC) mechanisms, or promote liquid-to-solid transitions would be 

beneficial to elucidate disease mechanisms and to the phase-separating community as 

a whole.  

 As UBQLN2 shares sequential similarity with its homologs UBQLN1, and -4, 

analysis of these proteins would also be an interesting avenue to further elucidate the 

mechanisms behind UBQLN phase separation. UBQLN2 is 74% identical to UBQLN2,  

and UBQLN1 is 60% identical with UBQLN4. Ubiquilin proteins share a high degree of 

homology due to their common major domains (UBL, UBA, STI1-I, STI1-II), with the 

exception of the PXX domain, which is unique to UBQLN2. The Ubiquilin family of 

proteins functionally links the ubiquitination machinery with the proteasome and other 

protein quality control pathways. By performing similar biophysical analyses on these 
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UBQLN homologs, we can better understand the role of LLPS for the ubiquilin family as 

a whole. Additionally, by comparing and contrasting LLPS behavior between ubiquilin 

homologs, we may begin to elucidate how molecular variances across homologs alter 

their phase behavior. 

 With the role of UBQLN2 in protein quality control (PQC), it is equally important 

to direct future studies to understanding how LLPS partakes in this function. For 

instance, investigation of how disease-linked mutations may alter UBQLN2 engagement 

with PQC machinery could inform the field on potential pathomechanisms. UBQLN2 

proteasomal shuttle functionality could be monitored by its association with proteasomal 

receptors Rpn10 and Rpn13, and ubiquitin (Ub) (Chen et al, 2016). Previous studies 

have suggested that UBQLN1 prefers association with K63-linked polyUb chains over 

K48 polyUb chains. Therefore, studies on full-length and mutated UBQLN2 are 

warranted to determine Ub binding preference and how this binding disrupts or 

modulates UBQLN2 LLPS. As mentioned in Chapter 3, UBQLN2 has a multitude of 

binding partners involved in PQC. Prospective studies characterizing UBQLN2 

association with binding partners has the potential to further inform us on the role of 

UBQLN2 in PQC, and how disease may result in dysfunction of this system.  

 Generation of post-translationally modified UBQLN2 permits us to adopt many 

experimental directions—both in vivo and in vitro. As a starting point, analyses similar to 

those presented in this work would give insight to modified UBQLN2 phase-separating 

properties. Turbidity assays and phase diagram construction can inform about the 

protein’s ability to phase separate under specific conditions. Importantly, size exclusion 

chromatography (SEC) could be utilized to see if modification alters the oligomeric 
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propensity of UBQLN2. Microscopy and NMR experiments would add additional 

information about the proteins’ droplet dynamics, and structure, respectively.  

 Analysis of modified UBQLN2 via expression in eukaryotic Sf9 cells will direct 

future in-cell investigation on the role of post-translational modification (PTM) in 

UBQLN2 LLPS. Molecular weight analysis via mass spectrometry should reveal if, and 

what kind of modification was made to UBQLN2. With this information, we can then 

direct our in-cell experiments to study this specific modification. For example, if 

UBQLN2 is acetylated, we could fluorescently tag acetylated UBQLN2 with an antibody 

specific to acetylated UBQLN2. We could then utilize immunohistochemistry and 

immunoblots to identify where and when UBQLN2 is acetylated, and investigate the 

resulting phase-separating properties. As PTMs are recognized as a major regulatory 

mechanism of liquid-liquid phase-separated puncta in cells, elucidating where and when 

UBQLN2 is modified would provide insight on the regulatory role of PTMs on UBQLN2 

LLPS. Similarly, such experiments could be done with hyperphosphorylation, and 

ubiquitination.  

 Certainly, there are a multitude of avenues to which this work can be applied and 

extrapolated. The work provided herein can be applied not just to fields investigating 

liquid-liquid phase separation, but also to fields studying thermodynamic polymers, 

disease mechanisms, and protein quality control. Overall, these data provide a solid 

groundwork which establishes the molecular foundation of UBQLN2.  

 

 
 
 
 



 

 

 

103 

Appendix 
 
List of Abbreviations 
 
LLPS  Liquid-liquid phase separation 
PTM  Post-translational modification 
MLO  Membraneless organelle 
SG  Stress granule 
RBP  RNA binding protein 
IDR  Intrinsically disordered region 
ALS  amyotrophic lateral sclerosis 
FTD  Frontotemporal dementia 
SAXS  Small angle X-ray Scattering 
SEC  Size exclusion chromotography 
FRAP  Fluorescent recovery after photobleaching 
UBQLN2 Ubiquilin2  
UBL  Ubiquitin-like 
UBA  Ubiquitin associating 
MS  Mass spectrometry 
mRNA  Messenger ribonucleic acid 
PLD  Prion-like domain 
NOE  Nuclear Overhauser effect 
NPM1  Nucleaphosmin   
TDP-43 TAR DNA binding protein 
hnRNP Heterogenous nuclear ribonucleoprotein 
SPOP  Speckle-type POZ protein 
UV-Vis UV-visible spectrophotometry 
Tcp  Cloud point temperature 
LCST  Lower critical transition temperature 
UCST  Upper critical transition temperature 
NMR  Nuclear magnetic resonance 
CSP  Chemical shift perturbation 
Ub  Ubiquitin 
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ABSTRACT: UBQLN2 450−624 oligomerizes and under-
goes temperature-responsive liquid−liquid phase transitions
following a closed-loop temperature−concentration phase
diagram. We recently showed that disease-linked mutations to
UBQLN2 450−624 impart highly varying effects to its phase
behavior, ranging from little change to significant decrease of
saturation concentration and formation of gels and aggregates.
However, how single mutations lead to these properties is
unknown. Here, we use UBQLN2 450−624 as a model
system to study the sequence determinants of phase
separation. We hypothesized that UBQLN2 450−624 regions
previously identified to promote its oligomerization are the “stickers” that drive interchain interactions and phase separation.
We systematically investigated how phase behavior is affected by all 19 possible single amino acid substitutions at three sticker
and two “spacer” (sequences separating stickers) positions. Overall, substitutions to stickers, but not spacers, substantially
altered the shape of the phase diagram. Within the sticker regions, increasing hydrophobicity decreased saturation
concentrations at low temperatures and enhanced oligomerization propensity and viscoelasticity of the dense phase. Conversely,
substitutions to acidic residues at all positions greatly increased saturation concentrations. Our data demonstrate that single
amino acid substitutions follow a molecular code to tune phase transition behavior of biopolymers.

