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have three different dissociation constants with their values depicting strong and weak acids. 

After adding this type of organic acid formulation to a chemical equilibrium model, I adjusted 

the organic acid equilibrium constants until the best fit between independent observed values 

(i.e., pH, ANC and inorganic monomeric Al) and the corresponding model predictions was 

achieved. This fitting procedure was accomplished using a heuristic optimization algorithm (i.e., 

genetic algorithm). In order to evaluate variation of organic acid behavior over time, I 

parameterized the organic acid model to two temporal subsets of the long-term dataset. 

Comparing parameters fitted to these subsets, I assessed the change in organic acid function over 

time. The detailed methodology, results and discussion of this phase of the study are described in 

Sections 3.1 and 4.1. This part of dissertation has been published in Environmental Science and 

Technology (Fakhraei and Driscoll 2015).  

In order to answer research Question 2, I obtained national emissions and atmospheric 

deposition data for the GRSM and investigated whether there is a statistically significant 

relationship between these data sets. I studied long-term trends in surface water chemistry in the 

GRSM using seasonal Mann Kendall test. The methodology, results and discussion related to 

this research question are addressed in Sections 3.4.1 and 4.3.1.1.  

Research Question 3 was answered by data development and application of the PnET-BGC 

model to two acid sensitive regions in the eastern U.S.: Adirondacks and Great Smoky 

Mountains National Park. Model inputs were prepared from various resources, and then the 

model was calibrated to the observed surface water chemistry. The calibrated model was 

simulated under various deposition scenarios. Using the relationships between levels of 

atmospheric deposition and simulated stream chemistry I calculated critical loads and TMDLs of 

acidity for these regions. I conducted linear regression analysis to evaluate the rate of historical 
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acidification and rate of future recovery of surface waters as a function of various watershed 

biophysical factors. The Adirondack section of this phase of the dissertation has been published 

in Atmospheric Environment (Fakhraei et al. 2014) and the GRSM section is submitted to 

Ecosphere (Fakhraei et al. in review). 

Using three sensitivity and uncertainty techniques I answer research Question 4. I used first-

order sensitivity index, Morris one factor at a time and Monte Carlo approaches to identify the 

most influential input factors on model simulations. Uncertainty in input factors are propagated 

through model outputs by Monte Carlo simulation of the model using a Latin Hypercube 

Sampling scheme. This part of the dissertation is under National Park Service internal review 

and plans are underway to submit this to a peer-reviewed journal (Fakhraei et al. in review). 
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2. Chapter II (Literature review) 

2.1. Acid deposition 

Atmospheric deposition of sulfur and nitrogen compounds (known as acid deposition) has 

adversely impacted forest and aquatic ecosystems in North America, Europe, and Asia (Driscoll 

et al. 2001). Acid deposition originates from emissions of sulfur dioxide (SO2), nitrogen oxides 

(NOx), and ammonia (NH3) primarily from electric utilities, industrial processes and agricultural 

activities (Driscoll et al. 2001). As a consequence of enhanced fossil fuel combustion and 

agricultural activities, forest and aquatic ecosystems in remote and protected lands of eastern 

U.S. have been threatened by elevated acidic deposition (primarily consisting of two compounds, 

sulfuric and nitric acid; Driscoll et al. 2001). Three compounds have acidified soil and surface 

waters in sensitive ecosystems, causing a cascade of ecological impacts (Driscoll et al., 2003a). 

Acidic deposition has contributed to the depletion of available nutrient cations (i.e. Ca
2+

, Mg
2+

, 

K
+
) in soils and the mobilization of inorganic monomeric aluminum to soil solution. Leaching of 

calcium from foliage, depletion of pools of available calcium in soil and elevated concentrations 

of inorganic monomeric Al in soil solutions due to acid deposition have compromised the health, 

biomass and growth of trees (Raynal et al. 1990, DeHayes et al. 1999, Driscoll et al. 2001, 

Sullivan et al. 2013). Furthermore, acid deposition has impaired surface waters by decreasing pH 

and acid-neutralizing capacity (ANC), and increasing inorganic monomeric aluminum 

concentrations. Decreases in pH and elevated aluminum concentrations have diminished species 

diversity and fish presence in Northeast surface waters (Driscoll et al., 2003a). 

In recent decades, controls on emissions of electric utilities have resulted in declines in 

atmospheric deposition of sulfur (S) by 79% and nitrogen (N) by 68% since passage of the Clean 
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Air Act and its Amendments (https://www.epa.gov/air-emissions-inventories/air-pollutant-

emissions-trends-data) and associated rules. Studies in the eastern U.S. have found that decreases 

in SO4
2-

 concentrations in surface water over the past two decades are linked to decreases in S 

deposition (Driscoll et al. 2003a, 1989, Johnson et al. 2000, Lawrence et al. 2000, 1999). The 

extent of this linkage is variable across ecosystems due to watershed processes which influence 

the retention and ultimately the supply of SO4
2-

 to surface waters. The response to decreases in 

atmospheric S deposition depends on the characteristics of soil and surficial geology of the 

watershed (Mitchell et al. 2013, Rice et al. 2014). Soils with elevated pools of amorphous iron 

and aluminum have high SO4
2-

 adsorption capacities and may buffer decreases in S deposition 

and supply high SO4
2-

 for decades by desorption of previously adsorbed SO4
2-

, limiting the 

recovery of surface waters from acid deposition for multiple decades to a century (Elliott et al. 

2008). 

Elevated deposition raises concern that the biological function of stream ecosystems has been 

negatively impacted due to acidification of soils and stream waters (Cook et al. 1994, Kahl et al. 

2004). Following implementation of the Clean Air Act and subsequent rules (the NOx Budget 

Program, the Clean Air Interstate Rule and the Cross State Air Pollution Rule; Burtraw and 

Szambelan 2009), there has been a marked decline in emissions of acidifying compounds (SO2 

and NOx) resulting in a concomitant decrease in the concentrations and fluxes of sulfate (SO4
2-

) 

and nitrate (NO3
-
) in wet and dry deposition in the eastern U.S. (Lehmann et al. 2005, Driscoll et 

al. 2010). For example at the GRSM, data from the Elkmont monitoring station indicates a 81% 

reduction in SO4
2-

 wet deposition (62.9 meq m
-2

 yr
-1

 to 11.7 meq m
-2

 yr
-1

) and 53% reduction in 

NO3
-
 wet deposition (21.9 meq m

-2
 yr

-1
 to 10.3 meq m

-2
 yr

-1
) between 1981 and 2014 (source: 

NADP; <http://nadp.isws.illinois.edu>). Despite these improvements, current deposition is still 

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
http://nadp.isws.illinois.edu/
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higher than estimated background (pre-industrial) deposition, and recovery of the surface waters 

likely require additional controls on atmospheric emissions. 

