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ABSTRACT

We will investigate Lipschitz and Hölder continuous maps between a Banach space X

and its dual space X∗, the space of continuous linear functionals. The existence of these

maps is related to the smoothness of the norm of the space and isomorphic invariants called

type and cotype will play a central role as well. The main result will be answering a question

asked by W.B. Johnson about the isomorphic classification of Hilbert spaces.

Next we will find bounds on the distortion of subsets of infinite dimensional Hilbert space.

This concept compares the extrinsic straight line distance inherited from the underlying

space to the path metric of a subset. We will then use this concept to glean insight into the

surjectivity of Bilipschitz maps.

The tight span of a finite metric space is a polyhedral complex embedded in a normed

space. We will show that the position and lengths of the vertices and edges that arise in this

construction are Lipschitz continuous with respect to the underlying space X.

We will study symmetric products, where it is an open problem whether the symmetric

product of a space X inherits the property of being an absolute Lipschitz retract. We will

propose an approach that utilizes tight spans toward answering this question.
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Chapter 1

Introduction

1.1 Metric and normed spaces

In this thesis we will address the geometry of spaces with different structures and we will

devote this section to introducing these structures. We begin by considering spaces in which

we have a way of measuring distances between points in a consistent manner.

Definition 1.1.1 (Quasimetric and metric spaces). LetX be a space and d : X×X → [0,∞)

a map. We call d a metric and consequently X a metric space if:

(i) d(x, y) ≥ 0 for every x, y ∈ X (non–negative)

(ii) d(x, y) = 0 if and only if x = y (positive definite)

(iii) d(x, y) = d(y, x) for all x, y ∈ X (symmetric)

(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality)

If d only satisfies properties (i) and (iii) then d is a quasimetric and X a quasimetric space.

We denote the space of all n-point quasimetric spaces by QMn. Furthermore we call d a

semimetric if it satisfies (i), (iii) and (iv). The space of semimetric n–point spaces will be

denoted by SMn. If a finite semimetric space can be isometrically embedded into R we call

9



CHAPTER 1. INTRODUCTION 10

it flat and the space of all flat n–point semimetric spaces is denoted FMn. Finally, we call

the space of all bounded semimetric spaces BM.

The most prominent metric space is the real lineR with distance function d(x, y) = |x−y|.

Also, every weighted graph can be equipped with the path metric, meaning the distance

between two vertices is the length of the shortest path connecting them. In addition, any

set X can be equipped with the discrete metric, i.e. we define d(x, y) = 1 if x 6= y and

d(x, x) = 0, showing that a space does not have to have much initial structure for us to

be able to equip it with a distance function. On the other hand, the discrete metric is not

particularly interesting.

We will introduce the notion of norms next, which will require the space to have a linear

structure.

Definition 1.1.2 (Normed spaces). Let X be a vector space and ‖ · ‖ : X → [0,∞) a map.

We call ‖ · ‖ a norm if:

(i) ‖x‖ = 0 if and only if x = 0

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and every x ∈ X

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

The pair (X, ‖ · ‖) is called a normed space.

Since the absolute value function is in fact a norm, the real line is our first example of a

normed space. The spaces Rn allow a multitude of norms to be defined on them via

‖(x1, . . . , xn)‖p = p

√√√√ n∑
i=1

|xi|p

for 1 ≤ p <∞ and also

‖(x1, . . . , xn)‖∞ = sup{|xi| | 1 ≤ i ≤ n}
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If we want to consider Rn equipped with ‖ · ‖p, 1 ≤ p ≤ ∞ for a particular p we will denote

the space by `np . The spaces `p of sequences are defined analogously.

For compact subsets K of Rn we can consider the spaces

C(K) = {f : K → R | f is continuous}

where

‖f − g‖∞ = max{|f(x)− g(x)| | x ∈ K}.

We are frequently concerned with the matter of convergence, which leads us to the next

type of space.

Definition 1.1.3 (Banach space). A normed space X is a Banach space, if it is complete,

i.e. if every Cauchy–Sequence in X converges in X.

In studying the geometry of a space, the notion of angles is immensely useful and the

next structure we will introduce will allow us to carry this concept into abstract spaces.

Definition 1.1.4 (Hilbert space). We say that 〈·, ·〉 : X ×X → R is an inner product if it

satisfies the following:

(i) 〈x, y〉 = 〈y, x〉 for every x, y ∈ X (symmetry)

(ii) 〈λx + µy, z〉 = λ〈x, z〉 + µ〈y, z〉 for x, y and z ∈ X and λ, µ ∈ R (linearity in first

component)

(iii) 〈x, x〉 ≥ 0 for every x ∈ X and 〈x, x〉 = 0 if and only if x = 0 (positive definite)

Every inner product induces a norm via ‖x‖ =
√
〈x, x〉 and that this is in fact a norm is

due to the Cauchy–Schwarz inequality |〈x, y〉| ≤ ‖x‖‖y‖. Then X is a Hilbert space if it is

a Banach space and the norm is induced by an inner product.

One of the first Hilbert spaces to be investigated was the space R2 equipped with the

classic Dot–product, this implies that x · y = ‖x‖2‖y‖2 cos θ, where θ is the angle between
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the vectors x and y. It is due to the Cauchy–Schwarz inequality and this relationship that

it makes sense to define

cos θ =
〈x, y〉
‖x‖2‖y‖2

for arbitrary Hilbert spaces H. This in turn allows us to employ the usual law of cosines in

every Hilbert space. To be precise, this means that for a triangle with side length a, b and

c we have

c2 = a2 + b2 − 2ab cos θ (1.1)

where θ is the angle between the sides with length a and b.

1.2 Maps between spaces

In the previous section, we addressed the different types of spaces we will investigate in the

upcoming chapters and this section will be devoted to defining the classes of maps between

them that we will employ to do so.

One of our main goals is to decide when two spaces X and Y are the same and there are

different notions of sameness. On the one hand we could consider isometries, i.e. maps that

satisfy dY (f(x), f(y)) = dX(x, y) and thus completely preserve the metric structure. These

are very rigid. One might also consider homeomorphisms, continuous surjective maps that

have a continuous inverse, which completely ignore the distance structure. Bilipschitz maps

sit between these two extremes in the way that they don’t exactly replicate the metric but

still preserve a sufficient amount. In this sense they provide a natural notion of equivalence

of metric spaces. They also have the nice property that they preserve all (sensible) notions

of dimension that we have for metric spaces.

Definition 1.2.1 (Bilipschitz). Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y a
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map. Then f is (l, L)–Bilipschitz if

l ≤ sup
x,y∈X

dY (f(x), f(y))

dX(x, y)
≤ L

We say f is L–Bilipschitz if it is (L−1, L)–Bilipschitz and two spaces X and Y are bilipschitz

equivalent if there is a surjective (l, L)–Bilipschitz map from X to Y .

A first relaxation of the Lipschitz condition is the following.

Definition 1.2.2 (Hölder continuity). We say that a map f : X → Y between two Banach

spaces X and Y is α–Hölder continuous (0 < α ≤ 1) if

‖f(x)− f(y)‖Y ≤ C‖x− y‖αX

for all x, y ∈ X. The space of all α–Hölder continuous maps is denoted by C0,α.

If α = 1 in this definition, it is more common to call f Lipschitz. This gives us another

way to look at Bilipschitz maps as maps that are Lipschitz and have an inverse that is also

Lipschitz.

The classic example of an α–Hölder continuous map for 0 < α < 1 is f(x) = xα for

x ∈ [0,∞) which is in C0,α. The identity map x 7→ x is one of the simplest Lipschitz

functions, but there are many more. For example, it is a quick consequence of the mean

value Theorem that every map with bounded derivative is Lipschitz continuous.

1.3 Summary of results

In this section we want to give a short overview of the main results of this thesis. Chapter 2

focuses on Lipschitz and Hölder continuous maps between a Banach space and its dual space

X∗, the space of continuous linear functionals. We will see that the existence of these maps

is related to the smoothness of the norm of the space and isomorphic invariants called type
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and cotype will play a central role as well. The main result will be answering a question

asked by W.B. Johnson about the isomorphic classification of Hilbert spaces.

Then we will take a closer look at Hilbert space in Chapter 3. We will find bounds on

the distortion of subsets of Hilbert space. This concept compares the extrinsic straight line

distance inherited from the underlying space to the path metric of a subset. For example,

the distortion of a circle is π/2. We will extend results from the finite dimensional case to the

setting of infinite dimensional Hilbert space. Proving that the distortion of the complement

of a bounded set is π/2
√

2 will necessitate a different approach than the one used to prove

the same bounds in [15] in the finite dimensional case. We will then use our results about

distortion to glean insight into the surjectivity of Bilipschitz maps.

Chapter 4 considers the Lipschitz continuity of the tight span of a finite metric space X.

Tight spans are a concept introduced originally by Isbell in 1964 and considered for various

purposes since then. Our main result is that the vertices and edges of the tight span are

Lipschitz continuous with respect to the underlying space X. In order to prove these results

we will establish a connection between our geometric understanding of tight spans and their

algebraic definition. We will see that the choice of metric has a significant effect on these

results and we will mainly contrast the Gromov–Hausdorff and Hausdorff distance.

The last chapter, Chapter 5, applies these continuity results to the study of symmetric

products. In this area it is an open problem whether the symmetric product of a space X

inherits the property of being an absolute Lipschitz retract, see for example Question 3.3.9 in

[4]. We will introduce an approach towards this problem using the tight span construction.

This will allow us to answer the question in some cases.



Chapter 2

Approximate duality maps and type

2.1 Introduction

In the study of Banach spaces the notion of duality plays a pivotal role.

Definition 2.1.1. For a Banach space X its dual space

X∗ = {T : X → R | T linear and bounded}

is the space of all linear functionals from X into the real number line. It is a Banach space

itself equipped with the operatornorm

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}.

We will adopt the notation that S(X) = {x ∈ X : ‖x‖ = 1} denotes the unit sphere

of X and B(X) = {x ∈ X : ‖x‖ < 1} is the (open) unit ball of X. Then we will study

(approximate) duality maps as maps between the unit sphere of X and the unit ball of its

dual X∗. Before we give a formal definition of these type of maps, we want to see what

motivates their study.

If we consider a Hilbert space H, then the inner product can be used to define a map

15
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from H to H∗ by considering the map x 7→ 〈x, ·〉 and it is not hard to see that this map is

in fact an isometry. The Riesz Representation Theorem says that this map is in fact onto,

in other words a Hilbert space is isometrically isomorphic to its dual space.

An important property of duality maps is that they are designed to stand in for an inner

product. For example, in a Hilbert space H we say an operator T : H → H is positive if it

satisfies 〈Tx, x〉 ≥ 0 for every x ∈ H and similarly, if ϕ is a duality map of X then we can call

an operator T : X → X positive if 〈ϕ(x), Tx〉 ≥ 0 for every x ∈ X. They also capture the

geometry of X in the sense that if there is a duality map ϕ that is uniformly continuous on

the unit ball then X is uniformly smooth. In this context, smoothness is defined as follows.

Definition 2.1.2 (Modulus of smoothness). We define the modulus of smoothness of a

Banach space (X, ‖ · ‖) as

ρX(τ) = sup

{
‖x+ y‖

2
+
‖x− y‖

2
− 1 | ‖x‖ = 1, ‖τ‖ ≤ 1

}

We then call X uniformly smooth if ρX(τ) ∈ o(τ) and we say that X is α + 1 smooth if

ρX(τ) ≤ Cτα+1 for some constant C > 0.

Before we delve deeper into the use of (approximate) duality maps, we will properly

define them.

Definition 2.1.3 ((Approximate) Duality map). Let X be a Banach space and denote by

X∗ its dual space

1. We call ϕ : S(X)→ B(X∗) a duality map if ϕ satisfies

〈ϕ(x), x〉 = 1 for all x ∈ S(X)

2. We call ϕ : S(X)→ B(X∗) an approximate duality map if

〈ϕ(x), x〉 ≥ η for some η ∈ (0, 1) and all x ∈ S(X)
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Whenever it is convenient to do so we will consider the homogeneous degree 1 extension of

these maps to all of X, so we set ϕ̂(x) = ‖x‖ϕ
(

x
‖x‖

)
for x 6= 0 and ϕ̂(0) = 0. Frequently,

we will denote them by ϕ as well.

If the magnitude of the lower bound η is important, we will refer to the map as a η–

approximate duality map.

The first thing we should observe is that if we use the homogeneous degree 1 extension of

these maps to all of X, then duality maps satisfy 〈ϕ(x), x〉 = ‖x‖2 and similarly approximate

duality maps 〈ϕ(x), x〉 ≥ η‖x‖2.

We should consider how this extension impacts the Hölder continuity, but fortunately we

have

Lemma 2.1.4. Let X and Y be Banach spaces and f : S(X) → B(Y ) is a C0,α map,

0 < α ≤ 1, then the homogeneous degree 1 extension f̂ of f to all of X satisfies

‖f̂(x)− f̂(y)‖ ≤ Kβ(x, y)‖x− y‖α

for every x, y in X, with K independent of x and y.

Here, β(x, y) = ‖x‖1−α + ‖y‖1−α or β(x, y) = max(‖x‖, ‖y‖)1−α.

Proof. Let x,y ∈ X \ {0}, we first note that the triangle inequality implies

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 2

‖x‖
‖x− y‖
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Then∥∥∥∥‖x‖f ( x

‖x‖

)
− ‖y‖f

(
y

‖y‖

)∥∥∥∥ ≤ ‖x‖C ∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥α +

∥∥∥∥f ( y

‖y‖

)∥∥∥∥ ‖x− y‖
≤ ‖x‖C 2α

‖x‖α
‖x− y‖α + ‖x− y‖

= (C2α‖x‖1−α + ‖x− y‖1−α)‖x− y‖α

≤ (C2α‖x‖1−α + 21−α max(‖x‖, ‖y‖)1−α)‖x− y‖α

≤ Kβ(x, y)‖x− y‖α

which finishes the proof.

This establishes that Hölder continuity can be used as long as we work on bounded sets

and that homogeneous degree 1 extensions preserve Lipschitz continuity.

As was mentioned earlier Hilbert spaces are isomorphic to their dual spaces via the duality

map and it would be a natural question to ask whether being isomorphic to ones dual is

enough to characterize Hilbert spaces. The following example demonstrates that this is a

futile hope.

Example 2.1.5. Consider conjugate exponents p and q with 1 < p < 2 then T : `p ⊕ `q →

`q ⊕ `p, (x, y) 7→ (y, x) is an isomorphism, but `p ⊕ `q is not a Hilbert space.

Evidently, it is not enough to be simply isomorphic to ones dual space. However, it

can be easily checked that in this example we have 〈T (x, 0), (x, 0)〉 = 0 for every x ∈ `p.

What if we require that T : X → X∗ is an isomorphism that satisfies 〈Tx, x〉 > 0 for every

x ∈ X \ {0} instead? This modification is not enough as the following example will show.