■ INTRODUCTION
Liquid−Liquid phase separation (LLPS) is a process by which
a solution of macromolecules demixes into a species-rich liquid
dense phase in equilibrium with a species-poor dilute phase.
LLPS is hypothesized to underlie the assembly of biomolecular
condensates essential for various cellular processes.1,2 In phase-
separating proteins, a major characteristic is multivalency, the
existence of multiple associative motifs of intrinsically
disordered segments or structured domains that form intra-
and interchain interactions.3−5 Accumulating evidence shows
that phase transition behavior is encoded in the amino acid
sequence.6−8 Mutations can tune the conditions necessary for
LLPS, as well as the material properties of these condensates in
vitro and in vivo.9,10 Indeed, dysregulation of condensate
dynamics, assembly, and/or disassembly is linked to diseases,
including amyotrophic lateral sclerosis (ALS) among others.
Therefore, deciphering the molecular code that drives phase
transitions of biopolymers is key to understanding diseases, as
well as designing stimuli-responsive polymers with emergent
properties.
The “stickers” and “spacers” framework is emerging as useful

language to describe the physical origins of LLPS behavior in
proteins. Stickers are the associative motifs that drive LLPS,

whereas the spacers connect the sticker regions and tune LLPS
behavior as well as impart flexibility.11−13 The chemical basis
of sticker interactions that govern phase transition behavior
varies across phase-separating systems. For instance, Arg and
Tyr residues in the FUS family of proteins use cation−π and
π−π stacking interactions to drive LLPS.8 The hydrophobic
effect modulates LLPS of elastin and elastin-like proteins and
other proteins such as Pab1.14−16 Aromatic residues are
essential for mediating TDP-43 LLPS.17 Electrostatic inter-
actions formed via clusters of either positively or negatively
charged residues stabilize Ddx4 protein droplets.18 These
experimental data must be combined to deduce the molecular
grammar underpinning LLPS at physiological conditions for
biological systems. Indeed, π−π contact propensity can be
used to predict LLPS based solely on amino acid sequence.19

Evaluating the effects of amino acid substitutions on phase
transition behavior requires elucidation of full phase diagrams
that map the conditions where the solution phase separates
into protein-dilute and protein-dense phases. For some
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systems, the protein-dense phase also intersects a liquid−gel
phase boundary, where the dense phase undergoes gelation, a
transition from liquid droplets to a noncovalent physically
cross-linked network of molecules.11 The equilibrium protein
concentrations in the protein-dilute and protein-dense phases
are described by the binodal or coexistence curve comprising
both low and high concentration arms. The low concentration
arm defines the protein saturation concentration (cs), below
which the system will be mixed and homogeneous, and above
which, the system will form a distinct second phase such as
protein-dense liquid droplets.20−22 Coexistence curves are
determined by the free energy of the system thereby including
entropy of mixing, as well as the enthalpies of protein−protein,
protein−solvent, and solvent−solvent interactions. The com-
plex interplay of these terms provides the thermodynamic basis
for LLPS in biological systems. Obtaining experimental phase
diagrams and predicting these via computational modeling
and/or simulation are ideal metrics to determine the molecular
driving forces of phase separation and phase separation-driven
gelation.11,23 Therefore, experimental systems are needed to
address this goal, as emphasized in recent literature.22,24

We established a model biopolymer system, the C-terminal
construct of UBQLN2 (450−624), to which we could
experimentally map the effects of single amino acid
substitutions on phase transition behavior. We recently
demonstrated that UBQLN2, a proteasomal shuttle factor
involved in cellular protein quality control mechanisms, phase
separates under physiological conditions, and that UBQLN2
450−624 generally mimics the LLPS behavior of full-length
UBQLN2.25 Furthermore, UBQLN2 450−624 can be easily
expressed and purified from bacteria, enabling the establish-
ment of a large mutagenesis library to study the sequence
effects on phase transitions. We previously identified regions of
UBQLN2 450−624 important for oligomerization and
hypothesized that these same segments are the stickers that
drive LLPS. To test this hypothesis, we systematically
substituted each of the natural amino acids into three sticker
and two spacer positions and obtained low-concentration arms
of temperature−concentration phase diagrams. In agreement
with the stickers and spacers framework, only sticker
substitutions substantially altered the shape of temperature−
concentration phase diagrams, whereas spacer substitutions
only marginally affected coexistence curves. Increasing hydro-
phobicity of the amino acid substitution shifted coexistence
curves such that UBQLN2 phase separated at lower temper-
atures and concentrations. Our data illustrate that single amino
acid substitutions at designated positions in the amino acid
sequence of a protein substantially modify phase transition
behavior of biopolymers. These data can be used to benchmark
analytical and computational models of phase transitions.

■ METHODS
Subcloning, Protein Expression, and Purification.

UBQLN2 mutants were generated from UBQLN2 450−624
using Phusion Site-Directed Mutagenesis Kit (Thermo
Scientific). A tryptophan codon was added to the C-terminal
end of all constructs to facilitate determination of protein
concentration (Figure S1A). UBQLN2 450−624 and all the
mutants were expressed and purified as described by Dao et al,
2018.25 Briefly, the constructs were expressed in Escherichia coli
Rosetta 2 (DE3) pLysS cells in Luria−Bertani (LB) broth at
37 °C overnight. Bacteria were pelleted, frozen, lysed, then
purified via a “salting out” process. NaCl was added to the

cleared lysate to the final concentration of 0.5−1 M. UBQLN2
droplets were pelleted and then resuspended in 6 M urea, 20
mM sodium phosphate, 0.5 mM ethylenediaminetetraacetic
acid (EDTA), 0.1 mM tris(2-carboxyethyl)phosphine (TCEP),
0.02% NaN3 (pH 6.8). Leftover NaCl and urea were removed
through HiTrap desalting column (GE Healthcare). All the
cysteine mutants were subjected to size exclusion chromatog-
raphy (SEC) over a Superdex 75 HiLoad 16/600 column (GE
Healthcare) or an ENrich SEC 650 10 × 300 column (Biorad)
to remove dimer contaminations. Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gels were
performed to confirm the purity of the proteins (Figure S2A).
The identity and molecular weight of each mutant was verified
using electrospray mass spectrometry in positive mode on a
Shimadzu 8040 MS (Figure S2B). Purified proteins were
frozen at −80 °C.

