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Abstract

We present results of lattice simulations of the Plane Wave Matrix Model
(PWMM). The PWMM is a theory of supersymmetric quantum mechanics that
has a well-defined canonical ensemble. We simulate this theory by applying ra-
tional hybrid Monte Carlo techniques to a näıve lattice action. We examine the
strong coupling behaviour of the model focussing on the deconfinement transi-
tion.
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1 Introduction

The AdS/CFT correspondence [1, 2, 3] has emerged as a useful setting for studying
certain strongly coupled gauge theories. Though this correspondence has been widely
tested, it is useful to look for examples in which the correspondence can be tested
directly by studying theories in which tractable calculations can be done directly at
strong coupling. Lower dimensional examples would seem to provide a useful setting
for such a study. Recent effort has been devoted to studying the BFSS matrix model
at strong coupling using both lattice and non-lattice techniques [4, 5, 6]. However,
even that one dimensional quantum theory is still not well defined in the canonical
ensemble because it has a moduli space [7]. The moduli space in this theory is given
by the eigenvalues of nine commuting matrices that transform under the SO(9) R-
symmetry. The existence of these flat directions means that, at finite temperature,
the partition function is formally divergent, and it was shown in [7] that when Monte
Carlo simulations of this theory are performed, this divergence eventually causes the
simulation to break down.

The Plane Wave Matrix Model (PWMM) [8] arises as a natural next choice for sim-
ulation because it includes supersymmetry preserving mass terms that lift the moduli
space, and give a discrete set of vacua. The theory still has enough supersymmetry
that it has a known gravity dual at zero temperature [9]. Symmetry reduces the dual
supergravity problem to a two dimensional one, and the geometries dual to the discrete
set of field theory vacua can be put in one-to-one correspondence with a set of axisym-
metric electrostatics configurations, the potential of which determines the supergravity
fields, and was solved in [10]. Moreover, this theory has a number of large N limits
that give theories of physical interest: M-theory on a plane-wave [8], little string theory
on S5 [11], and N = 4 SYM on R× S3 [12]. Studying the PWMM at strong coupling,
therefore, is a first step toward direct simulation of these theories.

The PWMM is also a good candidate for establishing benchmarks for studies of
lattice supersymmetry in general. It is simple enough to allow for direct study using
a näıve lattice action, is well-defined in the canonical ensemble and of course being
one dimensional is numerically very tractable. As such it is complementary to studies
of supersymmetric theories in higher dimensions using new lattice formulations which
retain some exact supersymmetry at non zero lattice spacing - see the recent review
[13]. For example it should be possible to cross check the results of direct simulations
of N = 4 super Yang-Mills in certain limits with results derived from simulations of
näıve lattice discretizations of the PWMM.

In this paper we will present the results of simulations of the PWMM on the lattice.
We use a näıve lattice action, and concentrate on studying the Hagedorn/deconfinement
transition in the model. We study the theory at fixed temperature, measured in units
of the mass deformation, as a function of the ’t Hooft coupling (measured in the same
units). We used a quenched approximation to explore the dependence of the critical be-
haviour on the rank of the gauge group and the number of lattice points. The quenched
approximation is much less computationally demanding and can be used to estimate
reasonable choices of parameters for simulating the full theory. We establish that we
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can get a reasonable approximation of the continuum large N behaviour with modest
values of both N and the size of the lattice. We then simulate the full theory. The
Hagedorn/deconfinement transition in the PWMM has also been studied previously at
weak coupling ’t Hooft coupling in the large N limit, and we compare our results to
extrapolations of those from weak coupling.

The remainder of this paper is organized as follows. In section 2 we review the
PWMM, its vacuum solutions, and various limits. In section 3 we present our lattice
action and discuss the simulation method. Section 4 contains our main results. We
review the weak coupling results and contrast them with the results of our simulations.
In section 5 we discuss possible completions of the phase diagram.