Example 2.1.6 (Pisier-Xu space). Consider the space A 1
2

2 = (v1, `∞) 1
2

2 from [29] and let

T : A 1
2

2 → A 1
2

2 be the identity map. Then for x = (x1, x2, . . .) we have

〈Tx, x〉 =
∑

xi(xi − xi+1) ≥
∑

x2
i −

1

2
x2
i −

1

2
x2
i+1 =

1

2

∑
x2
i − x2

i+1 =
1

2
x2

1
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This shows that 〈Tx, x〉 ≥ 0, however closer inspection shows that the inequality is strict

unless xi = xi+1 for all i. Thus we can see that 〈Tx, x〉 > 0 for all x 6= 0.

Now it is in fact true that if T : X → X∗ is a linear isomorphism that satisfies 〈Tx, x〉 ≥

η‖x‖2 for every x ∈ X and some η > 0 then X is isomorphic to a Hilbert space. In this case

we can define an inner product on X via

〈x, y〉X = 〈Tx, y〉+ 〈Ty, x〉

Let us check that this indeed defines an inner product. By definition 〈x, y〉X is symmetric

and T being a linear operator gives linearity in the first component. In addition we have

〈x, x〉X = 〈Tx, x〉+ 〈Tx, x〉 ≥ 2η‖x‖2

which clearly establishes that our candidate for an inner product is positive definite and thus

an actual inner product.

Along this same line of inquiry, W. B. Johnson has asked in [20] if a space is isomorphic

to a Hilbert space whenever there exists a duality map that is a Bilipschitz equivalence. In

the next section we will settle this question in the positive.

In the following we will investigate what happens if we drop the condition that this map

be linear and replace it with varying conditions on its continuity.

We will begin by showing that if a spaceX has a Hölder continuous η–approximate duality

map ϕ, then the Bochner spaces Lp(X) on X also admit one with the same parameter and

the modulus of continuity is dependent on p and the modulus of continuity of ϕ.

Lemma 2.1.7. Let X be a Banach space that admits a C0,α η–approximate duality map ϕ

then the Bochner space Lp(X) admits an η–approximate duality map Φ ∈ C0,γ with γ =

min(p− 1, α) for 1 < p <∞.
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Proof. We define Φ: Lp(X)→ Lq(X
∗), where 1/p + 1/q = 1 by

Φ(f)(ω) = ϕ

(
f(ω)

‖f(ω)‖

)
‖f(ω)‖

p
q

as long as f(ω) isn’t 0, and 0 otherwise.

First we check that the parameter η is preserved.

〈Φ(f), f〉 =

∫ 〈
ϕ

(
f(ω)

‖f(ω)‖

)
‖f(ω)‖

p
q , f(ω)

〉
dω

=

∫
‖f(ω)‖

p
q

+1

〈
ϕ

(
f(ω)

‖f(ω)‖

)
,
f(ω)

‖f(ω)‖

〉
dω

≥
∫
η‖f(ω)‖

p
q

+1dω = η

Let f , g ∈ S(Lp(X)) and consider the following pointwise inequality

‖Φ(f)− Φ(g)‖X∗ ≤
∥∥∥∥ϕ( f

‖f‖

)∥∥∥∥ ∣∣∣‖f‖ pq − ‖g‖ pq ∣∣∣+ ‖g‖
p
q

∥∥∥∥ϕ( f

‖f‖

)
− ϕ

(
g

‖g‖

)∥∥∥∥
≤ ‖f − g‖

p
q +K‖g‖

p
q

∥∥∥∥ f

‖f‖
− g

‖g‖

∥∥∥∥α
≤
(
‖f − g‖

p
q
−γ +K2α−γ‖g‖

p
q
−γ
)
‖f − g‖γ

≤ K̃ max(‖f‖, ‖g‖)
p
q
−γ‖f − g‖γ

Here, all instances of f and g are to be considered evaluated at ω.

Then we have the following

‖Φ(f)− Φ(g)‖qq ≤
∫
K̃q‖f − g‖γq max(‖f‖, ‖g‖)p−γqdω

≤ K

(∫
‖f − g‖pdω

) γq
p
(∫

max(‖f‖, ‖g‖)pdω
) p−γq

p

≤ K2p−γq‖f − g‖γqp

and finally

‖Φ(f)− Φ(g)‖q ≤ C‖f − g‖γp
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2.2 Approximate duality maps and Rademacher–type

Type and cotype are two numbers associated to a Banach space that are invariant under

isomorphisms and it turns out that approximate duality maps are a good tool to investigate

these.

Before we can properly talk about them we first define the following.

Definition 2.2.1 (Average). For n elements x1, . . . , xn of a Banach space and 0 < p < ∞,

we define

Avg
±

∥∥∥∑±xi
∥∥∥p =

1

2n

∑
ε∈{−1,1}n

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

as the average.

Definition 2.2.2 (Type and cotype). Let X be a Banach space, then X has type p (or

Rademacher type ) if

(Avg
±
‖
∑
±xi‖p)

1
p ≤ Tp(

∑
‖xi‖p)

1
p

for all finite sums, where Tp is a constant independent of n and we denote by pX = sup{p :

X has type p} the supremal type of X.

Similarly, X has cotype q if

(Avg
±
‖
∑
±xi‖q)

1
q ≥ Cq(

∑
‖xi‖q)

1
q

for all finite sums, where Cq is a constant independent of n and we denote by qX = inf{q :

X has cotype q} the infimal cotype of X.

It is known that pX ∈ [1, 2], qX ∈ [2,∞] and that a space X does not necessarily have

type pX or cotype qX . The left sides of the inequalities for type and cotype are equivalent

for all p and q as the following result by Kahane (for a proof see [24]) shows.

Theorem 2.2.3 (Kahane’s Inequality). Let X be a Banach space and 0 < p < q <∞, then
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there is a constant Kpq independent of n, such that

(
Avg
±

∥∥∥∑±xi
∥∥∥q) 1

q

≤
(

Avg
±

∥∥∥∑±xi
∥∥∥p) 1

p

≤ Kpq

(
Avg
±

∥∥∥∑±xi
∥∥∥q) 1

q

We will now state and prove that the existence of certain maps will provide bounds on

the supremal type and infimal cotype of X or even show that a space X has certain type.

One major theorem that we will use to establish these bounds will be the following theorem

due to Maurey and Pisier [25], which we will state after introducing the necessary definitions.

Definition 2.2.4 (Banach-Mazur distance). The Banach-Mazur distance between two Ba-

nach spaces X and Y is defined as

dBM(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y isomorphism}

Definition 2.2.5 (Finitely represented). A Banach space Y is finitely represented in another

Banach space X if for every ε > 0 and every finite dimensional subspace Y1 of Y there is a

finite dimensional subspace X1 of X such that dBM(Y1, X1) < 1 + ε. If instead for every ε

the last inequality only holds only for some, we say that Y is crudely represented in X.

The next Theorem will be very helpful in taking a look at the case of a uniformly con-

tinuous approximate duality map and a proof can be found in [3]

Theorem 2.2.6 (Maurey–Pisier, ’76). If X is an infinite dimensional Banach space then `p

is finitely represented in X for p = pX and p = qX .

Lemma 2.2.7. Let X be a Banach space with dim X =∞.

If X admits a uniformly continuous approximate duality map ϕ̂ then pX > 1.

Proof. Suppose that `1 is finitely represented in X and let

T : `n1 −→ T (`n1 )
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be an isomorphism such that ‖T‖ = 1 and ‖T−1‖ < 1 + ε. We will now use the map ϕ̂ to

define an approximate duality map ϕ from S(`n1 ) to B(`n∞).

Consider

X X∗

S(`n1 ) B(`n∞)

ϕ̂

T ∗T

ϕ

Figure 1

where ϕ = T ∗ ◦ ϕ̂ ◦ T makes the diagram in Figure 1 commute. It remains to be shown

that ϕ is still a uniformly continuous approximate duality map. If we denote by ωϕ̂ the

modulus of continuity of ϕ̂, we get

‖ϕ(x)− ϕ(y)‖∞ ≤ ‖T ∗‖ ωϕ̂(‖T (x− y)‖X) ≤ ωϕ̂(‖x− y‖1)

To show that ϕ is an approximate duality map, we first note that

‖x‖
1 + ε

≤ ‖Tx‖ ≤ ‖x‖

Then 〈ϕ(x), x〉 = 〈T ∗(ϕ̂(Tx)), x〉 = 〈ϕ̂(Tx), Tx〉 and considering the homogeneous degree 1

extension we arrive at

‖Tx‖2

〈
ϕ̂

(
Tx

‖Tx‖

)
,
Tx

‖Tx‖

〉
≥ η‖Tx‖2 ≥ η

(1 + ε)2
‖x‖2 = η̂‖x‖2

We will now consider the reflections ρi about the hyperplanes {xi = 0} in `n1 and denote

by G the group generated by these reflections. Then define

ϕ̃ :=
1

|G|
∑
g∈G

g ◦ ϕ ◦ g
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This new map is symmetric in the following sense ϕ̃ ◦ g = g ◦ ϕ̃ ∀g ∈ G and it is still a

uniformly continuous η̂-approximate duality map with the same modulus of continuity as ϕ.

We should now consider the midpoint m = (1/n, . . . , 1/n) of one face of S(`n1 ) and the

midpoints mi = ρi(m) of adjacent faces. Since they differ only in one coordinate their

distance is ‖m−mi‖1 = 2
n
.

By the symmetry of ϕ̃ the images of those midpoints are completely determined by

ϕ̃(m) = (y1, . . . , yn). We get that 1
n

∑
yi = 〈ϕ̃(m),m〉 ≥ η̂, so for at least one yi we have

yi ≥ η̂. We conclude that

2η̂ ≤ 2|yi| = ‖ϕ̃(m)− ϕ̃(mi)‖∞ ≤ ωϕ(‖m−mi‖1) = ωϕ(2/n)

where the right side tends to 0 as n→∞. Since η̂ did not depend on n this is a contradiction

and thus `1 can not be finitely represented in X.

We can see that this proof works even if we just assume that `1 is crudely represented in

X. Now we will state and prove a lemma that connects Hölder continuity of an approximate

duality map directly with Rademacher type.

Lemma 2.2.8. Let X be a Banach space with dimX =∞ and 0 < α ≤ 1.

If X admits a C0,α approximate duality map ϕ then X has type α + 1.

Proof. Let x1, . . . , xn be elements of X, throughout the proof we will adopt the conven-

tion that εx =
∑n

i=1 εixi and denote by εj− the vector (ε1, . . . ,−1, . . . , εn), where the j–th

component is −1.

Using the lower bound from approximate duality and linearity we obtain

 1

2n

∑
ε∈{−1,1}n

‖εx‖2

 1
2

≤

 1

η2n

∑
ε∈{−1,1}n

n∑
j=1

εj〈ϕ(εx), xj〉

 1
2
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We first can write

∑
ε∈{−1,1}n

n∑
j=1

εj〈ϕ(εx), xj〉 =
n∑
j=1

∑
εj=1

〈ϕ(εx), xj〉 −
∑
εj=−1

〈ϕ(εx), xj〉


=

n∑
j=1

∑
εj=1

〈ϕ(εx)− ϕ(εj−x), xj〉

And combining this with

〈ϕ(εx)−ϕ(εj−x), xj〉 ≤ ‖ϕ(εx)−ϕ(εj−x‖‖xj‖
2.1.4

≤ K(‖εx‖1−α + ‖εj−x‖1−α)‖εx− εj−x‖α‖xj‖

we have

∑
ε∈{−1,1}n

n∑
j=1

εj〈ϕ(εx), xj〉 ≤
n∑
j=1

∑
εj=1

K(‖εx‖1−α + ‖εj−x‖1−α)‖xj‖α+1

= K
n∑
j=1

‖xj‖α+1
∑

ε∈{−1,1}n
‖εx‖1−α

= 2nK Avg
±

∥∥∥∑±xi
∥∥∥1−α n∑

j=1

‖xj‖α+1

Employing Kahane’s inequality 2.2.3 we obtain the following from the above

(
Avg
±

∥∥∥∑±xi
∥∥∥1−α

) 1
1−α

≤

√
K

η

(
n∑
j=1

‖xj‖α+1 Avg
±

∥∥∥∑±xi
∥∥∥1−α

) 1
2

Which is equivalent to

(
Avg
±

∥∥∥∑±xi
∥∥∥1−α

) 1
1−α

≤ K̃

(
n∑
j=1

‖xj‖α+1

) 1
α+1

and thus X has type α + 1.

We are almost ready to answer W. B. Johnson’s question and the last missing piece is

the following theorem due to Kwapien ([22]).
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Theorem 2.2.9 (Kwapien, ’72). A Banach space X is isomorphic to a Hilbert space if and

only if X has type 2 and cotype 2.

Theorem 2.2.10. A Banach space (X, ‖ · ‖) is isomorphic to a Hilbert space if and only if

it admits an η–approximate duality map that is a Bilipschitz equivalence.

Proof. First, assume that X is isomorphic to a Hilbert space H via an isomorphism T . Then

there is an adjoint of this map from H → X∗. Furthermore, let idH denote the identity

map on H, then this defines a duality map for H since H∗ = H. We can then define

ϕ : S(X)→ B(X∗) as

ϕ =
1

‖T‖2
T ∗ ◦ id

H
◦T

which is Bilipschitz since all maps involved are bounded and linear. We then have, for

x ∈ S(X)

〈ϕ(x), y〉 =
1

‖T‖2
〈(id
H
◦T )(x), T y〉

=
1

‖T‖2
〈Tx, Ty〉H ≤

1

‖T‖2
‖Tx‖H‖Ty‖H

≤ ‖y‖

and also

〈ϕ(x), x〉 =
1

‖T‖2
〈Tx, Tx〉H =

1

‖T‖2
‖Tx‖2

H ≥
1

‖T‖2‖T−1‖2

which shows that ϕ is in fact an approximate duality map.

In order to show the other implication, let ϕ : S(X) → S(X∗) be an η–approximate

duality map that is a Bilipschitz equivalence. Then 2.2.8 shows that X has type 2. In

addition ϕ−1 : S(X∗) → S(X) ⊂ S(X∗∗) is still an η–approximate duality map which by

assumption is Lipschitz and thus we conclude that X∗ has type 2. In [19] it is shown that

this in turn implies that X has cotype 2. But then Kwapien’s result 2.2.9 finishes the

proof.

We should put our results in context. In combination with known results we have the
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following chain of implications

(α + 1)–smooth =⇒ ∃ C0,α approximate duality map =⇒ type (α + 1) . (2.1)

In fact, we know that the duality map of a space X being α–Hölder is equivalent to that

space having modulus of smoothness (α+1) and this implies Rademacher type (α+1). There

are however examples in [29] that there are spaces with type (α + 1) that are not (α + 1)

smooth. This shows that in (2.1) not both arrows can be reversed. It remains unknown

whether (α+ 1)–smoothness or having type (α+ 1) is equivalent to the existence of a Hölder

continuous approximate duality map.



Chapter 3

Distortion of subsets of Hilbert spaces

3.1 Introduction

In Banach space theory, a driving question of the field is the Lipschitz classification of Banach

spaces and a recent survey by Benyamini [2] shows that although substantial progress has

been made in that area there is still one big question that remains open. It is unclear what

kind of infinite–dimensional Banach spaces X satisfy that the unit ball B(X) is Lipschitz

equivalent to the unit sphere S(X) in the sense that there is a bijective Lipschitz map from

B(X) to S(X) that has a Lipschitz inverse. The space constructed by Gowers and Maurey

in [14] provides an example that the answer can not be “every Banach space”. It is an open

problem whether being a Hilbert space is enough or if there are any natural obstructions.

