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Abstract 

 

 Beaver dam analogues (BDAs) are a stream restoration technique that is rapidly gaining 

popularity in the western United States. These low-cost stream-spanning structures, designed 

after natural beaver dams, are being installed to confer the ecologic, hydrologic and geomorphic 

benefits of beaver dams in streams that are too degraded to provide suitable beaver habitat. 

BDAs can slow streamflow, reduce the erosive power of the stream and promote aggradation, 

making them attractive restoration tools in incised channels. Despite increasing enthusiasm for 

BDAs, few studies to date have evaluated the impacts of these structures on channel 

morphology. Here, we examine the geomorphic changes that occurred within the first year of 

restoration efforts in south-central Wyoming using high-resolution visible light orthophotos and 

elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages 

of rapidly acquired images captured by low-cost UAV surveys with recent advancements in 

Structure from Motion photogrammetry, we constructed centimeter-scale digital elevation 

models (DEMs) of the restoration reach and an upstream reference reach. Through DEM 

differencing, we identified areas of enhanced erosion and deposition around the BDAs, 

suggesting that BDA installation initiated a unique geomorphic response beyond the scale of 

natural channel variability. However, we measured net erosion in both reaches which is counter 

to the desired restoration outcome of net aggradation around the BDAs. This net loss of sediment 

is inconsistent with studies of natural beaver dams, underscoring the differences between BDAs 

and the dams that inspired their construction, but is in agreement with theoretical channel 

evolution models of beaver-related stream restoration. To better understand the impacts of BDAs 

on channel morphology and restoration efforts throughout the Mountain West, it is imperative 



 

that we consistently assess the effects of beaver-inspired restoration projects across a range of 

hydrologic and geomorphic settings and that we continue this monitoring for years to decades.  
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1. Introduction  

Channel incision is a widespread phenomenon that is causing ecosystem degradation in 

streams and adjacent riparian areas throughout the western United States (e.g. Chaney, Elmore 

and Platts, 1990; Pollock, Beechie and Jordan, 2007; Beechie, Pollock and Baker, 2008; Polvi 

and Wohl, 2013; Pollock et al., 2014; Livers et al., 2018). While it is difficult to identify a single 

driver of this incision in most hydrologic systems, climate change and human activity have been 

linked with accelerated downcutting and stream deterioration. In arid and semi-arid regions of 

the western United States, natural erosive processes induced by strong precipitation events and 

high topographic relief are exacerbated by shifts in the intensity and frequency of precipitation, 

the timing of peak spring streamflow and recent human alteration of stream channels and 

floodplains (Naiman, Johnston and Kelley, 1988; Chaney et al., 1990; Pollock et al., 2007; 

Beechie et al., 2008; Polvi and Wohl, 2013; Livers et al., 2018). Changes in land use, particularly 

hydromodification and water diversion (e.g. Pollock et al., 2007; Burchsted, Daniels, Thorson 

and Vokoun, 2010), the conversion of productive bottomlands to agricultural fields (e.g. Wohl, 

2005), overgrazing in riparian corridors (e.g. Apple, 1985; Chaney et al., 1990; Trimble and 

Mendel, 1995) and the decline in beaver populations due to habitat loss and trapping (Naiman et 

al., 1988; Pollock, Heim and Werner, 2003; Pollock et al., 2007; Polvi and Wohl, 2013) have 

further diminished channel stability.  

Degradation resulting from these natural and anthropogenic disturbances leads to channel 

confinement. As the streambed erodes and streamflow is constricted between steep, nearly 

vertical banks, base level decreases. Streams become physically and hydrologically severed from 

elevated floodplains and the local water table drops. These hydrologic responses limit surface 

water-groundwater exchange and cause riparian vegetation to senesce, reducing plant density and 

diversity (e.g. Apple, 1985; Krueper, 1993). Although riparian zones cover < 1% of land area, 
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they are extremely productive and provide critical forage, habitat, and surface water access in 

otherwise dry regions, making these narrow vegetated corridors a key focus of restoration efforts 

in the western United States (Apple, 1985; Chaney et al., 1990; Krueper, 1993; Bouwes et al., 

2016).  

Given the hydrologic and ecologic impacts of channel incision, the goal of many stream 

restoration projects in degraded systems is to counter the erosive processes dominating in the 

channel. By minimizing erosion and promoting aggradation, restoration efforts seek to raise the 

streambed and reconnect the stream and floodplain (e.g. Palmer et al., 2005; Pollock et al., 2007; 

Beechie et al., 2010; Curran and Cannatelli, 2014; Pollock et al., 2014). Strategies to reshape 

stream geometry range from invasive and expensive to more passive and low-cost approaches. 

As interest in natural channel design and process-based restoration has increased, dramatic 

restoration efforts such as channel fill and relocation have given way to smaller scale projects 

using engineered rock weirs, cross-vanes and check dams (Rosgen, 2001; Wilcox, Benoit and 

Mink, 2001; Fanelli and Lautz, 2008; Beechie et al., 2010; Rosgen, 2013; Norman et al., 2017). 

More passive, ecologically-focused approaches seek to initiate restoration by replanting 

vegetation near the stream to improve bank stability, by adding large woody debris to create 

more complex streamflow patterns and by encouraging beaver reintroduction and dam building 

to dissipate flow energy (Apple, 1985; Wohl, 2015; Bouwes et al., 2016).  

As beaver populations have recovered in the western United States, land owners, land 

managers and researchers have noted the hydrologic, geomorphic and ecologic benefits of beaver 

dams (Apple, 1985; Naiman et al., 1988; Butler and Malanson, 1995; Meentemeyer and Butler, 

1999; Pollock et al., 2007; 2014). However, beaver translocation and reintroduction are not 

feasible in all settings. Beaver-human conflict, such as nuisance beaver activity, limit the areas 
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where beavers can be successfully introduced (Pollock et al., 2014; Dittbrenner et al., 2018; 

Pilliod et al., 2018). In addition, some systems are too degraded to support beavers, particularly 

those that are deeply incised or lack adequate vegetation for dam construction and food (Pollock 

et al., 2014; Dittbrenner et al., 2018; Lautz et al., 2019). In systems such as these, beaver-

inspired restoration efforts such as beaver dam analogues (BDAs) are quickly gaining popularity 

(Pollock et al., 2014; Pilliod et al., 2018; Lautz et al., 2019; Shahverdian et al., 2019; Scamardo 

and Wohl, 2020). 

 BDAs are stream-spanning structures that are constructed from natural materials and are 

intended to mimic natural beaver dams in both form and function (Pollock et al., 2014; 2017; 

Pilliod et al., 2018; Shahverdian et al., 2019). BDAs are semi-permeable and are designed to be 

dynamic, short-term restoration tools (Lautz et al., 2019). Typically, BDAs are built by pounding 

wooden fence posts vertically into the streambed, weaving willow or other vegetation through 

the posts and stabilizing the dam with gravel and streambed sediments (Pollock et al., 2017; 

Shahverdian et al., 2019) but construction varies based on geomorphic settings, local vegetation 

and project budgets. Like natural beaver dams, BDAs can create upstream impoundments, 

elevate stream water and local groundwater levels, reduce flow velocities and induce deposition 

of suspended sediments, all of which contribute to restoring connectivity between the stream and 

floodplain (Apple, 1985; Naiman et al., 1988; Meentemeyer and Butler, 1999; Westbrook, 

Cooper and Baker, 2006; Pollock et al., 2007; 2014). The widespread adoption of BDAs 

throughout the western United States is likely a result of their simple design and construction 

using primarily natural materials, making them a relatively inexpensive restoration strategy 

(Pollock et al., 2017; Pilliod et al., 2018; Shahverdian et al., 2019).  
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Despite the inferred similarities between beaver dams and BDAs, there is uncertainty 

about whether they can create the same morphologic changes especially in degraded systems 