2 The PWMM

The Plane-Wave Matrix Model (PWMM) is a gauged matrix quantum mechanics the-
ory with sixteen supercharges. It has an action that can be written as

S =
N

2λ

∫ β

0

dtTr
(

−
∑

i

(DXi)
2 −

∑

i<j

[X i, Xj]2 + ΨTγ0DΨ+
∑

i

ΨTγi[X
i,Ψ]

− µ2

3
∑

i=1

(X i)2 − µ2

4

9
∑

i=4

(X i)2 − 2
√
2µǫijkX

iXjXk +
3µ

4
ΨTγ123Ψ

)

,

(1)

in which X i are nine scalar matrices that sit in the adjoint representation of SU(N),

i.e. X i =
∑N2−1

a=1 Xa
i T

a, where T a are anti-Hermitian generators that are normalized
to Tr T aT b = −δab; Ψ is a Majorana fermion that is also in the adjoint representation
of the gauge group; Tr is over the gauge indices; D is a gauge covariant derivative; λ
is the ’t Hooft coupling, given by λ = g2N ; and

γ123 =
1

6
ǫijkγiγjγk . (2)

The terms in the first line of (1) are those in the BFSS matrix model [14]. The
terms in the second line give supersymmetry preserving masses to the fields and add
a Myers term. The addition of these terms gives this model two technical advantages
compared with BFSS. Firstly, in the limit µ → ∞ the model becomes weakly coupled
and can be studied perturbatively [15]. Also, the addition of these terms lifts the
moduli space of the BFSS model giving instead a discrete set of vacua [8]. This is
important for numerical simulation because it means the theory is well-defined in the
canonical ensemble. If we consider the scalar fields X i for i = 1, 2, 3 we can write the
potential as

V = −Tr

[

(µX i +
1√
2
ǫijk[X

j , Xk])2
]

, (3)

which is minimized when the scalar fields X i are proportional to generators of SU(2).
The discrete vacua correspond to the various ways of forming N × N matrices that
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generate SU(2), and can be put in one-to-one correspondence with partitions of N into
a sum of natural numbers. It was shown in [16] that the vacua sit in certain doubly
atypical representations of the SU(2|4) supersymmetry algebra, which protect them
from quantum corrections, and thus persist at strong coupling.

The identification between the field theory vacuum states and regular type IIA
supergravity solutions with SU(2|4) supersymmetry was found in [9]. SU(2|4) contains
a bosonic R×SO(3)×SO(6) that reduces the type IIA supergravity problem to a two-
dimensional one. Imposing supersymmetry and regularity reduces the two-dimensional
problem to solving a two-dimensional Laplace equation. The vacua of the PWMM are
encoded by choosing appropriate boundary conditions. Using the fact that the potential
in electrostatics obeys the Laplace equation, it was shown [9] that regular supergravity
solutions correspond to axisymmetric configurations of charged conducting discs. This
class of electrostatics problems was solved in [10].

The PWMM has a number of largeN limits in which it describes interesting physics.
See [11] for a summary; we will mention a few here here.1

1. If we consider a limit in which

N → ∞ g2

N3
fixed, (4)

this model should describe M-theory in a maximally supersymmetric plane-wave
background. This is because the matrix theory conjecture suggests this model
describes the DLCQ of M-theory on the plane wave with compact null momentum
given by

µl2pp
+ =

N

g
2

3

∝ N

R
, (5)

where R is the size of the null circle. The limit (4) decompactifies the compact
null circle.

2. The ’t Hooft limit, in which N → ∞ with λ fixed, allows for the pertur-
bative study of the theory if λ is small. It is in this limit that the Hage-
dorn/deconfinement transition can be studied analytically, as we will review be-
low.

3. It was shown in [11] that if we consider expanding around the trivial vacuum
solution and take a limit in which, asymptotically,

N → ∞ ln4N

λ
fixed, (6)

the PWMM describes type IIA little string theory on S5. Little string theory
is the theory that describes the degrees of freedom on NS5-branes, and is of
particular interest because it exhibits some of the features of string theories (e.g.
T-duality), but not others (e.g. gravity).

1For links between the PWMM and other field theories see [17, 18].
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4. Using arguments from the gravity side [9] or from the field theory side [12] N = 4
SYM on R× S3 can be realized by expanding about a particular vacuum of the
PWMM. (For a full discussion, see also [19], [20].) Expanding about a vacuum
consisting of representations of SU(2) of dimension n+j, for some integers n, and
j = 1, 2, 3, . . . , m, each with k copies. If the PWMM has gauge group SU(N),
then we must have

N =
1

2
km(2n +m+ 1). (7)

Taking a limit N → ∞ in which

n → ∞ m → ∞ m

n
→ 0, (8)

gives N = 4 SYM on R× S3 with gauge group SU(k).

