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1. Introduction

The problem of constructing a theory of gravity which is consistent with quantum mechanics

has a long history. The non-renormalizability of quantum general relativity can be traced

to the fact that the Newton constant carries the dimensions of length squared corresponding

to an action linear in the curvature. Actions containing higher powers of the curvature are

usually thought to lead to violations of unitarity and can at best be thought of only as effective

field theories [1].

Alternative approaches to gravity have tried to highlight the similarities to gauge theory,

where in the case of gravity, the local symmetry corresponds to Lorentz invariance. In this case

the corresponding gauge field is called a spin connection. It is necessary to introduce such an

object when discussing fermions in curved spacetime where it is partnered by a new field the

so-called vierbein which describes the local Lorentz frame and from which the usual metric

tensor can be reconstructed. An action coupling the vierbein to the Yang-Mills curvature

associated with this spin connection can be written down and shown to reproduce the usual

Einstein equations under certain conditions – that the vierbein, regarded as a matrix, be

invertible and that the torsion – the antisymmetrized covariant derivative of the vierbein, be

zero. It is a first order formulation as both the vierbein and spin connection are to be varied

independently to determine the classical equations of motion.

This recasting of gravity in the language of gauge theory is termed the Palatini or Palatini-

tetrad formulation of General Relativity [2]. In principle this approach gives a natural starting

point for a non-perturbative study of quantum gravity since it is possible to discretize the

theory while maintaining exact gauge invariance using techniques similar to those employed
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for (lattice) QCD. As such it is complementary to lattice approaches based on Euclidean

dynamical triangulations see eg. [3, 4, 5, 6] and causal dynamical triangulations [7, 8, 9] and

references therein.

A number of proposals have been made earlier along these lines [10, 11, 12, 13, 14]

and numerical studies performed [15, 16, 17]. Unfortunately this previous work encountered

several difficulties; chief among these was the observation that the expectation value of the

vierbein vanished in the classical weak coupling limit. This condition by itself is sufficient to

invalidate the connection between the gauge theory and gravity as we will discuss in the next

section.

In this work we have explored the phase structure of a lattice model in which the discrete

Palatini action is supplemented by an additional Yang-Mills term. We find a region of the

parameter space of the model where the vierbein is non-zero, the torsion small and the

curvature constant.

The paper starts with a review of the Palatini formalism in the continuum, and describes

its discretization on the lattice. The non-perturbative structure of this theory is then explored

using Monte Carlo simulation and we show the classical ground state of the theory corresponds

to vanishing vierbein and a curvature which approaches its kinematic limits 1. Thus the

resulting lattice theory does not possess an appropriate ground state which can be identified

with a continuum geometry. We then modify the model to incorporate an additional curvature

squared operator and survey the expanded phase diagram finding indications of a region

where the ground state of theory can be identified with Euclidean de Sitter space. In the

final section of the paper we discuss what these results imply and what further work must be

done to solidify any possible connection to a theory of gravity.

2. Review of the Palatini formalism

The Palatini action can be regarded as the most general action constructed from the curvature

of the spin connection and the vierbein which is invariant under local Lorentz transformations

and whose definition is independent of the choice of background metric. It takes the form

SPalatini =
1

l2p

∫

d4x ǫµνλρ ǫ
ijkl eiµ e

j
ν

(

Rkl
λρ −

Λ

6
ekλ e

l
ρ

)

(2.1)

with lp =
√
4πG the Planck length. The usual metric of General Relativity is then related to

the vierbein via

gµν = ηi j e
i
µ e

j
ν (2.2)

where ηi j = δij is a flat (Euclidean) metric which henceforth we shall leave implicit in formu-

lae. This relation is clearly invariant under local SO(4) gauge transformations mediated by

1In Euclidean space we replace the Lorentz group SO(3, 1) by its compact analog SO(4). In the context of

the lattice theory this ensures that the local curvature is bounded both above and below
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the spin connection ωµ where

ωµ =
∑

i<j

ωij
µ T

ij i < j = 1 . . . 4 (2.3)

with T ij being appropriate generators of SO(4). The curvature Rij
µν(ω) appearing in eqn. 2.1

is the usual Yang-Mills field strength associated with the spin connection.