2.2. Naturally occurring organic acids 

Simulation of naturally occurring organic acids and their effects is a challenge because of a 

limited understanding of the sources, fate and behavior of dissolved organic matter. The 

accuracy of model simulations of the hydrochemistry of watersheds consequently may be limited 

due to this poor understanding especially in waters with high DOC concentration. Driscoll et al. 

(2003a) reported that a significant fraction (36%) of the lakes surveyed in Adirondacks were 

characterized by high concentration of dissolved organic carbon (i.e. >7.2 mg C/l; 600 µmol C/l) 

and naturally occurring organic acids. Recent studies indicate that the contribution of naturally 

occurring organic acids to regulating the acidity of surface waters is increasing, possibly in 

response to decreases in acid deposition (Freeman et al. 2004, Clark et al. 2006, Evans et al. 

2006, Monteith et al. 2007). As DOC influences acidity and is influenced by acidity, the 

importance of relative changes in organic acids in projections of future changes in acid 

deposition as mediated by carbon and metal ligand (e.g., aluminum) transformations and the 

acidity of soils and surface waters has been highlighted (Clark et al. 2006, Monteith et al. 2007, 

Lawrence et al. 2013). Furthermore, dissolved organic matter (DOM) may act as a vehicle for the 

mobilization, transport, and immobilization of trace metals and nutrients (Schnitzer and Khan 

1972). In spite of the importance of organic acids in the acid-base status of surface waters, 

currently proton and aluminum binding of DOM are poorly characterized and biogeochemical 

models are not able to accurately project changes in DOC concentrations associated with recent 

controls on acid deposition. In this dissertation, the mathematical description of naturally 

occurring organic acids was improved. I investigated the proton- and aluminum- binding of 
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natural occurring organic acids in surface waters by analyzing patterns in water chemistry data. I 

used this information in a chemical equilibrium model to examine the role of DOM in 

controlling the acid-base status and aluminum speciation of low ionic strength waters. Al is 

mobilized from soil in acidic waters and can combine with organic acids. Previously (Driscoll et 

al. 1994), only proton binding constants were adjusted to fit the anion deficit in measurements, 

while in this study I simultaneously fit ANC, pH and inorganic monomeric Al concentrations by 

adjusting proton and Al binding constants to depict the acid-base chemistry of low ionic strength 

waters. 

2.3. Modeling 

The spatial and temporal links of atmospheric emissions to transport, deposition, and 

watershed ecosystem impacts can be investigated using models. A surface water acidification 

model can provide a comprehensive framework to develop a quantitative understanding of the 

response of forest ecosystems to atmospheric deposition. Models can be used to test conceptual 

understanding, provide insight on ecosystem behavior, and quantify and refine modeling 

limitations. Models of surface waters can also be applied to determine the extent of historical 

acidification of watershed ecosystems and evaluate potential benefits of control on emissions of 

acidifying compounds (SO2, NOx, and NH3). Results from such simulations can inform decision 

makers on air quality policy related to atmospheric emissions and acid deposition. 

Measurements complement models as these values are used in model calibration, and future 

measurements provide a means for model validation. Nevertheless measurements cannot 

“predict” the future as one can do with simulation models. 
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Models of varying complexity have been used to evaluate the effects of acid deposition on 

soil and water (e.g., Birkenes (Christophersen et al., 1982); MAGIC (Cosby et al., 1985); PnET-

BGC (Gbondo-Tugbawa et al., 2001); ILWAS (Gherini et al., 1985); ETD (Nikolaidis et al., 

1988); CHUM (Tipping, 1996)). Among these models, net photosynthesis evapotranspiration 

and biogeochemistry (PnET-BGC) is a comprehensive biogeochemical model that depicts major 

ecosystem processes including hydrology, weathering, soil chemical process and biological 

transfers (Gbondo-Tugbawa et al. 2001). PnET-BGC is used to reconstruct past changes that 

have occurred and to project future changes that may occur in the acid-base status of soil and 

streams in forest ecosystems in response to changes in acid deposition. The model requires 

meteorological, atmospheric deposition and historical land disturbance data to simulate 

hydrology and major ion chemistry in vegetation, soil and water. The model was developed by 

combining two submodels, PnET-CN and BGC. PnET-CN (Aber et al. 1997) is a lumped-

parameter model that simulates the cycling and interactions of carbon, N and water in forest 

ecosystems and estimates net primary productivity. The BGC algorithm depicts the dynamics of 

major elements in vegetation, soil and water, and when linked with PnET-CN provides a 

comprehensive model that simulates major element balances including both biotic and abiotic 

process in forest watershed ecosystems (Gbondo-Tugbawa et al. 2001). 

2.4. TMDLs and Critical Loads 

Ecosystems exhibit a dynamic balance and have a characteristic assimilative capacity which 

allows the processing of a certain amount of pollution without significant loss of structure or 

function. If a level of pollution exceeds the assimilative capacity of the ecosystem, reduction or 

removal of the pollution can restore the ecosystem to its original condition over a period of time. 

The water quality of streams can be a robust indicator of the health of watershed ecosystems. 
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Human activities may contribute point or nonpoint sources of pollution to the watershed, and 

impair streams for certain uses. Following the U.S. Clean Water Act (CWA), streams that are 

impaired are placed on the section 303(d) list of water bodies not meeting water quality 

standards. The U.S. Environmental Protection Agency (USEPA) requires states to develop Total 

Maximum Daily Loads (TMDLs) for the listed waterbodies (USEPA 1991). The TMDL is a 

regulatory term referring to the processes which quantifies the maximum amount of pollutant 

load that a water body can assimilate without violating water quality standards. Following this 

determination, the pollution load is allocated to point and nonpoint sources (USEPA 1991). The 

development of a TMDL helps guide managers and policy makers to control pollution sources 

through best management practices (BMPs).  

Numerical modeling can provide a comprehensive framework for projecting the impact of 

human activities on water quality and assessing load capacity of water bodies given a water 

quality standard. The primary purpose of models in the TMDL process is to provide a tool to 

project water quality as a function of pollutants loads. The process of model application within 

the context of TMDL development starts with the selection or development of an appropriate 

model. The model is then calibrated to collected data by adjusting uncertain parameters. 

Following calibration the model adequacy is confirmed using an independent dataset for model 

evaluation. Sensitivity and uncertainty analysis of the model could be conducted either at this 

stage to rationalize the margin of safety component of the TMDL or before the calibration phase 

to help focus collection of data to be used for model calibration. Uncertainty analysis also 

provides decision-makers and stakeholders with a degree of confidence in model predictions. 

Finally, the model can be applied to the TMDL analysis to determine cost-effective approaches 
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to achieve a water quality standard and ideally de-listing the surface water (Chapra 2003, 

Elshorbagy et al. 2005). 