It is in principle possible to extract the physics of these models by studying the
behaviour of the model along appropriate curves in the λ−N plane, and extrapolating
to large N . In this paper we seek to establish benchmarks for this procedure by
performing a lattice simulation of the PWMM at strong coupling and finite N .

3 Lattice Action

To find our lattice action, we start with the PWMM action (1). The bare action has

three parameters with unit mass dimension λ
1

3 , β−1 and µ. The gauge field and scalars
X i also have unit mass dimension, and the fermions have mass dimension 3

2
. We would

like to make the following rescaling:

X → µTX D → µTD t → t

µT
Ψ → (µT )

3

2Ψ, (9)

where T is a dimensionless number that we will shortly take to be the number of lattice
points. We can then write the action as

S =
µ3T 3N

2λ

∫ µβT

0

dtTr
(

−
∑

i

(DXi)
2 −

∑

i<j

[X i, Xj]2 +ΨTγ0DΨ+
∑

i

ΨTγi[X
i,Ψ]

− 1

T 2

3
∑

i=1

(X i)2 − 1

4T 2

9
∑

i=4

(X i)2 − 2
√
2ǫijkX

iXjXk +
3

4T
ΨTγ123Ψ

)

.

(10)

Note that all of our fields have been rendered dimensionless. After integrating over the
fermions we have the following partition function

Z =

∫

dAdX Pf(O)e−SB , (11)
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with

SB =
µ3T 3N

2λ

∫ µβT

0

dtTr
(

−
∑

i

(DXi)
2 −

∑

i<j

[X i, Xj]2

− 1

T 2

3
∑

i=1

(X i)2 − 1

4T 2

9
∑

i=4

(X i)2 − 2
√
2ǫijkX

iXjXk
)

,

(12)

and

O = γ0D +
∑

i

γi[X
i, ·] + 3

4T
γ123. (13)

We discretize the theory on a lattice with spacing a, and replace the
∫

dt with a
∑

t.
We use the derivative operator

D =

(

0 D+

D− 0

)

, (14)

where

D+Ψ =
1

a
(U(t)Ψ(t + a)U † −Ψ(t)). (15)

D− is the adjoint of D+. The lattice action is

SB =
βµ4T 3N

2λ

T−1
∑

m=0

Tr
(

−
∑

i

(DX i)m
2 −

∑

i<j

[X i
m, X

j
m]

2

− 1

T 2

3
∑

i=1

(X i
m)

2 − 1

4T 2

9
∑

i=4

(X i
m)

2 − 2
√
2ǫijkX

i
mX

j
mX

k
m

)

,

(16)

and

O = γ0Dmn +
∑

i

γi[X
i
m, ·]1mn +

3

4T
γ1231mn. (17)

The overall dimensionless lattice coupling is then

κ =
βµ4T 3N

2λ
, (18)

where β is the inverse temperature, and T is the number of lattice points. The contin-
uum limit is defined by taking T → ∞ with µ4Nβ

2λ
fixed.

We simulate this model using Rational Hybrid Monte Carlo (RHMC) [21]. Since the
fermions appeared quadratically, we were able to formally integrate them out yielding
the Pfaffian of the operator O. Using the fact that Pf2(O) = detO, the Pfaffian can
be computed by introducing a path integral over pseudofermions F

Pf O =

∫

[DF ]e−F †(O†O)−
1
4 F . (19)
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It is still challenging to compute (O†O)−
1

4 , but it can be done efficiently by making
a rational approximation, and making use of iterative Krylov subspace methods to
solve the resulting set of shifted linear systems [22]. Fictitious conjugate momenta
are introduced for each of the variables, and the resulting system is simulated by us-
ing a combination of molecular dynamics integrations of the equations of motion and
Metropolis Monte Carlo [23, 24]. The main computational expense derives from simu-
lating the fermionic Pfaffian, and so it will be useful at times to consider the quenched
approximation (without fermions). This will allow us to estimate what happens at
much larger values of N than we can when the fermions are included with equivalent
computational effort.