Spectrophotometric Absorbance/Turbidity Measure-
ments. Protein samples were prepared by adding protein
(from stock to a final concentration of 50 μM unless otherwise
noted) to cold sodium phosphate buffer (pH 6.8, 20 mM
NaPhosphate, 0.5 mM EDTA, 0.1 mM TCEP, 0.02% NaN3)
containing 200 mM NaCl and were kept on ice for at least 5
min before the assay. Absorbance at 600 nm was recorded as a
function of temperature by a Beckman DU-640 UV/vis
spectrophotometer using a temperature ramp rate of 2 °C/
min increasing from 16 to 60 °C and then ramped down to 16
°C. Net absorbance values were recorded after subtracting the
absorbance value of a buffer control. Results were averaged
from data collected using proteins from at least two separate
preps and four trials for each (total n ≥ 8) (Figure S2C). Data
were plotted using Mathematica (Wolfram Research).

Phase Diagram Measurements. For the lower critical
solution temperature (LCST) phase transition, that is,
mapping the phase boundary as temperature is increased,
protein samples were prepared as described for the turbidity
measurements. For the upper critical solution temperature
(UCST) arm, protein samples were prepared by mixing
protein and buffer/salt solutions that were incubated at 63 °C
for at least 10 min. Absorbance at 600 nm was recorded as a
function of temperature by a Beckman DU-640 UV/vis
spectrophotometer using a temperature ramp rate of 2 °C/
min decreasing from 60 to 16 °C. Two trials (n = 2) were
conducted using four to five different concentrations of wild-
type (WT) and mutant UBQLN2 450−624 proteins for each
arm. The protein concentrations were chosen to cover as wide
a range as possible to allow observation of phase separation
during the temperature ramps but not at the starting
temperatures (16 and 60 °C for LCST and UCST arms,
respectively). Cloud-point temperatures were determined by
fitting a Four Parameter Logistic Regression model to the data
(Figure S3).
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Cloud-point temperatures used were the points of inflection
(c). Cloud-point temperatures were then used to define the
coexistence curve as a function of protein concentration. The
temperature ramp rate was either 1 or 2 °C/min, whichever
yielded the most reproducible, consistent turbidity profiles and
phase diagrams. Specifically, a 1 °C/min ramp rate was used
for the LCST arms of hydrophobic and aromatic substitutions.
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Fitting and plotting of data were done with Kaleidagraph
(Synergy Software).
Bright-Field Imaging of Phase Separation. UBQLN2

450−624 constructs were prepared to contain 100 μM protein
in 20 mM NaPhosphate, 200 mM NaCl, 0.1 mM TCEP, and
0.5 mM EDTA (pH 6.8). Samples were added to MatTek
glass-bottom dishes that had been coated with 5% bovine
serum albumin (BSA), to minimize changes as a result of
surface interactions, and incubated at 37 °C. Phase separation
was imaged on an ONI Nanoimager (Oxford Nanoimaging
Ltd.) equipped with a Hamamatsu sCMOS ORCA flash 4.0 V3
camera using an Olympus 100 × /1.4 N.A. objective. Images
were prepared using Fiji26 and FigureJ plugin.27

Droplet Fusion Assays. UBQLN2 450−624 constructs
were prepared to contain 100 μM protein in 20 mM
NaPhosphate and 0.5 mM EDTA (pH 6.8), except for
P506W at 25 μM protein and P506E and V538E at 300 μM
protein. Samples were added to MatTek glass-bottom dishes
that had been incubated with 5% BSA (to minimize changes as
a result of surface interactions) and incubated at 37 °C. Phase
separation was initiated with the addition of NaCl to a final
concentration of 200 mM. After 10 min of incubation, droplet
formation was imaged as time-lapsed sequences for 3 min on
an ONI Nanoimager equipped with a Hamamatsu sCMOS

ORCA flash 4.0 V3 camera using an Olympus 100 × /1.4 N.A.
objective. Five trials were performed for each mutant. Droplets
chosen for analysis were of similar size and ranged between 2
and 4 μm, except for V538E (8 μm) and P506E (5 μm). For
each mutant, eight fusion events were chosen for analysis and
saved as separate TIFF images including frames from the initial
fusion event.
Relaxation times (time it takes for two fusing droplets to

return to a round shape) were determined by manually
measuring the major axis (a) and the minor axis (b) in pixels
using Fiji software26 and calculating the aspect ratio as α = a/b.
We monitored the fusion events in this way, until the droplets
reached their most relaxed state, or until the aspect ratio was
approximately equal to 1. The aspect ratio for each fusion
event was fit to an exponential decay curve in Matlab
(Mathworks).

α= +τ−y c( )e x
0

/
(2)

where α0 is the initial aspect ratio, x is time, and τ gives the
characteristic relaxation time.