We will investigate whether a continuous map f from an infinite–dimensional Hilbert

space H into itself that is expanding and whose image has nonempty interior is actually

onto, which is a question Louis Nirenberg asked in his book Topics in Nonlinear Functional

Analysis ([28]) from 1974. Morel and Steinlein found a counterexample to this question in

1984 ([27]) if H is replaced by the Banach space `1.

These two problems are closely related, since Benyamini and Lindenstrauss show in [3]

that a Lipschitz equivalence between B(H) and S(H) can be used to construct a counterex-

28
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ample to Nirenberg’s question, in other words, if one of the problems can be solved with a

positive answer it must mean that the answer to the other problem is negative.

In the case thatH is finite dimensional it can be seen that Nirenberg’s problem has in fact

a positive answer which is a direct consequence of Brouwer’s invariance of domain theorem.

Let f : Rn → Rn be an expansive map, i.e. ‖f(x)−f(y)‖ ≥ ‖x−y‖, with nonempty interior,

then it is injective and thus Brouwer’s theorem implies that f(Rn) is open. On the other

hand, completeness shows that f(Rn) is closed and thus f(Rn) = Rn.

The following examples will show that neither expansiveness nor the image having open

interior alone are sufficient to impose surjectivity.

Example 3.1.1. Consider H = `2 and let R : `2 → `2 be the right shift operator, i.e.

R(x1, x2, x3, . . .) = (0, x1, x2, . . .). This map is clearly expanding, it is even an isometry. On

the other hand it is easy to see that the right shift is by no means a surjection.

The next example will demonstrate that the image of a map having nonempty interior

alone is not enough to imply surjectivity.

Example 3.1.2. Let H be any Hilbert space, then the projection P onto the closed unit

ball is continuous. Obviously P (H) = B(H) 6= H.

Before we try to answer this question partially, we will first take a small excursion into

the geometry of Hilbert space.

3.2 Distortion and quasiconvexity

In order to answer some of the questions raised in the preceding section, we will need the

concept of distortion. In colloquial terms, the distortion describes the ratio of distances

inside a given set in relation to the distances in the ambient space. Often the distortion of

a set is also referred to as the constant of quasiconvexity.
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Definition 3.2.1 (Distortion). Let (X, ‖ · ‖) be a Banach space and U ⊂ X. The intrinsic

distance d(x, y) between two points x, y ∈ U is the infimum of lenghts of curves in U

connecting x to y. We then define

distort(U) = sup
x,y∈U

d(x, y)

‖x− y‖

as the distortion of U .

Our results are inspired by results from M. Gromov and P. Pansu, who have proved

that a compact set in Rn whose distortion is less than π
2
has to be simply connected and

if the distortion of a compact set is less than π
2
√

2
then the set has to be contractible [15].

The approach used to prove these results is heavily reliant on the Hilbert space in question

being finite dimensional. We will be able to prove very similar results by utilizing only basic

properties of Hilbert space that are not dependent on finite dimension.

Let B be a bounded convex subset of H, can we estimate the distortion of Rn \ B from

below? This is a difficult question to answer even in finite dimensions, for example, it is

known that the distortion of R2 \ B is bounded below by π/2 and this bound is sharp as a

disk realizes this bound. On the other hand, even if n = 3 the best known bound is π/2
√

2 but

it is unclear if this is sharp. Noam Elkies in [13] provided an example that there are closed

and bounded convex subsets B of R3 such that distort(R3 \B) < π/2 and thus the bound in

R3 can not be improved to the bound from the 2–dimensional case.

We will give bounds in the infinite dimensional case under reasonable assumptions. We

need one more definition.

Definition 3.2.2 (Inradius). Let (X, ‖ · ‖) be a Banach space, and U ⊂ X, then we call

RU = sup
x∈U
{r : B(x, r) ⊂ U}

the inradius of U .
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x′ x y

y′

θ

UC

U

Figure 2: Illustration of Theorem 3.2.3

The first Theorem we will prove explores how Hilbert space gets distorted if we cut out

an open set that is not too big in the sense that it does not allow balls of arbitrary size inside

of it.

Theorem 3.2.3. Let H be a Hilbert space and U ⊂ H open such that 0 < RU <∞, then

distort
(
UC
)
≥ π

2
√

2

The main idea in the proof is to show that we can find points in the complement of U

such that the angle to the center of an almost maximal ball contained in U is obtuse, as can

be seen in the included figure.

Proof. Let ε > 0 and pick x such that B(x,RU − ε) ⊂ U . Then there is y ∈ UC such that

‖x − y‖ < RU + ε. If we choose x′ = x + 2
√
εRU

x−y
‖x−y‖ we can find y′ ∈ B(x′, RU + ε) \

B(x,RU − ε), with y′ ∈ UC . Using the law of cosines (1.1) we will show that the angle
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between y − x and y′ − x, we call it θ, is obtuse.

cos θ =
‖x′ − y′‖2 − ‖x− x′‖2 − ‖x− y′‖2

2‖x− x′‖‖x− y′‖

≤ (RU + ε)2 − 4εRU − (RU − ε)2

2‖x− x′‖‖x− y′‖
≤ 0

Since the nearest point projection onto a convex and closed set is a contraction in Hilbert

space, we have that

d(y, y′) ≥ d(P (y), P (y′)) = (RU − ε)θ = (RU +O(ε))θ

where P denotes the nearest point projection onto B(x,RU − ε).

‖y − y′‖ =
√
‖x− y‖2 + ‖x− y′‖2 − 2‖x− y‖‖x− y′‖ cos θ

≤
√

(RU + ε)2 + (4εRU +RU + ε)2 − 2(RU + ε)(4εRU +RU + ε) cos θ

=
√

2(RU +O(ε))2(1− cos θ)

= (R +O(ε))
√

2
√

1− cos θ = 2(R +O(ε)) sin
θ

2

This results in

distort(UC) ≥ (R +O(ε))θ

2(R +O(ε)) sin θ
2

for every ε > 0. Then letting ε→ 0 leads to

distort(UC) ≥
θ
2

sin θ
2

≥ π

2
√

2

The last inequality is due to the fact that
x

sinx
is monotonically increasing on [0, π] and θ

is bounded below by
π

2
.

In a very similar fashion an analogous result for cone shaped regions can be proved.

Theorem 3.2.4. Let H be a Hilbert space and U ⊂ H open such that there exists 0 < α < 1
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for which dist(x, UC) ≤ α‖x‖ for every x ∈ H, then

distort(UC) ≥ β

2 sin β
2

,

where β = arccosα.

Proof. Let ε > 0 and then pick x ∈ U such that B(x, α‖x‖) ⊂ U . Without loss of generality

we can assume that ‖x‖ = 1. Then we can find y ∈ UC no farther away from x than

α + ε and as in the proof of Theorem 3.2.3 we choose x′ = x + d
‖x−y‖(x − y) and locate a

y′ ∈ B(x′, (1 + d)α) \B(x, α) with y′ ∈ UC . Let us denote by θ the angle between y− x and

y′− x, as in the proof of Theorem 3.2.3 we employ the law of cosines (1.1) to find a suitable

bound.

cos θ =
‖x′ − y′‖2 − ‖x− x′‖2 − ‖x− y′‖2

2‖x− x′‖‖x− y′‖

≤ ((1 + d)α + ε)2 − d2 − (α− ε)2

2‖x− x′‖‖x− y′‖

≤ ((1 + d)α + ε)2 − d2 − (α− ε)2

2d(α− ε)

=
2α2d+ d2(α2 − 1) +O(ε)

2dα−O(ε)

Choosing d =
√
ε and letting ε→ 0 we obtain cos θ ≤ α.

We see that the intrinsic distance between y and y′ is bounded from below by (α+O(ε))θ

by the same technique employed in the proof of Theorem 3.2.3 and we can bound the regular

distance by the following.

‖y − y′‖ =
√
‖y − x‖2 + ‖x− y′‖2 − 2 cos θ‖y − x‖‖x− y′‖

≤
√

(α + ε)2 + (d+ (1 + d)α + ε)2 − 2 cos θ(α− ε)2

=
√

2(α +O(ε))2 − 2 cos θ(α +O(ε))2 = (α +O(ε))
√

2
√

1− cos θ

= (α +O(ε))2 sin
θ

2
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Finally, using the monotonicity of x/sinx on [0, π] and combining this with the bound on cos θ

we have

distort(UC) ≥ θ

2 sin θ
2

≥ β

2 sin β
2

3.3 Surjectivity and distortion

In this section we will employ the results about the distortion of subsets of Hilbert space

to obtain conclusions on the surjectivity of Bilipschitz maps. We begin by taking a look at

the distortion of the Bilipschitz image of a space X, since this will be fundamental to our

results.

Lemma 3.3.1. If f : X → Y is a (l,L)-Bilipschitz map, then distort(f(X)) ≤ L
l

distort(X).

Proof. Let f(x) and f(y) be in f(X) and consider a curve γ in X that connects x and y.

Then f(γ) defines a curve that connects f(x) and f(y) and since f is L-Lipschitz we conclude

that length(f(γ)) ≤ L length(γ). This means that d(f(x), f(y)) ≤ Ld(x, y) at the same time

we have that ‖f(x)− f(y)‖ ≥ l‖x− y‖ and thus

distort(f(X)) ≤ L

l
distort(X)

A first application of this Lemma will give us one condition for when a Bilipschitz map

from a Hilbert space into itself is actually onto, as long as it has finite distance from the

identity map.

Theorem 3.3.2. Let H be a Hilbert space and f : H → H a map such that ‖f(x) − x‖ <

R <∞ for every x ∈ H. If f is also (l,L)-Bilipschitz with L
l
< π

2
√

2
then f is onto.

Proof. Suppose that f is not onto, then U = H \ f(H) is open and non-empty. Since

dist(x, f(H)) ≤ ‖x− f(x)‖ < R for every x ∈ U we can apply Theorem 3.2.3 and conclude

that distort(UC) ≥ π
2
√

2
. This is a contradiction to Lemma 3.3.1 and thus f is onto.
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Our next result will focus on maps that satisfy the assumptions of 3.2.4.

Proposition 3.3.3. Let H be a Hilbert space and f : H → H a map such that there is α < 1

for which ‖f(x)− x‖ ≤ α‖x‖ for every x ∈ H. If f is also (l,L)-Bilipschitz with L
l
< β

2 sin β
2

,

with β = arccosα, then f is onto.

Proof. If we assume that f is not onto we see that H\ f(H) is open and non-empty. By our

assumptions for the displacement of f(x) the conditions of Theorem 3.2.4 are satisfied and

thus distort(f(H)) ≥ β

2 sin β
2

which contradicts Lemma 3.3.1.

The next result will give us some more information about when Bilipschitz approximate

duality maps are surjective.

Proposition 3.3.4. Let H be a Hilbert space and ϕ : H → H an η-approximate duality map

that is also (l, L)-Bilipschitz. If L
l
< β

2 sin β
2

, where β = arcsin η, then ϕ is onto.

Proof. Suppose ϕ is not onto. For x ∈ H we denote by θ the angle between ϕ(x) and x. We

observe that ‖x‖ = ‖ϕ(x)‖ and since ϕ is an η–approximate duality map we can conclude

that cos θ = 〈ϕ(x),x〉
‖x‖2 > η. Approximate duality maps are homogeneous of degree 1 and thus we

know that the whole line segment L from 0 to ϕ(x) is contained in ϕ(H). We then have that

dist(x, ϕ(H)) ≤ dist(x, L) = sin θ‖x‖ <
√

1− η2‖x‖. Since arccos
√

1− η2 = arcsin η this

shows that ϕ satisfies the conditions of Theorem 3.2.4 whose assertion contradicts Lemma

3.3.1.

It remains unknown whether Bilipschitz approximate duality maps are always onto.



Chapter 4

Lipschitz geometry of tight spans

4.1 Introduction and the general construction

Our main goal in this chapter will be to investigate the Lipschitz geometry of the tight span

of a (finite) metric or normed space X. Tight spans were first introduced in 1964 by Isbell

in [18], where it was also noted that they have a polyhedral structure if the metric space is

finite. We will take a closer look at the Lipschitz geometry by paying special attention to

this structure, in particular, we will investigate how vertices of the tight span behave under

changes of the underlying metric space and derive stability results from there.

One area where tight spans see use is in phylogenetics, which is the study of evolutionary

history. The goal is building a phylogenetic tree and once a number of different species are

considered and one has decided on a measure of distance between them one has automatically

build a finite metric space. In considering the tight span a tree–like structure can be found.

As we will soon see the tight span of a space is rarely a tree and a part of phylogenetic

combinatorics deals with the ramifications of this fact in the form of studying tree–like

metrics and studying how far a given metric is away from being tree–like.

In addition, it is known (see for example [11]) that the 1–skeleton of the tight span of a

finite metric space (X, d) is a realization of the metric space in the form of an edge–weighted

36
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graph, i.e the 1–skeleton is a subset of `n∞ such that the distance in the path–metric between

vertices vx and vy corresponding to original points x, y of X is precisely d(x, y). Moreover,

there is a close relationship between tight spans and optimal realizations as shown in [17].

More recently the construction has been used by Chrobak and Larmore for the Equipoise

algorithm, which is a 11–competitive algorithm for the 3–server problem (see [8]).

In this chapter we will focus on finite metric spaces spaces where all points have a label,

i.e. X = {x0, . . . , xn}, and thus we can write the metric in a few different ways. One way

of stating the metric would be as a symmetric matrix D = (dij)
j=0,...,n
i=0,...,n , where dij = d(xi, xj)

and another way would be writing the entries of this matrix in a vector d, leaving out the

diagonal entries if it is convenient to do so. This gives us a natural correspondence between

an (n+ 1)-point metric space and elements of the normed space `m∞, where m =
(
n+1

2

)
.

In view of this correspondence, given two metric spaces X = {x0, x1, . . . , xn} and Y =

{y0, y1, . . . , yn} with said vectors of pairwise distances being denoted x and y respectively,

we can say that d(X, Y ) = ‖x − y‖∞, giving us a natural way to talk about the distance

between two finite metric spaces.

We are going to introduce two other ways of measuring the distance between metric

spaces, the Hausdorff distance and the Gromov–Hausdorff distance.

Definition 4.1.1 (Hausdorff distance). Let X be a metric space, then for two subsets A

and B we call

dH(A,B) = inf{δ | A ⊂ B(δ), B ⊂ A(δ)}

the Hausdorff distance between A and B. Here A(δ) denotes the δ-neighborhood of A.

It is apparent from the definition, that the Hausdorff distance can only be used if the

two metric spaces in question already naturally sit inside another one. We will see that this

is the case in the context we will be working in.

Now let us introduce the Gromov–Hausdorff distance.

Definition 4.1.2 (Gromov–Hausdorff distance). Let X and Y be metric spaces, then we
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call

dGH(X, Y ) = inf{dH(f(X), g(Y )) | f : X → Z, g : Y → Z},

where f and g are isometries, the Gromov–Hausdorff distance between X and Y .

In order to state a more useful, equivalent definition we first need the concept of corre-

spondence.