4 Hagedorn/Deconfinement Transition

To get an idea of how well our finite N simulations work we will compute a simple
observable in the matrix model: the Polyakov loop. There are good reasons to compute
it.

• It is a simple gauge invariant observable that is straightforward to define on the
lattice.

• It is an order parameter for deconfinement, and is expected to signify a geometric
transition in the dual gravity theory.

• It has been computed in the PWMM at weak coupling.

In lattice gauge theory, holonomies of the gauge field are natural observables. In our
one-dimensional theory, the holonomy to compute is the one around the thermal circle.
It can serve as an order parameter for deconfinement because it measures the energy
cost of adding an infinitely massive external charged particle. In the confined phase,
the trace of the Polyakov loop has vanishing expectation value. This is because it is a
unitary matrix, and in the confined phase its eigenvalues are uniformly distributed on
the unit circle. In the deconfined phase this symmetry is broken, the eigenvalues begin
to clump and the Polyakov loop develops a vev.

It is also interesting from the point of view of gauge/gravity duality. In gravity,
there is a well-known phase transition between thermal AdS space and asymptotically
AdS-Schwarzschild black holes [25]. Black hole thermodynamics implies that this phase
transition comes with an increase in entropy. It was argued [26] that this fact, along
with the fact that the Wilson line computed via gauge/gravity duality ceases to obey
an area law in the high temperature phase, means this bulk gravity transition corre-
sponds to deconfinement in the gauge theory. The increase in gravitational entropy
also matches nicely with this picture because in the confined phase the free energy is
expected to be of order one, whereas in the deconfined phase it is expected to be of
order N2. For a discussion of general aspects of this, see [27]. We therefore expect that
by studying the deconfinement transition at strong coupling in the matrix model we
are capturing a geometric transition in the bulk dual.
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λ/µ3

µβ

µβH

〈|P |〉 6= 0

〈|P |〉 = 0

Figure 1: Schematic picture of the phase diagram of the PWMM at weak coupling. For
µβ above µβH (at low temperature) the theory is confined. As µβ is lowered through
µβH the theory undergoes a Hagedorn/deconfinement transition. The transition tem-
perature can be computed at weak coupling; the calculation in the quenched theory is
reviewed in section 4.1.1, and section 4.2.1 presents the result in the full theory.

In [27, 28] it was shown that in certain large N gauge theories, including the
PWMM, it is possible to have deconfinement transitions at weak coupling. Let us
discuss briefly why this occurs, using an argument from [27]. Consider a theory of two
bosonic matrix oscillators with unit energy in the adjoint representation of a gauge
group with rank N . Gauge invariant states are formed by the action of traces of
matrix creation operators on the vacuum. Let us consider single trace states, which
dominate in the large N limit. The number of single trace states with energy E is
bounded above by 2E, because there are E positions in the trace that can be filled
by either oscillator. Some of these states are related by the cyclicity of the trace,
but there are at most E − 1 such states, and so the number of states with energy E
is bounded below by 2E

E
. This lower bound is sufficient to produce an exponentially

growing density of states, which indicates that there will be a Hagedorn transition.
The existence of results at weak coupling suggests where we should look for the

phase transition at strong coupling. A schematic picture of the phase diagram at weak
coupling is shown in figure 1. We will see below that the weak coupling analysis suggests
that µβH decreases as the coupling is turned on. As a result, for our simulations, we
will pick some fixed µβ < µβH and look for the transition by picking various values
of the coupling constant. We will first examine what happens in the quenched theory,
and thereafter present results for the full theory.
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4.1 Quenched Theory

Here we will first present results for the quenched theory at weak coupling, which can
be culled from [28, 29], and then the results of our simulations.

4.1.1 Weak Coupling

By counting gauge invariant states, it was argued in [28] that a matrix model with
action

S =

∫

dt

d
∑

j=1

1

2
Tr

[

(

d

dt
Xj + i[A,Xj ]

)2

− ω2
jX

2
j

]

, (20)

with bosonic matrices Xj in the adjoint of SU(N), and A being an SU(N) gauge field,
has a partition function that, in the large N limit, is approximately

Z(β) ≈ e

1−∑d
j=1 e

−βωj

. (21)

This partition function clearly diverges when the denominator vanishes, and it was
argued in [28] that the temperature where this happens is the Hagedorn temperature.

