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Abstract: We report on the results of numerical simulations of SU(N) lattice Yang Mills

with two flavors of (light) Wilson fermion in the adjoint representation. We analytically

and numerically address the question of center symmetry realization on lattices with Γ sites

in each direction in the large-N limit. We show, by a weak coupling calculation that, for

massless fermions, center symmetry realization is independent of Γ, and is unbroken. Then,

we extend our result by conducting simulations at non zero mass and finite gauge coupling.

Our results indicate that center symmetry is intact for a range of fermion mass in the vicinity

of the critical line on lattices of volume 24. This observation makes it possible to compute

infinite volume physical observables using small volume simulations in the limit N → ∞, with

possible applications to the determination of the conformal window in gauge theories with

adjoint fermions.
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1. Introduction

Large-N gauge theories compactified on a torus have properties independent of the compacti-

fication radii provided i) center symmetry and ii) translation symmetry are not spontaneously

broken [1, 2, 3, 4, 5]. We refer to this property as large-N volume independence. In a lattice

regularized theory, the reduction to a one-site model is known as “Eguchi-Kawai (EK) or

large-N reduction”. Volume independence is a property of both confining and conformal field

theories provided the necessary symmetries are satisfied [6, 7].

If valid, large-N reduction may have practical benefits in lattice gauge theory. For exam-

ple, the computational cost of simulating a L4 lattice (excluding the effects of critical slowing

down) grows as L5 while the computational cost of simulating at large-N naively grows only

as N
7
2 . These observations are particularly important in theories with large finite volume

effects such as conformal or near conformal theories. One such example of current interest

is the minimal walking theory (MWT) which has been proposed as a technicolor model al-

lowing for a dynamical breaking of electroweak symmetry [8, 9, 10, 11, 12, 13]. This model

employs two Dirac (four Weyl) flavors of adjoint fermion in an SU(2) gauge theory and is

thought to be conformal or near conformal in the infrared. A near conformal behavior is be-

lieved to be a necessary ingredient for constructing a realistic “walking” gauge theory capable

of breaking the electroweak symmetry of the Standard Model while respecting the bounds

on new physics implied by electroweak precision measurements at LEP. Because of these

features, this model has been studied extensively in recent years by the lattice community

[14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

For four dimensional confining gauge theories, it was usually believed that large-N re-

duction should be valid only above a critical size, L > Lc, below which center symmetry

would break spontaneously invalidating the equivalence. For example, for pure YM theory,
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Lc ∼ Λ−1 is about a few fermi [24]. This understanding changed in recent years [5, 25, 26].

Ref.[5] has shown that Yang-Mills theory with multiple adjoint fermions [QCD(adj)], where

the fermions are endowed with (non-thermal) periodic boundary conditions, satisfies volume

independence down to arbitrarily small volumes. Another way to have a working volume

independence is to use double-trace deformations, by explicitly adding the modulus square

of Wilson line operators [25]. This suppresses the unwanted breaking, without altering the

leading large-N dynamics of the theory. In this sense, the deformed theory also overcomes

the Lc “impasse” of pure theory. 1

Switching back to the minimal walking theory, one of the most pressing questions to

resolve using non-perturbative studies is to clarify whether this model does indeed lie within

the so-called conformal window or whether it lies just outside this window and perhaps can

serve as an example of a walking gauge theory. To distinguish conformal from near conformal

behavior it would seem that very large volume simulations would be necessary. Furthermore,

since the conformal window for models with adjoint fermions is expected, at leading order

in N , to be independent of N , the question can equally be phrased in a general Nf -flavor

SU(N) gauge theory. Continuum analysis indicates that this class of theories, endowed with

periodic boundary conditions, obey volume independence, regardless of their long-distance

behavior. Thus, the question of whether Nf = 2 theory is conformal or confining can be

addressed on small 24 or even 14 lattices [6]. Since volume reduction depends on the property

of center symmetry it is important to see, nonperturbatively, whether the large-N theory is

center symmetric in the limit of small volumes. This examination will be the main goal of

this work.

As mentioned above, it is well known that center symmetry spontaneously breaks in

large-N pure Yang Mills theory for dimensions greater than two [3, 24]. However, a one-loop

continuum analysis on R3×S1 (which generalizes to arbitrary toroidal compactifications) has

shown that the center symmetry will be restored if the theory is coupled to one or more flavors

of (light or massless) adjoint2 Weyl fermion [5]. See, also Refs.[31, 32, 33, 34, 35, 36, 37] for

related work.