Definition 4.1.3 (Correspondence). Let X and Y be sets. We call a relation R ⊂ X × Y

that satisfies

(i) for every x ∈ X there exists a y ∈ Y such that (x, y) ∈ R (right complete)

(ii) for every y ∈ Y there exists a x ∈ X such that (x, y) ∈ R (left complete)

a correspondence between X and Y .

Then for a correspondence R between X and Y , we define

AD(R) = sup{|dX(x1, x2)− dY (y1, y2)| | x1Ry1, x2Ry2}

and it is a well known fact (see for example Theorem 7.3.25 in [6]) that

dGH(X, Y ) =
1

2
inf
R

AD(R)

We are now almost ready to define the tight span of a metric space. This is a construction

originally invented by Isbell to study and create injective metric spaces. When talking about

metric spaces, we say that a space E is injective if every 1–Lipschitz mapping from A ⊂ X

into E can be extended to a 1–Lipschitz map from X into E. In a later chapter we will talk

about absolute Lipschitz retracts and want to point out at this point that injective metric

spaces and 1–absolute Lipschitz retracts are precisely the same.

Definition 4.1.4 (Tight span). A mapping e : X → E of metric spaces is called the tight

span of X if E is injective, e is an isometric embedding and no injective proper subspace of
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E contains e(X). In the literature the tight span is sometimes also referred to as an injective

envelope or injective hull. We will denote the tight span of X by EX.

Our next goal is to give insight into how Isbell constructed tight spans of metric spaces

and indicate how this illustrates the polyhedral structure mentioned earlier. A fundamental

part of the tight span construction are so called extremal functions.

Definition 4.1.5 (Extremal function). We define an extremal function on a metric space

X as a non-negative function

f : X → R

that is pointwise minimal subject to

f(x) + f(y) ≥ d(x, y)

and we denote the space of all extremal functions on X by εX.

If X = {x1, . . . , xn} is a finite metric space with pairwise distances dij we can naturally

identify extremal functions with elements z ∈ `n∞ that satisfy

zi + zj ≥ dij

and are minimal componentwise.

In his paper [18] Isbell proved the following relationship between extremal functions on

a space X and its tight span EX.

Theorem 4.1.6 (Isbell). The map e : X → εX defined by e(x)(y) = d(x, y) is a tight span

and all tight spans are equivalent. Furthermore, the tight span of a finite space is a polyhedral

complex.

The preceding theorem together with the identification of extremal functions with ele-

ments of `n∞ shows that the tight span of an n-point metric space can be viewed as a subset
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of `n∞ and as such we are justified in using the Hausdorff distance to measure the distance

between the tight spans of n-point metric spaces.

In addition, we can interpret extremal functions as minimal solutions to the matrix

inequality Az ≥ d, where

A =



1 1 0 0 · · · 0

1 0 1 0 · · · 0

...
...

...
...

...
...

0 1 1 0 · · · 0

0 0 1 1 · · · 0

...
...

...
...

...
...

0 0 0 · · · 1 1



(4.1)

z = (z1, z2, . . . , zn)T , d = (d12, d13, . . . , d23, . . . , dn−1,n)T and A is the incidence matrix of

a complete graph on n vertices. We can see the polyhedral structure of the tight span if

we enforce zi + zj = dij for some indices, i.e. if we force equality for some rows of of this

matrix inequality. Our next immediate goal will be to explore this relationship. It will prove

fruitful to use graphs and subgraphs to describe this precisely and it is not hard to see that a

good description of an n–point metric space X = {x1, . . . , xn} is a complete weigthed graph

on n vertices, where the weight of an edge between vertices i and j is exactly the distance

d(xi, xj). We call such a graph the associated graph and denote it by ΓX .

Definition 4.1.7 (Spanning subgraph). For a given graph Γ on n vertices we call a subset

S of the edges a spanning subgraph of Γ if every vertex is incident to at least one edge in

S. Equivalently, a spanning subgraph can be represented as a set of two point subsets of

{1, . . . , n} that covers the whole set.The set of all spanning subgraphs will be denoted by S.

We can associate an incidence matrix M(S) to every spanning subgraph S. This is a

binary |S| × n matrix with constant row sum 2, where every row corresponds to an edge

and every column corresponds to a vertex. For every edge we put a 1 in the columns

corresponding to the vertices to which the edge is incident. It is clear that this matrix is not
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unique since the rows can be permuted freely.

This definition allows us to formalize our insight into the structure of tight spans.

Definition 4.1.8 (Cells and combinatorial structure). For a finite metric spaceX = {x1, . . . , xn}

with pairwise distances dij we call

cell
X

(S) = {z = (z1, . . . , zn) ∈ Rn
+ | zi + zj = dij, whenever {i, j} ∈ S and zi + zj ≥ dij∀ i, j}

a cell of X with respect to the spanning subgraph S of ΓX .

We say two finite metric spaces X and Y have the same combinatorial structure (or are

combinatorially equivalent) if

dim cell
X

(S) = dim cell
Y

(S) for every S ∈ S

In combination with Theorem 4.1.6 and the definition of extremal functions we can see

that the combinatorial structure as outlined above describes the polyhedral structure of the

tight span and the incidence matrices M(S) correspond to submatrices of the matrix (4.1).

If, for a finite metric space (X, d), dim cellX(S) = 0 we are dealing with a vertex of the tight

span.

We should look at two concrete examples of constructing the tight span of a finite metric

space space.

Example 4.1.9 (Tight span of a 3–point metric space). Consider a 3–point metric spaceX =

{x1, x2, x3} with pairwise distances denoted by dij. Then the vertices of EX corresponding

to the points of X are (with a slight abuse of notation) x1 = (0, d12, d13), x2 = (d12, 0, d23)

and x3 = (d13, d23, 0) and the only other vertex z of the tight span has to correspond to the

subgraph S = {(1, 2), (1, 3), (2, 3)}, since that is the only possible subgraph whose incidence

matrix can have rank 3 and consequently dim cellX(S) = 0. This yields z = 1/2(d12 + d13 −



CHAPTER 4. LIPSCHITZ GEOMETRY OF TIGHT SPANS 42

d23, d12 + d23 − d13, d13 + d23 − d12) and we should note that all components of z are non–

negative because of the triangle inequality. In particular, we observe that if one component

of z is 0, then z coincides with the vertex corresponding to one of the elements of X and

closer inspection reveals that ‖xi − z‖∞ = zi, for i = 1, 2, 3. We can use these results for a

nice representation of the space as

d x1 x2 x3

x1 0 z1 + z2 z1 + z3

x2 z1 + z2 0 z2 + z3

x3 z1 + z3 z2 + z3 0

and furthermore we can visualize these results in the following figure, which highlights the

polyhedral structure.

x1

x2x3

z

Figure 3: EX of 4.1.9

This illustrates clearly that the only combinatorial structures possible are a tripod or a

line segment.

In the next example we want to take a quick look at the tight span of a 4–point metric

space.

Example 4.1.10 (Tight span of a 4–point metric space). In [10] it is shown that given a

general 4–point metric space X = {x1, x2, x3, x4}, we can find nonnegative numbers a, b, c,

d, e and f such that the metric, after relabeling if necessary, can be represented as
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d x1 x2 x3 x4

x1 0 a+ b+ f a+ c+ e+ f a+ d+ e

x2 a+ b+ f 0 b+ c+ e b+ d+ e+ f

x3 a+ c+ e+ f b+ c+ e 0 c+ d+ f

x4 a+ d+ e b+ d+ e+ f c+ d+ f 0

These numbers occur in the tight span in the following way.

x1

v1 v2

x2

v3v4

x4 x3

a

f

b

e

f

e

d

c

Figure 4: EX of 4.1.10

This representation is possible, since even though the tight span of a 4–point metric

space naturally sits in `4
1, the highest dimensional cells are of dimension 2 ([16]). This is

the smallest example where we can see that that there are multiple different combinatorial

structures possible. The tight span could be a square (in case a = b = c = d = 0), a cross

(if e = f = 0), have the shape of an H (if either e = 0 or f = 0) or even look like a horse (if

a, b, c or d = 0).

4.2 Lipschitz continuity of vertices in the same combina-

torial type

This section is dedicated to taking a closer look at how sensitive the position of vertices of

the tight span is under pertubation of the underlying metric. We will see that this requires
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a better understanding of the matrices M(S) corresponding to spanning subgraphs S which

have full rank. We need to establish results about the general structure of these matrices to

facilitate this investigation. This will be done in two steps.

Proposition 4.2.1. After possibly relabeling the vertices of a graph on n vertices, the matrix

M(S) of a spanning subgraph S with |S| = n and m connected components can be put into

the form

M(S) =



C1 0 · · · 0

0 C2 0 0

... 0
. . . 0

0 · · · 0 Cm


where Ci is the matrix of a connected component of the spanning subgraph. The matrix is

invertible if and only if every Ci is an invertible, square matrix.

Proof. Let ni (i = 1, . . . ,m) denote the number of vertices in the i-th connected component,

then we can write {1, . . . , n} =
⋃
i=1,...,mAi, where |Ai| = ni and the elements of Ai corre-

spond to the vertices in the i-th connected component. It is clear that if {i, j} ∈ S then

both i and j are elements of the same Ak for some k and we call n′k the number of such pairs

in Ak. Now labeling the vertices in Ak by {n′1 + . . .+ n′k−1 + 1, . . . , n′1 + . . .+ n′k} and have

the n′1 + . . .+ n′k−1 + 1 to n′1 + . . .+ n′k rows corresponds to pairs {i, j} where one (and thus

both) of the indices is an element of Ak we achieve the desired form of our matrix.

Since the resulting matrix is block diagonal we can apply a well known result from linear

algebra that block diagonal matrices are invertible if and only if every block is square and

invertible to finish the proof.

The next step will be to investigate the structure of the matrices of the connected compo-

nents as the behavior of them will determine the behavior of M(S) as a whole. Fortunately

we have the following result.
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Proposition 4.2.2. Let S be a connected covering of a graph on n vertices with |S| = n.

Then the incidence matrix M(S) can be arragend into the form

M(S) =

A 0

R1 R2


where A = (aij) is an m×m matrix of the form

aij =



1 , if i = j

1 , if i+ 1 = j

1 , if i = m, j = 1

0 otherwise

where m is the size of the largest cycle in S, and the matrix R = (R1|R2) is a binary matrix

with constant row sum 2 and R2 is a lower triangular matrix with unit diagonal.

Proof. A graph on n vertices with n edges can’t be a tree (see for example [7, Theorem 7.7])

and as such has to contain at least one cycle. We can label the vertices in the largest cycle 1

to m in such a way that {1, 2}, {2, 3}, . . . , {m− 1,m}, {1,m} ∈ S and assign the remaining

n −m numbers to the other vertices. We can further permute the rows in such a way that

the i-th row (i = 1, . . . ,m − 1) corresponds to {i, i + 1} and the m-th row corresponds to

{1,m}. After this process we have achieved a matrix of the form

A 0

R1 R2


and since S is connected there is an edge represented by {i, j} with i ∈ {1, . . . ,m} and

j > m which connects some vertex j to the cycle (or more generally to the first m connected

vertices). After permuting the row corresponding to this edge into the (m + 1) row and



CHAPTER 4. LIPSCHITZ GEOMETRY OF TIGHT SPANS 46

switching the labels of the vertices j and (m+ 1) the first row of R1 is precisely ei (size m)

and the first row of R2 is exactly e1 (size n − m). The remaining n − m − 1 vertices still

have to be connected to the first m+ 1 ones so we can repeat this argument to achieve the

desired form of the matrix.

The next Lemma will show that if we want A to be invertible the cycles have to be of

odd length and furthermore shows how the inverse has to look explicitly. The invertibility

result was already proved by Cyriel van Nuffelen in [31] in 1976, but it is included in this

proof for completeness sake.

Lemma 4.2.3. The m×m matrix A = (aij) with

aij =



1 , if i = j

1 , if i+ 1 = j

1 , if i = m, j = 1

0 otherwise

is invertible with inverse A−1 = (bij) where

bij =


1
2
(−1)i+j , if i ≤ j

−1
2
(−1)i+j , if i > j

if m is odd and singular otherwise.

Proof. If m is even we can compute the determinant of A by expanding after the first column

and we immediately see that in that case det(A) = 0. Now let m be odd. The matrix AA−1

consists of rows where, every row is made up of the sum of two consecutive rows (mod m)
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of A−1. First let us consider the i-th row for 1 ≤ i < m, then

bkj + b(k+1)j =



1
2
((−1)i+j + (−1)i+1+j) = 0 , if i < j

1
2
((−1)i+j + (−1)i+2+j) = 1 , if i = j

−1
2
((−1)i+j + (−1)i+1+j) = 0 , if i > j

and in the m-th row we will have

bmj + b1j =


1
2
((−1)2m + (−1)m+1) = 1 , if m = j

1
2
((−1)m+1+j + (−1)1+j) = 0 , if m > j

which works since m is odd.

This looks a little unappealing, so let us take a look at the inverse if the matrix A in

Lemme 4.2.3 is of dimension 5× 5.

A =



1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1


, A−1 =

1

2



1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

1 −1 1 1 −1

−1 1 −1 1 1


We can see that we have a band of 1’s on the diagonal and the first subdiagonal. In each

row the entries outside of this band are alternating in sign, but all of magnitude 1/2.

Lemma 4.2.4. If the matrix M(S) representing a spanning subgraph of S has an inverse,

then

‖M(S)−1‖ ≤ n− 3

2

and this bound is sharp.

Proof. Let m be the number of connected components of the spanning subgraph S and let
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M(S) be invertible. Then by Proposition 4.2.1 M(S) is of the form

M(S) =



C1 0 · · · 0

0 C2 0 0

... 0
. . . 0

0 · · · 0 Cm


and as such the inverse of this block-diagonal matrix has the form

M(S)−1 =



C−1
1 0 · · · 0

0 C−1
2 0 0

... 0
. . . 0

0 · · · 0 C−1
m


which shows that ‖M(S)−1‖ = max(‖C−1

1 ‖, . . . , ‖C−1
m ‖). This shows that for the norm of the

inverse it will be enough to investigate the norm of the inverse of the connected components

of S.

Now by Proposition 4.2.2 we can assume that each of these Ci has the form

C =

A 0

R1 R2


Since this is a block triangular matrix we know that the inverse has to be of the form

C−1 =

A−1 0

D1 D2


and we will show that the entries of D1 and D2 are either 1 or 1

2
in absolute value. If we
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denote the rows of A−1 by ai and the rows of (D1 | D2) by ak+i we can write

CC−1 = C



a1

...

ak

ak+1

...

an


by the structure of C we have that ek+1 = aj + ak+1 for some j ≤ k, i.e. ak+1 = ek+1 − aj a

vector where the first k + 1 entries are nonzero and the rest is 0. Since this is the matrix of

a connected component, we have for m > k + 1 that am = em − aj for some j < m.

We have shown that the entries in every row of C−1 are either 0, 1
2
or 1 in absolute value

and that the number of entries of size 1
2
is exactly the size of A, which is at least 3. This

means that ‖C−1‖ ≤ n− k
2
≤ n− 3

2
.