d
∑

j=1

e−βHωj = 1. (22)

If we consider the various fields in the PWMM and decompose them into repre-
sentations of SU(2|4) which contains a bosonic SU(2)× SU(4), there are scalars that
transform as a singlet under SU(4) and in the 3 of SU(2) and scalars that transform as
a singlet under SU(2) and in the 6 of SU(4). If we expand the quenched theory about
the trivial vacuum state, we then have three matrices with ω = µ and six matrices
with ω = µ/2. Writing xH = e−βHµ/2 we find the Hagedorn temperature is given by
the solution of

3x2
H + 6xH = 1, (23)

where the admissible solution satisfies 0 ≤ xH ≤ 1. This gives xH = −1 + 2√
3
, so that

µβH = −2 log

(

−1 +
2√
3

)

≈ 3.732528074 . (24)

Since the only massless field in (20) is the holonomy of the gauge field around the
thermal circle, it is possible to integrate out the matrices to find an effective action.
This effective action is just the effective action for the Polyakov loop. At one-loop
level it was shown in [28] that there is a deconfinement transition, whose temperature
coincides with the Hagedorn temperature.

It is also possible to calculate the effective action of the Polyakov loop to higher
order in the coupling constant. This has been carried out in the full theory to two-loop
order in [29], and three-loop order in [30]. The two-loop calculation is sufficient to
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determine the correction to the critical temperature, whereas three-loops are needed
to determine the order of the phase transition.

The next order correction to the Hagedorn temperature comes from the planar two-
loop effective action for the Polyakov loop. In this case, using the results of [29], the
partition function gets corrected to2

Z =
e

1− 3y4 − 6y2 − λ̃g(y) log y
, (25)

with
g(y) = 48y2(y6 + 3y4 + 7y2 + 13), (26)

where y = e−βµ/4, and we write a dimensionless ’t Hooft coupling λ̃ = λ/µ3. Let us
define

z(y) = 3y4 + 6y2. (27)

The correction to the transition temperature is given by

yH = y
(0)
H (1− c ln y

(0)
H λ̃), (28)

or, equivalently,
µβH = −4 log(y

(0)
H )(1− cλ̃), (29)

for a constant c that is determined by

c =
g(y

(0)
H )

y
(0)
H z′(y

(0)
H )

. (30)

From (29) it can be seen that c > 0 decreases the inverse temperature as the coupling

is turned on, whereas c < 0 increases it. Evaluating this at y
(0)
H =

√
xH gives

c ≈ 49.04614622 , (31)

which means that the inverse temperature at the transition decreases as the coupling
is turned on.

4.1.2 Strong Coupling

Here we will study the quenched theory by expressing all length scales in terms of
µ. The quenched theory is useful for exploring some of the key issues of our lattice
methods. The PWMM describes interesting physics in various limits in which the rank
of the gauge group, N , is taken to infinity. Since the phase space of the model grows
very quickly with N it is necessary to understand if interesting physics is within the
range of N that is computationally accessible. Moreover, we are also limited by the
lattice approximation itself and we would like to determine how many lattice points
are required to obtain a reasonable approximation to the continuum.

2There is also a correction of order λ̃ coming from the non-planar diagrams, but it does not
contribute to the correction to the Hagedorn temperature, so we don’t include it.
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Figure 2:
〈

|Tr ei
∮
A|
〉

in the quenched theory for gauge group SU(N) with various N ,
and T = 5 lattice points. The results agree quite well for all choices of N above the
transition, and well below the transition. The greatest difference is near the transition,
where it appears to be sharper in the case of larger N , as expected.

Figure 2 shows a plot of the Polyakov loop in the quenched theory as a function of
the lattice coupling measured in units of µ, with the inverse temperature βµ = 1, for
various N with five lattice points. The plot shows clear evidence of a deconfinement
transition. Moreover, it can be seen from this plot that the critical value of the coupling
does not seem to be very dependent on N . This is very suggestive that the critical
coupling in the large N theory can be reasonably approximated by simulations with
modest values of N . Note, however, the transition does appear to be much sharper for
larger N , as expected.

In figure 3 we plot the Polyakov line in the quenched theory as a function of the
coupling at fixed βµ = 1 and N = 5 for various lattice sizes, T . The plot indicates
that the critical value of the coupling does not depend strongly on the lattice size, and
that T = 5 provides a reasonably good approximation to the continuum.