(Pollock et al., 2014; Lautz et al., 2019). Although BDAs are intended to deliver the benefits of 

natural beaver dams in the absence of beavers, the two structures have unique construction, 

lifespans, maintenance frequency and geomorphic settings. Beavers continuously repair and 

rebuild their dams, which can last decades (Butler, 1995), while BDAs generally receive annual 

maintenance and have design lifespans of just a few years (Johnson et al., 2019; Lautz et al., 

2019). BDAs can be installed in incised channels that offer only marginal beaver habitat due to 

concentrated flow energy, steep banks and limited riparian vegetation (Pollock et al., 2014; 

Dittbrenner et al., 2018; Pilliod et al., 2018; Lautz et al., 2019). Additionally, most studies on the 

morphologic impacts of beaver dams span decades, enabling assessments of the long-term 

impacts of beaver dams on the landscape (e.g. Meentemeyer and Butler, 1999; Westbrook, 

Cooper and Baker, 2011; Levine and Meyer, 2014). In contrast, BDAs are a relatively new 

restoration technique and most projects are still in the early stages. Altogether, there is a dearth 

of information and peer-reviewed studies to date on the impacts of BDA installation despite 

strong interest from land managers and the increasing popularity of beaver-inspired stream 

restoration (Majerova et al., 2015; Bouwes et al., 2016; Pilliod et al., 2018; Silverman et al., 

2018; Vanderhoof and Burt, 2018; Weber et al., 2018; Scamardo and Wohl, 2020).  

 BDAs are intended to be installed in sequence, similar to natural beaver dam 

construction, with the entire BDA complex spanning hundreds of meters to a few kilometers 

along a stream (Pollock et al., 2014; Bouwes et al., 2016; Vanderhoof and Burt, 2018; Scamardo 

and Wohl, 2020). Therefore, analyzing the geomorphic impacts of these restoration structures 

necessitates matching the scale of measurement with the scale of the restoration project such that 
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geomorphic changes can be resolved at individual BDAs as well as along a kilometer-scale 

reach. At fine scales, field-based methods such as erosion pins and topographic field surveys 

provide detailed point measurements at the expense of time and spatial density (Lawler, 1993; 

Pollock et al., 2007; Curran and Cannatelli, 2014). At coarser scales, airborne light detection and 

ranging (LiDAR) surveys generate spatially continuous, decimeter-scale topographic data along 

several kilometers of a stream but these surveys are cost prohibitive for many projects (e.g. 

Brasington, Vericat and Rychkov, 2012; Cook, 2017). In contrast and as a complement to these 

other approaches, unoccupied aerial vehicles (UAVs) can be deployed quickly and are a user 

friendly, low cost platform for acquiring visible light (red-green-blue, RGB) images of a 

restoration area. The RGB images can be used to generate both orthophotos and topographic data 

when combined with Structure from Motion (SfM) photogrammetric software (e.g. Westoby, 

Brasington, Glasser, Hambrey and Reynolds, 2012; Fonstad, Dietrich, Courville, Jensen and 

Carbonneau, 2013). SfM-generated topographic data have accuracies comparable to airborne 

LiDAR and topographic field surveys while offering flexibility in the temporal and spatial scales 

of observation (e.g. Fonstad et al., 2013; Cook, 2017). UAV- and SfM-based geomorphic 

analyses have been performed to estimate erosion in agricultural drainages (Prosdocimi, 

Caligaro, Sofia, Dalla Fontana and Tarolli, 2015) and after intense flooding events (Tamminga, 

Eaton and Hugenholtz, 2015; Cook, 2017). Though many studies have affirmed the accuracy of 

UAV- and SfM-derived measurements of fluvial processes (e.g. Prosdocimi et al., 2015; 

Tamminga et al., 2015; Hamshaw et al., 2017; Marteau, Vericat, Gibbins, Batalla and Green, 

2017), there are fewer examples of UAV and SfM application in analyzing geomorphic changes 

resulting from stream restoration efforts (e.g. Carrivick and Smith, 2018; Duró, Crosato, 

Kleinhans and Uijttewaal, 2018).  
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 In this study, we examine the morphologic response to a BDA restoration project in Red 

Canyon Creek, Wyoming, to understand the impacts of BDA installation on channel form and 

fluvial processes. Using data from annual UAV surveys, we assess the geomorphic changes that 

occurred during the first year after BDAs were installed in an incised channel. By comparing the 

morphologic response near the BDAs with geomorphic changes in an upstream reference reach, 

we constrain the impacts of the BDAs from natural channel variability to better understand the 

geomorphic outcomes of beaver-inspired restoration efforts. As the literature on BDAs is limited 

and few field studies have considered the impacts of BDAs on channel morphology (e.g. 

Scamardo and Wohl, 2020), our work provides some of the first benchmarking of geomorphic 

adjustments in response to BDA installation. We also consider the advantages and limitations of 

using UAVs and SfM to measure channel response to restoration efforts. As BDAs continue to 

gain popularity, developing a thorough understanding of their potential benefits and limitations is 

necessary to inform future beaver-inspired restoration efforts. 

 

2. Methods 

2.1 Study Area  

Red Canyon Creek is a meandering third-order stream in south-central Wyoming, on the 

eastern flank of the Wind River Range (Figure 1). The 84 km2 watershed is largely coincident 

with Red Canyon Ranch, an active cattle ranch owned and sustainably managed by The Nature 

Conservancy (TNC) of Wyoming (Lautz, Siegel and Bauer, 2006). Red Canyon Creek flows 

south to north through Red Canyon Ranch and is fed by two tributaries, Barret Creek and Cherry 

Creek, before discharging into the Little Popo Agie River. In this semi-arid region, peak 

streamflow occurs during snowmelt in the late spring and early summer (Lautz et al., 2006). 
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Stream substrate and alluvial floodplain sediments are predominantly sandy gravel and silt and 

are sourced from the Triassic Chugwater Formation, an iron-rich sandstone and siltstone that 

underlies the eastern half of the watershed (Lautz et al., 2006; Fanelli and Lautz, 2008). The 

streambed is incised approximately 1.5 m to 3 m below the floodplain. 

TNC has encouraged beaver activity in the watershed and local beaver populations have 

intermittently occupied reaches of Red Canyon Creek (Lautz et al., 2006), although today 

isolated beaver colonies inhabit only the upper tributaries in the watershed. Beavers last occupied 

the lower reaches of Red Canyon Creek in 2015. The recent loss of beavers and their dams, 

coupled with above average precipitation and streamflow events since 2015, has exacerbated 

legacy incision and further disconnected the stream from the riparian floodplain.  

 To counter this degradation, TNC installed five beaver dam analogues (BDAs) along a 

~250 m reach of Red Canyon Creek in 2018 (Figure 1c) with the goals of slowing streamflow, 

particularly during spring peak flows, and promoting aggradation on the streambed to begin 

reconnecting the stream and floodplain. The first BDA (BDA 2) was built in April 2018 and the 

remaining four were installed in August 2018 during a field workshop on BDA restoration 

practices hosted by TNC, Utah State University and the Natural Resources Conservation Service. 

The BDAs were built using a variety of construction approaches, with the central three BDAs 

(BDAs 2–4) constructed following the prototypical post and willow design and placed 

approximately 30 m apart. BDA 1 was constructed using a post-less adaptation of the typical 

BDA design and BDA 5 was built without gravel or sediments. The two distal BDAs were 

destroyed within one year of installation.  

 The stream segments analyzed in this study are located in an approximately 500 m reach 

of Red Canyon Creek downstream of the confluence with Cherry Creek (Figure 1b–c). In this 
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lower reach, the stream gradient is less than 2% (Lautz et al., 2006) and the channel is incised 

about 1 to 2 m below the adjacent riparian floodplain. The experimental BDA reach spans 

approximately 100 m of the stream and includes the central BDA complex (BDAs 2, 3 and 4). 