Rij
µν = ∂µω

ij
ν − ∂νω

ij
µ +

[

ωik
µ , ωkj

ν

]

(2.4)

Variation of this action with respect to the spin connection yields the torsion free constraint

D[µ e
i
ν] = 0 which can be used to solve for the spin connection in terms of the vierbein provided

the inverse eµi exists. The solution is

ωµ ij(e) =
1

2
eνi e

ρ
j

(

Ωµνρ − Ωνρµ +Ωρµν

)

; (2.5)

where,

Ωµνρ =
(

∂µe
k
ν − ∂νe

k
µ

)

eρ k (2.6)

Variation of the action with respect to the vierbein then yields the equation,

ǫijkl ǫµνλρ

(

Rij
µν −

Λ

3
eiµ e

j
ν

)

ekλ = 0 (2.7)

which, in conjunction with the torsion free solution given above ω = ωµ(e), just reproduces the

usual Einstein equation for pure gravity with a cosmological constant. The vacuum solutions

are then constant curvature spaces – here Euclidean de Sitter space - the sphere S4.

As MacDowell and Mansouri noted [18] it is possible to forge an even stronger connection

to Yang-Mills theory by combining the SO(4) spin connection ωµ and vierbein eµ into a single

gauge field Aµ associated with a enlarged SO(5) gauge symmetry

Aµ = ωij
µ T

ij +
1

l
eiµT

5i i, j = 1, . . . 4 (2.8)

where l is some scale inserted to render the vierbein dimensionless. In a similar fashion

the SO(5) curvature Fµν can be decomposed into components transforming under the same

SO(4) subgroup

Fµν =

(

Rµν −
1

l2
e[µ eν]

)ij

T ij

+
1

l
D[µ e

i
ν]T

5i i, j = 1 . . . 4 (2.9)

with R the SO(4) curvature.

An SO(4) invariant action quadratic in this SO(5) curvature may then be written down

S = κ

∫

d4xǫµνλρ ǫ
ijkl5F ij

µνF
kl
λρ (2.10)
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By expanding the SO(5) field strengths according to eqn. 2.9 this is easily seen to be nothing

more than the Palatini action given in eqn. (2.1) with the dimensionless coupling κ = 1
2

(

l
lp

)2

giving the size of the Universe in units of the Planck length and Λ = 3
l2

2 Notice that the

classical equations of motion derived from the Palatini action just correspond to setting the

SO(5) curvature to zero.

This action while formulated in terms of an SO(5) connection exhibits an explicit breaking

to SO(4). It is natural to generalize this action slightly to try and realize this as a spontaneous

breaking. The following SO(5) action accomplishes this at the expense of introducing an

additional scalar field φ.

S =

∫

d4xǫµνλρ ǫ
ijklmF ij

µνF
kl
λρφ

m (2.11)

On the assumption that the scalar acquires a vacuum expectation value of the form φm = κδ5m

we recover the previous action.

The appearance of a scalar field φ and an associated SO(5) gauge symmetry seems at

first sight to be somewhat arbitrary. However, it is possible to show that this SO(5) invariant

theory arises naturally as a compactification of a Chern-Simons theory in five dimensions.

This Chern-Simons theory is a generalization to five dimensions of Witten’s formulation of

three dimensional gravity as a Chern Simons theory [?, ?]. In the Euclidean case considered

here this amounts to constructing a topological gravity theory in five dimensions with internal

symmetry group SO(6) and action

SCS =

∫

M5

< Ω ∧R ∧R+
3

2
Ω ∧Ω ∧ Ω ∧R+

3

5
Ω ∧ Ω ∧ Ω ∧Ω ∧ Ω > (2.12)

where for brevity we used the language of differential forms to represent the contraction of

spacetime indices with the five dimensional epsilon symbol. The Lie algebra valued connection

is

Ωµ =
∑

A<B

ΩAB
µ JAB ; A,B = 1, . . . , 6 ; (2.13)

with JAB = [γA, γB ] the generators of SO(6) and R the curvature. The the angular brackets

indicate that the group indices are contracted with the SO(6) invariant tensor ǫABCDEF . This

Chern-Simons Lagrangian is related to the Euler density in six dimensions via the relation,

dLCS = ǫABCDEF RAB ∧RCD ∧REF (2.14)

Stokes’ theorem then guarantees that the Chern-Simon’s theory is invariant under local gauge

transformations up to possible boundary terms.

