Mycotecture of Contamination

Maria Gutierrez
Elise Zilius

Follow this and additional works at: https://surface.syr.edu/architecture_tpreps

Part of the Architecture Commons

Recommended Citation

This Thesis Prep is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Thesis Prep by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
MYCOTECTURE OF CONTAMINATION
MYCOTECTURE OF CONTAMINATION

Maria Gutierrez + Elise Zilius
Syracuse University School of Architecture

Advisory Group:
Dissimulating and Disheveling Matter

Advisors:
Jean Francois Bedard
Britt Eversole
Roger Hubeli
Julie Larsen

December 14th, 2020

Table of Contents

01 Contention
Investigation Process Diagram: Organic Factors
Investigation Process Diagram: Inorganic Factors

02 Typological Innovation
Mycoremediation Introduction
Mycoremediation Strategies
Mycoremediation Strategies: Continued

03 Material Experimentation
Emergence Properties Catalogue
Growth Simulations

04 Site and Environmental Conditions
Mycoremediation: Change Over Time
Contaminated Site Types
Growth Types + Favorable Environmental Conditions
Environmental Analysis
Growth Site Plans
Projected Site Conditions: Heat + Infection
Projected Site Conditions: Infection + Favorable Conditions
Projected Site Conditions: Favorable Conditions
Projected Site Conditions: Cold + Mushroom Die-Off

05 References
Humankind has stripped the planet from its resources, leaving behind an abundance of contamination. Humankind’s built environment no longer meets the standards set by our turbulent planet. Humankind has lost the privilege of agency in design and construction.

This thesis situates living organisms, specifically mycelium, as the primary designer of the built environment. The investigation uses contamination to fuel mycelial growth and create emergent forms whilst executing remediation strategies for contaminated sites. Human-centric processes have created intense environmental contamination; harnessing this contamination will create new architectural forms that consequently remove humankind from decision-making in architecture, relegating him to an indirect contributor. Environmental contamination and destruction will now serve a material purpose in architecture; harnessing the power of contamination will give it purpose. As environmental contamination continues to reproduce, the resultant architecture will morph in accordance. Employing nature’s cyclical processes of growth and decay, this constantly evolving architecture will unset humankind’s stagnant ideas of space. Through a combination of organic and inorganic methods of implementation and manipulation, this architecture will embrace the resultant repugnant aesthetic and defy the firmly established notions of hygiene and cleanliness.

In view of mycelium’s ability to recycle carbon, nitrogen, and other vital elements, this investigation targets mycelium’s digestive power to decompose toxic waste and pollutants whilst creating a new type of architecture. Organic and non-organic residue from landfills, crude oil, and toxic ash will be utilized to fuel the growth of mycelium and manipulate its development during the construction process.
Mycelium Experiments

Growth Behavior

Growth Outcomes

Decomposition of Materials

Forms

Favorable/Unfavorable Growing Conditions

Forms

Organic Factors

Inorganic Factors

Favorable Pre-Existing Site Conditions

Implementation of Site Strategies

Emergent Forms

Site Remediation

Site Evolution
Mycotecture presents a new approach to design, encompassing natural processes of growth and decay as part of the design process. Mycelial innovations are opening a new avenue for designers to utilize living systems as architectural material. Capable of consuming a wide variety of substrates, mycelial materials serve as a new material resource of great potential. Bringing a new meaning to the world of living architecture, mycelium’s ability to continue growing holds untapped potential negating fundamental concepts of a static built environment. This removal of control for designers, brings forth evolving emergent systems of natural imperfection.

In lieu of mycelium’s capacity to process various toxic materials the project approaches contaminated sites using strategies of mycoremediation. As David Gissen discusses in Subnatures humans have ignored the natural world for too long; deeming certain natures as foul and excluding them from any interaction with humans. Ignoring foul landscapes has led to intense contamination. Contaminated sites are left derelict as humans continuously build and rebuild, leaving disintegrating landscapes behind them. This thesis presents an opportunity to reconfigure human relations with contaminated landscapes, remediation both the site and the relationship between nature and architecture.

Mycoremediation, coined by Paul Stamets, refers to the bioremediation strategy for contaminated sites which uses fungi-based technology as its primary actor. Based on precedents of mycoremediation, the project was able to develop remediation strategies for each site condition. Each intervention is site specific, utilizing the contamination present on the site and implementing techniques of molding, scaffolding, and the use of soft templates.
Mycotecture of Contamination

Oil Soaked Hair
Oyster mushroom primordia fruiting from oil-saturated hair. Hair has been used for oil spills, and with the addition of mycelium, presents new opportunities for remediation. Paul Stamets - *Mycelium Running*

Accelerated Decomposing
Aspergillus tubingensis breaks down polyurethane. Mycelial growth on organic matter and contaminated soils can accelerate decomposition processes and break down toxins. Dr. Jean Borel - The Sierra Club

Toxic Ash Run-off
Toxic ash from wildfires presents unique issues due to the possibility of toxic ash runoff spreading toxins to surrounding areas. Wildfire toxic ash filtration using wattles. Fire Remediation Action Coalition

MYCOREMEDIATION STRATEGIES

MYCOREMEDIATION SITE STRATEGIES
Physical material experimentation is instrumental in the development of the project. This thesis seeks to utilize organic building materials that are climate sensitive and hold possibilities for emergent architecture. The investigation will explore hybrid materials with the ability to grow using mycelium in conjunction with material substrates of contamination.