Since BDAs 1 and 5 were destroyed before the 2019 UAV survey, they are excluded from the 

BDA reach. A portion of Red Canyon Creek approximately 150 m upstream of the BDA 

installation sites was selected as the reference reach. The reference reach is approximately 130 m 

in length. Like the BDA reach, it flows transversely across the floodplain and has a sinuosity of 

1.6, similar to the BDA reach sinuosity of 1.5. Due to the distance between the two reaches, any 

potential influence of restoration activity on the reference reach is minimized.  

 

2.2 Unoccupied Aerial Vehicle (UAV) Surveys 

 Annual unoccupied aerial vehicle (UAV) surveys were conducted from 2017 to 2019 to 

capture the geomorphic changes related to BDA installation (Table 1). The first survey occurred 

one year prior to BDA installation (August 2017), the second survey was completed less than a 

week after BDA installation (August 2018) and the third survey was approximately one year 

following BDA installation (July 2019). Flights were contracted with the Air Center for 

Transformative Environmental Monitoring Programs (CTEMPs) from Oregon State University 

and the University of Nevada, Reno. Air CTEMPs generated the flight plans and executed the 

UAV surveys. In each flight, forward image overlap and image sidelap were at least 70% to 

ensure repeat coverage of the entire study area and to allow for the creation of precise, high-

resolution digital elevation models (DEMs). In 2017 and 2018, geotagged nadir visible light 

images were collected using a Sony A5100 onboard a DJI Phantom 4. In 2019, images were 

captured with a Sony R10 mounted on a DJI M600. All flight details are summarized in Table 1.  
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Prior to each survey, we placed 10 to 13 targets throughout the study area to serve as 

ground control points (GCPs) for positional registering during subsequent photogrammetry. In 

2017, we used 0.3 m (1 ft) white bucket lids marked with black electrical tape as GCPs. In 2018 

and 2019, we constructed the GCPs from 0.3 m (1 ft) black and white checkered floor tiles 

fastened to 1.8 m (6 ft) lengths of white tarp to increase the visibility of the GCPs in UAV 

images. We measured the coordinates of each GCP relative to a local benchmark using a Nikon 

Nivo 5.M total station, which has horizontal (northing and easting) accuracy and precision of 2 

cm and vertical (elevation) accuracy and precision of 0.6 cm.  

 

2.3 Image Processing and DEM Creation 

 The UAV images were processed in Agisoft PhotoScan Pro version 1.3.4 using the same 

settings throughout the workflow for each year (Agisoft, 2017). Where applicable, we present the 

settings we used at each processing step. After the images were uploaded the software computed 

image quality, a parameter based on image sharpness that ranges from zero (blurred) to one (very 

sharp). We discarded images with sharpness values less than 0.7 (compared to a recommended 

threshold of 0.5; Agisoft, 2017), applying a more conservative threshold so that only the clearest 

images were retained. Across the three years, we removed only seven images (all from 2019) due 

to poor image quality caused by blur and glare.  

PhotoScan then aligned the images by automatically detecting the same feature in at least 

two overlapping images. To specify the criteria for aligning images, we assigned a key point 

limit of 40,000 and a tie point limit of 4,000. Based on these settings, PhotoScan identified 

40,000 unique features in each image based on attributes such as brightness and color (Fonstad et 

al., 2013). Of those 40,000 points, 10% were retained as tie points. The 4,000 tie points were 
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used to calculate internal and external camera orientations and parameters as well as to perform a 

scale invariant feature transform, generating a sparse 3D point cloud with spatial positioning 

determined from the 2D geotagged images (James and Robson, 2012; Westoby et al., 2012; 

Fonstad et al., 2013). We refined the spatial accuracy of the sparse point cloud by visually 

identifying each GCP in at least two images and marking GCP centers with the surveyed 

coordinates. The resulting registered point cloud was projected into the WGS 84 / UTM Zone 

12N (EPSG::32612) coordinate system.  

 Using the sparse point cloud, we performed a gradual selection process to remove tie 

points with high errors or uncertainties and to optimize camera calibration parameters. We 

removed tie points generated from fewer than three images, with reconstruction uncertainties less 

than 10 pixels, with reprojection errors less than 0.5 pixels or with projection accuracies less than 

10 cm. During this iterative process, we deleted approximately 80% of the tie points. PhotoScan 

then generated a final dense point cloud from the remaining tie points using a mild depth filter 

and medium quality. The mild depth filter retained fine-scale details in the point cloud and 

preserved data continuity and the medium quality setting reduced computation time by 

subsampling images by a factor of four. The resulting dense point clouds contained between ~27 

million and 78 million points and were used to produce digital elevation models (DEMs) with 

resolutions from 3.5 cm pixel-1 to 6.9 cm pixel-1 (Table 1). DEMs and high resolution 

orthophotos were then exported to ArcMap 10.7 for further analysis.  

 

2.4 DEM Error Analysis  

 As an independent measure of DEM accuracy, we conducted a detailed topographic field 

survey in 2019 coincident with the UAV flight. Using a Nikon Nivo 5.M total station, we 
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measured the locations of 24 static well casings on the floodplain and 165 submerged points 

upstream and downstream of BDAs 2–4 to serve as check points, as well as water surface 

elevations around each BDA. We compared the elevations of the check points with DEM-

derived elevations to calculate error metrics (mean error, root mean square error, standard 

deviation of error, maximum absolute error) for both dry and wet areas. For dry areas, we 

compared elevations only where the well casings were clearly visible in the orthophotos to 

minimize the influence of vegetation on DEM-reported elevations. Errors were calculated by 

subtracting field-measured elevations from DEM-generated elevations. Negative errors indicate 

that the DEM underpredicts elevations and positive errors indicate that the DEM elevations are 

higher than surveyed elevations.  

Given that there are known issues with estimating elevations in submerged areas, we 

tested a refraction correction on the 2019 DEM with our highly resolved survey observations (n 

= 165). The correction is based on the index of refraction at the air-water interface and is applied 

to account for the systematic overestimation of submerged topography in SfM-generated DEMs 

(e.g. Westaway, Lane and Hicks, 2000; 2001; Woodget, Carbonneau, Visser and Maddock, 

2015). Other corrections use pixel RGB or brightness values and are based on changes in water 

color with increasing depth (e.g. Westaway, Lane and Hicks, 2003; Tamminga, Hugenholtz, 

Eaton and Lapointe, 2014; Strick et al., 2019) but due to a change in camera and image colors 

between 2018 and 2019 (Table 1), we did not test a color-based correction. To estimate true 

streambed elevations, we calculated water depths based on the 2019 DEM and multiplied the 

depths by the refractive index of water (n = 1.34), then subtracted the difference between the 

corrected and uncorrected water depths from the DEM.  
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2.5 DEM Differencing and Change Detection  

 The DEMs were resampled to the coarsest resolution (6.9 cm pixel-1) and aligned to 

ensure direct pixel-to-pixel comparisons. To highlight areas of geomorphic change after BDA 

installation, we compared the 2018 and 2019 DEMs using Geomorphic Change Detection 7.0 

(GCD) software (http://gcd.joewheaton.org) in ArcMap 10.7 (Wheaton, Brasington, Darby and 

Sear, 2010). GCD calculated elevation changes between the successive DEMs to create DEMs of 

difference (DoDs) for the BDA reach and the reference reach. By measuring the areal extent of 

elevation changes in each reach, the GCD software estimated volumes of erosion and deposition 

between 2018 and 2019. To minimize the impacts of vegetation and shadows on calculated 

elevation changes, we restricted the analyses to areas of the study reaches where the channel was 

visible in both years. 

To distinguish true geomorphic changes from DEM error, we tested three uncertainty 

thresholds commonly used in similar analyses: raw (unthresholded), a simple minimum level of 

detection (minLoD; Brasington, Rumsby and McVey, 2000) and probabilistic thresholding at a 

95% confidence interval (Wheaton et al., 2010). Elevation changes below the uncertainty 

thresholds could not be confidently distinguished from noise in the DoDs and were discarded. 