It is useful at this point to decompose the connection in terms of quantities transforming

simply under an SO(5) subgroup

Ω =
∑

a<b

AabJab +
∑

a

EaJ6a a, b = 1 . . . 5 (2.15)

2A term quadratic in the SO(4) curvatures also appears
∫
ǫµνλρǫ

ijklRij
µνR

kl
λρ but can be neglected as it

corresponds to a topological invariant - the Euler number
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Similarly the SO(6) field strength decomposes according to

R =
∑

a<b

(F ab +Ea ∧Eb)Jab +
∑

a

DEaJ6a (2.16)

where F is the SO(5) curvature and DE the torsion. The action up to boundary terms

becomes

SCS =

∫

M5

ǫabcde

(

Ea ∧ F bc ∧ F de +
2

3
Ea ∧ Eb ∧Ec ∧ F de +

1

5
Ea ∧Eb ∧ Ec ∧ Ed ∧ Ee

)

(2.17)

In this form it is clear that the action does indeed describe a gravitational theory contain-

ing a “Gauss-Bonnet form”, an Einstein term and a cosmological constant in five dimensions.

Furthermore, this theory is invariant under the full (Euclidean) de Sitter group not just local

Lorentz transformations.

To make contact with the MacDowell-Mansouri form of the Palatini action we must

compactify this theory down to four dimensions. Let us assume that the five dimensional

manifold is of the form M5 = M4 × S1/Z2 with l5 the extent of the fifth dimension. On

the four dimensional boundaries we will assume that the gauge field satisfies the following

boundary conditions,

Ωµ = γ6 Ωµ γ6 ; µ = 1, . . . , 4 (2.18a)

Ω5 = −γ6Ω5 γ6 (2.18b)

This breaks the SO(6) gauge symmetry down to SO(5) at the boundaries with the only

surviving four dimensional fields being

Ea
5 , Aab

µ . (2.19)

Returning to the action in eqn. 2.17 it shoul be clear that only the “Gauss-Bonnet” term

survives at tree level on the four dimensional boundaries. Indeed, this term becomes

∫

d4x ǫabcde ǫµνλρ E
a
5 F

bc
µν F

de
λρ (2.20)

This is nothing more than the previous action with the fifth component of the five dimensional

vielbein playing the role of the scalar field in the four dimensional theory. The development

of a vacuum expectation value for the scalar field could then be realized in terms of the

appearance of a non vanishing Polyakov line in the fifth direction extending between the two

four dimensional boundaries.

Thus the SO(5) invariant theory given in eqn. 2.11 can be realized by an appropriate

compactification of a topological gravity theory in five dimensions. The possible existence

of an underlying exact SO(5) gauge symmetry in the four dimensional theory has some

advantages; it allows us to restrict possible counter terms to those invariant under SO(5), it
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makes the choice of the Haar measure for SO(5) natural in the path integral and also, as we

now explain, it makes the restoration of diffeomorphism invariance a more likely possibility.

In [?] Witten showed that in fact diffeomorphism invariance is intimately connected to

invariance under both lorentz transformations and local translations. In the four dimensional

model considered here the result of a general coordinate transformation with parameter −ξν

acting on the spin connection and vierbein can be written compactly as a gauge transformation

with parameter ξµAµ acting on the SO(5) gauge field A = ω + e plus a term which vanishes

on flat connections with F = 0

δξAµ = −Dµ(ξ
νAν)− ξνFµν (2.21)

Thus provided the theory is SO(5) invariant and we consider only small fluctuations around

a flat background the theory will automatically be invariant under general coordinate trans-

formations.

3. Lattice theory

It is straightforward to formulate the Palatini action in the form given by eqn. 2.10 on a

hypercubic lattice as was first suggested in [10].

SP = κ
∑

x

∑

µνρλ

ǫµνλρTr (γ5UµνUλρ) (3.1)

where

Uµν = Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x) (3.2)

is a Wilson plaquette variable and takes its values in the group SO(5)3. Notice that in our

study we have taken as generators of SO(5) the matrices T ij = 1
4 [γ

i, γj ] where γi, i = 1 . . . 5

are the usual four dimensional Dirac matrices together with the chiral matrix γ5. This differs

from the earlier numerical work reported in [16, 17] which utilized the vector representation

of SO(5) and implies that we are actually simulating a lattice theory based on the covering

group spin(5). As we will see this will turn out to be rather important.