Size Exclusion Chromatography. Purified UBQLN2
constructs at different concentrations (10, 100, and 500 μM)
were subjected to chromatography over an ENrich SEC 650 10

Figure 1. Turbidity assay screens for mutants in sticker and spacer regions of UBQLN2 450−624. (A) Domain architecture of UBQLN2 450−624
with STI1-II, PXX, and UBA domains colored as cyan, magenta, and green, respectively. Highlighted in yellow are regions identified by NMR to
promote UBQLN2 oligomerization and hypothesized to be stickers.25 Red and blue labels represent sticker and spacer positions studied here,
respectively. Immediately below marks the location of ionizable residues and their expected charge state at pH 7. All of the arginines and most of
the negatively charged residues reside in the folded UBA domain. (B) Fraction of the different types of amino acids in UBQLN2 450−624, which is
high in hydrophobic, polar, glycine, and proline and depleted of aromatic and charged residues. Pie chart follows the general organization in Ruff et
al. 2018.22 (C) Results from spectrophotometric turbidity assay as a function of temperature comparing LLPS of different UBQLN2 mutants using
50 μM protein in 20 mM NaPhosphate and 200 mM NaCl (pH 6.8). The blue asterisks represent WT UBQLN2 turbidity profile for each position.
The red asterisks represent mutants that form unevenly distributed aggregates at one point during the assay. P497H, S, N, and Q formed aggregates
early in the experiment, whereas P506N and Q aggregated at temperatures above 44 °C. Turbidity profiles of amino acid substitutions at each
position are separated by amino acid type: aromatic, hydrophobic, basic, polar, and acidic. Hypothesized stickers and spacers are color-coded red
and blue, respectively, at the top.
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× 300 column (Biorad) on a Biorad NGC FPLC system.
Experiments were conducted using 250 μL of protein at
ambient temperature using 1 mL/min flow rate in pH 6.8
buffer containing 20 mM NaPhosphate, 0.5 mM EDTA, and
0.1 mM TCEP with no added NaCl.

■ RESULTS
Library Generation of UBQLN2 Mutants. We previously

characterized the LLPS properties of full-length UBQLN2 and
several deletion constructs, including UBQLN2 450−624.25
We showed that UBQLN2 oligomerization is a prerequisite for
UBQLN2’s ability to phase separate in vivo and in vitro, as
expected and observed for many other LLPS systems. For
detailed biophysical analyses, we focused on UBQLN2 450−
624 (Figure S1A), whose small size (∼175 amino acids)
enabled the use of nuclear magnetic resonance (NMR)
spectroscopy to monitor backbone amide chemical shifts as a
function of protein concentration on a residue-by-residue basis.
We observed concentration-dependent chemical shifts for
residues 450−509, 555−570, 592−596, and 615−620,
indicating that these residues are involved in UBQLN2
oligomerization (Figures 1A and S1A,B). Here, we hypothe-
sized that the residues in these segments comprise the sticker
regions that drive UBQLN2 phase separation. The amino acid
compositions of these sticker regions and of UBQLN2 450−
624 are hydrophobic and polar (Figures 1B and S1A,C),
consistent with other polymers that phase separate as
temperatures increase such as elastin-like polypeptides
(ELPs).15

We recently showed that ALS-linked mutations P497H,
P497L, P497S, P506A, P506S, and P506T, but not P525S,
significantly altered UBQLN2 450−624 LLPS properties.43

Interestingly, on the basis of our NMR data, residues P497 and
P506 are in a sticker region, and P525 is in a spacer region. We
hypothesized that mutations in the sticker regions would
greatly affect both the dense and dilute phases (e.g., saturation
concentrations, droplet morphology, droplet fusion kinetics),
whereas mutations in the spacer regions would not. To test this
hypothesis, we sought to determine the effects of amino acid
substitutions at these three positions as well as at an additional
sticker position, V564, and spacer position, V538, in the
UBQLN2 450−624 background, hereafter referred to as
UBQLN2 (Figure 1A). All five positions reside in the
intrinsically disordered segment between residues 450 and
580.25 We generated all 19 possible amino acid substitutions at
each of these positions for a total of 95 mutant constructs. We
expressed and purified wild-type and mutant UBQLN2
proteins from E. coli. As done previously, we used salt-induced
phase separation and centrifugation to separate UBQLN2 from
the rest of the E. coli lysates and then desalted into non-phase
separating pH 6.8 buffer containing 20 mM NaPhosphate.
Proteins were more than 95% pure (Figure S2A).
Turbidity Assays Screened for Effects of Amino Acid

Substitutions on LLPS. To systematically screen for the
effects of UBQLN2 mutations on LLPS, we monitored the
change of A600 values between 16 and 60 °C of samples
containing a fixed protein concentration and buffer composi-
tion (see Methods). Previous work from our lab showed that
high and low A600 values correlate with UBQLN2 droplet
formation and droplet clearance, respectively.25 To ensure
reproducibility, we repeated these assays a minimum of eight
times using at least two purified protein stocks (Figure S2C).

Wild-type UBQLN2 undergoes two temperature-responsive
phase transitions (Figure 1C). First, UBQLN2 phase separates
as temperature is increased between 16 and 45 °C. This phase
transition has an LCST, below which the protein solution is
always mixed, regardless of protein concentration. Second, a
solution of phase-separated UBQLN2 becomes less turbid as
temperature is increased between 45 and 60 °C. This second
phase transition has a UCST, above which the protein solution
is always mixed. Together, these data are indicative of phase
behavior following a UCST + LCST closed-loop phase
diagram (Figure 2A).22 Turbidity was generally reversible
when temperature was decreased from 60 to 16 °C (Figure
S2D). These results are consistent with our prior work.43

Focusing first on the overall turbidity assay trends across all
positions, we immediately noticed that mutations in sticker
positions 497, 506, and 564 substantially impacted the
temperature ranges where phase separation was observed, as
compared to mutations in spacer positions 525 and 538. There
is considerable variation in the extent of phase separation
among the different amino acid substitutions in the sticker
positions. It is important to note that, for positions 497, 506,
and 525, the wild-type amino acid is proline, whereas for
positions 538 and 564, it is valine. Regardless of the wild-type
amino acid, the trends for spacer positions 525 and 538 were
nearly identical. In contrast, the overall extent of phase
separation for the sticker substitution at position 564 was
greatly reduced compared to positions 497 and 506. The
turbidity data across the five positions were consistent with our
initial hypothesis that residues 497, 506, and 564 are stickers,
whereas residues 525 and 538 are spacers (Figure 1C).
Second, we organized our turbidity assay results by amino