We calculated the minLoD by propagating the error in each DEM into the DoD (e.g. Brasington, 

Langham and Rumsby, 2003; Lane, Westaway and Hicks, 2003), using  

𝜀𝐷𝑜𝐷 =  √(𝜀𝐷𝐸𝑀𝑛𝑒𝑤)2 + (𝜀𝐷𝐸𝑀𝑜𝑙𝑑)2 (1) 

where 𝜀𝐷𝑜𝐷 is the propagated DoD error and 𝜀𝐷𝐸𝑀𝑛𝑒𝑤 and 𝜀𝐷𝐸𝑀𝑜𝑙𝑑 are the errors calculated 

for each DEM. To calculate the 95% confidence interval (CI) threshold, we multiplied the 

minLoD by the student’s t-value for the chosen confidence interval (t = 1.96 for the 95% CI). 
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Using each uncertainty threshold, the GCD software calculated the spatial extents and volumes 

of geomorphic changes.  

 

3. Results 

3.1 DEM Accuracy Assessment  

 As this study analyzes morphologic changes after BDA installation, we focus on the 2018 

and 2019 DEMs in the following text. The root mean square errors (RMSEs) calculated by 

PhotoScan during point cloud creation and registration were generally consistent with the 

accuracy of the total station used to survey the GCPs and orient the point cloud with real-world 

coordinates (Table 1). In 2018 and 2019, the horizontal RMSEs calculated by PhotoScan and 

used as a measure of accuracy ranged from 0.74 cm to 1.53 cm. These accuracies were lower 

than the 2 cm accuracy of the total station which suggested that the modeled point clouds had 

good spatial alignment with the surveyed real-world coordinates. The RMSEs were higher in 

2019, at 1.53 cm and 1.42 cm for easting and northing, respectively, but were consistent with 

total station accuracy and lower than the final DEM resolution of 6.9 cm pixel-1. Based on the 

agreement between the low horizontal RMSEs and instrument accuracy, we are confident in the 

positional accuracies of the resulting DEMs. 

The elevation RMSE was below the total station accuracy of 0.6 cm in 2019 but reached 

1.02 cm in 2018 (Table 1). The higher residual in 2018 suggested poorer agreement between 

surveyed and modeled elevations after point cloud transformation and alignment. To further 

examine this offset, we compared the DEM elevations with the surveyed elevations at the check 

points on the floodplain (see Section 2.4 DEM Error Analysis). The RMSE and standard 

deviation of the error (SDE), used as measurements of accuracy and precision, respectively, were 
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higher in 2018 (RMSE = 11.8 cm and SDE = 8.9 cm) than in 2019 (RMSE = 4.7 cm and SDE = 

3.7 cm; Table 2), consistent with the annual error metrics calculated by PhotoScan (Table 1). 

Five check points were excluded from the error calculations in 2018 (Table 2) due to vegetation 

obscuring the well casings in the orthophoto. All error metrics were positive despite negative 

elevation differences at some check points, showing that the DEM-reported elevations could be 

higher or lower than the surveyed elevations (Figure 2a). The error statistics we calculated are 

consistent with other UAV-based studies of fluvial geomorphology (e.g. Tamminga et al., 2015; 

Cook, 2017; Marteau et al., 2017) and therefore are appropriate for DEM differencing.  

 For submerged portions of the channel, the refraction correction improved the accuracy 

of DEM-derived bathymetry. After the correction, the mean error (ME) and RMSE decreased 

from 36.4 cm to 27.3 cm and from 42 cm to 36.3 cm, respectively (Figure 2b and Table 2). 

However, the uncorrected data had a higher precision with the SDE increasing from 20.9 cm to 

24 cm after the correction. As the refraction correction did not consistently improve the elevation 

measurements in submerged areas, we used the original uncorrected data in our analyses. We 

acknowledge that the reported streambed elevations overestimated true stream bathymetry and 

incorporate this offset into our calculations of geomorphic change.  

Following Brasington et al. (2003) and Wheaton et al. (2010), we calculated the different 

uncertainty thresholds using the SDE as the estimate of elevation error. Using Equation (1), we 

calculated a minLoD of 9.8 cm. The probabilistic threshold was more restrictive, only retaining 

elevation changes that were above a desired confidence interval. We calculated the 95% CI level 

of detection by multiplying the minLoD by the corresponding t-value for the 95% CI (t = 1.96), 

resulting in a 19.2 cm level of detection.  
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3.2 Planform Changes in Channel Morphology  

 The BDAs initiated a morphologic response in the stream that resulted in areas of both 

deposition and erosion (Figure 3). From 2018 to 2019, deposition occurred upstream of BDAs 2 

and 3 with lateral accretion concentrated on the insides of the meanders (Figure 3g–h). Much of 

this deposition was on areas that were visibly vegetated in 2017 and 2018 (Figure 3a–b, 3d–e and 

3g–h). Downstream of BDAs 3 and 4, erosion was the dominant morphologic change with >1 m 

of cut bank retreat immediately downstream of each BDA (Figure 3h–i). We note that the visible 

changes from 2017 to 2018 are restricted to changes in channel inundation due to water level 

adjustments in response to BDA installation versus actual changes in channel morphology 

(Figure 3a–f).  

 

3.3 Geomorphic Changes from DEM Differencing 

The elevation changes quantified in the DoDs are consistent with the planform changes 

visible in the orthomosaic images with deposition upstream of BDAs 2 and 3 and erosion 

downstream of BDAs 3 and 4 (Figures 3–5). The same spatial patterns are apparent regardless of 

the uncertainty threshold applied, with smaller magnitude changes being discarded as the level of 

detection becomes more restrictive (Figures 5–6 and Table 3). The greatest vertical elevation 

change in the BDA reach occurred upstream of BDA 2 where up to 0.8 m of sediment were 

deposited (Figure 5). BDAs 3 and 4 also trapped sediment, but that deposition was limited in 

spatial extent and magnitude compared to the point bar aggradation upstream of BDA 2. The 

most intense erosion was concentrated downstream of BDAs 3 and 4, where elevations decreased 

by up to 2 m as a result of bank slumping and retreat from 2018 to 2019. The DoDs also revealed 

subtle elevation changes such as deposition between BDAs 3 and 4, erosion upstream of BDA 3 
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and minor decreases in elevation immediately downstream of BDAs 2 and 3 associated with 

scour pool formation. Despite differences in the magnitudes of measured elevation changes 

around each BDA, all three dams exhibited a consistent pattern where some detectable 

deposition occurred upstream and erosion occurred downstream (Figure 5).  

Although the range of elevation changes in the reference reach was larger than in the 

BDA reach, the majority of these changes were small in magnitude (+ 20 cm) and below the 

thresholds for the minLoD (9.8 cm) and the 95% CI (19.2 cm; Figure 6). When the minLoD was 

applied, there were detectable changes across 43% of the 433 m2 reference reach area and 66% 

of the 415 m2 BDA reach area (Figure 5 and Table 3). With the 95% CI, these percentages 

decreased to 20% and 36% of reference and BDA reach areas, respectively.  

Regardless of the threshold applied, both reaches had a net loss of sediment from 2018 to 

2019 (Table 3). Using more restrictive thresholds increased the net sediment loss per stream 

length. For example, the normalized net volumetric change in the BDA reach increased from 

0.16 m3 of sediment lost per meter of stream when no threshold was applied to 0.21 m3 m-1 for 

the 95% CI. The different uncertainty thresholds had a more dramatic impact on net volume 

calculations in the reference reach, where net sediment loss was 0.04 m3 per meter of stream 

when measured from the raw DoD and 0.15 m3 m-1 when measured from the 95% CI DoD. This 

bias towards greater erosion as the threshold becomes more restrictive is a function of the 

vertical elevation changes resulting from erosion and deposition. Across both reaches, positive 

elevation changes exhibited a smaller range than negative elevation changes; therefore, net 

volumes calculated from more restrictive thresholds favored erosion (Figure 6 and Table 3). 