Allocating pollutant loads is another important phase of the technical approach for 

establishing TMDLs. The maximum allowable pollutant load (TMDL) is distributed among three 

general components:  

TMDL = WLA + LA + MOS 

where wasteload allocation (WLA) is the portion of a load capacity designated for point 

sources; load allocation (LA) is the portion of a load capacity allotted to nonpoint sources; and 

margin of safety (MOS) is the prescribed mechanism to account for the uncertainty in the 

relation between pollutant loads and the quality of the receiving water body (USEPA 1991). 

Watersheds in protected lands and remote areas are generally not exposed to the point source 

pollutants (e.g., wastewater treatment plant effluent) but they are susceptible to the pollutants 

associated with nonpoint sources (e.g., atmospheric deposition). In remote areas the WLA 

component of the TMDL is negligible and the focus of water quality management shifts from 

effluent-based to ambient-based standards. 

The TMDL approach can also be applied to assist in the remediation of acidification of 

ecosystems by acid deposition. Another similar approach from an air quality perspective is 

“Critical Loads” which has been applied in the study of acidification and eutrophication of 

freshwater, vegetation and soil. A critical loads (CL) is defined as “a quantitative estimate of an 

exposure to one or more pollutants below which significant harmful effects on specified sensitive 

elements of the environment do not occur according to present knowledge” (Nilsson and 

Grennfelt 1988). Although the CL concept is applicable for assessment of a variety of pollutants, 
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the focus of my study is on sulfur (S) and nitrogen (N) deposition. Critical loads have been 

widely used to set policy for resource protection in Europe and North America (e.g., Henriksen 

et al. 1992, Dupont et al. 2005), and well identified as an effective tool for communication 

between scientists and policy-makers (Driscoll et al. 2010). Critical loads have been applied in 

the U.S. to inform the development of ecosystem protection goals and strategies related to the 

effects of atmospheric deposition, including for National Parks and National Forests (Burns et al. 

2008, Sullivan et al. 2011, Baron et al. 2011, Blett et al. 2014, Zhou et al. 2015a).  

Models of varying levels of complexity have been used to develop CLs, including steady-

state (Ouimet et al. 2006, McNulty et al. 2007), dynamic (Sullivan et al. 2012a), and empirical 

approaches (Bobbink et al. 2010, Pardo et al. 2011). The first methods used to develop CLs were 

based on empirical relationships (e.g., Battarbee et al., 1995). Subsequent modeling efforts have 

included steady-state models such as the Steady-State Water Chemistry method to derive CLs 

(Henriksen and Posch, 2001). Biogeochemical models can play a central role in development of 

critical loads of acidity because they depict scientific understanding of ecosystem processes in 

response to atmospheric deposition. Recently, with interest in time-dependent processes and the 

effects of multiple pollutants, dynamic models such as MAGIC (Sullivan et al. 2012a) and 

PnET-BGC (Zhou et al. 2015b) have been applied to develop CLs.  

2.5. Sensitivity and uncertainty analysis 

2.5.1. Introduction  

Today many disciplines rely on mathematical models to simulate the behavior of real-world 

systems. In ecological science, models provide representations of complex systems through 
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mathematical expression of important processes. Simple models with limited processes often 

oversimplify complex systems, providing unreliable results. Depicting various phenomena in the 

form of computer codes adds complexity to the mathematical models and can improve 

predictions; however accuracy and interpretation of the results are often complicated by 

embedded uncertainties. Model uncertainty is governed by how close the model predictions are 

to the actual observations. As an inherent part of simulating ecological systems, uncertainty in 

model application arises from two general causes: insufficient and/or inaccuracy of the model 

inputs (i.e., model input data and parameters) and the limitation in the underlying assumptions, 

formulation, and structure of the model (i.e., model inadequacy) (Morris 1991, Kennedy and 

O’Hagan 2001). Statistical inference methodologies enable propagation of these uncertainties to 

the model output of interest (i.e., uncertainty analysis) and determine the strength of the relation 

between a given uncertain input and the output (i.e., sensitivity analysis) (Hartig et al. 2011). 

Various approaches including single-parameter (local) analysis and multi-dimensional parameter 

(global) techniques can help to identify sensitivity and uncertainty in models. Here, I review 

sensitivity and uncertainty analysis techniques in the context of a deterministic biogeochemistry 

model, PnET-BGC. By deterministic model, I refer to a model which with the same input 

produces the same output if simulated multiple times. 

Many techniques have been developed to address sensitivity and uncertainty analysis, here I 

briefly illustrate the most widely used, reliable, and efficient techniques. I illustrate their 

application in a biogeochemical model described in the main text of the manuscript. Below, I 

describe some of the most widely used sensitivity and uncertainty analysis techniques: first-order 

sensitivity index, Latin Hypercube sampling associated with Monte Carlo (LHS-MC) technique, 
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extended Fourier amplitude sensitivity test (eFAST), Morris one-factor-at-a-time and an 

uncertainty analysis approach: Bayesian analysis. 

2.5.2. Uncertainty and sensitivity analysis techniques  

In general, sensitivity analysis is classified in two categories: local and global. In local 

sensitivity, the model response to the variation of one input factor at a time is investigated, while 

other input factors are fixed at their nominal values. This method is efficient, easy to use, and has 

been widely used in many disciplines. The global class of sensitivity analysis is motivated by 

exploring the space of input factors, rather than nominal values alone, and includes the 

interactions of input factors on the model output. Note however that global methods are 

computationally expensive (Saltelli et al. 1999). I chose first-order sensitivity index as an 

example of local sensitivity analysis, and present three global sensitivity approaches: LHS-MC 

as an example of sampling-regression-based, eFAST as an example of variance-based, and 

Morris as a screening method. I also describe Bayesian analysis as an uncertainty technique. 

Ideally, these complementary approaches should be implemented for a complete and informative 

uncertainty and sensitivity analysis.  

2.5.2.1. First-order sensitivity indices  

First order sensitivity index is a straightforward approach which reveals how sensitive an 

output of interest is to a perturbation of an input factor. If the model output of interest is Y, its 

sensitivity to an input factor Xi is  
𝜕𝑌

𝜕𝑋𝑖
 , where 𝜕𝑌 is the relative change in the model output, Y, 

and 𝜕𝑋𝑖 is relative change in the input factor Xi. A unit-independent sensitivity index (S
Y

Xi) can 

be estimated by 
𝜕𝑌 𝑌⁄

𝜕𝑋𝑖 𝑋𝑖⁄
 (Jørgensen and Bendoricchio 2001). This is a local sensitivity measure 
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and can be efficiently calculated by implementing a deviation in a model input (up to 10-20% 

difference from the baseline condition). Sensitivity index falls in the class of the one-factor-at-a-

time (OAT) methods, since the response to Xi is evaluated while holding all other inputs fixed at 

their nominal values. A sensitivity index might be used in assessing the relative importance of 

input factors or to screen those factors which are less influential on the outputs. The OAT 

approach is efficient for assessing the relative importance of input factors if the model is linear in 

all its factors (Saltelli et al. 2005).  