Notice though that the introduction of a lattice has necessarily broken the coordinate

invariance of the theory in the base space. Thus one should expect that quantum corrections

will generate additional operators whose structure depends on the existence of this background

lattice. Assuming that these operators depend only on the SO(5) curvature there are 3 such

terms in addition to the Palatini action which are (marginally) relevant by power counting;

•
∫

d4xǫµνλρTr (FµνFλρ)

•
∫

d4xTr (FµνFµν)

3For simplicity in this study we have not symmetrized our action to ensure rotational invariance nor have

we concerned ourselves at this point with issues of reflection positivity
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•
∫

d4xTr (γ5FµνFµν)

The first of these is a topological invariant in the continuum analogous to the instanton

number and hence can be neglected. In principle we should include lattice versions of both

the second and third terms. In practice we have focused these initial investigations on just

the second term. On the lattice we implement it with the usual Wilson plaquette action

SW =
∑

x

∑

µ<ν

Tr
(

2− Uµν − U †
µν

)

(3.3)

Our choice of this term has clear motivation; it clearly will favor configurations in the large

κ limit with vanishing SO(5) curvature – a feature which will see shortly is not true of the

pure Palatini action. Such configurations are minimally required to achieve a connection to

classical gravity. It also has the merit of removing potential lattice doubler modes which will

be present in the Palatini action as was first observed in [13].

Of course the presence of a Wilson term is not compatible with coordinate invariance in

the base space. It will clearly be very important to test for a restoration of this property in any

continuum limit. Nevertheless the important point to realize is that this term is necessarily

induced in the lattice theory and to have a hope to obtaining the correct continuum limit we

should include it in the bare lattice action and tune its coupling appropriately as the lattice

spacing is reduced. The lattice action we consider then has the form

S = κ (αSW + (1− α)SP ) (3.4)

which allows us to interpolate between the pure Palatini action defined by α = 0 and pure

Wilson action when α = 1.

Finally, we need to give a presecription for extracting the various SO(4) components of

the connection and curvature from the basic SO(5) variables in the theory. We used the

simple expressions for the vierbein and torsion

eiµ = Tr
[

T 5iUµ

]

(3.5)

T i
µν = Tr

[

T 5i 1

2
(Uµν − Uνµ)

]

i = 1, . . . 4 (3.6)

while the SO(4) components of the curvature Rµν = Rµν − e[µ eν] are given by

Rij
µν = Tr

[

T ij 1

2
(Uµν − Uνµ)

]

i = 1 . . . 4 (3.7)

As in the previous studies [17, 16] we have assumed an SO(5) invariant Haar measure on

the group in the path integral defining the quantum theory. We have employed a standard

metropolis algorithm to perform the Monte Carlo simulation.
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Figure 1: Expectation value of Palatini action for α = 0 vs coupling κ

4. Numerical results

4.1 Pure Palatini

In fig. 1 we show the expectation value of the pure Palatini action (α = 0) as a function of

the coupling κ for a sequence of three lattice sizes L = 6, 8, 12. One sees that the action

approaches its lower kinematic bound of SP = −24 (which reflects the number of non-zeroes

of the ǫ symbol) independent of L as the weak coupling limit κ → ∞ is taken. This limit is

reached when the plaquette variables satisfy the extremality condition

Uµν = −γ5ǫµνρλU
†
ρλ (4.1)

We will see later that pure Palatini configurations satisfying this condition possess a maximal

SO(4) curvature and hence cannot be interpreted as corresponding to a smooth spacetime.

Presumably this reflects the usual unboundedness problem of Euclidean quantum gravity.

Furthermore, we observe that the expectation value of the vierbein approaches zero as κ → ∞
as can be seen in fig. 2 in which Tr(g) =

∑

µ,i e
i
µe

i
µ is plotted as a function of κ for the same

range of lattice sizes4. As emphasized earlier the vanishing of the vierbein implies that the

corresponding metric gµν is zero and removes the possibility of interpreting the classical

equations of motion as corresponding to the field equations of a metric theory of gravity.