Although there was net sediment export from both reaches, the geomorphic changes in 

the BDA reach impacted a greater area and resulted in more sediment movement than the 
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changes in the reference reach. Although the range of elevation changes was greater in the 

reference reach, with a maximum vertical elevation change of 1.06 m and a minimum of -3.06 m, 

the areas over which detectable elevation changes occurred were larger in the BDA reach 

resulting in higher calculations of erosion and deposition (Figure 6 and Table 3). Overall, the 

gross volumes of erosion and deposition in the BDA reach were approximately 1.5–2 times 

greater than the gross volumes in the reference reach. For example, at the 95% CI there were 

0.25 m3 m-1 of deposition and 0.46 m3 m-1 of erosion in the BDA reach but in the reference 

reach, there were only 0.1 m3 m-1 of deposition and 0.25 m3 m-1 of erosion (Table 3).  

At the 95% CI, geomorphic changes in inundated portions of the BDA reach were largely 

excluded (Figure 5e). Since the level of detection at the 95% CI (19.2 cm) is similar to the DEM 

error in submerged areas (20.9 cm; Table 2), the detected elevation changes retained in the DoD 

at the 95% CI were likely areas of true erosion and deposition and not a result of DEM noise. 

The general patterns of geomorphic change within and between the two reaches were not altered 

when submerged portions of the channel were incorporated or excluded (Figures 5–6 and Table 

3). Therefore, we judge the most conservative threshold to be appropriate for this study and rely 

on calculations from the 95% CI in subsequent analyses, although we report volumetric changes 

at the other two thresholds as well (Table 3).  

Four cross sections over the DEMs highlight localized changes in the channel, informing 

the nature of vertical erosion and deposition and providing 2D examples of the morphologic 

differences we observed in the DoDs (Figure 7). From 2018 to 2019, the channel became more 

asymmetric upstream of each BDA (Figure 7 A–A’, B–B’ and C–C’). Point bar deposition 

upstream of BDA 2 constricted the channel width to approximately 3.2 m, narrower than the 

active channel width in 2017 or 2018 (Figures 3 and 7 A–A’). Deposition upstream of BDA 2 
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increased the streambed elevation across much of the submerged channel with the exclusion of 

localized scour along the left bank (Figure 7 A-A’). Similarly, deposition upstream of BDA 4 

occurred on the exposed left bank and on the streambed, locally raising streambed elevation 

before a transition to channel scour at the right bank (Figure 7 C–C’). Upstream of BDA 3, the 

channel also narrowed and became more asymmetric after BDA installation with erosion 

concentrated on the outside of the meander and deposition along the inner meander (Figures 3, 5 

and 7 B–B’). The most extreme erosion occurred downstream of BDA 4, with >2 m of lateral cut 

bank retreat and ~1.7 m of vertical erosion (Figures 3, 5 and 7 D–D’).  

The cross sections also illustrate the effects of vegetation and water depth on DEM-

reported elevations. Changes in vegetation height manifest in increases and decreases in 

elevation but can be distinguished from bare-earth elevation changes through inspection of the 

annual orthophotos (Figures 3, 4b and 7). The increases in elevation near the right bank in the 

2019 cross sections aligned with transitions from exposed sediment to grass (Figure 7). From 

2018 to 2019, the increases in elevation at the right bank at B–B’, C–C’ and D–D’ were 

attributed to vegetation growth (Figures 3e–f, 3h–i and 7). Decreases in elevation near the center 

of the channel in A–A’ and B–B’ were the result of vegetation being submerged and buried after 

BDA construction (Figures 3 and 7). These plants were visible immediately upstream of BDAs 2 

and 3 in the 2018 orthophotos but were largely absent in the 2019 orthophotos (Figure 3d–e and 

3g–h). Comparing the bathymetry reported by the 2019 DEM with the surveyed streambed 

points illustrates the discrepancy between field-measured and DEM-reported elevations (see 

Sections 2.4 DEM Error Analysis and 3.1 DEM Accuracy Assessment). In submerged areas, the 

survey elevations were consistently lower than the DEM-generated elevations and this offset 

increased with water depth (Figure 7). In D–D’, turbulence downstream of BDA 4 exacerbated 
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the DEM over-prediction of streambed elevations illustrating the sensitivity of UAV-generated 

topographic data to poor water clarity. Fortunately, the 95% CI we established excluded areas of 

turbulence downstream of each BDA from the DoD and subsequent volume calculations (Figures 

3g–i and 5e).         

           

4. Discussion 

4.1 Do BDAs Initiate a Unique Morphologic Response? 

 In all three uncertainty scenarios, the same pattern of geomorphic change persisted: we 

observed greater erosion and deposition around the BDA complex than in the upstream reference 

reach (Figures 5–6 and Table 3). Gross deposition in the BDA reach was 0.15 m3 m-1 greater than 

in the reference reach (Table 3). The difference in gross erosion between the two reaches was 

even more pronounced at 0.21 m3 m-1. These differences suggest that the BDAs initiated a 

morphologic response in the channel that both exceeded the magnitude of natural channel 

variability and was unique from the morphologic responses to physical drivers such as 

precipitation, valley slope and suspended sediment load. As the two reaches in this study are 

~150 m apart and are both oriented transversely across the floodplain, we assume that the 

physical drivers impacting the two reaches are comparable. Although we used a high 95% CI 

threshold that discarded elevation changes over the majority of the reach areas, this restrictive 

level of detection exchanged a loss of information for an improvement in the geomorphic 

plausibility of the measured elevation changes (Wheaton et al., 2010).  

Combining orthophotos, high resolution DEMs and field observations enabled us to 

detect how patterns of erosion and deposition were influenced by the evolution of the BDAs and 

their interaction with the surrounding landscape. The pattern of deposition and erosion around 
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individual BDAs manifests at the reach scale as well, with deposition concentrated upstream of 

the BDA complex and erosion dominating downstream of the BDA complex. The majority of the 

deposition in the BDA reach occurred upstream of BDA 2 with some additional deposition 

upstream of and between BDAs 3 and 4 (Figures 3 and 5e). The distribution of erosive changes 

along the reach mirrors deposition, with minor erosion downstream of BDA 2 and cut bank 

retreat downstream of BDAs 3 and 4. This transition from deposition dominating upstream to 

erosion dominating downstream is in contrast to the reference reach where the morphologic 

changes were more spatially random with no clear differentiation between elevation changes in 

the upstream or downstream areas (Figure 5f). There are several possible explanations for this 

pattern, including (1) BDA order, (2) vegetation presence and (3) BDA breaches.  

Although BDAs are semi-permeable, they do impound water and can generate head drops 

of at least 15 cm showing that they effectively slow streamflow (Table 4). As the first standing 

BDA in the complex, BDA 2 dissipated stream energy and created an upstream area of slower 

streamflow that enabled the deposition of suspended sediment. Downstream of BDA 2, there was 

likely a lower suspended sediment load, reducing the potential for deposition at subsequent 

BDAs. BDA 2 may have also trapped sediment that was mobilized when BDA 1 failed in 

addition to vegetative remnants of that dam. Near BDAs 2 and 3, deposition occurred 

preferentially along the right bank and narrowed the active channel width (Figures 3 and 5). 

These areas of higher deposition are along the inner edges of meanders and were vegetated in 

2018, two physical factors that likely contributed to the enhanced local deposition.  

Notably, each BDA breached along the left bank, either by overtopping flow or scour 

along the streambed (Figure 8). At BDA 2, flow beneath the dam caused an area of visible 

turbulence downstream (Figures 3g and 8a). Some of this erosion is captured by the DoD 
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although it is less pronounced than the erosion at BDAs 3 or 4 (Figure 5e). BDA 3 breached 

along the left bank, resulting in streamflow overtopping and flowing around the dam and higher 

turbulence downstream (Figures 3h and 8b). The small channel avulsion near BDA 3 created an 

area of unobstructed streamflow and directed erosive energy against the left bank which retreated 

by >1 m between 2018 and 2019 (Figure 5e). The most intense erosion occurred downstream of 

BDA 4, likely the result of a large breach in the dam that preferentially directed streamflow 

against the left bank (Figures 3i, 5e and 8c). Despite this breach, BDA 4 maintained an upstream 

impoundment and corresponded to the largest drop in head, a 45 cm decrease in water surface 

elevation over the dam (Table 4).  