acid type: hydrophobic (A, G, I, L, M, P, V), aromatic (F, W,
Y), basic (H, K, R), acidic (D, E), and polar (C, N, Q, S, T).
We note the difficulties in assigning amino acids to these
classes, particularly G and P, due to their roles in modulating
protein flexibility and solubility.28 We presented our amino
acid substitutions in terms of decreasing hydrophobicity,
largely following the experimental hydrophobicity scale
determined by Urry et al., 1992.29 Among the sticker positions
497, 506, and 564, increased hydrophobicity promoted
UBQLN2 LLPS and lowered the temperature threshold for
phase separation. Aromatic substitutions at the sticker
positions decreased the temperatures when phase separation
was first observed, in many cases below 16 °C, the starting
temperature of the experiment. Notably, the effects on the
mutations on the turbidity profiles varied by position even
among stickers. For example, UBQLN2 mutants with Ile or
Phe substitutions at position 506 remained turbid for the entire
temperature range (16−60 °C), whereas phase-separating
solutions of P497F and P497I began clarifying at 40 °C. These
observations illustrated that Ile and Phe substitutions to both
P497 and P506 impact LCST and UCST phase transitions but
via different mechanisms. Of the 95 mutants, only six visibly
aggregated during the turbidity assay experiments: P497H,
P497S, P497N, P497Q, P506N, and P506Q (Figure S2E). Of
these, two are disease-linked mutations (P497H and P497S).
Although the effects of the spacer mutations on LLPS were
much less drastic compared to those in the sticker positions,
we still observed large increases in the absolute intensity of the
absorbance signal, especially among substitutions to aromatic
and more hydrophobic residues. It is possible that these
substitutions made the spacer positions more sticker-like,
hence increasing the degree of phase separation of the solution.
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Morever, the turbidity assay does not directly measure the
number of droplets but the scattering of the samples.
Scattering is highly dependent on differences in the size of
the droplets, which might change as the result of the
substitutions. One notable similarity between stickers and
spacers was the effect of Asp and Glu substitutions, both of
which significantly disrupted phase separation at all positions
tested. Together, these data emphasize that perturbations to
LLPS properties of proteins are very sensitive to both the type
of amino acid substitution and the position in the amino acid
sequence.

Effects of Amino Acid Substitutions on Phase
Diagrams. To quantitatively compare the effects of single
amino acid substitutions on phase transitions of UBQLN2 and
determine the driving forces for UBQLN2 phase separation,
we experimentally obtained temperature−concentration phase
diagrams for the 19 substitutions at two representative
positions: a sticker residue (P506) and a spacer residue
(V538) (Figure 2). At a protein concentration for which no
LLPS was observed at the start of the experiment, we
performed temperature-ramping turbidity assays and deter-
mined Tcp(infl), the cloud-point temperature at the inflection
point of the transition (Figure S3).30 There are other methods
to characterize the conditions when phase transitions occur,
including using microscopy to monitor onset or applying a
threshold to changes in absorbance-temperature curves. For
practical reasons, we chose the inflection point, Tcp(infl), for
comparison across different protein samples. The experimental
Tcp values at different protein concentrations were used to map
the coexistence curves (Figure 2). Since UBQLN2 exhibits
both LCST and UCST phase transition behavior, Tcp
associated with the LCST transition was determined by
increasing temperature from 16 to 60 °C, whereas Tcp values
associated with the UCST transition were determined by
starting turbidity assay experiments at 60 °C and ramping
down to 16 °C (see Methods). We tried these experiments at
low (μM) as well as high (up to 3 mM) protein
concentrations. However, the protein solutions were always
cloudy or contained aggregates at the higher concentration
ranges at the start of the experiments (both 16 and 60 °C).
Therefore, we focused on obtaining the low-concentration arm
(cs) of the coexistence curves (Figure 2A). As expected from
the turbidity assays (Figure 1C), the experimental phase
diagram for WT UBQLN2 resembles that of a UCST-LCST
closed-loop phase diagram, indicating two temperature-
responsive phase transitions between 16 and 60 °C (Figure
2B).
Strikingly, amino acid substitutions at sticker position 506

not only shifted the position of the coexistence curves but also
changed the overall shape of the phase diagram (Figure 2B).
Meanwhile, amino acid substitutions at spacer position 538

Figure 2. Temperature−Concentration phase diagrams for represen-
tative sticker and spacer residues in UBQLN2. (A) Schematic of a
closed-loop phase diagram showing both UCST and LCST behaviors.
The black dots represent the experimental data points for the low
concentration arm obtained in this study to partially map the phase
diagram. (B) Effects of amino acid substitutions in the sticker (pink,
P506) region and in the spacer (cyan, V538) region compared to WT
UBQLN2 (black). Circled in black are D and E mutants for each

Figure 2. continued

position. (C) Effects of amino acid substitutions separated by amino
acid type: aromatic (F, W, Y), hydrophobic (A, G, I, L, M, P, V), basic
(H, K, R), polar (C, N, Q, S, T), and acidic (D, E). The dashed lines
are guides that connect the UCST phase transition cloud-point
temperatures to the LCST ones. Both arms of P506N and the UCST
arm of P506Q are missing due to formation of aggregates during the
assays. The UCST arms for V538W, V538Y, V538R, V538K, P506D,
and P506E are missing, since we observed either no turbidity or
nonzero turbidity values at 60 °C at all concentrations tested.
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only mildly shifted coexistence curves but generally displayed a
phase diagram with similar shape to that of WT. In other
words, mutations at position 538 minimally perturbed the cs
needed for LLPS. These observations are entirely consistent
with the expected behaviors of stickers and spacers.8,20 The
major exceptions to these observations were acidic amino acid
substitutions, for which the cs values of the dilute phase were
greatly increased for all positions (see below).
Among the classes of amino acid substitutions, aromatic and

hydrophobic amino acid mutations at sticker position 506
substantially affected the phase diagram of UBQLN2.
Furthermore, increasing hydrophobicity of the amino acid
substitution correlated with decreasing cs values of the LCST
phase transition. The coexistence curves all shifted to the left as
hydrophobicity of the amino acid substitution increased. These
data are completely consistent with our prior work that showed
lowered cs of UBQLN2 for hydrophobic disease-linked
mutations T487I and P497L.43 Together, the data suggest
the importance of the hydrophobic amino acids in driving
UBQLN2 phase separation. Indeed, many of the amino acids
in sticker regions are hydrophobic, as we previously
characterized (Figure S1A).25