Let us compare these results with those at weak coupling. If we extrapolate the
weak coupling results to µβ = 1, we can use (29) to estimate the critical value of the
coupling. We find log(λ/µ3) ≈ −1.826043339. Comparing this value to the plot in
figure 2, we see that the critical value of the coupling differs considerably.

There are various possible reasons for this difference. One is that the weak coupling
computation was done in the ’t Hooft limit expanding about the trivial vacuum state.
The results of our simulations, in contrast, should include the effects of all of the various
vacua, and are for finite N . Thinking about our results from the weak coupling point
of view, as we change N our results could be sensitive to both the number of oscillators
above each vacuum state, and the number of vacuum states, which change with N .
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Figure 3:
〈

|Tr ei
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A|
〉

in the quenched theory for various T , N = 5.

λ/µ3

µβ

λc/µ
3

µβ = 1

〈|P |〉 6= 0 〈|P |〉 = 0

Figure 4: Schematic picture of the phase diagram from our lattice results. We study
the theory along the blue dotted line, and identify a critical coupling, λc. At strong
coupling (at this temperature) the theory is confined. It undergoes a deconfinement
transition at λc. Compare this with the phase diagram at weak coupling in figure 1.
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We would expect that both of these effects would show up in the N dependence of our
results, yet figure 2 shows the only prominent N dependence is in the sharpness of the
transition.

4.2 Full Theory

4.2.1 Weak Coupling

The thermodynamics of multi-matrix models with fermions was also considered in [28].
It was shown that for free gauged matrix quantum mechanics with a collection of
bosonic and fermionic matrices with frequencies ωj the partition function in the large
N limit is approximately

Z(β) ≈ e

1−∑d
j=1 e

−βωj

. (32)

I.e. (21) continues to hold, however the sum now runs over the frequencies of both the
bosonic and fermionic matrices. Again, the inverse Hagedorn temperature is given by
the place where the partition function diverges. Moreover, as in the quenched case this
can be shown to coincide with the deconfinement transition temperature computed
from the one loop effective action for the Polyakov loop.

If we again consider classifying the fields by their transformations under SU(2|4), in
addition to the bosonic scalars we had in the quenched case we now also have fermions
that transform in the fundamental representation of both SU(2) and SU(4). If we
expand about the trivial vacuum state, then, we have, in addition to the three bosonic
matrices with ω = µ and six with ω = µ/2, eight fermionic matrices with ω = 3µ/4.
Writing y = e−βµ/4 we find the Hagedorn temperature is given by the solution of

3y4H + 8y3H + 6y2H − 1 = (3yH − 1)(yH + 1)3 = 0, (33)

where y = yH at the transition and the admissible solution satisfies 0 ≤ yH ≤ 1. This
gives yH = 1

3
, so that

µβH = 4 log 3 ≈ 4.394449156 . (34)

Comparison with the result in the quenched theory (24) gives a difference of about
15%.

As in the quenched case, the next order correction to the Hagedorn temperature
comes from the planar two-loop effective action for the Polyakov loop. Here, again
using results of [29], the partition function gets corrected to

Z =
e

1− z(y)− λ̃g(y) log y
, (35)

with
z(y) = 3y4 + 8y3 + 6y2 g(y) = 48y2(1 + y)4(1 + y2) . (36)

As in the quenched case, the correction to the Hagedorn temperature, written in the
form (29) gives (30) with

c =
205

81
. (37)
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In the full theory with dynamical fermions. The gauge group is
SU(N) for N = 3, 5, and we are using five lattice points.

Comparing this to the result in the quenched theory, (31), shows that the correction to
the inverse temperature of the transition is stronger by about an order of magnitude
in the quenched case compared to the full theory.

4.2.2 Strong Coupling

We study the PWMM at strong coupling using lattice techniques, as in the quenched
case. However, the inclusion of the fermionic Pfaffian substantially increases the com-
putational expense. Fortunately, the results of the quenched simulations suggest that
five lattice points provide a reasonable approximation to the continuum, at the tem-
perature we are considering.

