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Abstract: In this paper we show that a particular twist of N = 4 super Yang-Mills in

three dimensions with gauge group SU(2) possesses a set of classical vacua corresponding

to the space of flat connections of the complexified gauge group SL(2, C). The theory also

contains a set of topological observables corresponding to Wilson loops wrapping non-trivial

cycles of the base manifold. This moduli space and set of topological observables is shared

with the Chern Simons formulation of three dimensional gravity and we hence conjecture

that the Yang-Mills theory gives an equivalent description of the gravitational theory. Unlike

the Chern Simons formulation the twisted Yang-Mills theory possesses a supersymmetric and

gauge invariant lattice construction which then provides a possible non-perturbative definition

of three dimensional gravity.
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1. Introduction

The construction of topological field theories from twisted versions of supersymmetric theories

has a long history going back to Donaldson-Witten theory and its realization in terms of a

twist of N = 2 super Yang-Mills [1]. More recently these twisted theories have received a lot

of attention as the starting point for construction of lattice theories with exact supersymmetry

[2]. While these theories are formulated using an arbitrary background metric they typically

contain a set of topological operators whose expectation values are independent of this metric

and correspond to integrals over the moduli space of the theory.

In this paper we show that a particular twist of N = 4 super Yang-Mills in three dimen-

sions with gauge group SU(2) possesses a moduli space corresponding to the space of flat

connections of the complexified gauge group SL(2, C). This moduli space is shared with the

Chern-Simons formulation of three dimensional Euclidean gravity [3, 4]. Furthermore, as for

the Chern Simons theory, the twisted theory contains a natural set of topological observables,

corresponding to Wilson loops of the complexified gauge field, whose expectation values are

metric independent.

Unlike the Chern Simons action, the twisted theory has an action that is bounded from

below and possesses only a compact SU(2) gauge symmetry. The path integral defining

the quantum theory is thus well defined. Indeed a lattice theory may be constructed which

targets this twisted theory in the naive continuum limit while preserving both gauge invariance

and the scalar BRST supercharge that arises after twisting. This lattice theory was first

constructed using orbifold methods in [5] and can be used to provide a non-perturbative

definition of the supersymmetric Yang-Mills theory in flat space. Furthermore, as for the

continuum theory, the presence of an exact BRST symmetry means that expectation values

of topological observables can be shown to be independent of the coupling constant and the

lattice spacing.
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In this paper we point out that there is strong evidence to indicate that this lattice

theory may also serve as a non-perturbative regulator for the Chern Simons formulation of

three dimensional gravity.

The outline of this paper is as follows; first we describe the continuum twisted theory with

gauge group SU(N) formulated on an arbitrary background geometry. We then construct

a lattice model which targets the flat space theory in the naive continuum limit and which

is both gauge invariant and invariant under a twisted scalar supercharge. We then review

the usual construction of three dimensional gravity as a Chern-Simons theory. We show that

the moduli space of this Chern-Simons theory is precisely the same as that of the twisted

Yang-Mills model with gauge group SU(2). Furthermore, both theories possess a set of

topological operators corresponding to Wilson loops of the complexified theory which wrap

the boundaries, whose vacuum expectation values are independent of any background metric.

Indeed, we argue that they may be computed exactly in the associated lattice theory.

2. Twisted N = 4 gauge theory in three dimensions

The twist of N = 4 super Yang-Mills that we are interested in can be most succinctly written

in the form

S = β(S1 + S2) (2.1)

where

S1 = Q
∫

d3x
√
h

(

χµνFµν + η
[

Dµ
,Dµ

]

+
1

2
ηd

)

S2 =

∫

d3x θµνλDλ
χµν (2.2)

The fermions comprise one Kähler-Dirac multiplet of p-form fields (η, ψµ, χµν , θµνλ)
1 where

in three dimensions p = 0 . . . 3. Notice that a single Kähler-Dirac field possesses eight single

component fields as expected for a theory with N = 4 supersymmetry in three dimensions.