At position 506, aromatic substitutions substantially changed
the shape of UBQLN2’s phase diagram, but differently
depending on the amino acid. Tyr and Trp mutations shifted
the UCST arm of the phase diagram downward compared to
WT, with UCST cloud-point temperatures below 50 °C at
least up to 200 μM protein concentrations. On the one hand,
the Phe substitution was always phase separated over the entire
temperature range tested, except at low protein concentrations
(<20 μM). In contrast, the Phe substitution at position 538
minimally impacted the overall shape of the phase diagram,
while all aromatic substitutions at this position imposed a
leftward shift of the coexistence curves to lower protein
concentrations. Notably, we could not obtain V538 Tyr and
Trp UCST phase transition cloud points, since we could not
establish clear baselines at 60 °C for any protein concen-
trations that exhibited turbidity during the temperature
ramping assays. Therefore, these cloud-point values are likely
to be greater than 60 °C. We speculate that the aromatic
substitutions impart stickerlike properties to position 538, thus
decreasing the cs values for LLPS. It is apparent that π-stacking
interactions involving aromatic amino acids promote LLPS in
other systems, such as FUS and TDP-43.8,17

Polar substitutions at the sticker but not spacer position
affected the phase diagram of UBQLN2. This makes sense
given the polar amino acid composition (Figure 1B). At
position 506, both LCST and UCST transitions were
perturbed. Interestingly, the LCST transitions of Ser, Thr,
and Gln substitutions nearly superimposed, while the UCST
arm of the coexistence curves decreased in the order C > S >
T. We also noted that five of the six substitutions that
produced aggregates (Figure S2E) were polar substitutions:
P497S, P497Q, P497N, P506Q, P506N.
Basic amino acid substitutions shifted coexistence curves to

the left, with little difference among the three basic amino acids
(His, Lys, Arg). The effects were more substantial for the
sticker position than for the spacer. Interestingly, acidic amino
acid substitutions had the opposite effects and greatly
increased the saturation concentrations needed for UBQLN2
LLPS, as well as narrowing the temperature region where the
protein phase-separated. We speculate that these effects can be
partially explained by the bulkiness of the side-chain

substitution (for Arg and Lys, whose side chains have some
hydrophobic character) as well as the charge state of the
UBQLN2 construct. At 25 °C, the predicted pI or isoelectric
point of the UBQLN2 450−624 construct is ∼4.4, with less
than 7% of the protein containing ionizable residues (Figure
1B). This means that the protein is negatively charged at pH
6.8, the pH chosen for our experiments. Introduction of
positive charges provides attractive Coulombic interactions
between the substitution and the overall charge of the protein,
thereby promoting intermolecular interactions between
UBQLN2 molecules to drive phase separation. In contrast,
acidic substitutions may do the opposite, potentially providing
repulsive interactions between UBQLN2 molecules and
decreasing phase separation.

Hydrophobic Sticker but Not Spacer Substitutions
Altered Droplet Morphology and Increased Viscoelastic
Properties. Mapping the lower concentration arms of the
phase diagram allowed us to evaluate the effects of the
substitutions on the dilute phase. However, what are the
consequences of the substitutions on the dense phase? To
answer this, we first used brightfield microscopy to investigate
the morphology of UBQLN2 droplets of representative amino
acid substitutions from the different classes of residues,
including W (aromatic), G and L (hydrophobic), R (basic),
Q (polar), and E (acidic) across the five positions studied here
(Figure 3A). In general, the droplet morphologies at these
different positions correlated well with the turbidity assay
results. Mutants exhibiting similar turbidity profiles as WT
UBQLN2 (e.g., P525 and V538 mutants) produced spherical
droplets of similar size as WT. Mutants that exhibited
significantly enhanced turbidity (P497W, P497L, P506W,
P506L) also formed amorphous droplets (Figures 1C and 3A).
Microscopy also confirmed the existence of aggregates as
observed in the turbidity assays for P497Q (P506Q aggregates
were observed at temperatures higher than 37 °C during the
turbidity assays and therefore were not seen under the
microscope). Surprisingly, acidic substitution E, which showed
little or no turbidity at the condition tested, appeared to form
small aggregate-like species at all five positions at our
experimental conditions. Over time, these aggregate-like
species sometimes morphed into droplets as observed for
V538E (Figure 3A). Consistent with our hypothesis, mutations
at spacer positions 525 and 538 (except V525R, P525E, and
V538E) had minimal effects on the morphology of the
droplets, while mutations at sticker positions 497, 506, and 564
elicited different morphologies ranging from round like WT-
like to amorphous droplets and/or aggregates.
To describe the effects of amino acid substitutions on the

properties of the dense phase quantitatively, we analyzed
droplet fusion kinetics. We noticed that, for many
substitutions, two fusing droplets relaxed into spherical shapes
within seconds, while for other substitutions, spherical shapes
were not achieved within a 3 min experimental window
(Figure 3B). Since the sphericity of droplets stems from
surface tension, the rates of droplet fusion report on droplet
viscosity and surface tension.31 To assess the liquidity of
mutant UBQLN2 droplets, we measured the time it took for
two fusing droplets to return to a spherical shape (or round in
two dimensions). We extracted relaxation times from droplet
fusion measurements for seven amino acid substitutions at the
sticker and spacer positions, 506 and 538, respectively, of
protein samples that had been incubated in phase-separating
conditions for 10 min (Figure 3B,C). Remarkably, droplets for
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V538 mutants fused quickly and with similar relaxation times
as that for WT UBQLN2, despite the markedly different types
of amino acid substitutions tested. These observations are fully

consistent with the spacer characteristics expected for position
538, in that spacer amino acid substitutions minimally
perturbed phase separation properties. In contrast, the type
of amino acid substitution at sticker position 506 had a
substantial impact on the rate of droplet relaxation. Bulky
aromatic and hydrophobic substitutions resulted in signifi-
cantly slowed droplet relaxation events, but not for polar and
ionizable substitutions. These data suggest that hydrophobic
and aromatic amino acids promote UBQLN2 intermolecular
interactions that increase viscoelasticity of UBQLN2 droplets
as well as drive UBQLN2 phase separation (see below).