Let us compare these results with those at weak coupling. If we extrapolate the weak
coupling results to µβ = 1, we can use (29) to estimate the critical value of the coupling.
We find log(λ/µ3) ≈ −0.5154039782. Comparing this value to the plot in figure 5,
we see that the actual critical value of the coupling differs considerably. Another
interesting order parameter for the transition is shown in figure 6 which plots the
expectation value of the energy in dimensionless units as a function of the dimensionless
’t Hooft coupling. This is essentially given by the value of the bosonic action since
the contributions of the fermions can be computed exactly by a scaling argument.
Clearly, for strong coupling or small mass the vacuum is supersymmetric

〈

E
µ

〉

= 0
while supersymmetry apparently spontaneously breaks for small ’t Hooft coupling.

If we compare the critical coupling of the full theory as plotted in figure 5 with
that of the quenched theory plotted in figure 2 we see that there is little difference.
This might be surprising, considering that extrapolation of the weak coupling results
suggested they should differ by more than an order of magnitude. We will comment

13
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on this in the next section.
A potential pitfall of our numerical simulations is the notorious sign problem. In

figure 7 we plot the Pfaffian phase for the theory with gauge group SU(3). The
expectation value of the phase is very close to zero, as expected, but more importantly,
the uncertainty in the phase is very small.

5 Discussion

We have presented results on lattice simulations of the PWMM. We argued that the
mass terms that deform the BFSS matrix model to the PWMM render it particularly
suitable for lattice study by lifting the moduli space and yielding a discrete set of
vacua. We have focussed on studying the Hagedorn/deconfinement transition in the
model. By simulating the model at fixed temperature over a range of coupling, we have
shown that the model exhibits a deconfinement transition when the ’t Hooft coupling
is of order one. We found that critical value of the coupling in the quenched case
was of the same order as in the full theory. At first glance this might be surprising
because näıvely extrapolating the weak coupling result to the temperature at which
we did our simulations would suggest a difference of more than an order of magnitude.
However, at sufficiently high temperatures we expect the dynamics to be dominated
by bosonic zero modes on the thermal circle [31], in which case the critical coupling
of the full theory should converge to that of the quenched theory. The fact that our
results seem to be indicate this convergence is setting in at µβ = 1 suggests that in
future investigation of the phase diagram, it is sufficient to study the quenched theory
if we are interested in inverse temperatures that sit below βµ = 1 in figure 8.

In principle, the thermal ensemble should sample states near each of the discrete

14
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Figure 7: The phase of the Pfaffian for the full theory with gauge group SU(3), fixed
µβ = 1, and five lattice points. The phase is clearly small in the region of parameter
space we are exploring.

vacua. In the large N limit, since the number of vacua grows exponentially with N , we
expect that the moduli space problem encountered in simulations of the BFSS model
will reappear in the PWMM. The effect of the additional vacua can be enhanced or
suppressed depending on the physical question of interest using umbrella sampling.
Though we focussed on the deconfinement transition, and the Polyakov loop is degen-
erate for non-trivial vacua, we did not seem to need umbrella sampling to restrict to
the trivial vacuum. A full study of the behaviour of the scalar fields is interesting,
however, and we leave this for future work.

Though our simulation does not cover the entire β − λ plane, it is tempting to
speculate that the phase diagram is of the form in figure 8. This seems most natural
from the point of view of gauge/gravity duality. If the transition at strong coupling was
not connected to that at weak coupling, for example, that would suggest the existence
of some new gravity solution.

We have focussed on one particular aspect of the finite temperature strong coupling
dynamics of the PWMM, however, there are many other questions of interest; we will
mention two. In the limit of µ → 0 at fixed β and λ, the PWMM becomes the
BFSS matrix model. This model has a well-defined dual black hole solution, and it
would be interesting to explore this limit to determine if the anticipated black hole
thermodynamics is reproduced by the strongly coupled matrix model. Also of interest
is to simulate the theory in the limit in which the PWMM becomes N = 4 SYM on
R× S3; results of non-lattice techniques in this direction were presented in [32].
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Figure 8: Hypothesized schematic picture of the phase diagram of the PWMM. Our
simulation scans along the blue dotted line where we are able to identify a deconfine-
ment transition. The heavy solid black line represents the known weak coupling result.
The dashed black line represents a suggestion of what the phase diagram could look
like interpolating between these points.
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