The imaginary parts of the complex gauge field Aµ µ = 1 . . . 3 appearing in this construction

yield the three scalar fields of the conventional (untwisted) theory. The scalar nilpotent

supersymmetry Q acts on the twisted fields as follows

QAµ = ψµ

QAµ
= 0

Qψµ = 0

Qχµν = Fµν

Qη = d

Qd = 0

Qθµνλ = 0 (2.3)

1It is common in the continuum literature to replace the 2 and 3 form fields in these expressions by their

Hodge duals; a second vector ψ̂µ and scalar η̂ see, for example [6]
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where the background metric hµν is used to raise and lower indices in the usual manner

χµν = hµαhνβχαβ and is a Q-singlet. The topological character of the theory follows from

the Q-exact sructure of S1 together with the explicit metric indepdence of S2 which can be

recognized as the integral of a 3-form since θµνλ = θǫµνλ. Furthermore, S1 is clearly Q-

invariant by virtue of the nilpotent property of Q while the supersymmetric invariance of the

Q-closed term relies on the Bianchi identity

ǫλµνDλFµν = 0 (2.4)

The complex covariant derivatives appearing in these expressions are defined by

Dµ = ∂µ +Aµ = ∂µ +Aµ + iBµ

Dµ
= ∂µ +Aµ

= ∂µ +Aµ − iBµ (2.5)

while all fields take values in the adjoint representation of SU(N)2. It should be noted that

despite the appearance of a complexified connection and field strength the theory possesses

only the usual SU(N) gauge invariance corresponding to the real part of the gauge field. The

structure of this twisted theory is similar to that of the Marcus twist of N = 4 super Yang-

Mills in four dimensions [7, 8, 9] which plays an important role in the Geometric-Langlands

program [10].

Doing the Q-variation and integrating out the field d yields

S =
1

g2

∫

d3x
√
h (L1 + L2) (2.6)

where

L1 = Tr

(

−FµνFµν +
1

2
[Dµ

,Dµ]
2)

)

L2 = Tr
(

−χµνD[µψν] − ψµDµ
η − θµνλD[λ

χµν]
)

(2.7)

The terms appearing in L1 can then be written

FµνFµν = (Fµν − [Bµ, Bν ])(F
µν − [Bµ, Bν ]) + (D[µBν])(D

[µB ν])

1

2

[

Dµ
,Dµ

]2
= −2 (DµBµ)

2 (2.8)

where Fµν and Dµ denote the usual field strength and covariant derivative depending on the

real part of the connection Aµ. The classical vacua of this theory correspond to solutions of

the equations

Fµν − [Bµ, Bν ] = 0

D[µBν] = 0

DµBµ = 0 (2.9)

2The generators are taken to be anti-hermitian matrices satisfying Tr (T aT b) = −δab
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The same moduli space arises in the study of the Marcus twist of four dimensional N = 4

Yang-Mills where it is argued to correspond to the space of flat complexified connections

modulo complex gauge transformations. A simple way to understand this is to recognize that

the additional term DµBµ = 0 appearing in the vacuum equations 2.9 resembles a partial

gauge fixing of a theory with a complexified gauge invariance and associated gauge fields Aµ

and Bµ down to a theory possessing just the usual SU(N) gauge invariance and gauge field

Aµ.

More specifically, Marcus showed in [7] that the solutions of eqns. 2.9 modulo SU(N)

gauge transformations are in one to one correspondence with the space of flat complexified

SU(N) connections modulo complex gauge transformations. These arguments should hold in

the three dimensional case too.

The topological character of the theory then guarantees that any Q-invariant observable

such as the partition function can be evaluated exactly by considering only Gaussian fluctu-

ations about such vacuum configurations. Furthermore, it is easy to see from eqn. 2.2 that

the energy momentum tensor of this theory is Q-exact rendering the expectation values of

such topological observables independent of smooth deformations of the background metric

hµν(x).