Hydrophobic and Aromatic Sticker Substitutions
Increase UBQLN2 Oligomerization. As UBQLN2 oligome-
rization is a prerequisite for phase separation,25 we probed
UBQLN2 self-association propensity using SEC under non-
phase separating conditions (i.e., 20 mM NaPhosphate without
added NaCl). We previously demonstrated that WT UBQLN2
is monomeric at low protein concentrations (up to ∼100 μM)
but forms higher-order oligomers at higher concentrations
(∼500 μM).25 Indeed, SEC peak elution volumes for WT
decreased as protein concentration increased between 10 and
500 μM, as expected for UBQLN2 oligomerization. Therefore,
we subjected representative mutants at each position to size
exclusion chromatography using three protein concentrations
(10, 100, 500 μM).
All of the mutants studied exhibited concentration-depend-

ent oligomerization; increasing protein concentrations led to a
decrease in elution volume (Figure 4). Strikingly, almost all of
the spacer mutants (P525 and V538) exhibited a concentration
dependence that followed the pattern of WT UBQLN2. The
only exception was P525E, where a small population of large
particles eluted near the void volume (∼9 mL). Of all the E
mutants, P525E showed the most aggregates by microscopy
(Figure 3A). Among the sticker mutants, four oligomerized
substantially more than WT: P497W, P497L, P506W, and
P506L. Sedimentation velocity analytical ultracentrifugation
experiments showed that hydrophobic mutations T487I and
P497L also produced high-order oligomers.43 V564W and
V564L oligomerized slightly more than WT but not to a
significant extent, since the wild-type amino acid is valine,
which is already hydrophobic. These data suggest that aromatic
and hydrophobic substitutions promote UBQLN2 self-
association and thus drive LLPS at lower protein concen-
trations than WT (Figure 2) and enhance the viscoelasticity of
droplets (Figure 3).

■ DISCUSSION
How amino acid substitutions alter thermoresponsive phase
transition behavior of proteins is critical to elucidating the
driving forces of phase separation. Here, we demonstrated that
both LCST and UCST phase transition behaviors of UBQLN2
can be differentially tuned by single amino acid substitutions.
The observations herein provide evidence that the stickers and
spacers framework is useful to predicting the positions in a
given amino acid sequence that drive phase separation
behavior.8,12,20 Regardless of amino acid type, substitutions
at sticker but not spacer positions elicited major changes to the
overall shape and characteristics of the phase diagram (Figures
2 and 5).
Our original hypothesis considered the stickers of UBQLN2

to be residues that exhibited large concentration-dependent
changes in amide chemical shifts obtained by NMR spectros-
copy.25 In the stickers and spacers framework, the number of

Figure 3. Amino acid substitutions in the sticker, but not spacer,
regions affect droplet properties. (A) Light microscopy of different
UBQLN2 mutants over 10 and 30 min at 37 °C using 100 μM protein
at sticker (P497, P506, V564) and spacer (P525, V538) positions.
Scale bar = 5 μm. (B) Snapshots of droplet fusion over a nine second
window (for WT and V538L and V538W) and a 36 s window (for
P506L and P506W), indicating differences in droplet fusion kinetics
between substitutions at a sticker position (P506) and a spacer
position (V538). Droplets were imaged 10 min after incubating 100
μM protein (except for P506W (25 μM), P506E and V538E (300
μM)) at 37 °C in buffer containing 20 mM NaPhosphate and 200
mM NaCl (pH 6.8). Scale bar = 2 μm. (C) Average characteristic
relaxation times for WT and mutant droplet fusion. Error bars
represent the standard deviation over eight droplets.
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stickers and their “stickiness” control the saturation concen-
trations (cs) and the coexistence curve for LLPS, whereas
spacer residues weakly modulate these parameters. These
expectations are completely in line with our observations on
amino acid substitutions at the three stickers (P497, P506, and
V564) and two spacers (P525, V538) (Figure 1C,B).
Strikingly, not only did single amino acid substitutions alone
substantially shift cs values but the effects of these substitutions
followed particular trends to create a rich molecular code that
governs UBQLN2 LLPS.
Self-association and LLPS of UBQLN2 are mediated by

hydrophobicity involving either aliphatic or aromatic residues
(Figure 2, Figure 4), in line with the hydrophobic composition
of the amino acid sequence (Figure 1B). At position 506,
decreased cs values for the LCST phase transition correlated
with increased hydrophobicity of amino acid substitution
(Figure S5). Indeed, while we did not obtain phase diagrams
for P497 mutants, the LCST transition temperatures for
aromatic and hydrophobic substitutions at P497 followed the
same trend as that at P506 (Figure 1C). LCST phase
transitions require hydrophobicity.22,25,32 UBQLN2 also has
high proline and glycine content (Figure 1B), which is a
frequent component of proteins that undergo LCST phase
transitions, such as Pab1, tropoelastins, and the spindle-
associated BuGZ protein.14,15,33

UBQLN2 exhibits a closed-loop phase diagram with both
LCST and UCST phase transitions, such that the protein
solution is well-mixed either above the UCST or below the
LCST (Figure 2A). The thermodynamics of the underlying
phase transitions can be explained by the entropic and
enthalpic forces experienced by nonpolar particles in water
as a function of temperature.34 At low temperature, solubility
of hydrophobic particles is high, partially due to water
structuring around the hydrophobic groups. As temperature
increases, the entropic cost to organize water also increases to a
point at which solvent molecules are released from
surrounding hydrophobic side chains, promoting demixing
(phase separation) to minimize the free energy of the system.
In polymer solutions, dehydration of hydrophobic groups is
accompanied by attractive polymer−polymer interactions that
also contribute to demixing.35 As temperature increases
further, entropy also increases promoting a UCST transition
where homogeneous mixing of the polymer solution occurs. A
decrease in polymer−polymer and solvent−solvent interac-
tions also promotes mixing.36 This UCST transition is not
always observed, as biopolymers generally denature at high
temperatures, but UBQLN2 450−624 remains well-behaved
up to 60 °C.43