The cut bank retreat downstream of BDAs 3 and 4 resulted in 1 to 2 m of vertical 

elevation decreases that, although limited in area, were responsible for the enhanced erosion in 

the BDA reach compared to the reference reach (Figure 5e, Figure 6 and Table 3). The bimodal 

distribution of volumetric elevation changes in the BDA reach suggests that these higher 

magnitude changes contributed to approximately 50% of the erosion that occurred from 2018 to 

2019. These breach-driven morphologic changes highlight the importance of installing BDAs in 

sequence as downstream BDAs can capture some of the sediment lost due to breaches upstream 

and retain material within the reach. The contribution of BDA breaches to the geomorphic 

changes we measured also underscores the benefit of coupling on-the-ground observations with 

multiple remote sensing measurements. We readily identified the breaches and the associated 

areas of erosion in the field but due to breach-generated turbulence some of the observed 

morphologic changes, notably scour ponds downstream of each BDA, were poorly captured by 

the UAV-derived topography (Figures 5 and 7).  
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The concentration of deposition-induced morphologic changes at the upstream BDA and 

the transition to erosion dominating at downstream BDAs suggest that BDA order and breaching 

strongly influence potential aggradation. However, a 2020 study on sedimentation upstream of 

BDAs in Colorado found BDA height to be the most significant variable in models predicting 

sediment accumulation (Scamardo and Wohl, 2020). Interestingly, at the Colorado field sites the 

tallest BDA was the most downstream structure where pond sedimentation was measured. 

However, Scamardo and Wohl (2020) did not report any BDA breaches which suggests that 

BDA construction and breaching may impact patterns of erosion and deposition. In addition, 

differences in methodology and the time elapsed between measurements may contribute to the 

unique channel responses we identified. Scamardo and Wohl (2020) compared field 

measurements of sediment accumulation in upstream ponds over two to three months in summer 

and fall whereas our findings emphasize morphologic changes along the streambanks and span 

nearly one year. 

 

4.2 Can BDAs Achieve Restoration Goals? 

 Beaver-inspired restoration in incised channels is aimed at increasing sedimentation and 

channel aggradation (Pollock et al., 2007; 2014; Scamardo and Wohl, 2020). While the 

morphologic response measured in the BDA reach of Red Canyon Creek is counter to this 

restoration goal, there are several explanations for our particular finding that BDAs generate net 

erosion. First, there was net sediment loss in both study reaches suggesting that net erosion 

would have occurred in the experimental reach regardless of BDA presence. The pattern of net 

erosion in both reaches suggests that physical drivers of channel form, such as precipitation, 

elevated the erosive power of the stream from 2018 to 2019. Unusually high precipitation in May 
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and June 2019 resulted in higher than average streamflow, inundating the BDAs. BDA 5 failed 

during this heavy precipitation period, as determined from field photos provided by TNC, likely 

due to the high erosive energy in the stream. It is possible that this period of intense precipitation 

is responsible for the breaches observed in the standing BDAs and much of the downstream cut 

bank retreat as well. However, without comprehensive field observations or UAV surveys 

bracketing this period of extreme precipitation, we cannot determine the exact contribution of 

this unusual weather event to changes in channel form.  

 Second, our study spans the initial year of restoration activity during which the stream 

was dynamically responding to the addition of the BDAs. As the system adjusts and establishes a 

new equilibrium state, a transition from erosion-dominated morphologic changes to net 

deposition may be possible. Multi-year studies of natural beaver dams have found that net 

deposition occurs several years after dam construction although the aggradation rate is highly 

variable and often attributed to factors other than dam age and construction, such as climate, 

lithology and slope (e.g. Butler and Malanson, 1995; Westbrook et al., 2011; Levine and Meyer, 

2014). The range of sedimentation rates measured in beaver ponds across the continental United 

States spans from centimeters to >1 m per year (e.g. Naiman et al., 1988; Butler and Malanson, 

1995; Pollock et al., 2007; Westbrook et al., 2011). In the Mountain West, typical sedimentation 

rates upstream of beaver ponds range from 1–20 cm year-1 when measured over a 6 year 

timespan (Westbrook et al., 2011) and from 2–28 cm year-1 for dams between 3 and 30 years in 

age (Butler and Malanson, 1995). If we assume these sedimentation rates represent the maximum 

deposition possible in the ponds upstream of BDAs in Red Canyon Creek, the uncertainty 

threshold we used for change detection (95% CI = 19.2 cm) would have rendered much of that 

potential deposition in submerged areas undetectable. As BDAs and beaver dams are distinct 
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structures with different construction and maintenance it may not be realistic to assume that they 

would result in similar deposition rates (Lautz et al., 2019). BDAs are typically more permeable 

than beaver dams which suggests that BDAs may be less effective in creating ponded regions of 

slower streamflow and in trapping sediment upstream (Scamardo and Wohl, 2020). In addition, 

active beaver dams are constantly maintained and repaired but recommended BDA maintenance 

is on an annual timescale (Pollock et al., 2017), allowing for the possibility of enhanced erosion 

due to breaching as we observed downstream of BDAs 3 and 4. The breaches and downstream 

bank retreat we identified are consistent with findings of net erosion associated with abandoned 

beaver dams or dam-induced overbank flooding during high flow events (e.g. Burchsted and 

Daniels, 2014; Curran and Cannatelli, 2014; Levine and Meyer, 2014).  

While this study is one of first to analyze the geomorphic changes resulting from a 

beaver-inspired stream restoration project, channel evolution models have been used for decades 

to understand and predict a linear transition from degraded channels to restored systems at new 

equilibrium states (e.g. Schumm, Harvey and Watson, 1984; Simon and Hupp, 1986; Thorne, 

1999). More recently, these models have been updated to include a range of initial morphologic 

conditions, incorporate the cyclical nature of channel incision and aggradation (Cluer and 

Thorne, 2014) and consider ecological processes and biotic agents such as beavers (Pollock et 

al., 2014). In a four-stage channel succession model that cycles between incision, trench 

widening, aggradation and dynamic equilibrium, beaver reintroduction has the most potential to 

arrest incision and initiate aggradation during the second phase, trench widening (Pollock et al., 

2014). Where streams are too incised for beavers to inhabit, the addition of debris dams or BDAs 

may offer some of the same benefits as natural beaver dams (e.g. Pollock et al., 2007; 2014; 

Lautz et al., 2019). In the context of a beaver-mediated channel evolution model, the trench 
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widening phase, during which erosion is the dominant physical process, is a critical part of 

restoration. As flow is rerouted due to BDA installation and possible dam breaching, bank 

erosion increases the active channel width. In a wider channel the erosive power of the stream is 

reduced and a transition towards net aggradation can begin, initiated in part by downstream 

BDAs trapping sediment that eroded further upstream. If breaches in existing BDAs are repaired 

and new BDAs are installed, this transition from net degradation to net aggradation can be 

sustained. The duration of each phase in channel succession is highly variable but can last for 

decades. Beaver reintroduction or BDA installation has the potential to accelerate the transition 

from trench widening to aggradation but this process will still likely take several years depending 

on the extent of degradation and the sediment supply in the stream (Pollock et al., 2014).  

In an incised channel such as Red Canyon Creek, the detection of appreciable deposition 

is unlikely just one year after BDA installation given theoretical channel evolution models and 

the uncertainty in the methods we used. It is important to note, however, that the only other study 

focused on geomorphic changes near BDAs found that the dams successfully trapped sediment 

and initiated deposition (Scamardo and Wohl, 2020). This discrepancy highlights the need for 

continued monitoring of these restoration sites as BDAs have been shown to accumulate 

increasing sediment volumes as they age (Bouwes et al., 2016) and also highlights the possible 

influences of measurement method and restoration site characteristics such as incision depth, 

channel slope, lithology and climate on desired outcomes. However, the lack of net aggradation 

over the course of this study does not suggest that the BDAs in Red Canyon Creek will fail to 

meet restoration objectives. Rather, BDA installation may have initiated a transition from an 

actively incising system to a channel widening system, increasing the potential for net 

aggradation over the next few years. The breaches we observed are not a failure of the BDA 
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design but instead are consistent with the theoretical BDA-mediated restoration cycle and the 

one-year expected lifespan of BDAs (Pollock et al., 2014).  