Ref.[5] also conjectured that a single-site version of QCD(Adj), which is just the EK

matrix model augmented with adjoint representation Grassmann variables, will reproduce the

leading large-N behavior of all expectation values, and zero-momentum connected correlators

of single-trace observables in infinite volume QCD(Adj). This conjecture received strong

numerical confirmation in single flavor simulations in [26] for Wilson fermions, in one-loop

lattice perturbative analysis as in [38] using overlap fermions, and in a one-loop analysis and

simulations using the one-site theory with Wilson fermions in [39].

Our goal in this work is to extend the one flavor result of [26], to two flavors in preparation

1Earlier modifications known as quenched– [3] and twisted– EK models [4] have recently been shown to fail

due to nonperturbative effects [27, 28, 29, 30].
2With fundamental fermions, center symmetry is explicitly broken, but it still is an approximate symmetry

in the Nf=fixed as N → ∞ limit. Volume independence is valid in the confined phase of such a theory. This

domain can be extended to arbitrarily small radii by the addition of double-trace deformations[25].
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for studies of the conformal window in the MWT theory.

2. Lattice action and methods

We employed a 24 lattice volume in our work. The reason we do so is to take advantage of

both volume and N scaling simultaneously, as we are working with relatively smaller N than

that used in [26, 39]. The lattice action we employ consists of the usual Wilson plaquette

term

SG = −
β

2

∑

x

∑

µ>ν

ReTr
(

Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν (x)
)

(2.1)

together with the Wilson action for two Dirac quarks in the adjoint representation

SF = −
1

2

∑

x

∑

µ

ψ(x)
(

Vµ(x) (I − γµ)ψ(x+ µ) + V †
µ (x− µ) (I + γµ)ψ(x− µ)

)

(2.2)

+
∑

x

(m+ 4)ψ(x)ψ(x) , (2.3)

where the symmetric links are given by

V ab
µ (x) = Tr

(

SaUµ(x)S
bUT

µ (x)
)

, (2.4)

and the matrices Sa, a = 1, 2, 3 are the usual Pauli matrices. We use the usual HMC algorithm

[40] to simulate this model at a variety of ’t Hooft couplings λ = g2N and bare quark masses

m. Periodic boundary conditions are used for all lattice directions.

3. Weak coupling analysis of center symmetry on Γ
4 lattice

Before showing the results of our numerical simulations, it is instructive to consider the

question of center symmetry realization in a weak coupling lattice perturbation theory anal-

ysis. We consider a four-dimensional lattice with Γ4 sites, labeled as LΓ. Generalization to

asymmetric lattices with Γµ sites in the µ-th directions is obvious. Let us label the Wilson

line (none of the circles is thermal, with a slight abuse of language, we use the Wilson and

Polyakov line interchangeably) along the µ-th direction as Pµ, given by

Pµ(x) = Uµ(x)Uµ(x+ eµ)Uµ(x+ 2eµ) . . . Uµ(x+ (Γ− 1)eµ) (3.1)

Pµ is gauge covariant and its trace is gauge invariant. The space of classical vacua is param-

eterized as a space of commuting (diagonal) Wilson lines, [Pµ, Pν ] = 0:

Pµ = Diag
(

eiθ
1
µ , eiθ

2
µ , . . . , eiθ

N
µ

)

(3.2)

In the weak coupling regime, it is easy to evaluate the one-loop potential by integrating out

the heavy modes. Let us first find the spectrum of gauge and fermionic fluctuations in the

background of commuting Wilson lines. Our calculation generalizes section 2 of Ref.[35].
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The spectrum of gauge fluctuations in the background of commuting Wilson lines is

M2
g (kµ, θ

ij
µ ) =

4
∑

µ=1

[

2

a
sin

(

2πkµ + θijµ
2Γ

)]2

, kµ = 1, . . .Γ, i, j = 1, . . . N (3.3)

where θijµ ≡ θiµ − θjµ. And analogously, for Wilson fermions with bare mass m and Wilson

parameter r = 1, the spectrum of fermionic fluctuations is given by

M2
f [kµ, θ

ij
µ ,m] =

1

a2

4
∑

µ=1

sin2

(

2πkµ + θijµ
Γ

)

+



m+
2

a

4
∑

µ=1

sin2

(

2πkµ + θijµ
2Γ

)





2

(3.4)

Both of these formulas are quite intuitive: Setting θijµ = 0 gives the usual spectrum of gauge

bosons and Wilson-fermions (with r = 1) in lattice gauge theory. Setting Γ = 1, the bosonic

formula gives the distance between the eigenvalues of the Wilson line. The fermionic one is

similar, but differs due to the fermion dispersion relation on the lattice. Note that lattice

momenta kµ and eigenvalue difference θijµ appear on the same footing.