Following Manuel Delanda’s *Matter Matters*, the investigation explores the importance of imperfections, extensive and intensive, and material expressivity. The project explores opportunities for emergent properties in architectural design in conjunction with inorganic manipulations to control emergence. The project derives its form using simulations of biological growth as a means of exploring large-scale architectural possibilities from small-scale observations. Through our experiments and research, we developed an understanding of the possibilities of growth as well as the behavior of mycelium in response to environmental factors. These mycelial growth outcomes allowed us to start developing a language of representing organic growth forms to inform our design process.
Thickness, Holes, and Bumps

Transparencies and Colors

Textures
Over time, the mycelium will start to decompose the contaminants and toxins of the site as well as consume any other organic matter on the site, resulting in a slow progression of site decomposition and remediation. Inversely, as the site begins to decompose, the mycelium will have a greater chance of growth.

The three different types of contamination create varying landscapes that influence growth patterns on the site. The main factors that create and affect different growth conditions are humidity, temperature, light exposure, and airflow. Each environmental condition would have a direct correlation to the possible growth conditions on the site. By extrapolating understandings of mycelial growth patterns, it is possible to project potential growth conditions of mycelium based on an environmental analysis of the site.
In order to fully explore the growth conditions of mycelium and its outcomes, a site was produced and its growth possibilities over time were projected. The site is composed of three types of contaminated sites: a landfill, a burnt area of toxic ash, and an oil spill.

LANDFILL
- Substrate: organic + inorganic
- Landscape: steep slopes
- Temperature: moderate to cold

TOXIC ASH
- Substrate: organic + toxins
- Landscape: moderate to low slope
- Temperature: warm to hot

OIL SPILL
- Substrate: organic (hair) + petroleum
- Landscape: requires implementation
- Temperature: cold

CONTAMINATED SITE TYPES

Mycotecture of Contamination

GROWTH TYPES & FAVORABLE ENVIRONMENTAL CONDITIONS

MYCELIAL GROWTH
- Warm - Enclosed
- 75-80°F & Dark

FRUITING GROWTH
- Warm - Exposed
- 75-80°F & Light

STUMPTED GROWTH & DIE-OFF
- Freezing
- Below 32°F

INFECTION
- Humidity/Airflow
- High humidity, low airflow

DECAY
- Hot
- Above 100°F
REFERENCES

David Gissen, Subnature: Architecture's Other Environments (New York: Princeton Architectural Press, 2009). Gissen discusses a new way to look at environmental forces such as dust, mud, gas, smoke, debris, weeds, and insects in architecture. Much of today's sustainable methods for design entails the removal/cleansing of said environmental forces; however, Gissen discusses how these elements can be used as tools in architecture which speaks directly to this thesis' intention to utilize pollution as a natural resource.

Ilya Prigogine and Isabelle Stengers, Order out of Chaos, Man's New Dialogue with Nature (New York: Bantam Books, 1984). Prigogine and Stengers discuss two important themes of classic science: order and chaos-- how a new order emerges from the chaos of the system at the point of collapse. They reference the notion of splitting up problems to their smallest components and its reverse-- this idea is valuable to this thesis because the exploration intends for a new order to emerge in the realm of architecture from the chaos that are climate change and contamination.

Weinstock, M. (2010). The architecture of emergence: The evolution of form in nature and civilization. Chichester, U.K: Wiley. Emergence is an innovative new field in the realm of architecture today. This text discusses how natural systems have evolved and maintained themselves and it explores how these methods of emergence can be applied to artificial intelligence, information systems, economics and climate studies. The findings in this text will inform this investigation as it relates to the self-maintenance of natural systems.

Manuel DeLanda, “Matter Matters," Domus 884-897 (2005). DeLanda's 13 columns on matter address key concerns regarding design and material. Each column focuses on a different issue on why matter matters. The most pertinent columns for the development of this investigation are the importance of imperfections, extensive and intensive, and material expressivity.

Timothy Morton, Hyperobjects: Philosophy and Ecology after the End of the World (University of Minnesota Press, 2013). This text discusses the construction of matter and the relationship between human and non-human objects. This text parallels the focus of this investigation by treating human and non-human things as coequal and rejecting the correlationist and anthropocentric tendencies of most ethical systems.

Beesley, Philip. Hylozoic Ground: Liminal Responsive Architectures. Toronto: Riverside Architectural Press, 2010. Print. Hylozoic Ground is an interactive social environment arranged as a textile matrix installation that responds to actions, dynamic material exchanges, and 'living' technologies. The installation is focused on self-renewing functions which directly inform this investigation's idea of self-renewing, self-regulating living architecture.

In Hebel, D., & Heisel, F. (2017). Cultivated building materials: Industrialized natural resources for architecture and construction. Hebel and Heisel's work informs the reader on cultivated building materials. Specially useful for this thesis is the text's focus on mycelium and the various ways the organism can be manipulated as a cultivated building material.

Stamets, P. (2005). Mycelium running: How mushrooms can help save the world. Berkeley, Calif: Ten Speed Press. Stamets' work is a manual on how we can capitalize mycellium's digestive power to decompose toxic waste and pollutants. Even though our investigation looks at waste and pollutants as a nuisance, the text informs our research by breaking down the different ways mycelium can be manipulated and used as a tool in "mycorestonation."