 

4.3 Are UAVs a Viable Tool for Assessing Geomorphic Changes in Fluvial Systems? 

 RGB images captured during UAV surveys are a powerful tool, providing both elevation 

data and continuous visible light orthophotos of study areas that allow for visual assessment of 

morphologic changes, detailed mapping of geology and vegetation cover and quantification of 

geomorphic processes (e.g. Cook, 2017; Duró et al., 2018). As such, UAVs are gaining 

popularity in studies of morphologic change and SfM-derived topographic data are being used to 

measure processes ranging from moraine formation in Iceland (Chandler et al., 2020) and soil 

deflation in Greenland (Heindel, Chipman, Dietrich and Virginia, 2018) to bank erosion in 

agricultural drainages (Prosdocimi et al., 2015) and geomorphic changes following large 

flooding events (Tamminga et al., 2015; Cook, 2017). In fluvial settings, UAVs have been used 

to measure the morphology of bedrock gorges in Taiwan (Cook, 2017), anthropogenically 

straightened rivers in the Netherlands (Duró et al., 2018) and sandy braided rivers in Canada 

(Strick et al., 2019).  

The accuracy of UAV- and SfM-generated topographic data has been evaluated through 

comparisons with terrestrial laser scanning (TLS), airborne LiDAR and topographic field 

surveys. In exposed and well-illuminated areas, UAV data rival the accuracy of these more 

expensive or time consuming data collection methods (e.g. Prosdocimi et al., 2015; Tamminga et 

al., 2015; Cook, 2017; Hamshaw et al., 2017; Strick et al., 2019). However, in submerged areas 

the accuracy of optical remote sensing declines with increasing water depth (Figure 7; Westaway 

et al., 2000; 2001). While multiple corrections have been developed to improve the accuracy of 
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elevation data in inundated areas, these corrections perform best when the streambed and wetted 

edge of the stream are clearly visible (Westaway et al., 2000, 2001, 2003; Tamminga et al., 2014; 

Woodget et al., 2015; Dietrich, 2017). Overhanging vegetation, shadowed streambanks, sun glint 

on the water surface, turbulence or high turbidity drastically reduce the accuracy of these 

corrections (e.g. Cook, 2017; Dietrich, 2017). The apparent failure of the refraction correction 

we applied to the 2019 DEM is likely due to a combination of these factors, including vegetation 

obscuring the water surface and stream edge (Figure 4a), shadows resulting from steep 

streambanks and near-stream vegetation (Figure 4c), ripples and turbulence downstream of the 

BDAs (Figure 3g–i), sun glint and floating debris, all of which reduced streambed visibility in 

the UAV data. Combining a more robust method for measuring submerged topography, such as 

total station surveys, multibeam echo sounders (Javernick, Brasington and Caruso, 2014) or 

bathymetric LiDAR (e.g. Bailly, Le Coarer, Languille, Stigermark and Allouis, 2010; Kinzel, 

Legleiter and Nelson, 2013), with UAV-derived elevation data for exposed surfaces is an 

alternative to our approach of using a more restrictive threshold to account for elevation 

uncertainty in wetted portions of the channel. However, merging different data acquisition 

methods obviates the key advantages of UAV data, namely the high spatial resolution, efficiency 

and low cost. Regardless, when ideal UAV flight conditions cannot be met due to weather, 

turbidity or limited field access, we recommend complimenting UAV surveys with another 

method to measure streambed topography. Using the current study as an example, robust 

measurements of channel form across the streambed would have allowed us to use a lower 

uncertainty threshold, retain more elevation data and resolve morphologic changes in the BDA 

ponds with higher confidence.  
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The exclusion of vegetated areas where the UAV data likely reports elevations 

somewhere between the ground surface and canopy height (Cook, 2017) has little impact on our 

findings. The BDAs were installed in an incised channel and did not raise water levels to the 

floodplain elevation so any morphologic changes beyond the active channel are irrelevant to our 

assessment of geomorphic responses to BDA installation. However, the presence of vegetation 

on the floodplain likely impacted our assessment of DEM error. We attribute the lower error 

metrics in 2019 in part to the enhanced visibility of the well casings in the UAV data. Prior to the 

2019 topographic survey and UAV flight, we cleared the vegetation surrounding the well casings 

but we did not clear those areas in previous years. Despite the exclusion of obscured check 

points in 2018, the impact of vegetation height is apparent in the elevation differences calculated 

between the DEM and total station survey data (Figure 2a). The plateau in elevation differences 

around ~0.2 m is consistent with the 2018 DEM incorporating partial vegetation heights into the 

final elevation model.  

The nadir perspective of traditional UAV flights prevents the SfM elevation data from 

reliably reconstructing the shape of eroded streambanks, particularly where undercutting or scour 

has occurred. Eroded banks appear vertical and any small-scale topographic variations are lost 

(Figure 7 D–D’). Incorporating oblique camera perspectives can improve bank reconstruction 

either by using a flexible multi-rotor UAV platform or by adding ground based photos to the 

SfM workflow (e.g. Prosdocimi et al., 2015; Hamshaw et al., 2017; James, Robson, d’Oleire-

Oltmanns and Neithammer, 2017; Duró et al., 2018). Field measurements using erosion pins 

capture morphologic changes along concave banks but these point measurements can be 

challenging to integrate with remote sensing data and cover limited portions of the channel. 
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Given these challenges and advantages of UAVs for assessing morphologic changes, we 

consider them to be one of many viable tools. UAV- and SfM-generated data have the unique 

benefit of providing both reach-scale orthophotos and detailed elevation measurements from a 

single RGB camera. By comparing the coregistered orthophotos and DEMs, we were able to 

distinguish true geomorphic changes from areas of vegetation growth and focus our analyses on 

unobscured portions of the channel. The continuity of UAV data allowed us to identify spatial 

trends, such as the repeated pattern of upstream deposition and downstream erosion at each 

BDA, which may have been lost in point measurements from erosion pins or topographic field 

surveys. When SfM data are used in concert with another data type, such as terrestrial laser 

scanning, aerial or bathymetric LiDAR or a detailed topographic field survey, submerged regions 

can be better resolved, a comprehensive accuracy assessment can be performed and higher 

confidence levels can be assigned to areas where the different datasets agree. In this study, we 

rely on areas where there is stronger agreement between the UAV data and field elevation data to 

drive our conclusions. In these portions of the channel the geomorphic changes measured exceed 

the magnitude of DEM uncertainty, allowing decimeter-scale changes to be resolved with high 

confidence.  

 

5. Conclusion  

In apparent contrast to the aggradation desired from BDA restoration projects, we found 

an increase in erosion around a complex of three BDAs. However, when placed in the context of 

the larger watershed and of channel evolution models, these results are not surprising. There was 

net sediment loss in an upstream reference reach as well, suggesting that the physical drivers 

acting on the system over the one year timeframe of the study favored erosion. Compared to the 

morphologic changes in the reference reach, the channel response to BDA installation resulted in 
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volumes of erosion and deposition that were nearly double those measured in the reference 

reach, supporting the idea that BDAs initiate unique geomorphic responses beyond those that can 

be attributed to natural channel variability. We found that BDA position in the sequence and dam 

integrity influenced the patterns of geomorphic change, with deposition concentrated upstream of 

the first BDA and dam breaches due to overtopping streamflow resulting in cut bank retreat at 

downstream BDAs. Although a breach formed in each standing BDA and two of the original five 

dams were completely destroyed within one year, these findings are consistent with the dynamic 

and temporary design of BDAs and underscore the importance of installing these structures in 

sequences, similarly to how beavers construct their dams, so that the impacts of a few BDAs 

failing can be absorbed by the remaining intact structures.  