Before discussing the situation with α > 0 we first return to an issue of what represen-

tation should be used for implementing the local Lorentz invariance. As we have described

4We absorb the scale l into our lattice vierbein throughout this paper
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Figure 2: Expectation value of Tr(g) for α = 0 vs coupling κ

in the last section, all the results shown in this paper have been obtained using the four di-

mensional representation of spin(5) given in terms of commutators of four dimensional Dirac

matrices. As one can see in the previous two plots this choice generates a smooth dependence

of observables on the coupling κ. This is quite different to what was seen in the only previous

numerical study of this system where a very strong first order phase transition was observed

separating strong from weak coupling.5 Indeed the observed hysteresis effects were so severe

in the latter case that it was hard to even thermalize the lattices in the weak coupling phase.

This earlier study utilized the fundamental or vector representation of SO(5). This observed

disparity in the phase structure of these two lattice theories depending on choice of represen-

tation is seen even in the pure Wilson theory (α = 1) as can be seen in fig. 3 which shows

the average action plotted as a function of κ for the two representations While the two repre-

sentations agree at weak coupling as they must since they possess the same Lie algebra, they

differ at strong coupling and the lattice action employing the fundamental representation of

SO(5) suffers a strong first order transition for κ ∼ 0.75 which is completely absent in the

spin(5) representation. This is analogous to the situation for the lattice theories of SO(3) and

SU(2) – the former exhibiting a first order bulk phase transition separating weak from strong

coupling while the latter does not. Indeed, the analogy is even stronger since SU(2) ≡ spin(3)

which leads us to conjecture that while the SO(N) groups have first order bulk transitions

their covering groups spin(N) do not. Certainly from a practical point of view the use of the

spinor representation is clearly superior to that of the vector representation.

5One needs to rescale κ in this work by 16 to compare the two couplings in these simulations [17, 16]
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Figure 3: Comparison of vector and spinor representations for SO(5) Wilson action

4.2 Palatini plus Wilson

In this section we shows results obtained in the model with α > 0. First consider the

expectation value of the Palatini action in such models. Fig. 4 shows this for four different

values of the coupling α = 0.0, 0.25, 0.5, 0.75 for a fixed 84 lattice as a function of κ. Clearly

the curves fall into 2 classes; for small α the expectation value of the action approaches the

kinematic boundary corresponding to maximal (negative) curvature while for larger α they

approach vanishing action in the weak coupling limit. A similar contrasting behavior is seen

in the plot of the vierbein as revealed in fig. 5. At small α the vierbein is driven to zero for

large κ as for pure Palatini while for α above some critical value αT the vierbein remains

non-zero in the weak coupling limit. Thus it appears that a sufficiently large coupling to the

Wilson operator stabilizes the vierbein. However this is not enough – we also require a zero

torsion condition and a small curvature. We now turn to these other observables. Fig. 6

shows a plot of Rij
µνRij

µν and T i
µνT

i
µν for the same values of α as a function of the coupling κ.

For small α the expectation values are driven to values similar to the case for pure Palatini –

the SO(4) curvature attaining near maximal (negative) values as κ → ∞6. However, again,

for large values of α both the torsion T and curvature R approach zero at weak coupling.

Indeed, notice that for α = 0.75 the torsion and curvature are degenerate to within small

errors in this limit.

These are quite encouraging results but one might worry that the Palatini action is

playing no role at all for large α and the physics is being dominated by just the Wilson term

6Notice that R → R for e = 0
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Figure 4: Expectation value of Palatini action vs coupling κ for various α

– which would invalidate any connection to gravity. To show that this is not the case we have

plotted a “self-dual” order parameter given by7

P =

∑

x ǫµνλρǫ
ijklU ij

µνUkl
λρ

∑

x U
ij
µνU

ij
µν

(4.2)

On the extremal configurations given by eqn. 4.1 this attains a value of minus one. This

should thus be the case for pure Palatini at large κ. In contrast it should vanish in the case

of the pure Wilson action. In fig. 7 we show the value of this order parameter for the same

range of α and κ on the 84 lattice. Notice that the curves for α = 0.5, 0.75 indicate that

order parameter appears to approach a constant for large κ at a value which is intermediate

between the pure Palatini and Wilson values. We regard this as a piece of evidence disfavoring

a system governed solely by the Wilson term.