Returning to the bosonic action and integrating by parts we find that the term linear in

Fµν cancels and the contribution of L1 reads

L1 = Tr (FµνF
µν + 2BµDνDνBµ − [Bµ, Bν ][B

µ, Bν ]− 2RµνBµBν) (2.10)

where Rµν is the background Ricci tensor. Thus the bosonic theory possesses the usual

Yang-Mills field strength for a real SU(N) gauge field together with three vectors arising

from the imaginary part of the connection. In flat space the theory is fully equivalent to the

usual N = 4 theory as this twisting operation can be regarded merely as an exotic change

of variables – the vectors can regarded as scalar fields since their kinetic term is simply the

usual scalar Laplacian and the Kähler-Dirac action is equivalent to the Dirac action for four

degenerate Majorana spinors.

Notice that the fact that the complexified connection Aµ is a Q-singlet allows us to

trivially construct a class of topological observables corresponding to the trace of an associated

Wilson loop around a non-trivial cycle γ in the background space

O(γ) = Pe
∫
γ
A

µ
.dxµ (2.11)

As we will argue later the specialization of this model to the case of SU(2) is particularly

interesting as the resulting moduli space coincides with that arising in three dimensional

Chern Simons gravity.

3. Lattice construction

The twisted theory described in the previous section may be discretized using the techniques

developed in [9, 11, 12]. The resultant lattice theories have the merit of preserving both
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gauge invariance and the scalar component of the twisted supersymmetry. Here we show

how to derive this lattice theory by direct discretization of the continuum twisted theory.

We will start by assuming that the continuum theory is formulated in flat (Euclidean) space

with metric hµν = δµν . This guarantees that the twisted theory is completely equivalent

to the usual Yang-Mills theory and hence that the resulting lattice models target the usual

continuum theory in the continuum limit.

Furthermore, in the case of topological observables the choice of metric is unimportant

and hence the lattice theory we construct will yield expectation values for topological opera-

tors which depend only on the topology of the lattice and not on the coupling, lattice spacing

or the fact that we started by discretization of a theory in a flat background.

The transition to the lattice from the continuum theory requires a number of steps.

The first, and most important, is to replace the continuum complex gauge field Aµ(x) at

every point by an appropriate complexified Wilson link Uµ(x) = eAµ(x), µ = 1 . . . 3. These

lattice fields are taken to be associated with unit length vectors in the coordinate directions

µ in an abstract three dimensional hypercubic lattice. By supersymmetry the fermion fields

ψµ(x), µ = 1 . . . 3 lie on the same oriented link as their bosonic superpartners running from

x → x + µ. In contrast the scalar fermion η(x) is associated with the site x of the lattice

and the tensor fermions χµν(x), µ < ν = 1 . . . 3 with a set of diagonal face links running from

x+ µ+ ν → x. The final 3 form field θµνλ(x) is then naturally placed on the body diagonal

running from x → x+µ+ ν + λ. The construction then posits that all link fields transform

as bifundamental fields under gauge transformations

η(x) → G(x)η(x)G†(x)

ψµ(x) → G(x)ψµ(x)G(x + µ)

χµν(x) → G(x+ µ+ ν)χµν(x)G†(x)

Uµ(x) → G(x)Uµ(x)G
†(x+ µ)

Uµ
(x) → G(x+ µ)Uµ

(x)G†(x) (3.1)

Notice that we can keep track of the orientation of the lattice field by following its continuum

index structure – upper index fields are placed on negatively orientated links, lower index

fields live on positively oriented links.