2.5.2.2. Monte Carlo regression based  

The extent to which model inputs affect model outputs can be ordered using various Monte 

Carlo (MC) regression-based techniques. In these approaches, model simulation is implemented 

based on samples which are generated from a MC algorithm and a linear regression model is 

developed between model output and individual inputs. Examples of these methods are 

standardized regression coefficients (SRC), Pearson correlation and partial correlation coefficient 

(PCC). Linear regression between input factors and model outputs provides good estimates of 

parameter sensitivity for nearly linear model behavior, but fails for model output which shows 

nonlinear (especially non-monotonic) dependence on model parameters. For monotonic-

nonlinear models, other methods including standardized rank regression coefficients (SRRC), 

Spearman correlation, and partial rank correlation coefficients (PRCC) can be used (Marino et al. 

2008). Several sampling strategies can be implemented to generate a distribution of input factors; 

the most popular sampling scheme is Latin hypercube sampling (LHS; McKay et al., 1979). 

Latin hypercube sampling uses stratified sampling to improve the coverage of the k-dimensional 

input space. In LHS, the distribution of input factors is divided into N equiprobable subintervals 

which are then sampled. Each subinterval for each parameter is sampled randomly once and 
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generates a sampling matrix (LHS matrix) which includes N rows and k columns, where k is the 

number of input factors. Using each row of the LHS matrix, the model is run N times and 

generates N outputs corresponding to the input factors. The LHS sampling technique allows an 

un-biased estimate of the average of model output (Marino et al. 2008). A practical starting point 

in assessing the results of this analysis is to examine scatter plots. Scatter plots of model output 

as a function of individual perturbed parameters reveal linear or nonlinear relationships.  

2.5.2.3. Extended Fourier amplitude sensitivity test (eFAST)  

For models with nonlinear non-monotonic behavior, OAT and MC regression methods may 

not be appropriate. Therefore, methods based on decomposition of model output variance are 

developed for sensitivity analysis of these models. Examples of these methods include the Sobol 

method (Sobol’ 1990), Fourier amplitude sensitivity test (FAST) (Cukier et al. 1973, 1975) and 

its extended version (eFAST) (Saltelli et al. 1999). FAST estimates the contribution of the “main 

effect” of each parameter to on the variance of the output. In complex models, variation in input 

factors can cause very significant interaction effects, that may even predominate over the main 

effect (Saltelli et al. 1999). Saltelli et al. (1999) combined FAST and Sobol approaches, by 

developing an extended FAST (eFAST) technique to compute total effect (i.e., main and 

interaction effects) of input factors on model outputs. In eFAST analysis, different parameters 

are varied at different frequencies causing variation in model output. Then the output variance is 

partitioned to determine the fraction of the variance that is due to variation in each parameter. 

The stronger the frequency of a parameter propagating through the model to the output, the more 

sensitive the model is to the parameter (Saltelli et al. 1999, Marino et al. 2008). eFAST is one of 

the most efficient methods for sensitivity analysis, but it is very computationally expensive 

(Saltelli et al. 1999). 
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2.5.2.4. Morris one-factor-at-a-time  

In contrast to the one-factor-at-a-time (OAT), global methods such as eFAST require a large 

number of model runs, particularly for models with many input factors. Morris (1991) proposed 

a screening approach to sensitivity analysis, which is useful when many input factors are 

uncertain and/or running the model is time-consuming. In the Morris sensitivity analysis method, 

the space of each input factor is discretized and the model is run by perturbing one factor at a 

time across the discrete levels. For each perturbation, an elementary effect, which is ratio of the 

change in output to the change in the input factor, is calculated. A set of different estimates of 

elementary effects for each factor are generated by repeating the process (repetition is generally 

set to 4 to 8 times (Saltelli et al. 2005)). For each input, two sensitivity measures are computed 

over the set of repetitions: mean and standard deviation of the elementary effects. A high value 

of a mean indicates the input factor has a large influence on the model output, while a high value 

of standard deviation indicates either an interaction of the input factor with another input factor 

or a nonlinear effect of the input factor on the output (Morris 1991, Saltelli et al. 2005, 

Campolongo et al. 2007).  

2.5.2.5. Bayesian approach  

For large complex models, uncertainty is a major concern. Therefore, the model predictions 

should be represented with a confidence range instead of a single value. Bayesian techniques are 

another useful approach to uncertainty analysis. Bayesian methods are preferable to factorial 

designs approach, such as Morris, in terms of covering the distributions, not the levels, of the 

input factors during the sampling. The uncertainty distribution can be obtained by a Bayesian 

analysis using Markov Chain Monte Carlo (MCMC) simulations. The Bayesian approach 

involves specifying a prior probability distribution for the input factors and the likelihood 
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function for the outputs given the observations. The posterior distribution is generated by 

running the model with proposed input factors from MCMC techniques. This approach allows 

the user to determine probability distribution of the model input factors and to propagate the 

impact of uncertainty in model inputs onto the model output (Larssen et al. 2006, O’Hagan 

2006). 
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Figure 3.7 Location of Great Smoky Mountains National Park, other nearby Class I Wilderness 

areas, National Forests and the 30 watersheds for which model simulations were conducted. Also 

shown are 42 stations where long-term observations of stream chemistry were available for 

temporal trend analysis. 

 

Using the model predicted data for long-term soil and stream chemistry of 30 study sites, I 

conducted regression analysis to evaluate the role of watershed characteristics in historical 

acidification and recovery among the study sites in the GRSM. In this regression analysis, the 

predictors were watershed characteristics including elevation, deposition, vegetation land cover, 
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of observations for 100 NCDC monitoring stations to develop the regression models.  Among the 

eight NCDC sites inside the Park, I selected the Gatlinburg station (35˚ 41’ N, 83˚ 32’ W; Figure 

3.8) with the longest record of meteorological data (1933-present) as a benchmark for temporal 

variation. For period of 1933 to 2012, the observations at Gatlinburg provided temporal pattern 

of meteorological data for the Park. For years before 1933, the average values of 30 initial years 

(1933-1962) and for years after 2012, the average of 30 last years (1983-2012) were used for 

model simulations. Then the meteorological data for the study sites in the Park were extrapolated 

from the Gatlinburg values, using the relative changes derived from the regression models (Table 

3.18 - Table 3.20). 
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Table 3.17 Multiple linear regression of NSRDB solar radiation data with longitude, latitude and elevation for the GRSM (radiation 

in μmol m
–2

 s
–1

; n=10). 