If we consider the matrix

M(S) =



1 1 0 0 . . . 0

0 1 1 0
. . . 0

1 0 1 0
. . . 0

0 0 1 1
. . . 0

... . . . . . . . . . . . . 0

0 0 . . . 0 1 1


we can see that ‖M(S)−1‖ = n− 3

2
so the bound is sharp.

If the vector d denotes the pairwise distances in the space X, then we understand the

notation

z = M(S)−1d
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as the point z in `n∞ that is a result of multiplying the matrix M(S)−1 with a subvector of

d corresponding to the pairs {i, j} in S. This in particular shows that if S is a spanning

subgraph corresponding to a vertex in the tight span and if d̂ is a metric with the same

combinatorial structure then ‖M(S)−1d−M(S)−1d̂‖∞ ≤ (n− 3/2) ‖d− d̂‖∞, i.e. the position

of vertices is a Lipschitz function of the metrics as long as the metrics give rise to tight spans

with the same combinatorial type.

4.3 Global continuity of vertices

For the investigation of the global continuity of vertices, the following Theorem from page

66 of [30] is needed.

Theorem 4.3.1 (Schneider). Let (Ki)i∈N be a sequence of convex subsets of `n∞ converging

to the convex subset K. Then for r = 0, . . . , n− 1,

(K)r ⊂ lim inf
i→∞

(Ki)r

Here x ∈ lim infi→∞Ai if every neighborhood of x meets Ai for almost all i.

In the Theorem and throughout the rest of the thesis, the notation (K)r describes the

r–skeleton of K.

By its definition, points z = (z1, . . . , zn) of a tight span are minimal and thus have to

satisfy zi + zj = dij for some pairs {i, j}. This leads to the following definition.

Definition 4.3.2 (Equation set). For every x = (x1, . . . , xn) ∈ EX we call the set of two

point subsets of {1, . . . , n}, such that xi + xj = dij the equation set of x, denoted by eq(x).

Just as for spanning subgraphs we can associate an incidence matrix to eq(x) and so

when we write rk(eq(x)) = k, we mean that the rank of the associated incidence matrix is k.
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If the rank rk(eq(x)) = k for x ∈ EX then x is an interior point of an (n− k)–dimensional

hyperplane contained in EX.

The language we have used so far lends itself to an algebraic point of view of vertices via

matrices. Now we want to express this in terms of eq(x) and extend it to describe edges as

well.

Definition 4.3.3 (Algebraic vertex and edge). Let d = (dij) ∈ `
(n2)
∞ , H+

ij (d) = {z ∈ `n∞ : zi +

zj ≥ dij} and H+(d) =
⋂
i,j H

+
ij (d). We say that an element z = (z1, . . . , zn) ∈ H+(d) is an

algebraic vertex if z satisfies n linear independent equations zi+zj = dij. An algebraic edge is

a segment [a, b] ⊂ H+(d) such that a, b are algebraic vertices of H+(d) and rk(eq(z)) = n−1

for every z ∈ (a, b).

The relationship between EX of a finite metric space (X, d) and H+(d) from the previous

definition is explored in [11], where it is shown that the faces/vertices of EX are precisely

the bounded faces of H+(d).

The fact that EX has a polyhedral structure implies that a rather geometric point of

view can be taken during this investigation and the next definition formalizes this.

Definition 4.3.4 (Geometric vertex and edge). Let H+ ⊂ Rn be convex. We call a convex

subset F ∈ H+ a face if for x, y ∈ H+ such that x+y
2
∈ F we have that x, y ∈ F . A geometric

vertex is a 0 dimensional face and a geometric edge is a 1 dimensional face.

Our next immediate goal is to show that these definitions of geometric and algebraic

vertices/edges are equivalent, but to do so we need two Lemmas, one that addresses the

equation set of points on the line segment [a.b] between two elements of the tight span and

one that refines this result to the special case when [a, b] is an algebraic edge.

Lemma 4.3.5. Let X be a metric space, then for a, b ∈ EX we have

eq

(
a+ b

2

)
= eq(a) ∩ eq(b).
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Proof. Let a = (a1, . . . , an) and b = (b1, . . . , bn) then

dij =
ai + bi

2
+
aj + bj

2

=
ai + aj

2
+
bi + bj

2

≥ dij
2

+
dij
2

= dij

with equality if and only if ai + aj = bi + bj = dij

Lemma 4.3.6. Two vertices a and b in EX are connected by an edge if and only if

rk(eq(a) ∩ eq(b)) = n− 1

Proof. If [a, b] is an algebraic edge, then rk eq(z) = n−1 for every z ∈ (a, b). But by Lemma

4.3.5 we have eq(a) ∩ eq(b) = eq
(
a+b

2

)
so their ranks are the same.

Now suppose that rk(eq(a)∩eq(b)) = n−1, then it is clear that every z = (z1, . . . , zn) ∈ (a, b)

satisfies rk eq(z) = n − 1 and we need to show that the subgraph S associated with the

equation set of z is spanning. Suppose on the contrary that 1 /∈
⋃
A∈eq(z) A, then eq(a)∩eq(b)

completely determines z2, . . . , zn and moreover zi = ai = bi for i = 2, . . . , n. Thus every

z ∈ (a, b) is given by (λa1 + (1 − λ)b1, a2, . . . , an), where without loss of generality a1 > b1.

We know that {1, i} ∈ eq(a) for some i and as such satisfies a1 +aj = d1j, but then z satisfies

z1 + zj = λa1 + (1− λ)b1 + aj < a1 + aj = d1j, which is a contradiction.

We are now ready to show that the algebraic and geometric definitions are in fact equiv-

alent.

Proposition 4.3.7. Let d ∈ `(
n
2)
∞ , then z ∈ `n∞ is an algebraic vertex of H+(d) if and only

if it is a geometric vertex of H+(d) and a segment [a, b] ⊂ H+(d) is an algebraic edge if and

only if it is a geometric edge.

Proof. We will start by showing that an algebraic vertex Z of H+(d) is always a geometric

vertex. Suppose that there exist x, y ∈ H+(d) such that z = λx + (1 − λ)y then by the
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definition of an algebraic vertex there exist n equations such that

dij = zi + zj = λxi + (1− λ)yi + λxj + (1− λ)yj

= λ(xi + xj) + (1− λ)(yi + yj)

≥ λdij + (1− λ)dij

= dij

whenever (i, j) ∈ eq(z). Thus all the inequalities above are actually equalities, in particular

xi + xj = yi + yj = dij. But the equations were linearly independent and thus the solution z

is unique. That means x = y = z, which finishes this part of the proof. On the other hand

if z is not an algebraic vertex, then rk(z) < n and thus z is an interior point of a hyperplane

of dimension at least 1. But this is a direct contradiction to the definition of a geometric

vertex. Thus we have shown that algebraic and geometric vertices are equivalent.

Now take z ∈ H+(d) such that rk(eq(z)) = n − 1 and let L = {z′ ∈ H+(d) : eq(z′) =

eq(z)} be the open line segment containing z. Then L is a geometric edge. If it is not, then

L ⊂ D, where D is an open 2-dimensional polygon, which in turn implies that every equation

in eq(z) defines a hyperplane that contains D. This contradicts rk(eq(z)) = n − 1. Since

every algebraic edge arises in this way this shows that algebraic edges are always geometric

edges.

If L ⊂ H+(d) is a geometric edge then by Lemma 4.3.5 we have that rk(eq(z)) ≤ n − 1

for every interior point z of L. If however rk(eq(z)) < n − 1 for some z ∈ L we have that

L̊ is contained in some 2-dimensional polygon, which would contradict L being a geometric

edge. We have shown that every geometric edge is also an algebraic edge.

This equivalence empowers us to show how vertices and edges of EX behave under taking

limits, here the most important result is that if we consider a sequence of metric spaces with

the same combinatorial structure, then their limit does not gain vertices and all vertices of

the limit come from the limit of vertices.
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Proposition 4.3.8. Let (Xi, d
(i)) be a sequence of n-point metric spaces converging to an

n-point metric space (X, d), such that all Xi have the same combinatorial structure. For

every spanning subgraph S with rk(M(S)) = n such that there exists viS ∈ EXi we have that

v = limi→∞ v
i
S exists and eq(viS) ⊂ eq(vS). In addition, every vertex of EX arises in this

way.

If [a(i), b(i)] is an edge in EXi, then a = limi→∞ a
(i) and b = limi→∞ b

(i) exist and [a, b] is

an edge of EX that is possibly degenerate. Also, all edges of EX arise in this way.

Proof. Since all of the Xi have the same combinatorial structure, there is an integer N

and spanning subgraphs S1, . . . , SN with rank n incidence matrix such that the vertices of

EXi are precisely the viSj , j = 1, . . . , N . Due to the algebraic definition of the vertices via

spanning subgraphs, i.e. viSj = M(Sj)
−1d(i), it is clear that vSj = limi→∞ v

i
Sj

exists as a

vertex of X for every j. At the same time we have by Theorem 4.3.1 that the vertices of

EX are a subset of {vSj : j = 1, . . . , N} and thus the two sets are equal.

Now let [a(i), b(i)] be an edge in EXi, then the previous part of the proof shows that

a = limi→∞ a
(i) and b = limi→∞ b

(i) exist and are vertices of EX. Furthermore, every

z(i) ∈ (a(i), b(i)) satisfies that

rk eq(z(i)) = rk(eq(a(i)) ∩ eq(b(i))) = n− 1

and as i → ∞ we know that rk eq(z) ≥ n − 1. If rk eq(z) = n − 1 we know that z is on an

edge between a and b by Lemma 4.3.6 and if rk eq(z) = n we have that a = b = z and the

edge is degenerate. But by the same argument as above, Theorem 4.3.1 shows that no new

edges exist in the limit. This finishes the proof.

The previous Proposition shows that we can’t gain vertices in the tight span by passing

to a limit as long as all other spaces have the same combinatorial structure and the only

thing that could possibly happen is that multiple distinct vertices of Xi collapse to the same

vertex of X.
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4.4 Lipschitz continuity of the 1–skeleton with respect to

the Gromov–Hausdorff distance

In this section we will investigate the Lipschitz–stability of the 1–skeleton of tight spans

with respect to the Gromov–Hausdorff distance, but before we start we need to get some

preliminary results out of the way. The first of them deals with how we can express the

length of an edge,

Lemma 4.4.1. The length of an edge [a, b] in the 1-skeleton (EX)1 of a finite metric space

(X, x) is given by

length([a, b]) = ‖(M(S2)−1 −M(S1)−1)x‖∞

where a = M(S1)−1x and b = M(S2)−1x. Consequently, every subsegment of the form [a, c]

or [c, b] has length λ length([a, b]) for some 0 < λ < 1.

If we denote by dX(a, b) the distance between a and b in the 1-skeleton equipped with the

path-metric, this demonstrates that dX(a, b) = ‖(M(S2)−1 −M(S1)−1)x‖∞.

Proof. Considering that (EX)1 ⊂ `n∞ for some n this is trivial. The second part becomes

evident once we realize that c ∈ (a, b) can be written as (1− λ)a+ λb.

We now address the difference in length between corresponding edges of two spaces with

the same combinatorial type.

Lemma 4.4.2. Let X and Y be two n–point metric spaces with the same combinatorial type.

Then, using spanning subgraphs, there is a natural correspondence between vertices (and thus

edges) of the 1-skeletons. Let [a, b] be an edge in (EX)1 and [â, b̂] the corresponding edge in

(EY )1. We then have

| length([a, b])− length([â, b̂])| ≤ (2n− 3)d(X, Y )

Proof. We denote by x the vector describing the pairwise distances in X and analogously
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those of y by Y . If length([a, b]) = ‖(M(S2)−1 −M(S1)−1)x‖∞ we have

| length([a, b])− length([â, b̂])| =
∣∣‖(M(S2)−1 −M(S1)−1)x‖∞ − ‖(M(S2)−1 −M(S1)−1)y‖∞

∣∣
≤
∥∥M(S1)−1x−M(S1)−1y +M(S2)−1y −M(S2)−1x

∥∥
∞

≤
∥∥M(S1)−1x−M(S1)−1y

∥∥
∞ +

∥∥M(S2)−1y −M(S2)−1x
∥∥
∞

≤ ‖M(S1)‖‖x− y‖∞ + ‖M(S2)‖‖x− y‖∞

Now we can employ Lemma 4.2.4 and get

‖M(S1)‖‖x− y‖∞ + ‖M(S2)‖‖x− y‖∞ ≤ 2(n− 3/2)‖x− y‖∞

= (2n− 3)‖x− y‖∞

And since we consider finite labeled metric spaces we have that d(X, Y ) = ‖x− y‖∞.

Closer inspection of this proof reveals that the result is not dependent on [a, b] being an

edge, but rather holds for every line segment [a.b], where a and b are vertices of the tight

span EX. This allows us to prove the following.

Theorem 4.4.3. Let X and Y be two n-point metric spaces with the same combinatorial

structure. Then

dGH((EX)1, (EY )1) ≤ (n2n−3 + 2)(2n− 3)

2
d(X, Y )

where both 1-skeletons are equipped with the path metric.

Proof. We denote the vector of pairwise distances between points of X by x and analogously

those of Y by y. Then d(X, Y ) = ‖x− y‖∞.

We define a correspondence between (EX)1 and (EY )1 in the following way. A vertex v

in (EX)0 corresponds to a spanning subgraph S via v = M(S)−1x and so we define

vRw ⇔ v = M(S)−1x, and w = M(S)−1y
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where v ∈ (EX)0 and w ∈ (EY )0. Similarly we can identify a point c in the 1-skeleton of X

that is not a vertex via c = (λM(S1)−1 + (1− λ)M(S2)−1)x for some 0 < λ < 1. We define

cRd⇔ c = (λM(S1)−1 + (1− λ)M(S2)−1)x, and d = (λM(S1)−1 + (1− λ)M(S2)−1)y

where c ∈ (EX)1 \ (EX)0 and d ∈ (EY )1 \ (EY )0. Since the spaces share the same combi-

natorial structure this defines a correspondence between their 1-skeletons.

Now given two elements x1 and x2 in the 1-skeleton of X we can find a sequence of consecu-

tive vertices v0, . . . , vm such that they lie on a path from x1 to x2 realizing the path distance,

i.e.

d(x1, x2) = d(x1, v0) +
m∑
k=1

d(vk−1, vk) + d(vm, x2)

If |d(x1, x2)− d(y1, y2)| = d(y1, y2)− d(x1, x2) we can use this sequence of vertices to write

d(y1, y2)− d(x1, x2) = d(y1, y2)− d(x1, v0)−
m∑
k=1

d(vk−1, vk) + d(vm, x2)

Since the two tight spans have the same combinatorial structure, we can use the sequence

of corresponding vertices v̂0, . . . , v̂m to find an upper bound on d(y1, y2) and so we have

d(y1, y2)−d(x1, x2) ≤ d(y1, v̂0)+
m∑
k=1

d(v̂k−1, v̂k)+d(v̂m, x2)−d(x1, v0)−
m∑
k=1

d(vk−1, vk)+d(vm, x2)

Using the triangle inequality, we can look at expressions of the form |d(y1, v̂0) − d(x1, v0)|,

|d(v̂k−1, v̂k)−d(vk−1, vk)| and |d(v̂m, y2)−d(vm, x2)|, which by Lemma 4.4.2 can all be bounded

above by (2n− 3)‖x− y‖∞ and as such we have shown

d(y1, y2)− d(x1, x2) ≤ (m+ 2)(2n− 3)‖x− y‖∞

If |d(x1, x2) − d(y1, y2)| = d(x1, x2) − d(y1, y2) we can pick a sequence of consecutive
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vertices w0, . . . , wM and repeat the above argument to prove

d(x1, x2)− d(y1, y2) ≤ (M + 2)(2n− 3)‖x− y‖∞

Using the total number of edges, which according to [16] is bounded above by n2n−3, as an

upper bound for m and M we arrive at

dGH((EX)1, (EY )1) ≤ (n2n−3 + 2)(2n− 3)

2
‖x− y‖∞

The above Proposition is heavily reliant on the fact that the spaces X and Y share the

same combinatorial structure, as the following example demonstrates.