The action of the scalar supersymmetry on these fields is given by the continuum expres-

sion in eqn. 2.3 with the one modification that the continuum field Aµ(x) is replaced with

the Wilson link Uµ(x) and the lattice field strength being defined as Fµν = D
(+)
µ Uν . The

supersymmetric and gauge invariant lattice action which corresponds to eqn. 2.7 then takes

a very similar form to its continuum counterpart

S1 = Q
∑

x

(

χµνFµν + η
[

D(−)µUµ

]

+
1

2
ηd

)

S2 =
∑

x

θµνλD(+)λ
χµν (3.2)
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The covariant difference operators appearing in these expressions are defined by

D(+)
µ fν(x) = Uµ(x)fν(x+ µ)− fν(x)Uµ(x+ ν)

D(−)µ
fµ(x) = fµ(x)Uµ

(x)− Uµ
(x− µ)fµ(x− µ) (3.3)

These expressions are determined by the twin requirements that they reduce to the corre-

sponding continuum results for the adjoint covariant derivative in the naive continuum limit

Uµ → 1+Aµ+. . . and that they transform under gauge transformations like the corresponding

lattice link field carrying the same indices. This allows the terms in the action to correspond

to gauge invariant closed loops on the lattice. Similarly the difference operator appearing in

S2 takes the form

D(+)λ
χµν(x) = χµν(x+ λ)Uλ

(x)− Uλ
(x+ µ+ ν)χµν(x) (3.4)

This definition allows the lattice term corresponding to S2 to be both gauge invariant and

supersymmetric – the latter property holding because of the remarkable property that the

lattice field strength satisfies an exact Bianchi identity as for the continuum [9]. The action

can also be shown to be free of fermion doubling problems – see the discussion in [9].

As in the continuum, the presence of an exact Q-symmetry allows the definition of a class

of supersymmetric Wilson loop corresponding to the trace of the product of Uµ links around

a closed loop in the lattice.

O =
T
∏

t=1

U t
(x) (3.5)

The vacuum expectation value of these operators can be computed exactly by restriction to

the moduli space of theory and can probe only topological features of the background space.

4. Chern-Simons formulation of three dimensional gravity

The twisted model we have discussed appears on the face of it to have little connection to

gravity. However it has been known for a long time that three dimensional gravity can be

reformulated in the language of gauge theory [3, 4]. For a review of three dimensional gravity

see [13]. The construction employs a Chern-Simons action and in Euclidean space the local

symmetry corresponds to the group SO(3, 1) ∼ SL(2, C) - the complexified SU(2) group.

Furthermore the resulting theory is topological and determined by the moduli space of flat

SL(2, C) connections hinting at a close connection to the twisted Yang-Mills theory described

above. We now summarize this theory which will allow us to re-interpret the fields in the two

color Yang-Mills theory described earlier as geometrical objects in a gravitational theory.

Consider the following three dimensional Chern-Simons action

∫

d3xǫµνλT̂r

(

AµFνλ − 1

3
Aµ [Aν , Aλ]

)

(4.1)
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Furthermore, assume that the gauge field Aµ takes values in the adjoint representation of the

group SO(3, 1). A convenient representation for the six generators of the Lie algebra of this

group is then given by commutators of the (Lorentzian) Dirac matrices γAB = 1
4

[

γA, γB
]

where (γa)† = γa a = 1 . . . 3 and
(

γ4
)†

= −γ4 This yields an expression for the gauge field of

the form

Aµ =
∑

A<B

AAB
µ γAB A,B = 1 . . . 4 (4.2)

Finally, the group indices are contracted using the invariant tensor ǫABCD corresponding to

a trace of the form

T̂r(X) = Tr(γ5X) (4.3)

Notice that this way of contracting the group indices differs from the simple trace that appears

in the twisted Yang-Mills theory considered in the previous section. To see explicitly that

the resulting theory is just three dimensional gravity we decompose the gauge field and field

strength in terms of an SO(3) subgroup

Aµ =
∑

a<b

ωab
µ γ

ab +
1

l
eaµγ

4a a, b = 1 . . . 3

F ab
µν =

∑

a<b

(

Rab
µν +

1

l2
ea[µ e

b
ν]

)

γab

F a
µν =

∑

a

D[µ e
a
ν] (4.4)

The covariant derivative appearing in the field strength contains just the SO(3) gauge field

ωµ and we have introduced a explicit length scale l into the definition of the gauge fields

eµ. After substituting into the Chern-Simons action one recognizes that it corresponds to

three dimensional Einstein-Hilbert gravity including a cosmological constant and written in

the first order tetrad-Palatini formalism [3].