  January February March April May June July August September October November December 

Constant 2239.1 2367.9 2468.2 2324.4 1886.1 916.5 898.4 580.9 1138.7 1440.7 2280.1 2214.6 

Latitude (decimal degrees) -29.6 -30.22 -28.54 -29.54 -19.22 

   

-9.98 -21.22 -32.09 -30.01 

Longitude (decimal degrees) 8.35 8.36 8.76 5.21 3.8 

  

-3.55 

  

7.29 8.37 

Elevation (m) 

    

-0.054 -0.099 -0.092 -0.079 -0.045 

   
Adjusted R2 0.78 0.70 0.75 0.71 0.75 0.69 0.62 0.87 0.63 0.88 0.90 0.88 

Mean (μmol m–2 s–1) 495.83 601.67 728.02 845.04 873.22 886.56 870.56 852.98 772.04 690.37 537.08 455.14 

Coefficients are significant at p<0.05. Missing values indicate that the related predictors are not statistically significant (p> 0.05), therefore stepwise regression analysis 

identified the best explanatory model without including those predictors. 

The NSRDB data are in Wh m-2 d-1, I converted the data to µmol m-2 s-1 to use in the PnET-BGC model by dividing to day length at the monitoring stations (Swift 
1976)and multiplying to a factor of 2.05 (Aber and Freuder 2000). 

 

Table 3.18 Multiple linear regression of NCDC precipitation data with longitude, latitude and elevation for the GRSM (precipitation 

in cm month
–1

; n=100). 

  January February March April May June July August September October November December 

Constant -19.25 -16.1 10.82 -64.14 -90.3 11.23 -33.65 96.27 51.94 110.27 -27.35 -45.29 

Latitude (decimal degrees) -2.702 -2.299 -2.373 -0.567 

 

-1.601 

 

-2.458 -2.97 -2.911 -2.815 -2.484 

Longitude (decimal degrees) -1.502 -1.294 -1.003 -1.118 -1.205 -0.667 -0.542 

 

-0.734 

 

-1.63 -1.727 

Elevation (m) 0.00424 0.00357 0.00439 0.00374 0.00337 0.00429 0.00256 0.00495 0.00675 0.00346 0.00563 0.00374 

Adjusted R2 0.55 0.54 0.52 0.43 0.40 0.38 0.10 0.51 0.66 0.53 0.54 0.44 

Mean (cm) 11.87 11.64 12.22 10.65 11.66 12.07 12.74 11.49 10.99 8.58 11.09 12.03 

Coefficients are significant at p<0.05. Missing values indicate that the related predictors are not statistically significant (p> 0.05), therefore stepwise regression analysis 

identified the best explanatory model without including those predictors. 

 



75 

 

Table 3.19 Multiple linear regression of NCDC maximum monthly air temperature with longitude, latitude and elevation for the 

GRSM (temperature in ˚C; n=100). 

  January February March April May June July August September October November December 

Constant 124.91 111.22 86.96 84.62 83.33 77.16 81.85 55.9 47.47 59.06 93.69 109.09 

Latitude (decimal degrees) -1.844 -1.594 -1.153 -0.904 -0.574 -0.35 -0.373 

  

-0.387 -1.032 -1.5 

Longitude (decimal degrees) 0.579 0.489 0.324 0.341 0.418 0.392 0.419 0.272 0.28 0.254 0.464 0.522 

Elevation (m) -0.00517 -0.00598 -0.00696 -0.00718 -0.00734 -0.0079 -0.00798 -0.008 -0.00664 -0.00655 -0.00581 -0.00499 

Adjusted R2 0.91 0.92 0.93 0.94 0.93 0.93 0.93 0.92 0.90 0.91 0.91 0.91 

Mean (˚C) 8.31 10.55 15.15 20.08 24.11 27.76 29.31 28.88 20.55 20.55 15.17 9.55 

Coefficients are significant at p<0.05. Missing values indicate that the related predictors are not statistically significant (p> 0.05), therefore stepwise regression analysis identified the best 

explanatory model without including those predictors. 

 

Table 3.20 Multiple linear regression of NCDC minimum monthly air temperature with longitude, latitude and elevation for the 

GRSM (temperature in ˚C; n=100). 

  January February March April May June July August September October November December 

Constant 37.34 36.36 35.97 31.07 60.67 47.62 46.57 67.03 64.33 40.27 35.11 33.55 

Latitude (decimal degrees) -1.095 -1.02 -0.908 -0.649 -0.509 

  

-0.525 -0.696 -0.889 -0.891 -0.953 

Longitude (decimal degrees) 

    

0.353 0.352 0.313 0.341 0.286* 

   
Elevation (m) -0.00344 -0.00377 -0.00411 -0.00421 -0.00461 -0.00523 -0.00537 -0.00526 -0.0047 -0.00336 -0.00289 -0.00318 

Adjusted R2 0.67 0.69 0.67 0.64 0.68 0.73 0.77 0.78 0.72 0.53 0.49 0.61 

Mean (˚C) -3.52 -2.00 1.39 5.67 10.68 15.43 17.56 17.08 13.23 6.81 1.82 -2.10 

Coefficients are significant at p<0.05 with no mark or p<0.10 with *. Missing values indicate that the related predictors are not statistically significant (p> 0.05), therefore stepwise regression 

analysis identified the best explanatory model without including those predictors. 
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In an independent analysis, I clustered the ALSC dataset into 0.05 pH intervals and modeled 

performance by calculating the central tendency of pH and ANC observations as I did for the 

ALTM dataset. Clustered data from the evaluation of the ALSC dataset have a similar range of 

pH and DOC as the clustered ALTM dataset. Using calibrated parameters, somewhat improved 

the agreement between predicted and measured pH compared to results using parameters 

previously developed for this dataset  (Figure 4.5 and Table 4.2). 

 

 

Figure 4.5 Comparison between measured and simulated (a) pH and (b) ANC for means of 

grouped observations in 0.05 pH interval based on ALSC data set. 
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Table 4.2 Summary of model performance in calculating pH, ANC and Ali for three different 

data sets (Adirondack Long Term Monitoring (ALTM) program, Hubbard Brook Experimental 

Forest (HBEF) and Adirondack Lake Survey Cooperation (ALSC)) based on applying calibrated 

parameters and literature values. Values indicate normalized root mean squared error (NRMSE). 