Example 4.4.4. Consider the following sequence of 4-point metric spaces (Xε, dε)

dε xε1 xε2 xε3 xε4

xε1 0 3 4 + ε 1 + ε

xε2 3 0 1 + ε 2 + ε

xε3 4 + ε 1 + ε 0 3

xε4 1 + ε 2 + ε 3 0

xε1

v1 xε2

v2xε4

xε3

1

2

ε

2

ε

1

Figure 5: EXε of 4.4.4
and their limit (X, d).

d x1 x2 x3 x4

x1 0 3 4 1

x2 3 0 1 2

x3 4 1 0 3

x4 1 2 3 0

x1

x4 x2

x3

1

2

1

Figure 6: EX of 4.4.4
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It is immediate that d(Xε, X) = ε. Consider the set

S =

{
xε1, x

ε
2, x

ε
3, x

ε
4,

1

2
(xε2 + v1),

1

2
(xε4 + v2)

}
⊂ EXε

which is 1–separated, i.e. for any 2 points in this set the distance between them is at least

1. The tight span of X however is a line segment of length 4, which means the cardinality

of any (1 − δ)–separated subset can be at most 5 as long as δ < 1/5. This implies that

dGH(EXε, EX) ≥ 1/5.

4.5 Lipschitz continuity of the 1–skeleton with respect to

the Hausdorff distance

We have seen that there is a natural limit to how far we can push our results with respect

to the Gromov–Hausdorff distance, so in this section we will take a closer look at stability

results with a more specific metric. Unlike the Gromov–Hausdorff distance, the use of the

Hausdorff distance in this section is very reliant on the fact that the tight span of an n–

point metric space can be considered as a subset of `n∞. The first result we will prove is the

analogue of 4.4.3 with respect to the Hausdorff distance and we will see that we can obtain

a (much) better bound on the Lipschitz constant.

Theorem 4.5.1. Let X and Y be two n-point metric spaces with the same combinatorial

structure, then

dH((EX)1, (EY )1) ≤
(
n− 3

2

)
d(X, Y )

Proof. We denote the vector of pairwise distances between points of X by x and analogously

those of Y by y. Let c be a point in the 1-skeleton of X, then there are spanning subgraphs

S1 and S2 such that c ∈ [M(S1)−1x,M(S2)−1x]. Thus there is some constant 0 ≤ λ ≤ 1 such

that c = λM(S1)−1x + (1 − λ)M(S2)−1x. If ĉ is the point in (EX)1 that corresponds to c
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we have

‖c− ĉ‖∞ = ‖λM(S1)−1x+ (1− λ)M(S2)−1x− λM(S1)−1x+ (1− λ)M(S2)−1x‖∞

≤ λ‖M(S1)−1‖‖x− y‖∞ + (1− λ)‖M(S2)−1‖‖x− y‖∞

≤
(
n− 3

2

)
‖x− y‖∞

We have shown that the
(
n− 3

2

)
neighborhood of (EX)1 contains (EY )1 and vice versa.

The result follows.

This argument can be extended to show that the same holds for the whole tight span,

not just the 1-skeleton and unlike in 4.4.3 we can even drop the assumption that the spaces

have to have the same combinatorial structure. Before we can prove this more general result,

we should take a look at the next well–known Proposition.

Proposition 4.5.2. Let X =
⋃

k=1,...,n

Ek, where Ek is closed and X is a convex subset of a

normed space. Let further f : X → Y , with Y a normed space, such that the restriction of f

to each Ek is L-Lipschitz, then f is L-Lipschitz on all of X.

Proof. We will prove the Proposition by induction on n. If n = 1 there is nothing to

be shown since X = E1. Now let X =
⋃

k=1,...,n+1

Ek and a, b ∈ X. Since X is convex

the whole line segment [a, b] is contained in X and we note that for c ∈ [a, b] we have

‖a− c‖X + ‖c− b‖X = ‖a− b‖X . Without loss of generality we may assume that a ∈ E1 and

we choose c = supE1 ∩ [a, b]. Clearly c ∈ E1 since E1 is closed. We then have

‖f(a)− f(b)‖Y ≤ ‖f(a)− f(c)‖Y + ‖f(c)− f(b)‖Y ≤ L‖a− c‖X + ‖f(c)− f(b)‖Y

and at the same time we can apply the induction hypothesis to ‖f(c)− f(b)‖Y , since [c, b] is

covered by the remaining n sets, E2, . . . , En+1. Thus we arrive at

‖f(a)− f(b)‖Y ≤ L‖a− c‖X + L‖c− b‖X = L‖a− b‖X
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which concludes the proof.

We will need a slight variation of this statement.

Corollary 4.5.3. Let X =
⋃

k=1,...,n

Ek be convex subset of a normed space. Let further

f : X → Y , Y normed, be a continuous map such that the restriction of f to each Ek is

L-Lipschitz. Then f is L-Lipschitz on X.

Proof. Let a, b ∈ Ek for some k and let an be a sequence in Ek converging to a and bn a

sequence in Ek converging to b, then we have

‖f(a)− f(b)‖Y = lim
n→∞

‖f(an)− f(bn)‖Y ≤ lim
n→∞

L‖an − bn‖X = L‖a− b‖X

This shows that f is in fact L-Lipschitz on Ek and thus the statement follows from 4.5.2.

Theorem 4.5.4. Let X and Y be two n-point metric spaces, then the map X 7→ EX is(
n− 3

2

)
-Lipschitz, or in other words

dH(EX,EY ) ≤
(
n− 3

2

)
d(X, Y )

Proof. We will prove this statement in three steps, first we will show that the statement is

true within the same combinatorial structure, then we will show that X 7→ EX is continuous

everywhere and finally use 4.5.3 to finish the proof.

Step 1: Consider two spaces X and Y whose tight spans have the same combinatorial

structure. Let c ∈ EX, then given the polyhedral structure of the tight span there is some

k-cell that contains c. This implies that c can be written as a convex combination of the

m vertices v1, . . . , vm of that cell, i.e. c =
∑m

i=1 λivi. Each vertex vi can be identified with

a spanning subgraph Si and using x to denote the vector of the pairwise distances in X

we have c =
∑m

i=1 λiM(Si)
−1x. Since both spaces have the same combinatorial structure,

we can find a point ĉ =
∑m

i=1 λiM(Si)
−1y ∈ EY , where y represents the vector of pairwise
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distances in Y . We then have

‖c− ĉ‖∞ =

∥∥∥∥∥
m∑
i=1

λiM(Si)
−1x−

m∑
i=1

λiM(Si)
−1y

∥∥∥∥∥
∞

=

∥∥∥∥∥
m∑
i=1

λiM(Si)
−1(x− y)

∥∥∥∥∥
∞

≤
m∑
i=1

λi
∥∥M(Si)

−1
∥∥ ‖x− y‖∞

≤
m∑
i=1

λi

(
n− 3

2

)
‖x− y‖∞

=

(
n− 3

2

)
‖x− y‖∞

This argument shows that the (n−3/2) neighborhood of EX contains EY . We can repeat

this argument and pick an element of EY to start with which gives us the reverse inclusion

and thus dH(EX,EY ) ≤ (n− 3
2
)d(X, Y ).

Step 2: To show global continuity, let ε > 0 and cover (EX)r by Bε(x). We can use

compactness to select finitely many x1, . . . , xm such that the union of their epsilon balls

still covers (EX)r. Then by Theorem 4.3.1 there is Nr(xi) such that Bε(xi) ∩ (EXj)r 6= ∅,

whenever j ≥ N(xi). Let Nr = maxNr(xi), then we have that (EX)r ⊂ ((EXj)r)ε, for

j ≥ Nr. In [16] it is shown that the largest cells the tight span of an n-point metric space

can contain are of dimension
⌊
n
2

⌋
and so if we choose N = maxNr the preceding argument

shows that (EX) ⊂ ((EXj))ε for every j ≥ N .

We want to show that there is an Nr such that (EXj)r ⊂ ((EX)r)ε for every j ≥ Nr.

Let us assume that on the contrary there exists a sequence x1, x2, . . . such that xj ∈ (EXj)r

but dist(xj, (EX)r) ≥ ε. Each xj satisfies (n− r) equations that are still spanning and there

are only finitely many different ways of picking (n − r) equations out of the
(
n
2

)
possible

ones. Thus we can select a subsequence xjk such that all xjk satisfy the same equations, i.e.

eq(xjk) = eq(xjl) for all k and l. Then we can select a converging subsequence xjkl → x, but

this means that x satisfies the same equations and thus x ∈ (EX)r which is a contradiction.
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Step 3: We can write the space of all n-point semimetric spaces as SMn =
⋃m
k=1Ck,

where m is the number of possible different combinatorial structures of the tight spans

of n-point semimetric spaces and Ck = {X : X has combinatorial structure k}. Then the

previous computations show that X 7→ EX is
(
n− 3

2

)
–Lipschitz on each Ck and continuous

on SMn. By 4.5.3 X 7→ EX is
(
n− 3

2

)
–Lipschitz everywhere.



Chapter 5

Absolute Lipschitz retracts of symmetric

products

5.1 Introduction

This chapter will investigate the space X(n) as defined below.

Definition 5.1.1 (Symmetric product). For a metric space (X, d) we call

X(n) = X/Sn

the n-fold symmetric product of X, where Sn is the symmetric group on n elements.

Equipped with the quotient metric, this is a metric space.

The study of these spaces is motivated through the theory of Dirichlet–energy minimizing

X(n)–valued maps, which were first introduced by Almgren in his big regularity paper [1]

and this is still a current area of research as evidenced by [4]. In this investigation two maps

introduced by Almgren play an important role; more concretely the map ξ : X(n) → RM

for some (possibly quite large) M depending on n and dimX, and the Lipschitz retraction

ρ : RM → ξ(X(n)). Unfortunately, most of this work focuses mainly on the existence of these

64
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maps and not on how to explicitly construct them. We will introduce a more constructive

approach and apply this to the study of absolute Lipschitz retracts of X(2).

Definition 5.1.2 (Absolute Lipschitz Retract). Let Y be a metric space and X ⊂ Y . A

Lipschitz map r : Y → X is a Lipschitz retraction if it is the identity onX. If such a Lipschitz

retraction exists, we say thatX is a Lipschitz retraction of Y and ifX is a Lipschitz retraction

of every metric space containing it we say that X is an absolute Lipschitz retract.

Before we look at some examples, let us first state the following proposition which gives a

characterization of absolute Lipschitz retracts in terms of extensions. A proof can be found

in [3].

Proposition 5.1.3. Let X be a metric space. Then the following are equivalent.

(i) X is an absolute Lipschitz retract.

(ii) For every metric space Y and every subset Z ⊂ Y , every Lipschitz function f : Z → X

can be extended to a Lipschitz function F : Y → X.

(iii) For every metric space Y containing X and for every metric space Z, every Lipschitz

function f : X → Z can be extended to a Lipschitz function F : Y → X.

Now let us consider a few examples for this property to see that some of the most famous

spaces satisfy it.

The real line R is an absolute 1–Lipschitz retract and in fact if (X, d) is a metric space

and U ⊂ X an explicit extension of a L-Lipschitz map f : U → R is given by

f̂(x) = inf
y∈U
{f(x) + Ld(x, y)} (5.1)

The space c0 of sequences converging to 0 and C(K), the space of continuous functions on

a compact set K are both absolute 2–Lipschitz retracts, where the result about c0 is proved
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in [3] and Kalton proved the latter result in 2007 ([21]). On the other hand it is known (see

[5]) that no infinite dimensional Hilbert space can be an absolute Lipschitz retract.

In the study of absolute Lipschitz retracts, the space `∞ plays a central and very special

role since it is a 1–Lipschitz retract itself (which can be shown using (5.1)) and every other

separable space X can be isometrically embedded into `∞ via the map x 7→ Φ(x), where

Φ(x)(y) = d(x, y) − d(x0, y) for some arbitrarily chosen basepoint x0 ([3]). This, together

with the previous Proposition, shows that in order to prove that a certain space X is an

absolute Lipschitz retract it is enough to show it is a Lipschitz retract of `∞ as the next

diagram illustrates.

Z X `∞

Y

Φ

r

⊂

Figure 7: A way to find absolute Lipschitz retracts

In the following we will closer investigate the 2-fold symmetric product of a space by de-

composing it into two pieces. Before we prove the decomposition result, let us first introduce

the following definition.

Definition 5.1.4. For a normed space X its projective cone (X)± is the space X where

antipodal points are identified. The projective cone becomes a metric space if we equip it

with the quotient metric, which can be written as

d([x], [y]) = min{‖x− y‖, ‖x+ y‖}.

The projective cone of a space will play a central role in the decomposition of the sym-

metric product, which we will take a look at next.
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Proposition 5.1.5. Let (X, ‖ · ‖) be a normed space. Then

X(2) ∼=
BL

X ⊕∞ (X)±

Proof. We begin the proof with a few considerations. The point (x, y) ∈ X2 can be uniquely

written as (a, a) + (b,−b) for some a, b ∈ X, so we would hope that something similar works

in X(2). Ideally we would want to identify the point {x, y} ∈ X(2) with a⊕ b, but the main

problem here is that in X(2) the points {x, y} and {y, x} are indistinguishable. However we

notice that (x, y) = (a+ b, a− b) and (y, x) = (a+ (−b), a− (−b)) and as such if we identify

b and −b we will solve this problem.

Now we are in the position to define the following map:

Φ: X(2) −→ X ⊕∞ X±

with

Φ({x, y}) = a⊕ [b]

where (x, y) = (a+ b, a− b) and Φ({x}) = a⊕ [0]. Clearly this map is bijective.

In order to show that this map is in fact Bilipschitz, we will use the following two matrices

A =
1

2

1 1

1 −1

 and A−1 =

1 1

1 −1



since A

x
y

 =

a
b

. Let {x, y} and {x′, y′} be in X(2) with a ⊕ [b] and a′ ⊕ [b′] their

images under Φ respectively. Without loss of generality we can choose representatives b

and b′ such that d([b], [b′]) = |b − b′| and we have (after relabeling x′ and y′ if necessary)

dH({x, y}, {x′, y′}) = min(max(|x−x′|, |y−y′|),max(|x−y′|, y−x′|)) = max(|x−x′|, |y−y′|)
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Then we have

dH({x, y}, {x′, y′}) = max(|x− x′|, |y − y′|)

=

∥∥∥∥∥∥∥A−1

a− a′
b− b′


∥∥∥∥∥∥∥
∞

≤ 2d(a⊕ [b], a′ ⊕ [b′])

On the other hand, we also have

∥∥∥∥∥∥∥A−1

a− a′
b− b′


∥∥∥∥∥∥∥
∞

≥ d(a⊕ [b], a′ ⊕ [b′])

which shows that Φ is (1, 2)-Bilipschitz, which is exactly what we wanted.