As illustrated in Figure 1B, more than 25% of UBQLN2
450−624 contains polar residues (Q, N, S, T). Therefore, the

Figure 4. Oligomerization propensities of different UBQLN2 mutants. Representative SEC profiles of UBQLN2 mutants at 10 μM (thinnest line),
100 μM (medium-thick), and 500 μM (thickest) protein concentrations. For each mutant, WT SEC curves were plotted in gray for visual
comparison.
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driving forces underlying UBQLN2 phase separation are likely
due to a combination of the hydrophobic effect and polar
interactions. Of note, polymers rich in polar residues (N, Q)
undergo a collapse transition reminiscent of the intrachain
collapse in hydrophobic biopolymers, even though the
underlying forces for polar collapse likely include other
interactions such as intrachain hydrogen bonding and
amide−solvent interactions.28,37 Interestingly, the cs values
for the LCST transition correlated well with the hydro-
phobicity of the amino acid substitution at P506 when all
nonionizable residues were considered (Figure S5B). Polar
substitutions also promoted aggregation (Figure S2E).
The polar groups in UBQLN2 likely modulate the UCST

transition, as favorable polymer−polymer interactions among
polar and/or ionizable tracts in intrinsically disordered proteins
(IDPs) such as FUS and hnRNPA1 are considered drivers of
UCST transitions in biopolymers.6,9 An increase and decrease
in the UCST part of coexistence curves correspond to stronger
and weaker polymer−polymer interactions, respectively.
Complicating matters, hydrophobic groups also modulate
UCST, and the effects of hydrophobic amino acid substitutions
on the UCST transitions in UBQLN2 are certainly complex.
At P506, increased hydrophobicity moderately tracks with
decreased cloud-point temperatures for the UCST transition
(Figure S5A). Our observations are opposite of what was seen
in designed IDP polymers, for which UCST cloud points
increased with increasing hydrophobicity.38 Interestingly, our

turbidity data profile for hydrophobic substitutions at P497 are
in better agreement with Quiroz et al.38 We must acknowledge
that prolines are structure-disrupting amino acids. In addition,
peptide bonds preceding prolines can isomerize between cis
and trans conformations. Therefore, the differences in
observed turbidity profiles for proline substitutions at different
positions could be partially explained by changes to backbone
conformation and flexibility. These observations emphasize the
heterogeneity of the phase transition behavior for the same
type of amino acid substitution even among the sticker
positions.
Remarkably, Asp and Glu mutations at any of the five tested

positions in UBQLN2 reduced phase separation and
significantly compressed the phase-separating regime in the
UBQLN2 phase diagram (Figure 2). Importantly, these acidic
mutations are also phosphomimetic substitutions. These data
highlight the potential impact of post-translational modifica-
tions such as phosphorylation on modulating phase separation
behavior. However, the effect is likely very dependent on the
electrostatics of the protein system involved.8,39

Material properties of the dense phase are also modified by
amino acid substitutions.9,40 The liquid−liquid phase diagram
therefore includes liquid-gel phase boundaries as schematized
in Figure 5.6 Indeed, the stickers and spacers framework is one
formalism that quantitatively addresses gelation.13 We
observed that hydrophobic and aromatic amino acid
substitutions only in sticker position P506 showed significantly

Figure 5. Illustration of effects of UBQLN2 sticker and spacer substitutions on temperature−concentration phase diagrams. (A) Effects of spacer
and different types of sticker substitutions on the shape of the phase diagram. Amino acid substitutions in sticker regions move the location and
shape of the phase boundaries. However, high concentration arms are hypothetical and for illustration purposes only. We hypothesize that the high
concentration arms of some of the sticker mutants also move as we observed changes to the material properties of the dense phase. (B) Effects of
mutations on phase diagrams and viscoelasticity. Gray and yellow shapes represent regions where the dense phase is liquid-like and gel/aggregate-
like, respectively. (left) Green arrow represents a condition where dense phase is liquid. (right) Green arrow represents a condition where dense
phase is solid-like (i.e., gel-like consistency).
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slowed droplet fusion kinetics (Figure 3), and those same
mutants exhibited increased oligomerization propensity
(Figure 4). At least in the UBQLN2 system, material
properties of the dense phase appear linked to the propensity
for UBQLN2 to oligomerize. We also noted that mutations
that increased the propensity of oligomerization promoted
UBQLN2 LLPS and led to slowed droplet fusion kinetics.43

However, this is not always the case, as spacer mutations
significantly slowed droplet fusion kinetics in the FUS family of
proteins,8 and physicochemical properties of spacers in
multidomain proteins modulate the liquid−liquid and
liquid−gel phase boundaries.11

In summary, our work here provides a rich data set to be
used as a benchmark for analytical and computational models
of phase separation. While mean-field theories such as Flory−
Huggins approximate phase separation behavior for several
systems,18,41 sequence-dependent frameworks will be essential
to capture the nuances of phase-separating systems such as
UBQLN2.42 The stickers and spacers framework has already
been used to successfully examine the underlying forces of
phase separation in the FET family of RNA-binding proteins.8

Unraveling the complexities of solvent−solvent, polymer−
polymer, and polymer−solvent interactions will establish the
molecular code of phase-separating systems.

■ CONCLUSIONS
In this work, we put forth UBQLN2 450−624 as a model
system to study the physicochemical molecular determinants
of phase separation. We employed a battery of spectrophoto-
metric, microscopy, and size exclusion chromatography
experiments to systematically elucidate how amino acid
substitutions at different positions in the protein sequence
modulate phase separation. Experimental phase diagrams
revealed that we can describe UBQLN2 as an associative
polymer with stickers and spacers that drive and modulate
phase separation behavior. Single amino-acid substitution can
substantially shift coexistence curves in a residue type-
dependent manner. It is our expectation that our experimental
data can be used to rigorously design and benchmark analytical
models and molecular simulations of phase separation. This
work can be used to elucidate effects of disease-linked
mutations in phase-separating systems as well as to design
thermoresponsive biopolymers.
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Carlos A. Castañeda received his Ph.D. from the Program in
Molecular Biophysics at Johns Hopkins University working with Dr.
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