Data base ALTM HBEF ALSC 

Source of modeling parameters pH ANC Ali All pH ANC Ali All pH ANC Ali
a All 

Calibrated to ALTM data base 0.05 0.57 0.46 0.36 0.08 2.21 0.66 0.99 0.09 0.91 ---- 0.50 

Calibrated to HBEF data base 0.08 0.80 0.75 0.54 0.08 2.43 0.25 0.92 0.11 1.07 ---- 0.59 

Driscoll et al. (1994) 0.14 1.08 1.29 0.83 0.10 3.15 1.97 1.74 0.16 1.16 ---- 0.66 

Santore et al. (1995) 0.07 1.68 0.95 0.90 0.14 7.01 1.03 2.73 0.11 1.51 ---- 0.81 

Excluding organic acids 0.23 3.39 1.93 1.85 0.41 13.78 2.50 5.56 0.30 2.74 ---- 1.52 
a No Al measurement 

4.1.1.4. Charge density as a function of pH and Al  

Values of charge density (Org
n-

 / DOC) predicted from the calibrated parameters for 

Adirondack lakes (ALTM) are low and relatively constant at low pH, and increase as pH values 

increase above 5 (Figure 4.6). Estimated charge densities at low pH values are about 30-40% of 

values at circumneutral pH, suggesting that DOM has a significant density of strongly acidic 

organic functional groups. Observations from Adirondack lakes encompass a wider range of pH 

than Hubbard Brook soil solutions and streams. Over their common range of pH the two datasets 

demonstrate similar DOC and charge density values (Figure 4.6).  
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Figure 4.9 Comparison of measured and model-simulated values of annual volume-weighted 

concentrations of SO4
2-

, NO3
-
, pH, ANC, Ca

2+
, and soil base saturation (%BS) at West Pond 

during 1850-2200. Model projections are shown for five future S reduction scenarios: 0, 25, 50, 

75, and 100% reduction. Note circles are annual observations from the Adirondack Long Term 

Monitoring program. Lake chemistry measurements were not available prior to 1982 to evaluate 

model hindcasts. 

 

Hindcast trends in lake NO3
-
 are not solely driven by changes in atmospheric N deposition, 

but also influenced by meteorological conditions, land disturbance and tree growth. In West 

Pond the projected NO3
-
 in 1850 was 1.8 µeq L

-1
. Concentrations increased in the early 1900s, 

peaking around 1978 at 12 µeq L
-1

. This change was largely driven by changes in climatic 
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over the future projection period. In order to create “ANC response curves” several future 

scenarios were developed by considering various reductions in atmospheric loads involving S, N 

and a combination of decreases in S and N (0, 10, 25, 40, 50, 60, 75, 90, 100% decreases from 

current values). Correlating model predicted ANCs for four future dates (2050, 2100, 2150, and 

2200) with the level of load reductions provided “ANC response curves”. A 100% control 

scenario is equivalent to decreases to pre-industrial background deposition. Load reduction 

scenarios were developed by a linear decrease in baseline load during the first 10 years after 

2011 (i.e., from 2012 – 2022), and then deposition was held constant until the end of the 

simulation period in 2200. The baseline was considered as the average atmospheric deposition 

during 2009 – 2011 estimated at each site. 

Given the decrease in atmospheric load required to obtain a target ANC, the study sites were 

categorized into three classes: (1) unimpaired lakes (ANC above target); (2) recoverable lakes 

(ANC below target but recoverable with additional load reduction); and (3) chronically impaired 

(not recoverable) lakes.  

Model projections for West Pond indicate that under the base case scenario (i.e., no decrease 

in acidic deposition) annual volume weighted concentration of SO4
2-

, NO3
-
 and Ca

2+
 decreased 

50%, 69% and 44% in 2200 relative to the measured values in 2010 (Fig. 3). In spite of 

substantial decreases in concentrations of SO4
2-

 and NO3
-
 (19 and 11 µeq L

-1
), pH and ANC are 

projected to only increase 0.25 pH unit (from 5.15 to 5.4) and 7.6 µeq L
-1

 (from 6.4 µeq L
-1

 to 14 

µeq L
-1

), respectively, under the base case scenario. The effect of declines in strong acid anions 

is partially offset by decreases in Ca
2+

 leaching to the lake and to a lesser extent decreases in in-

lake ANC production.  



115 

 

The projected soil chemistry of the West Pond watershed suggests that severe soil 

acidification occurred due to historical acidic deposition (i.e., BS decreased from 18% in 1850 to 

2.3%) by 2010, but under the no change in deposition scenario the projected base saturation was 

estimated to partially recover to 7.2% by 2200. Note the projected soil BS in 2200 is 

substantially lower than estimated pre-industrial value (i.e., 18%). The moderate recovery of 

ANC, pH and soil BS indicates additional controls on emissions to decrease acidic deposition 

beyond current values may be required to more effectively restore the lake-watershed to its pre-

industrial condition and support its uses in the future.  

Various load reductions in S
 
and N were applied separately and in combination to all study 

lakes. In West Pond, under a 100% reduction of atmospheric S deposition, lake concentrations of 

SO4
2- 

and Ca
2+

 declined 29% and 12%, respectively, lower than decreases under the base case 

scenario for year 2200 (Figure 4.9). The lake pH, ANC and soil BS recovered to 5.67, 27.2 µeq 

L
-1

 and 15%, respectively, by 2200 under this aggressive scenario. Although substantial recovery 

generally occurs under the 100% reduction in S deposition load, for most of the study sites 

projected values of pH, ANC and soil BS in 2200 remained below the pre-industrial estimates. 

Because of the dynamic nature of soil and lake biogeochemical process, the extent of recovery is 

highly time-dependent. Considerable recovery is projected to occur in the decades that shortly 

follow a given level of deposition reduction and the extent of additional recovery diminishes 

through time. Most Adirondack lake-watersheds attain near steady state conditions by year 2150, 

about 150 years following the decrease in deposition. These results are consistent with previous 

dynamic modeling that has been done for different forest ecosystems (Johnson et al. 1993, 

Wesselink et al. 1995). Limited recovery can be due to depletion of available base cations in 

soils, desorption of S previously accumulated in soils, and increases in leaching organic acids to 
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the lakes. The rate of ANC change was estimated for all study sites under a moderate control 

scenario (60% reduction) for two future periods (2022–2050 and 2050–2200) (Figure 4.10). For 

the moderate control scenario, rates of change in surface water ANC during 2022–2050 ranged 

from -0.27 to 0.80 µeq L
-1

 yr
-1

 (mean 0.18 µeq L
-1

 yr
-1

 ) for all sites, but by 2050–2200 ranged 

from -0.07 to 0.11 µeq L
-1

 yr
-1

 (mean 0.05 µeq L
-1

 yr
-1

). The higher rate of change in ANC in 

earlier time period (2022-2050) compared to the period 2050-2200 was also evidenced under 

implementation of base case and pre-industrial scenarios (Figure 4.11). These modeling results 

suggest that considerable recovery is projected to occur in the decades that shortly follow a 

reduction in deposition and the extent of additional recovery diminishes over time. 
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Figure 4.10 Histograms of recovery rate of ANC (µeq L
-1

 yr
-1

) under moderate decrease (60% 

reduction) in S deposition scenario during 2022-2050 time periods. Lakes were classified based 

on surficial geology. 



118 

 

 

Figure 4.11 Histograms of recovery rate of ANC (µeq L
-1

 yr
-1

) for all 141 simulated lakes 

under two contrasting scenarios of decreases in S deposition (i.e., no controls and 100% 

reduction) for two time periods (i.e., 2022-2050 and 2050-2200). 