5.2 The space (`n∞)±

In this section we will investigate a universal way of embedding the projective cone of `n∞

into `m∞ for some m > n. Then we will use the fact that `∞ is a 1-absolute Lipschitz retract

to get an estimate on how good of an absolute Lipschitz retract (`n∞)± can be. We first

introduce the following definition.

Definition 5.2.1. For a metric space X, we denote by

Λ(X) = inf{C : X is a C–absolute Lipschitz retract}

the optimal absolute Lipschitz retract constant of X. For brevity we will refer to Λ(X) as

the Lipschitz constant of X.

Before we will try to construct an absolute Lipschitz retraction, we will take a look at

the best constant we could hope for and the next Proposition will help us do that.

Proposition 5.2.2. Let {B(xi, ri)}i∈I be a family of balls in a metric space (X, d) such that

d(xi, xj) ≤ ri + rj for every i and j and
⋂
B(xi, Lri) = ∅. Then Λ(X) ≥ L.
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x

y

a3

a1

a2

Figure 8: Λ((`∞)±) ≥ 2

Proof. Consider the discrete space Z = {zi|i ∈ I} and define a metric on Z by letting

d(zi, zj) = ri + rj. Then the map f : Z → X defined by f(zi) = xi is 1-Lipschitz. Now

form the space Z̃ = Z ∪ {w} and extend the metric by defining d(w, zi) = ri for every

i. If f has a L̃-Lipschitz extension to Z̃ we have d(f(w), xi) ≤ L̃ri for every i and thus

f(w) ∈
⋂
B(xi, L̃ri). By our assumptions this must mean L̃ ≥ L and thus Λ(X) ≥ L.

For the projective cone of `∞ we can show that Λ((`∞)± ≥ 2 by considering the three balls

B1(a1), B1(a2) and B1(a3), where a1 = (0, 3, . . .), a2 = (2, 1, 0, . . .) and a3 = (−2, 1, 0, . . .).

Then ‖a1 − a2‖ = ‖a1 − a3‖ − ‖a2 − a3‖ = 2, but
⋂3
i=1 Br(ai) = ∅ for every r < 2.

Theorem 5.2.3. Let X = (`n∞)±. Then ϕ : X → `n
2

∞ defined as

ϕ([x]) =

(∣∣∣∣xi + xj
2

∣∣∣∣ , 1 ≤ i ≤ j ≤ n ,

∣∣∣∣xi − xj2

∣∣∣∣ , 1 ≤ i < j ≤ n

)
,

where [x] = [(x1, . . . , xn)]is a
(

1

3
, 1

)
-Bilipschitz map .

Proof. We first note that the map ϕ as defined above does not depend on the choice of a

representative of [x]. We will start by showing d([x], [y]) ≤ 3‖ϕ([x]) − ϕ([y])‖∞, which is
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equivalent to showing

∣∣∣∣∣∣∣∣xi ± xj2

∣∣∣∣− ∣∣∣∣yi ± yj2

∣∣∣∣∣∣∣∣ ≤ 1 ∀ i, j ⇒ |xi − yi| ≤ 3 ∀ i or |xj + yj| ≤ 3 ∀ j

Suppose on the contrary that there exist indices i and j such that |xi−yi| > 3 and |xj+yj| > 3,

where without loss of generality we may say that i = 1 and j = 2. Notice that ||x1|−|y1|| ≤ 1

and ||x2| − |y2|| ≤ 1 by assumption. If we analyze these 4 inequalities closer we see that

|x1 − y1| > 3 and ||x1| − |y1|| ≤ 1 can only be true at the same time when x1 and y1 have

opposite signs, while |x2 + y2| > 3 and ||x2| − |y2|| ≤ 1 can only be true at the same time if

x2 and y2 have the same sign. Without loss of generality we will choose the representatives

in a way that x1 < 0, x2 > 0, y1 > 0 and y2 > 0. We need to address two cases. If |x1| > |x2|

we have

2 ≥ ||x1 + x2| − |y1 + y2|| = | − x1 − x2 − y1 − y2| ≥ |x2 + y2| − |x1 + y1|

> 3− |x1 + y1| = 3− ||y1| − |x1|| ≥ 2

On the other hand if |x1| ≤ |x2| we get

2 ≥ ||x1 + x2| − |y1 + y2|| = |x1 + x2 − y1 − y2| ≥ |x1 − y1| − |x2 − y2|

> 3− |x2 − y2| = 3− ||x2| − |y2|| ≥ 2

Thus we have reached a contradiction in either case and as such our original statement must

have been true.

It remains to be shown that ‖ϕ([x]) − ϕ([y])‖∞ ≤ d([x], [y]). We see immediately that

ϕ([x]) contains |xi| for every i and thus ‖ϕ([x])−ϕ([y])‖∞ ≤ max(| |xi|− |yi| |, i = 1, . . . , n).

Applying the triangle inequality to the right hand side of this equation, we see that ‖ϕ([x])−

ϕ([y])‖∞ ≤ ‖x − y‖∞ and this finishes the proof since we can choose representative for [x]

and [y] in a way such that d([x], [y]) = ‖x− y‖∞.
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(`n∞)± `n
2

∞

QMn+1

p

ϕ

ι

Figure 9: Factoring through QMn+1

This theorem not only allows us to identify (`n∞)± with a subset of `n∞ in a convenient

way it also establishes a close relationship with quasimetric spaces on n + 1 points QMn+1,

which the following Lemma demonstrates.

Lemma 5.2.4. We let ϕ be the map from 5.2.3 and define

p : (`n∞)± −→ QMn+1

by

p([x1, . . . , xn]) = (dij) where d0j = |xj|, 1 ≤ j ≤ n and dij = |xi − xj| when 1 ≤ i < j ≤ n

We define another map

ι : QMn+1 −→ `n
2

∞

by

ι((dij)) =


d01 . . . max(d0i, d0j)− 1

2
dij

... . . . ...

1
2
dij . . . d0n


Then the following diagram commutes:

Furthermore, p is a 2-Lipschitz map and ι is 3
2
-Lipschitz.

Proof. We need to show that ι(p([x])) = ϕ([x]). If we investigate the diagonal entries of

ι(p([x])) we see immediately that they coincide with the diagonal entries of ϕ([x]) and the
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same is true for all entries below the diagonal. Once we realize that |xi+xj |
2

+
|xi−xj |

2
=

max(|xi|, |xj|) it becomes evident that the entries above the diagonal of ι(p([x])) are also

identical to those same entries of ϕ([x]).

In essence the function ϕ samples from (`n∞)± in a Bilipschitz way. This process is closely

related to the part of harmonic analysis called phaseless reconstruction. In this area one

considers a frame F = {f1, . . . , fm}, which is a set of m ≥ n vectors that span n-dimensional

Hilbert space H. One then tries to reconstruct a vector x from the magnitude of its so called

frame coefficents {|〈x, fk〉|, 1 ≤ k ≤ m}. In this case the frame we use is

{
ej, 1 ≤ j ≤ n,

|ei ± ej|
2

, 1 ≤ i < j ≤ n

}

but for the remainder we will use the frame

{ej, 1 ≤ j ≤ n, |ei − ej|, 1 ≤ i < j ≤ n}

which samples the size of every entry and the pairwise distances between them. Since

we sample entries we deal with the metric structure of a line, meaning the map f from

the previous Lemma maps the projective cone (`n∞)± into quasimetric spaces that can be

isometrically embedded into R. In higher dimensions, this will be important since we will

try to find a way of retracting QMn+1 onto FMn+1.

But first we will take a look at the case n = 2, which allows for a more direct approach.

5.3 The case n = 2

Proposition 5.3.1. The map ϕ : (`2
∞)± → `3

∞ defined as

ϕ([x]) = (|x1|, |x2|, sgn(x1x2) min{|x1|, |x2|}) ,
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where [x] = [x1, x2] is 2-Lipschitz.

The image of this map

Imϕ = {(x, y, δ) : x, y ≥ 0 , δ = ±min{x, y}}

is a cone in `3
∞.

Proof. Once we realize that sgn(x1x2) min{|x1|, |x2|} = |x1+x2|
2
− |x1−x2|

2
the result follows

from 5.2.3.

Proposition 5.3.2. The map ψ : `3
∞ → (`2

∞)± defined by


x

y

δ

 7−→

 (x− y)+ + |δ|

(y − x)+ sgn(δ) + δ


 ,

where sgn(0) = 1, is a 3-Lipschitz map that satisfies that ψ ◦ ϕ = id(`2∞)±.

Proof. Let us begin by showing that ψ ◦ ϕ = id(`2∞)± , so let [x, y] be an arbitrary element of

(`2
∞)± and note that [x, y] = [|x|, |y| sgn(xy)].

Then

(ψ ◦ ϕ)([x, y]) = ψ(|x|, |y|,min(|x|, |y|) sgn(xy))

= [(|x| − |y|)+ + min(|x|, |y|), (|y| − |x|)+ sgn(xy) + min(|x|, |y|) sgn(xy)]

In the case where |x| ≥ |y| the last line reduces to [|x|, |y| sgn(xy)] and we can see that

in the case |x| < |y| the result is exactly the same and as we have previously noted

[|x|, |y| sgn(xy)] = [x, y].
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It remains to be shown that the map ψ is indeed 3-Lipschitz. First we should note that

[(x− y)+ + |δ|, (y − x)+ sgn(δ) + δ] = [(x− y)+ sgn(δ) + δ, (y − x)+ + |δ|] (5.2)

in (`2
∞)±. This will justify us looking at either side when we investigate the map ψ. If x ≥ y

we see that ψ(x, y, δ) = [x− y+ |δ|, δ] which is clearly 3-Lipschitz, while if x ≤ y we will use

the right side of the identity to get ψ(x, y, δ) = [δ, y − x+ |δ|]

The last part of this Proposition will be crucial in showing that (`2
∞)± is an absolute

Lipschitz retract.

Proposition 5.3.3. The space (`2
∞)± is a 6-absolute lipschitz retract.

Proof. Let Y be a metric space, Z ⊂ Y and f : Z → (`2
∞)± a L-Lipschitz function. Let ϕ

and ψ be the maps from 5.3.1 and 5.3.2 respectively. Then ϕ ◦ f : Z → `3
∞ is 2L-Lipschitz

and since `3
∞ is a 1-ALR we can extend this to a map F : Y → `3

∞ which is also 2L-Lipschitz.

The map ψ ◦ F : Y → (`2
∞)± is 6L Lipschitz and for z ∈ Z we have

(ψ ◦ F )(z) = ψ(F (z)) = ψ(ϕ(f(z)) = (ψ ◦ ϕ)(f(z)) = f(z)

This shows that ψ ◦ F extends f and we have shown that (`2
∞)± is a 6 absolute Lipschitz

retract.

In particular, this establishes that 2 ≤ Λ((`2
∞)±) ≤ 6 and it is not known whether the

upper bound can be lowered further. For now, in combination with the decomposition from

5.1.5 we have shown the following.

Theorem 5.3.4. The symmetric product (`2
∞)(2) is a 12–absolute Lipschitz retract.

Our next goal is to settle this problem for arbitrary n ≥ 2, where giving an explicit map

to reconstruct is a lot harder. As we mentioned earlier it seems to important to decide when

a space has the metric structure of the real line and this section is devoted to measuring the

distance of a quasimetric space to a flat space.
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5.4 Width of metric spaces

Our goal is to introduce a measurement of how far a metric space is away from being ‘flat’

and it seems natural to try and define this as the shortest distance to a subset of the real

line.

Definition 5.4.1. Let X be a metric space. We call

width(X) = inf{dGH(X, Y ) | Y ⊂ R}

the width of X. We observe that in particular width is a 1–Lipschitz map with respect to

the Gromov–Hausdorff distance.

This definition is closely related to the definition of the diameter of a metric space. In

fact, if we consider an arbitrary metric space (X, d) and the one point space {p}, then the

only correspondence R between X and p is the one that identifies every point of X with p.

Clearly

dGH(X, {p}) =
1

2
AD(R) =

1

2
sup

x1,x2∈X
|d(x1, x2)| = 1

2
diam(X)

Lemma 5.4.2. Let X be a finite metric space. Then

width(X) = inf{dGH(X, Y ) | Y ⊂ R}

= inf{dGH(X, Y ) | Y ⊂ R, |Y | ≤ |X|}

Proof. For Y ⊂ R we label the pairwise distances by yij and similarly we label the pairwise

distances in X by xij. We can arrange all of these into a matrix with
(|X|

2

)
rows and

(|Y |
2

)
columns with entries |xij−ykl|. A correspondence has to choose at least one entry from each

row and each column. If we pick entries from each row in a way that not two are in the

same column we select exactly
(|X|

2

)
entries and it is an immediate observation that selecting

entries from any leftover columns can not improve the infimum. As such these columns are

redundant and it is enough to only consider subsets Y with |Y | ≤ |X|.
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We can come up with a very straightforward way to measure whether a triangle is degen-

erate in the sense that it is actually a line segment, which allows us to detect the flatness of

a 3-point metric space and we can generalize that definition naturally to all bounded metric

spaces.

Definition 5.4.3 (Gromov Product and Excess). Let X be a metric space and x, y, z ∈ X.

We call

(x, y)z =
1

2
(d(x, y) + d(y, z)− d(x, z))

the Gromov product of x and z at y and

exc(x, y, z) = min
σ∈S3

(σ(x), σ(y))σ(z)

the excess of the triangle defined by x, y and z. We can then define the (possibly infinite)

excess of the space X as

exc(X) = sup{exc(x, y, z) | x, y, z ∈ X}

In fact, if exc(X) = 0 for a 3-point space X = {x, y, z}, then we can relabel the points

to have d(x, y) + d(y, z) = d(x, z) and define an isometric embedding f into the real line

via f(x) = 0, f(y) = d(x, y) and f(z) = d(x, z). The next Lemma will establish a general

relationship between exc(X) and width(X).

Lemma 5.4.4. The map

exc : BM→ [0,∞)

is 3-Lipschitz. In particular this implies width(X) ≥ 1
3

exc(X).

Proof. Let X and Y be bounded metric spaces and ε > 0. We can pick a correspondence R

such that

|xx′ − yy′| ≤ 2(dGH(X, Y ) + ε)
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whenever xRy and x′Ry′.

We will show that

| exc(y1, y2, y3)− exc(x1, x2, x3)| ≤ 3(dGH(X, Y ) + ε) (5.3)

for any x1, x2, x3 and y1, y2, y3 such that xiRyi. We note that excess is unaffected by

relabeling and as such we can assume that either exc(x1, x2, x3) = x1x2 + x2x3 − x1x3 or

exc(y1, y2, y3) = y1y2 + y2y3 − y1y3. Then

exc(x1, x2, x3)− exc(y1, y2, y3) = exc(x1, x2, x3)− 1

2
(y1y2 + y2y3 − y1y3)

≤ 1

2
(x1x2 + x2x3 − x1x3)− 1

2
(y1y2 + y2y3 − y1y3)

≤ 3(dGH(X, Y ) + ε)

We can repeat this argument to achieve exc(y1, y2, y3) − exc(x1, x2, x3) ≤ 3(dGH(X, Y ) + ε)

which shows (5.3).