Up to this point we have concentrated on showing results as a function of κ for several

discrete values of α. However it is also very instructive to show the data as function of α

at fixed κ. For example, the expectation value of the Palatini action is shown in fig. 8 For

α < αT with αT = 0.4 − 0.5 it is clear that the Palatini action flows to its kinematic lower

limit as κ → ∞ independent of the value of α within this range while for α > αT the trend is

reversed and the action goes to zero for large enough κ. This suggests two different ground

7This is analogous to the self-dual order parameter introduuced in [16] although in that case the duality

operation involves only the internal space
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Figure 5: Expectation value of Tr(g) vs coupling κ for various α

states are available to the system at least for large enough κ whose domain of attraction is

determined by the coupling α. For α < αT the system at weak coupling is governed by the

pure Palatini action while for α > αT the system flows to a ground state corresponding to

vanishing SO(5) curvature. In the limit α → 1 this is just the usual Wilson vacuum. To

contrast with this behavior notice that for small κ coupling eg κ = 0.5, the value of the action

depends only very weakly on the associated coupling α and a system seems to exist in just

one phase. Of course one expects that the ground state of the system for small κ is dominated

by lattice artifacts so this latter phase is ultimately uninteresting.

This cross-over between two different ground states for large κ is clearly seen by looking

at the torsion and curvature as a function of α. A plot (fig. 9) showing T and R for κ = 20.0

as a function of α confirms the importance of this threshold coupling αT As α increases the

curvature drops towards to zero rapidly merging with the torsion for α > αT ∼ 0.5.

A similar picture is revealed by looking at the plot of the order parameter P as shown

in fig. 10. It appears that the order parameter equals minus one for all α < αT as κ → ∞
but then rises towards zero as α varies in the range α > αT . Notice also that there is little

κ dependence in the curves for α > αT - the curves for different κ rapidly approach fixed

well-defined envelope in this region of parameter space. Again, let us emphasize that the

small κ data doesn’t fit this picture – there is no evidence for a threshold value of α in the

κ = 0.5 curve. Thus the phase diagram seems to contain a single strong coupling phase but

the possibility of two dramatically different phases at large κ coupling. It is unclear from
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Figure 6: Curvature and torsion components of the SO(5) field strength vs κ
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Figure 7: Order parameter P as a function of κ for several α

the data whether there is a discontinuity or not for α → αT . One hint favoring a true phase

transition at αT can be obtained by looking at the local volume element ǫijklǫµνλρe
i
µe

j
νekλe

l
ρ.
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Figure 8: Expectation value of Palatini action as function of α for several κ
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Figure 9: Curvature and torsion as a function of α for κ = 20.0

We can extract a gauge invariant measure for this on the lattice by extracting an expression
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Figure 10: Order parameter as a function of α for several κ

for a matrix valued representation of the vierbein at a site:

eµ(x) = γ5Uµ(x)γ5U
†
µ(x)− I (4.3)

which leads to an expression for the gauge invariant volume element

√
g = ǫµνλρTr (eµeνeλeρ) (4.4)

The absolute value of this quantity is shown in fig. 11 for κ = 20.0 and L = 8 as a function

of α. For small α the vierbein vanishes and so does the volume element while for α > αT

it becomes constant. However, in the vicinity of αT we see a sharp spike corresponding to a

large local volume element in lattice units.

5. Discussion

We have simulated a Euclidean model for quantum gravity based on discretization of the

Palatini action including a cosmological constant term and supplemented by a Wilson term.

Unlike a previous study of the pure Palatini action we have employed the spinor representation

of the spin(5) covering group to define the lattice action. This is faster to implement and

appears to avoid some of the strong lattice artifacts seen in earlier studies of this action.

We show that the pure Palatini lattice theory is sick suffering from a local curvature

which attains the maximal (negative) value consistent with the compact gauge symmetry, a

vanishing vierbein and lattice doublers.
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Figure 11: Absolute value of the volume element vs α for κ = 20.0

We argue that the Wilson operator serves both to regulate all of these problems and

furthermore will necessarily be induced at the quantum level if it is not present in the bare

lattice action. In the expanded parameter space determined by the Palatini and Wilson

couplings we find evidence for two new ground states for sufficiently weak coupling (large κ)

– one corresponding to pure Palatini and suffering from all the old problems and a second in

which the vierbein is non-zero, and the torsion and curvature are small. These two vacua can

be distinguished by a self-dual order parameter and can be accessed by tuning the coupling

α which controls the mixing with the Wilson term.