 

Surficial geology significantly influences the rate of change in lake ANC; lakes with thin till 

watersheds show a generally faster rate of recovery, while lakes with medium or thick till 

watersheds exhibit a slower recovery rate in response to the moderate S deposition control 

(Figure 4.10). The median simulated recovery rate of ANC for all study lakes from 2000-2010 

was 0.54 µeq L
-1

 yr
-1

. Similar results were reported for trends in observed ANC in 43 TIME 
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Adirondack lakes from 2000−2010 (0.51 μeq L
-1

 yr
-1

) by Strock et al. (2014) and from 

1991−2007 (0.76 μeq L
-1

 yr
-1

) by Waller et al. (2012). 

Two other atmospheric control scenarios were considered; reductions in N and N and S 

together. The results illustrate that in general controls on S inputs are the most effective approach 

to achieve recovery of Adirondack lake ANC (compare Figure 4.12a and Figure 4.12b).  

 

Figure 4.12 Projections of ANC of West Pond in response to different load reduction 

scenarios, (a) S load reduction, (b) N load reduction and (c) S and N load reduction, for different 

target years (2050, 2100, 2150, 2200). Also shown are ANC targets of 11 µeq L
-1

 and 20 µeq L
-1

. 

 

There are several possible explanations for the limited response of West Pond Watershed to 

decreases in atmospheric N deposition. First for lakes with modest hydraulic retention times 
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(>0.5 yr), in-lake retention of NO3
-
 supports recovery of ANC. Decreases in NO3

-
 concentrations 

due to decreases in atmospheric deposition reduce in-lake generation of ANC. Second, the 

decreases in inputs of strong acid anions (i.e., NO3
-
) and consequent increase in soil solution pH 

facilitates desorption of anions from the soil, particularly SO4
2-

. This release of SO4
2-

 from soil 

partially offsets the increase in lake ANC, which would be expected to occur due to a decrease in 

NO3
-
. Finally, the retention of N in the terrestrial ecosystem limits N leaching and the associated 

change in acid-base status of the lakes. 

The required decreases in load needed to achieve two distinct ANC targets of 11 µeq L
-1

 or 

20 µeq L
-1

at different future dates were examined by using response curve plots. The response 

curve of ANC for West Pond to different load reduction scenarios demonstrates that 50% and 

5% decreases in current atmospheric S deposition are required to achieve the ANC target of 11 

µeq L
-1

 by 2050 and 2100, respectively (Figure 4.12a). For later years (i.e., 2150, 2200) no 

additional load reduction in S is required to attain this ANC value. Similarly S load reductions of 

90%, 60% and 45% are required to achieve ANC target of 20 µeq L
-1

 by years 2100, 2150 and 

2200, respectively. 

Model results suggest that increases in surface water ANC are greater per equivalent 

decrease in S deposition compared to N deposition. The scenarios involving combined load 

reduction of S plus N essentially achieve the same level of recovery in lake ANC compared to S
 

only load reduction. Therefore, the TMDLs of acidity were developed based solely on decreases 

in atmospheric S deposition. 

Similar to West Pond, ANC response curves were developed for all study sites and the extent 

of S load reduction required to achieve the target ANC was determined. Based on this analysis, 
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individual study sites were categorized into the three classes. For example, Limekiln Lake 

(Figure 4.13a) is not impaired for either ANC target and does not require any further load 

reduction. In contrast, Constable Pond (Figure 4.13b) is not recoverable with respect to the 20 

µeq L
-1

 ANC target. Although Constable Pond cannot achieve an ANC of 11 µeq L
-1

 by year 

2050, the pond is recoverable with additional load reductions in future dates (i.e. 100%, 70% and 

60% S load reduction is required by 2100, 2150 and 2200, respectively to achieve ANC = 11 µeq 

L
-1

). Finally, Peaked Mountain Lake (Figure 4.13c) will remain impaired even with a 100% 

decrease in S load; the ANC of the lake is not projected to attain either target. Note that several 

Adirondack lakes are chronically acidic because they have naturally very low rates of base cation 

supply; they experience elevated inputs of naturally occurring organic acids and are naturally 

acidic; or historical acid deposition has depleted soil available base cations to the extent that they 

will not be able to achieve an ANC recovery target even under low future acid deposition. 
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Figure 4.13 Projections of response curves of (a) Limekiln Lake, (b) Constable Pond, and (c) 

Peaked Mountain Lake in response to S load reductions for different target dates (2050, 2100, 

2150, 2200). Also shown are the values of 11 and 20 µeq L
-1

ANC targets. 

 

TMDL lakes were subdivided into the three classes based on their recovery status. Results of 

the control scenarios indicate that if the goal is to achieve ANC target of 20 µeq L
-1

 by year 

2050, among 128 lakes designated as acid impaired, 40 lakes will recover without any further 

load reduction; 36 lakes could be recovered by applying additional control on S deposition; and 

52 lakes will remain impaired even with 100% load reduction. By 2200 the number of lakes that 

remain impaired will decrease to 39, and 80 lakes will achieve the 20 µeq L
-1

 without any 

additional control. For the lower 11 µeq L
-1

 target, most of the lakes (85 lakes) will achieve this 

target by 2050 and additional time will not appreciably change the number lakes recovered. Even 
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at a target of 11 µeq L
-1

 by 2200, 37 lakes will remain impaired. Most of these lakes (35 lakes) 

appear to be naturally acidic with pre-industrial ANC values below 11 µeq L
-1

. 

4.2.1.3. Estimated TMDLs  

Over time and/or with decreases in atmospheric S deposition, the number of lakes with ANC 

above 20 µeq L
-1

 increases (Figure 4.14). Larger changes in ANC in response to decreases in S 

deposition across the Adirondacks occur from 2020 to 2050 with changes continuous until 2100 

and limited change after 2100. 

 

Figure 4.14 Cumulative frequency of the number of acid impaired lakes (n=128) expected to 

attain target ANC of 20 µeq L
-1

 at four future dates (2050, 2100, 2150, 2200) by decreasing 

current atmospheric S load. For example, for a 60% decrease in atmospheric S deposition 37.5, 

62.5, 68 and 68% of the acid-impaired Adirondack lakes are projected to achieve a target of 20 

µeq L
-1

 by 2050, 2100, 2150 and 2200, respectively. 

 

Lakes with thin till watersheds are acidified to a greater extent and are recovering faster 

compared to lakes with medium or thick till watersheds, because thin till watersheds have less 
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capacity to neutralize and retain SO4
2-

, therefore atmospheric SO4
2-

 deposition is largely 

transported to surface waters (Mitchell et al. 2013).  

Moreover, since medium or thick till watersheds exhibit greater supply of acid neutralizing 

base cations and retain atmospheric inputs of SO4
2-

 and NO3
-
, lakes adjacent to these watersheds 

experienced less severe historical acidification in response to elevated acid deposition and will 

recover more slowly compared to lakes with thin till watersheds.  