Finally we will pick x1,x2,x3 ∈ X such that exc(x1, x2, x3) ≥ exc(X) − ε and y1, y2, y3

such that xiRyi, then

exc(Y ) ≥ exc(y1, y2, y3) ≥ exc(x1, x2, x3)− 3dGH(X, Y )− 3ε

≥ exc(X)− 3dGH(X, Y )− 4ε

by symmetry we also have exc(X) ≥ exc(Y )−3dGH(X, Y )−4ε and since ε > 0 was arbitrary

this shows that exc is 3-Lipschitz.

The lower bound on the width of a space follows after the observation that width(Y ) = 0

if Y ⊂ R, since

width(X) = inf {dGH(X, Y ) | Y ⊂ R} ≥ inf

{
1

3
| exc(X)− exc(Y )| | Y ⊂ R

}
=

1

3
exc(X)
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This lower bound on the width is sharp and we will prove next that every 3-point metric

space attains it.

Example 5.4.5. (Width of a 3-point space) Let X = {x1, x2, x3} be a 3-point metric space.

Then

width(X) =
1

3
exc(x1, x2, x3)

Proof. We denote the pairwise distances inX by xij and we can assume that exc(x1, x2, x3) =

1/2(x12 + x23 − x13) without loss of generality, relabeling the points if necessary. Now let

δ = 2
3

exc(x1, x2, x3) and take Y = {y1, y2, y3} ⊂ R such that y12 = x12− δ, y23 = x23− δ and

y13 = y12 + y23. Here yij denotes the distance between yi and yj. We fix a relation R such

that

AD(R) = max(|x12 − y12|, |x23 − y23|, |x13 − y13|) = max(δ, δ, δ) = δ

This shows that dGH(X, Y ) ≤ 1
2
δ = 1

3
exc(x1, x2, x3) and consequently width(X) ≤ 1

3
exc(x1, x2, x3).

Since by lemma 5.4.4 we know that width(X) ≥ 1
3

exc(x1, x2, x3) this concludes the proof.

We have shown that the bound we found earlier works great for 3-point spaces and it is

tempting to think that we could use excess, which is much easier to compute or bound, as a

way of shrinking or modifying our space in an attempt to flatten it. Unfortunately the next

example will demonstrate that even for 4-point spaces excess is an inadequate estimate for

the width of a space.

Example 5.4.6. We consider the 4-point space given by

d x1 x2 x3 x4

x1 0 1 2 1

x2 1 0 1 2

x3 2 1 0 1

x4 1 2 1 0

x1 x2

x3x4

1

1

1

1

2

2

Figure 10: 4–cycle



CHAPTER 5. RETRACTS OF SYMMETRIC PRODUCTS 79

Then a quick computation shows that exc(X) = 0. However, it is clear that these 4 points

can not be isometrically embedded into a line.

In the case of 3–point spaces we see that the excess of the space X and its tight span

EX coincide by looking at Example 4.1.9, but in general the excess of a tight span is only

bounded below by the excess of the underlying space. This inspires the hope that we can

use the excess of the tight span of a space X instead to find an upper bound for the width

of X. In particular, we should note that if the tight span of X is flat, then X itself had to

be flat and exc(EX) = 0.

Conjecture 5.4.7. There is some constant C, possibly dependent on n, such that for an

n-point metric space X we have

width(X) ≤ C exc(EX)

We will prove the following proposition as supporting evidence for our conjecture.

Proposition 5.4.8. Let X be a 4–point space, then

width(X) ≤ 19

12
exc(EX).

Proof. We will start with considering the general 4–point metric space X from Example

4.1.10.

d x1 x2 x3 x4

x1 0 a+ b+ f a+ c+ e+ f a+ d+ e

x2 a+ b+ f 0 b+ c+ e b+ d+ e+ f

x3 a+ c+ e+ f b+ c+ e 0 c+ d+ f

x4 a+ d+ e b+ d+ e+ f c+ d+ f 0

with e ≤ f and b ≤ min{a, c, d} which gives this respective tight span EX .
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x1

v1 v2

x2

v3v4

x4 x3

a

f

b

e

f

e

d

c

Figure 11: Tight span of a general 4–point metric space

Our first goal will be to estimate the excess of the tight span and we will do so in two steps.

First consider the rectangle with side lengths e and f equipped with the `1 metric. We

choose a1 = 1
3
v4 + 2

3
v3, a2 = 1

3
v4 + 2

3
v1 and a3 = v2 which implies that ‖a1 − a2‖ = 2

3
(e+ f),

‖a1 − a3‖ = e + 1
3
f and ‖a2 − a3‖ = 1

3
e + f . A consequence is that exc(a1, a2, a3) = 2e

3
and

thus the excess of the rectangle is at least 2e
3
. In addition, we can consider the four 3–point

configurations involving x1, x2, x3 and x4 and see that the excess of them is at least b. This

allows us to conclude that

exc(EX) ≥ max

{
2e

3
, b

}
(5.4)

From here, we consider a similar space X1

d x1 x2 x3 x4

x1 0 a+ b+ f a+ c+ f a+ d

x2 a+ b+ f 0 b+ c b+ d+ f

x3 a+ c+ f b+ c 0 c+ d+ f

x4 a+ d b+ d+ f c+ d+ f 0

with tight span EX1.
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x1

v1 v2

x2

x4 x3

a

f

b

d

c

Figure 12: Tight span EX1 after the first reduction

We can see, using the obvious correspondence, that dGH(X,X1) ≤ 1
2
e. Modifying X1

slightly, we arrive at the space X2.

d x1 x2 x3 x4

x1 0 a+ f a+ c+ f a+ d

x2 a+ f 0 c d+ f

x3 a+ c+ f c 0 c+ d+ f

x4 a+ d d+ f c+ d+ f 0

with tight span EX2.

x1

v1 x2

x4 x3

a

f

d

c

Figure 13: Tight span EX2 after the second reduction

Once again the obvious correspondence yields that dGH(X1, X2) ≤ b
2
. Since X2 is iso-
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metrically embedded in EX2, which in turn is isometrically embedded in EX we have that

exc(X2) ≤ exc(EX2) ≤ exc(EX) We now employ that width is a 1–Lipschitz map to arrive

at

width(X) ≤ width(X2) + dGH(X,X2)

≤ 1

3
exc(X2) + dGH(X,X1) + dGH(X1, X2)

≤ 1

3
exc(X) +

1

2
e+

b

2

≤ 1

3
exc(EX) +

1

2
e+

b

2

Equation (5.4) can then be used to get

width(X) ≤ 1

3
exc(EX) +

1

2
exc(EX) +

3

4
exc(EX) =

19

12
exc(EX)

which is exactly what we wanted.

Remark 5.4.9. By looking at EX2 of Proposition 5.4.8 we can see that it is a tripod and as

such we have that exc(EX2) ≥ min{a, d, c+ f}. Combining this with the estimates we have

obtained in the previous Proposition, we obtain

exc(EX) ≥ max

{
2e

3
, b,min{a, d, c+ f}

}

And as such if we reduce all edges in the tight span by 3/2 exc(EX) we have collapsed the

tight span to a straight line.

Our observations in this section have shown that width and excess of tight spans seem

to be related, which lead us to the following remark.

Remark 5.4.10. Let X be a finite metric space, then

width(X) = 0 ⇐⇒ exc(EX) = 0
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We can sketch a proof of this in the following way. If width(X) = 0 then X can be iso-

metrically embedded into R, which is an injective space. This implies that EX can also be

embedded into R and thus exc(EX) = 0.

If the excess of the tight span is 0 however, this means that the tight span can not have

any cells of dimension 2 or higher. This establishes that EX is a graph. Furthermore, the

tight span can not contain any tripods, as those have positive excess. The only option left is

a graph that contains no cycles and every vertex has degree 2, but those can be isometrically

embedded into R.

5.5 The case n = 3

We can now use the methods introduced in the previous section to take a look at (`3
∞)±.

Before we start with going into this special case, we would like to outline our general

approach with the following diagram.

(`n∞)± `
(n+1

2 )
∞ QMn+1 SMn+1 FMn+1 (`n∞)±

p M r ψ R

Figure 14: General approach to bound Λ((`n∞)±)

The map p is from 5.2.4 and the map M in this diagram is taking the positive part of

each component, which allows us to interpret the components as distances between n + 1

points. In addition, M leaves the image of p unchanged. Since all of the maps involved are

retractions, this can be used to show that (`n∞)± is an absolute Lipschitz retract as illustrated

in Figure 7. We will see (or already have seen), that the maps p, M , r and R are Lipschitz

with Lipschitz constants independent of n and the main difficulty will arise in constructing

ψ. First, we show that there is a retraction from quasimetric spaces onto semimetric spaces.

Proposition 5.5.1. There is a 4–Lipschitz retraction r : QMn −→ SMn

Proof. We need to introduce some notation first. For a quasimetric space Y with quasimetric
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ρ = (ρij) we let defect(ρ) = max{(ρij−ρik−ρkj)+ | i, j, k ∈ {1, . . . , n}} the maximum amount

by which ρ fails the triangle inequality, which is a 3-Lipschitz map. Now we define

r : QMn −→ SMn

by

ρij 7→ dij = ρij + defect(ρ)

which is a 4-Lipschitz map independent of n. Since a semimetric space (X, d) satisfies the

triangle inequality we have that defect(d) = 0 and as such r leaves semimetric spaces fixed.

It remains to be checked that dij satisfy the triangle inequality and indeed for any indices i,

j, k we have

dik + dkj − dij = ρik + ρkj − ρij + defect(ρ)

= defect(ρ)− (ρij − ρik − ρkj) ≥ 0

Furthermore, we have that r restricted to p((`3
∞)±) is the identity, since p((`3

∞)±) does

satisfy the triangle inequality.

Lemma 5.5.2 (Flattening). There is a 180–Lipschitz retraction ψ : SM4 → FM4.

Proof. We start by considering a general 4–point space X = {x0, x1, x2, x3}. Then there is

some permutation σ ∈ S4 such that the space can be represented as

d xσ(0) xσ(1) xσ(2) xσ(3)

xσ(0) 0 a+ b+ f a+ c+ e+ f a+ d+ e

xσ(1) a+ b+ f 0 b+ c+ e b+ d+ e+ f

xσ(2) a+ c+ e+ f b+ c+ e 0 c+ d+ f

xσ(3) a+ d+ e b+ d+ e+ f c+ d+ f 0

We can then create a new space by shortening all of the quantities a, b, c, d, e and f

by δ = 3
2

exc(EX) and truncating at 0, for example ã = (a− δ)+. It is crucial to note that
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Remark 5.4.9 shows that the resulting space is indeed flat. The numbers a, . . . , f represent

the length of edges in the tight span of X and thus are 5–Lipschitz by Lemma 4.4.2. In

addition we know from Lemma 5.4.4 that exc is 3–Lipschitz and in [23] it is shown that

X 7→ EX is a 2–Lipschitz map.

In order to put these results together, we have to note that at most 4 edges participate in

the distances d(xσ(i), xσ(j)). Then we have that the map from X to X̃ with X̃ ∈ FM4 is

180–Lipschitz.

We note that so far this result only holds within the same combinatorial type σ, however

it is easy to see that this construction is consistent on overlaps and thus by Corollary 4.5.3

actually 180–Lipschitz on SM4.

It remains to be shown that this map is actually a retraction, but Remark 5.4.10 shows

that the excess of a flat space is 0 and thus these spaces remain unchanged.

We now turn our view to the last undescribed map from Figure 14.

Definition 5.5.3 (Restoration map). We can write the space FMn+1, where every X ∈

FMn+1 has labeled vertices x0, . . . , xn as the union of n pieces A1, . . . , An, with Aj =

{X : d(x0, xj) = max{d(x0, xi) : i = 1, . . . , n}}. For X ∈ Aj we define

Rj : Aj → (`n∞)±

by

(Rj(X))i = d(x0, xj)− d(xi, xj)

then we call the map

R : FMn+1 → (`n∞)±

defined as R(X) = Rj(X) if X ∈ Aj the restoration map.
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The first goal is to show that this map is well–defined and Lipschitz.

Theorem 5.5.4. The restoration map R : FMn+1 → (`n∞)± from 5.5.3 is well–defined and

2-Lipschitz.

Proof. Let X ∈ FMn+1 with labeled vertices x0, . . . , xn. In view of 5.5.3 it needs to be

shown that Rk(X) = Rl(X) if X ∈ Ak ∩ Al. We have to distinguish between two cases,

either d(xl, xk) = 0 or d(xl, xk) = 2d(x0, xl) = 2d(x0, xk). First let d(xl, xk) = 0, then

(Rk(X))i = d(x0, xk)− d(xi, xk) = d(x0, xl)− d(xi, xl) = (Rl(X))i ∀ i

If d(xl, xk) = 2d(x0, xl) we have

(Rk(X))l = d(x0, xk)− d(xl, xk) = d(x0, xl)− 2d(x0, xl) = −d(x0, xl) = −(Rl(X))l

and

(Rk(X))k = d(x0, xk) = 2d(x0, xk)− d(x0, xk) = d(xk, xl)− d(x0, xl) = −(Rl(X))k

then for i /∈ {j, k} we notice that d(xk, xl) = d(xl, xi) + d(xk, xi) and get

(Rk(X))i = d(x0, xk)− d(xi, xk) = d(x0, xl)− (d(xk, xl)− d(xl, xi))

= d(x0, xl)− 2d(x0, xl) + d(xl, xi) = d(xl, xi)− d(x0, xl)

= −(Rl(X))i

We have shown that (Rk(X))i = −(Rl(X))i for every i, so Rk(X) = Rl(X) in (`n∞)± and

thus R is well-defined. In addition the map is clearly 2-Lipschitz by definition.

The last thing we need to show is that for x ∈ (`n∞)± we have R(p([x])) = [x]. Using the

notation of the definition of the restoration map, we have that p([x1, . . . , xn]) ∈ Aj for some
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j and we can choose a representative such that xj ≥ 0. But then

Rj(p([x]))i = d0j − dij = |xj| − |xj − xi| = xj − xj + xi = xi

which is exactly what we wanted.

These computations now allow us to prove

Theorem 5.5.5. (`3
∞)± is a 2880–absolute Lipschitz retract.

Proof. Let Z ⊂ Y and f : Z → (`3
∞)± be Lipschitz. Then the following diagram shows us

how to extend it to a map F : Y → (`3
∞)±.

FM4 SM4

Z (`3
∞)±

`6
∞ QM4

Y

2

R

180

ψ

f

L

ι

2
p

1

M

4r

F̃

2L

F

Figure 15: Diagram for the n = 3 case

Using all of our previous considerations we have that F , defined in this way, is an extension

of f with Lipschitz constant 2880L.

As we have pointed out in the beginning of this section, all maps in this diagram are

independent of n except for the flattening map introduced in Lemma 5.5.2. If we can remove

this dependence, that would show that (`n∞)(2) is an absolute Lipschitz retract with Lipschitz

constant independent of n.
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