The one-loop action induced by bosonic and fermionic fluctuations on LΓ yields

S1−loop[Γ, θ
ij
µ ,m] = 2

∑

i<j

∑

~k∈LΓ

log
(

M2
g (kµ, θ

ij
µ )
)

− 4Nf

∑

i<j

∑

~k∈LΓ

log
(

M2
f (kµ, θ

ij
µ ,m)

)

(3.5)

This formula captures all the interesting limits, including the 1-site lattice theory (EK-version

of QCD(adj)) and the Γ = ∞ infinite lattice limit, as well as the continuum limit. Below, we

concentrate on the case where the bare mass is set to zero, m = 0.

For Nf = 0 Γ = 1 we recover the result of Ref. [3] in which a spontaneous breaking of

center symmetry occurs. If we take the continuum limit by using the usual scaling,

Γ → ∞, a→ 0, L = Γa = fixed , (3.6)

with LΛYM ≪ 1 (ΛYM is the strong-coupling scale of the theory), one must reproduce the

continuum one-loop result from perturbation theory. Indeed, using

lim
a→0

2

a
sin

(

2πkµ + θijµ
2Γ

)

=
(

2πkµ + θijµ
)

L−1 , (3.7)

the one-loop potential in pure YM theory on continuum small T 4 is produced. This expression

can equivalently be written by using Poisson resummation in terms of gauge invariant Wilson

lines and the result is SYM
1−loop[Pµ] = − 1

π2

∑

~n∈Z4\{0}
1

|~n|4
|Tr(Pn1

1 . . . Pn4

4 )|2. Thus for Yang-

Mills theory on small continuum T 4, since the masses of Wilson lines are all negative, the

center symmetry is broken.

The case of Γ = 1 and Nf ≥ 0.5 is the full EK reduced version of QCD(adj) simulated

in [26, 39]. As opposed to gauge fluctuations which generate eigenvalue attraction in any

domain where one-loop analysis is reliable, the adjoint fermions induce eigenvalue repulsion.
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This is the adjoint fermion-induced center-stabilization mechanism of Ref.[5]. If we take the

(naive) continuum limit by using the scaling (3.6), then the result reduces to

SQCD
1−loop[Pµ] = (1− 2Nf )S

YM
1−loop[Pµ] =

1

π2

∑

~n∈Z4\{0}

(−1 + 2Nf )

|~n|4
|Tr(Pn1

1 . . . Pn4

4 )|2 (3.8)

in agreement with Ref.[5]. This implies, in the massless continuum limit, that all Wilson lines

have positive masses and the center symmetry is unbroken.

For arbitrary Γ, the Poisson resummation (which can be done numerically) leads to an

analog of the one-loop action 3.8. This yields, for massless fermions, that the center symmetry

realization is independent of Γ, and is unbroken.

The above analysis is at weak coupling in lattice perturbation theory. In the next sec-

tion, we would like to check that the conclusion regarding unbroken center symmetry can

be generalized to finite couplings where a perturbative analysis is inapplicable, and non-zero

fermion mass.

4. Numerical results

To look for a breaking of center symmetry we monitored a sequence of order parameters

corresponding to correlators of Polyakov lines in different directions. The Polyakov line is

defined in the usual way as in 3.1, 3 while the line correlators we measure are given by

M (1)
µν = Pµ(x)Pν(x) (4.1)

M (2)
µν = Pµ(x)P

†
ν (x) (4.2)

It is interesting to consider first the quenched model (with infinitely heavy fermions) 4 in

order to contrast the behavior of the theory coupled to dynamical adjoint fermions. Figure 1.

shows a plot of the ensemble average of the absolute value of 1
N
Tr(P1). The data is plotted

as a function of the ’t Hooft coupling λ for values of N = 2− 5. Clearly for λ > λc ∼ 3.0 the

curves fall towards the x-axis with larger N consistent with a vanishing of the expectation

value of the line < 1
N
Tr(Pµ) >= 0 in the large N limit. This implies that center symmetry

remains unbroken at large N . However, a different behavior is seen for small λ < λc. In

this region the curves for different N all approach a fixed N -independent function f(λ) for

large N . Such a behavior indicates a spontaneous breaking of center symmetry. This two

phase structure is also seen in the mean plaquette action which is plotted in Figure 2. These

results reproduce what has long been known for the pure YM theory: the lattice theory

exists in two phases; a strong coupling lattice phase with unbroken center symmetry and a

weak coupling phase in which the symmetry is spontaneously broken. These two phases are

thought to be separated by a phase transition - the Gross-Witten transition which is hinted

3We average this quantity over all 8 points in the volume orthogonal to the line direction µ.
4Here, and throughout the text, we use the word quenched to denote the theory without dynamical fermions.