It appears that for α couplings close to some threshold value αT the new vacuum is not

just that of the pure Wilson action but retains a memory of the Palatini term as revealed

by the self-dual order parameter acquiring a non-trivial value there. It remains to be seen

whether this threshold value αT can be thought of as a true critical value and if so whether

this critical value corresponds to a continuous or discontinuous phase transition. The latter

issue is of course a crucial issue to address in the context of obtaining a non-trivial continuum

limit.

Acknowledgments

SMC and DF are supported in part by DOE grant DE-FG02-85ER40237. The simulations

were carried out using USQCD resources at Fermilab.

– 16 –



References

[1] J. F. Donoghue, General relativity as an effective field theory: The leading quantum corrections,

Phys. Rev. D50 (1994) 3874–3888, [gr-qc/9405057].

[2] Y. Ne’eman and T. Regge Phys. Lett. B74 (1978) 54.

[3] S. Catterall, J. B. Kogut, and R. Renken, Phase structure of four-dimensional simplicial

quantum gravity, Phys. Lett. B328 (1994) 277–283, [hep-lat/9401026].

[4] J. Ambjorn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett. B278

(1992) 42–50.

[5] B. V. de Bakker and J. Smit, Curvature and scaling in 4-d dynamical triangulation, Nucl. Phys.

B439 (1995) 239–258, [hep-lat/9407014].

[6] M. E. Agishtein and A. A. Migdal, Critical behavior of dynamically triangulated quantum

gravity in four-dimensions, Nucl. Phys. B385 (1992) 395–412, [hep-lat/9204004].

[7] J. Ambjorn, A. Gorlich, J. Jurkiewicz, and R. Loll, The Nonperturbative Quantum de Sitter

Universe, Phys. Rev. D78 (2008) 063544, [0807.4481].

[8] J. Ambjorn, J. Jurkiewicz, and R. Loll, The Self-Organized de Sitter Universe, Int. J. Mod.

Phys. D17 (2009) 2515–2520, [0806.0397].

[9] J. Ambjorn, A. Gorlich, J. Jurkiewicz, and R. Loll, Planckian Birth of the Quantum de Sitter

Universe, Phys. Rev. Lett. 100 (2008) 091304, [0712.2485].

[10] L. Smolin, QUANTUM GRAVITY ON A LATTICE, Nucl. Phys. B148 (1979) 333.

[11] P. Menotti and A. Pelissetto, GAUGE INVARIANCE AND FUNCTIONAL INTEGRATION

MEASURE IN LATTICE GRAVITY, Nucl. Phys. B288 (1987) 813.

[12] P. Menotti and A. Pelissetto, POINCARE, DE SITTER AND CONFORMAL GRAVITY ON

THE LATTICE, Phys. Rev. D35 (1987) 1194.

[13] P. Menotti and A. Pelissetto, REFLECTION POSITIVITY AND GRAVITON DOUBLING IN

EUCLIDEAN LATTICE GRAVITY, Ann. Phys. 170 (1986) 287.

[14] S. Caracciolo, P. Menotti, and A. Pelissetto, LATTICE SUPERGRAVITY AND GRAVITON -

GRAVITINO DOUBLING, Nucl. Phys. B296 (1988) 868.

[15] S. Caracciolo and A. Pelissetto, ANALYSIS OF THE CRITICAL BEHAVIOR OF DE SITTER

QUANTUM GRAVITY ON A HYPERCUBIC LATTICE, Phys. Lett. B193 (1987) 237.

[16] S. Caracciolo and A. Pelissetto, PHASES AND TOPOLOGICAL STRUCTURES OF DE

SITTER LATTICE GRAVITY, Nucl. Phys. B299 (1988) 693.

[17] S. Caracciolo and A. Pelissetto, A NUMERICAL INVESTIGATION ABOUT QUANTUM

MEASURE IN LATTICE GRAVITY, Phys. Lett. B207 (1988) 468–470.

[18] S. W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity,

Phys. Rev. Lett. 38 (1977) 739.

– 17 –

http://xxx.lanl.gov/abs/gr-qc/9405057
http://xxx.lanl.gov/abs/hep-lat/9401026
http://xxx.lanl.gov/abs/hep-lat/9407014
http://xxx.lanl.gov/abs/hep-lat/9204004
http://xxx.lanl.gov/abs/0807.4481
http://xxx.lanl.gov/abs/0806.0397
http://xxx.lanl.gov/abs/0712.2485

	de Sitter Gravity from Lattice Gauge Theory
	Recommended Citation

	Untitled