The short lifespan of BDAs demands methodological approaches for assessing the 

impacts of these structures on fluvial systems that can be rapidly deployed and have flexible 

spatial and temporal resolutions. The coincident evolution of Structure from Motion (SfM) 

photogrammetry and development of low-cost, lightweight UAV platforms have enabled the 

collection of elevation data at scales capable of resolving morphologic changes with centimeter-

scale accuracy. Although the combination of UAVs and SfM has been successfully applied in a 

few studies of channel erosion, these methods have not been widely adopted for monitoring 

stream restoration. We demonstrate several advantages of UAV- and SfM-generated data, 

notably the benefit of simultaneously acquiring both visible light orthophotos and elevation data 

and the ability to repeatedly assess how the stream system responds to restoration efforts. Given 

the discrepancy between the strong enthusiasm for BDAs and the dearth of data assessing the 

effectiveness of these beaver-inspired structures, there is an immediate need for additional 
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monitoring across restoration sites and over longer time frames to better understand the potential 

outcomes of BDA restoration efforts.   
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Figures 

 

 

 

 

Figure 1. (a) The beaver dam analogues were installed at Red Canyon Ranch in south-central 

Wyoming. (b) The main stream flowing through the ranch is Red Canyon Creek, a third-order 

stream that flows to the north. The study area is located near the northern terminus of the 

stream. Digital elevation model (10 m pixel-1), watershed extent and stream locations are from 

the U.S. Geological Survey (U.S. Geological Survey, 2017; 2019). (c) Five beaver dam 

analogues (red) were installed in Red Canyon Creek in 2018. BDAs 2–4 were intact in July 

2019 and are the focus of this study (‘BDA Reach’). An upstream reach with a similar 

gradient and sinuosity was selected as a reference (‘Reference Reach’). 
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Figure 2. Density plots comparing DEM elevations with elevations from a 2019 topographic 

survey for (a) exposed and (b) submerged points. Elevation differences were calculated by 

subtracting field elevations from DEM elevations. Dashed lines show the mean error values 

calculated between the two elevation datasets (Table 2). (b) The corrected submerged data 

was adjusted following Woodget et al. (2015).  

 

Figure 3. Annual orthophotos (2017–2019) of the installation sites for BDAs 2–4. A camera 

change between the 2018 and 2019 UAV surveys is responsible for the color changes (Table 

1). Streamflow is from left to right. Arrows indicate the locations of the BDAs. 
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Figure 4. Differencing the (left) 

2019 DEM and (center) 2018 

DEM results in the (right) DEM 

of difference (DoD). Positive 

elevation changes indicate an 

increase in elevation from 2018 

and 2019 and negative elevation 

changes indicate a decrease in 

elevation. Black lines indicate the 

locations of the BDAs. The 

elevation changes in the DoD 

result from true geomorphologic 

changes in the channel, (a) 

variations in shadow presence 

between 2018 and 2019, (b) 

changes in vegetation height on 

the floodplain and (c) the 

influence of vegetation obscuring 

the active channel.  
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Figure 5. 2018–2019 DEM of difference (DoD) restricted to the two study reaches. Three 

error assessments are shown: a raw, unthresholded DoD (a–b), a 9.8 cm minimum level of 

detection threshold (minLoD; c–d) and a 19.2 cm 95% confidence interval threshold (95% CI; 

e–f). Brown lines indicate the locations of the BDAs. Black arrows indicate flow direction. 

The DoDs are overlain on the 2018 hillshade model. 
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Figure 6. Areal and volumetric elevation change distributions for the BDA reach and the 

reference reach. Elevation changes were calculated by subtracting 2018 elevations from 2019 

elevations and are shown using 5 cm binning. Light grey bars are data above the 95% 

confidence interval (95% CI). Dark grey bars show the additional data included when the 

uncertainty threshold is reduced to the minimum level of detection (minLoD). Black bars are 

the data excluded by both uncertainty thresholds.  
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Figure 7. Cross sections over the 2018 and 2019 digital elevation models (DEMs). Dashed 

lines indicate DEM-reported elevations below the water surface. Green ‘Vs’ indicate areas of 

elevation change resulting from variations in vegetation presence and height. The black ‘T’ 

indicates a portion of the 2019 DEM where turbulence interfered with DEM-reported 

elevations. Note the different X and Y axes for each cross section.  
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Figure 8. Field photos showing the breaches at each BDA. (a) BDA 2 breached via scour 

beneath the dam, determined through field observations and evidenced by turbulent flow 

downstream of the dam. Image perspective is upstream. (b) BDA 3 breached along the left 

bank, resulting in minor channel avulsion and flow around the edge of the dam. Image 

perspective is upstream. (c) Breaching at BDA 4 occurred via overtopping streamflow. Image 

perspective is aligned with streamflow from left to right.  
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Tables 

 

Table 1. UAV flight details and camera information for 2017–2019. Information related to the 

elevation data products generated by Agisoft PhotoScan is presented for 2018 and 2019. Values 

in italics are error metrics calculated by Agisoft PhotoScan.  

 

UAV flights       

Date August 15, 2017 August 14, 2018 July 30, 2019 

Camera SONY A5100 SONY A5100 SONY R10 

UAV platform DJI Phantom 4 DJI Phantom 4 DJI M600 

Altitude (m) 62.7 66.2 44.2 

Images 803 544 601 

Image resolution (cm pixel-1) 1.60 1.73 0.87 

Ground control points 11 10 13 

Survey area (km2) 0.0916 0.0988 0.0769 

    
Data products       

GCP easting RMSE (cm) - 0.74 1.53 

GCP northing RMSE (cm) - 0.80 1.42 

GCP elevation RMSE (cm) - 1.02 0.47 

GCP total RMSE (cm) - 1.50 2.14 

Dense points - 27,905,508 78,773,274 

Point density (m-2) - 210 821 

DEM resolution (cm pixel-1) - 6.9 3.5 
 

 

 

Table 2. Error statistics comparing DEM-derived elevations with elevations from a 2019 field 

survey. 

 

  n ME (cm) RMSE (cm) SDE (cm) Emax (cm) 

2018 exposed 19 8 11.8 8.9 25 

2019 exposed 24 3 4.7 3.7 13 

2019 submerged 165 36.4 42 20.9 117.3 

2019 corrected 165 27.3 36.3 24 116.4 
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Table 3. Topographic changes determined from DEM differencing. BDA reach length is 100 m 

and area is 415 m2. Reference reach length is 130 m and area is 433 m2. 

 

 

% area 
with 

detectabl
e change 

Gross 
volume 

deposited 
per stream 

length (m3 m-

1) 

Gross 
volume 

eroded per 
stream 

length (m3 m-

1) 

Net 
volumetric 

change  
(m3) 

Net volumetric 
change per 

stream length 
(m3 m-1) 

BDA 
reach      
Raw 100 0.40 0.56 -16.41 ± 19.03 -0.16 

minLoD 66 0.36 0.53 -17.56 ± 14.37 -0.18 

95% CI 36 0.25 0.46 -20.95 ± 10.51 -0.21 

      
Reference 
reach      
Raw 100 0.25 0.29 -5.80 ± 13.87 -0.04 

minLoD 43 0.18 0.27 -11.11 ± 13.87 -0.09 

95% CI 20 0.10 0.25 -19.39 ± 5.98 -0.15 
 

 

 

 

Table 4. Water surface elevations upstream and downstream of each BDA. Elevations were 

measured during a topographic field survey in July 2019. 

 

 

Upstream water 
surface elevation (m) 

Downstream water 
surface elevation (m) Change in head (m) 

 
BDA 2 1692.92 1692.74 0.18 

BDA 3 1692.61 1692.46 0.15 

BDA 4 1692.55 1692.10 0.45 
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