SEH =
1

l

∫

ǫµνλǫabc

(

eaµR
bc
µν −

1

3l2
eaµe

b
νe

c
λ

)

(4.5)

with ωµ and eµ corresponding to the spin connection and dreibein and 1/l2 playing the role of

a cosmological constant. To see that this theory is classically equivalent to the usual metric

theory of gravity one merely has to notice that the classical equations of the Chern-Simons

theory require that the SO(3, 1) field strength vanish FAB
µν = 0 which sets both the torsion

T = D[µ eν] to zero and requires a constant SO(3) curvature Rµν equal to −1/l2. Such a

solution corresponds (at least locally) to hyperbolic three space H3 ∼ SO(3, 1)/SO(3).

Finally one can show that the theory restricted to this space of flat connections is also

invariant under diffeomorphisms [3]. This result follows from the fact that one can express a

general coordinate transformation on Aµ with parameter −ξν as a gauge transformation with

parameter ξµAµ plus a term which vanishes on flat connections.

δAξ
µ = −Dµ(ξ

νAν)− ξνFµν (4.6)
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Furthermore, the fact that this action is explicitly independent of any background metric

ensures that the theory is topological. The classical solutions correspond to the space of flat

SO(3, 1) connections up to SO(3, 1) gauge transformations. Since SO(3, 1) ∼ SL(2, C) this is

equivalent to the moduli space appearing earlier in the twisted model. Indeed, the topological

observables in that theory, corresponding to Wilson loops of the complexified gauge field Aµ,

map into the natural topological observables of the Chern-Simons theory - Wilson loops of

an SO(3, 1) connection3.

Indeed, an explicit connection between the Yang-Mills theory and the gravity theory

would identify the imaginary parts of the SL(2, C) connection - the field Bµ occurring in

the Yang-Mills theory - with the matrix valued field eµ occurring the tetrad-Palatini action.

Notice that the field Bµ transforms in the adjoint representation of the SU(2) gauge group

which translates in the gravitational theory to the statement that the dreibein eaµ transforms

as a vector under local Lorentz transformations as it should.

These considerations together with the equivalence of the topological sectors of these

two theories leads us to conjecture that the twisted two color Yang-Mills gives an alternative

representation of the gravity theory. Furthermore, this alternative representation has some

advantages – the path integral is now well defined and indeed may be given a non-perturbative

definition as the appropriate limit of a gauge and supersymmetric invariant lattice model.

5. Discussion

In this paper we have shown how a twist ofN = 4 super Yang-Mills theory in three dimensions

with gauge group SU(2) shares both a moduli space and a set of topological observables in

common with the Chern Simons formulation of three dimensional Euclidean gravity. Indeed,

on this basis we conjecture that the topological sector of the twisted Yang-Mills theory is

equivalent to the Chern Simons theory. This is particularly interesting in the light of the fact

that this twisted theory may be discretized while maintaining the BRST symmetry of the

twisted model and hence its topological properties. Indeed, the lattice model can be thought

of as supplying a rigorous non-perturbative definition of the twisted Yang-Mills model. By

these arguments it thus also defines a lattice theory of topological gravity. This lattice theory

may be simulated using standard Monte Carlo techniques similar to those reported from

initial simulations of its four dimensional cousin [14].

It has been known for quite some time that topological gravity in odd dimensions can

be formulated as a Chern Simons theory. In particular such a formulation exists in five

dimensions [15, 16]. It would be very interesting to see whether it is possible to construct

a twisted Yang-Mills theory in five dimensions which targets the same moduli space as this

Chern Simons theory.

3This mapping between connections is manifest if the Weyl basis is used for the Dirac matrices which leads

to generators proportional to σ and iσ
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