This is different from Quenched-EK [3] which refers to the freezing of the eigenvalues at the roots of unity.
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Figure 1: Simple Polyakov line in the quenched theory vs ’t Hooft coupling λ

at by a potential discontinuity which appears to develop in the mean action for large N as

seen in figure. 2. Continuum physics can be only obtained in the weak coupling phase and

hence volume reduction is invalid in the continuum limit of the theory.

This behavior should be contrasted with the results for the theory with 2 flavors of

dynamical adjoint fermions. Figure 3 shows a plot of the absolute value of the Polyakov line
1
N
|Tr(P1)| for fixed ’t Hooft coupling λ = 0.5 as a function of the bare quark mass for a

range of N = 2 − 6. Notice that λ = 0.5 lies well within the weak coupling phase of the

quenched model - a regime in which the quenched model exhibits strong breaking of center

symmetry. The adjoint fermions seem to strongly suppress the Polyakov line and this effect

increases with larger N consistent with the presence of exact center symmetry at large N .

In Figure 4 we show also for this same coupling the “pion mass” as give by the logarithm

of the ratio of the pion correlator at zero and one unit of time separation mπ = log Gπ(0)
Gπ(1)

5.

We expect the critical line to be located close to the minimum pion mass. By comparing

these two plots it should be clear that for moderately light quark masses the magnitude of

the Polyakov line falls with increasing N consistent with a vanishing of the expectation value

of Pµ in the limit N → ∞. A more quantitative measure of this is given in Figure 5 which

plots the expectation value of the Polyakov line at λ = 0.5 and bare quark mass m = −1 as a

5This should not be taken seriously as the real pion mass in this theory which can only be extracted at large

Euclidean times. But its value does correlate with the position of the critical line in the model. An equally

good observable would be the number of conjugate gradient iterations needed to invert the Dirac operator

which yields a very similar behavior with bare quark mass
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Figure 2: Plaquette action in the quenched theory vs ’t Hooft coupling

function of 1/N . A linear fit to the largest N points yields an intercept which is consistent

with zero and a restoration of center symmetry in the large N limit. Further evidence in

favor of center symmetry restoration comes from comparing a scatter plot of the expectation

values of the trace of the Polyakov line in the complex plane in both quenched and dynamical

cases at λ = 0.5 (in the latter case the bare fermion mass m = −1 placing it close to the

critical line). We show data in Figures 6 and 7 for the case N = 4. The quenched data shows

quite clearly the effect of symmetry breaking – the values of P cluster about 4 points in the

complex plane corresponding to the eigenvalues of P localizing on the fourth roots of unity

as expected in the broken phase. The dynamical runs show a symmetric clustering of values

around the origin as the corresponding eigenvalues spread uniformly around the unit circle

and provides strong evidence for a restoration of center symmetry. One might worry that the

data we have shown so far indeed indicates that center symmetry is at least partially realized

in the large N limit but does not exclude the possibility of more exotic breakings in which, for

example, the expectation value of the Polyakov line is vanishing in any particular direction

but that other correlators such as M
(1)
µν or M

(2)
µν are non-zero - corresponding to a locking

of the values of the lines in different directions. We find that this is not the case; Figure 8

shows the value of 1
N
|Tr(M

(1)
12 )| versus bare quark mass for a range of N and Figure 9 similar

curves for 1
N
|Tr(M

(2)
12 )|. These plots show results which are consistent with a full realization

of center symmetry for light quarks in the large N limit in agreement with the perturbative

analysis.
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Figure 3: Polyakov line vs bare quark mass for ’t Hooft coupling λ = 0.5

5. Conclusions

Our analytical and numerical results suggest that the vacuum of SU(N) gauge theory with

two flavors of light adjoint Wilson fermion realizes full center symmetry in the large N limit.

This opens up the possibility of studying the (near) conformal behavior of the SU(2) minimal

walking theory by examining the large-N behavior of its SU(N) generalization on small

lattices. We hope this will give a useful additional theoretical tool for determining whether

this theory does indeed possess an infrared conformal fixed point.
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Figure 8: M (1) vs bare quark mass for ’t Hooft coupling λ = 0.5
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Figure 9: M (2) vs bare quark mass for ’t Hooft coupling λ = 0.5
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