I developed TMDLs of acidity by assuming a reasonable target of 60% decrease from current 

atmospheric S deposition. Among the 128 acid impaired lakes, 97 and 83 currently have ANC 

below 20 µeq L
-1

 and 11 µeq L
-1

, respectively. Applying a 60% additional decrease in current 

atmospheric S deposition is projected to increase the ANC of 28% of these impaired lakes to 

above 20 µeq L
-1

 by years 2050 and 60% by year 2200. Fifty-three percent of the lakes with 

current ANC values below 11 µeq L
-1

 are projected be restored to a target ANC of greater than 

11 µeq L
-1

 by 2050 with a 60 % decrease in atmospheric S deposition. Estimated current total S 

deposition ranges from 19.7 to 33.6 meq m
-2

 yr
-1

 across the 128 study sites, with a mean value of 

23.8 meq m
-2

 yr
-1

. The lowest loading corresponding to a 60% additional decrease in S
 
deposition 

is 7.9 meq m
-2

 yr
-1

, and represents the critical load. Allocating 10% of the critical load to a 

margin of safety (MOS; 0.79 meq S m
-2

 yr
-1

 ), the final TMDL allocations of acidity for the study 

lakes in Adirondacks are 0 meq S m
-2

 yr
-1

 for Wasteload Allocation (i.e., no point sources) and 

7.11 meq S m
-2

 yr
-1

 for Load Allocation. A complete error analysis should be conducted to 

design a MOS, however my sensitivity analysis resulted an implicit MOS corresponding to 

uncertainty in Ca
2+

 weathering rate which is roughly equivalent to the applied explicit value of 

10%. 
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4.3. PnET-BGC application to the GRSM 

4.3.1. Developing critical loads of acidity 

4.3.1.1. Results 

4.3.1.1.1. Recent observed trends in atmospheric deposition and stream 

chemistry  

At the NADP monitoring site in the GRSM (Elkmont - TN11), concentrations of SO4
2-

 in 

atmospheric deposition decreased (p<0.05) at the rate of 0.73 µeq L
-1

 yr
-1

 between 1981 and 

2014. Nitrate concentrations in precipitation did not show any significant trend between 1981 

and 2002, but after implementation of the NOx Budget Trading Program (NBP; established under 

the NOx State Implementation Plan (SIP) Call Program in 2003; Burtraw and Szambelan 2009) 

significantly (p<0.05) decreased at a rate of 0.3 µeq L
-1

 yr
-1

. Ammonium in precipitation has not 

shown any significant change neither since 1981 nor 2003 (Data source: NADP 

<http://nadp.isws.illinois.edu/>). 

Observed bulk atmospheric deposition at Noland Divide indicates a significant (p<0.05) 

decreasing trend for SO4
2-

 (0.51 µeq L
-1

 yr
-1

 from 1991 to 2013). There was no significant 

change from 1991 to 2002 (i.e., before NBP implementation) in NO3
-
, but again a significant 

decreasing trend (1.28 µeq L
-1

 yr
-1

) from 2003 to 2013. A slight but statistically significant 

(p=0.006) decrease in NH4
+
 (0.21 µeq L

-1
 yr

-1
) was evident during the period 1991-2013. 

In spite of recent decreases in atmospheric SO4
2-

 and NO3
-
 deposition at these sites, stream 

chemistry in the GRSM has not shown widespread changes in acid-base chemistry. My time 

series analysis indicates that among the 42 sites with long-term observations, only nine have 
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postulated by Harrison et al. (1989), an average of 36% of adsorbed SO4
2-

 was retained 

irreversibly for subsoils from forest sites in USA, Canada and Norway) this would allow for 

more rapid recovery. Unfortunately little is known about the reversibility of soil SO4
2- 

adsorption. Also soils with higher SO4
2-

 adsorption capacity are strongly buffered against 

changes in SO4
2-

 and NO3
-
 deposition and do not show significant change in soil acidity (i.e., pH 

of soil solution) to facilitate exchange of base cations (i.e., Ca
2+

, Mg
2+

, Na
+
, and K

+
) in soil 

solution with acid cations (i.e., H
+
 and Al

3+
) that occupy soil cation exchange sites. 

My study indicated that streams in the east central portion of the park are currently in 

exceedance the critical loads designated for recovery by 2050. Note that this area of the park is 

not only exposed to the highest atmospheric deposition due to higher elevations, but is also 

characterized by lower soil SO4
2- 

adsorption capacity which allows for the acidification of 

streams. However a substantial number of these streams would not be in exceedance if the target 

year of recovery is delayed to 2150, indicating that acid-impacted GRSM streams will have 

limited response to NO3
-
 + SO4

2-
 deposition control and need more time to be recovered. 

This study should provide insights on the response of other forests in the Southern 

Appalachian Mountains to decreases in acid deposition. This region is a highly valued resource, 

with several protected areas including Class I Wilderness areas, National Parks and National 

Forests (Figure 3.7). In addition to the GRSM, considerable research in nearby has been 

conducted Shenandoah National Park (Webb et al. 2004, Deviney et al. 2006). The montane 

landscape and heterogeneous soils of the GRSM are typical of the Southern Appalachian 

Mountains, and pose challenges to model applications. There are climatic and edaphic variations 

across the region that influence recovery from acid deposition (Rice et al. 2014). Nevertheless a 
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useful step would be to build on analysis of this study and make projections of the response of 

the broader Southern Appalachian Mountains to anticipated changes in air pollution. 

4.3.2. Developing TMDLs of acidity for impaired streams in the GRSM 

4.3.2.1. Results and Discussion 

4.3.2.1.1. Water quality standard  

To calculate a TMDL, the water quality criterion and its target value should be specified. The 

Tennessee Department of Environment and Conservation (TDEC) proposed the site specific 

standards for acid-impaired streams of the GRSM based on linear regression analysis between 

observed pH and ANC. Thus ANC was used as a surrogate of pH (TDEC 2010). TDEC analysis 

was based on data that were available up to 2008. For this analysis I also included more recent 

observed data (2009-2014) to update those site specific standards. For a stream with no 

monitoring data (Lowes Creek), an ANC of 50 µeq L
-1

 was suggested as the target for TMDL 

analysis (TDEC 2010). The U.S. EPA guidelines for state water quality assessments instruct that 

an impaired water body can be de-listed from the 303(d) list if less than 10% of the observations 

violate the water quality criterion (USEPA 1997, TDEC 2010). I implemented this guideline in 

assessing a margin of safety for my TMDL analysis.  

Recovery of ecosystems from acid deposition is a slow process. Therefore in the TMDL 

analysis a lag time for response of an impaired ecosystem to any load allocation should be 

specified to provide an adequate time for recovery. In this study I specified the years 2050 and 

2150, as a target times for evaluating recovery of the streams.  


