Food Form Function

Travis Telemaque

Follow this and additional works at: https://surface.syr.edu/architecture_theses

Recommended Citation
Telemaque, Travis, "Food Form Function" (2017). Architecture Senior Theses. 401.
https://surface.syr.edu/architecture_theses/401

This Thesis, Senior is brought to you for free and open access by the School of Architecture Dissertations and Theses at SURFACE. It has been accepted for inclusion in Architecture Senior Theses by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
FOOD FORM FUNCTION
ACKNOWLEDGEMENTS

This book is dedicated to my loving parents who made it possible for me to attend Syracuse University School of Architecture. Dad, thank you for showing me how to work extremely hard and focus on every detail of a project. Mom, thank you for always being there to support me and picking up the phone at three in the morning for last minute advice. I love you both.

Additionally, I would like to thank my thesis advisor Tarek Rakha for helping me every week throughout my senior year. This project would not have evolved to what it is now if you didn't help. Not only were you my mentor and advisor, but you became a great friend. Thank you for everything you did to get me to this point.

Lastly, I would like to thank my girlfriend Margaux for her support and creative solutions. You pushed me everyday to believe in myself and my designs. You are the best architectural sidekick anyone could ask for, I love you.
Urban agriculture is the alteration of landscapes, urban spaces, infrastructures, and architectures. Additionally, it can act as a social movement for sustainable developments, where organic farmers, local growers, and ‘foodies’ form networks created from a shared ideology regarding nature, community holism, and sustainable design. In order to maintain our global economy and produce food we rely heavily on natural resources including fertile soil, water, and energy. Years of unsustainable practice have lead to the degradation of these resources.

Food production for the ever-increasing global population can no longer be sustained through traditional farming techniques. Additionally, the use of pesticides, and chemical fertilizers all negatively impact our environment. If we do not possess the capacity to sustain soil-based farms, where will our food come from? The answer lies in our cities where we have the potential to practice sustainable urban agriculture. This study aims to evaluate how architecture and urban agriculture can be used to reconnect people with locally source food in a sustainable way. Questioning the possibility of feeding millions of people with urban vertical farms.

This study suggests that solar design strategies can influence a more sustainable approach to food production, focusing on New York City to determine a potential site in which an urban farm can be integrated. Specific case studies are presented to determine whether urban agriculture can be developed in an economical and sustainable manner. Additionally, several factors were analyzed including solar exposure, renewable resources, site accessibility, and development potential. This prototype urban farm will expose people to three categories of food production; controlled environment agriculture, productive vegetated facades, and rooftop agriculture.

Integrating food production into dense urban areas can reconnect us with food and create more resilient cities. By establishing a sustainable prototype urban farm there is great potential for these structures to germinate across cities. I conclude that building technology and design can adapt to feed the increasing urban populace.
Chapter 1 | Introduction

Abstract... xx
Claim | Contention... xx
Current Farming Methods.. xx
Alternatives to Traditional Agriculture.. xx
Urban Agriculture | Food Production in New York City.. xx
Potential Effects.. xx

Chapter 2 | Precedents

Controlled Environment Agriculture... xx
Productive Facades.. xx
Co-housing... xx
Energy Production & Waste Management.. xx

Chapter 3 | Method

Site... xx
Environmental Analysis... xx
Program... xx
Massing strategies... xx

Chapter 4 | Thesis

Floor Plans, Elevations, Sections, Details.. xx
Analytical Drawings.. xx
Renderings, Models.. xx
Works Cited... xx
By 2050, the global population will have grown to over 9.7 Billion people. Traditional farming practices will no longer be able to sustain food production for the increasing population.

This thesis demonstrates how architecture and urban food production can be used to educate and reconnect our cities with locally sourced food. Integrating food production into dense urban settings will create a more efficient and resilient city.
AIMS

1. Propose a prototype live | work urban farm that provides food, jobs, housing, and urban agricultural education.

2. Propose a design that gets implemented at a specific urban development site within the city. Developers and city agencies can work together to provide local food sourcing for residents living in large urban developments.

3. Purpose a net-zero building that generates as much energy as it consumes and recycles as much waste as it produces.

4. Integrate a productive vegetated facade system that provides food directly to residential units.
“Today’s cities fail to meet even the minimum standards of self-reliance. No city lives within its own means. Everything consumed is produced outside the city, and as a result, waste accumulates at an alarming rate”

The Vertical Farm - Dr. Dickson Despommier

“Developing agricultural capacity within or close to urban areas such as New York City (NYC) has the potential to reduce transportation costs and environmental impacts, provide economic development opportunities, and increase access to healthful food”

Sustainable Urban Agriculture - NYSERDA
CURRENT FARMING METHODS

Agriculture is one of the most important industries needed to maintain a functional society. As the global population increases the demand for fresh fruits, vegetables, and grains will increase. Current farming methods will not be able to sustain production for the increasing population. Additionally, agriculture within the United States consumes 70% of water use and 30% of energy use. Land availability is also being impacted as we currently farm a landmass equivalent to the size of South America. By 2050 it is expected that we will need the landmass of South America plus Brazil. It is crucial that we research and develop alternatives to current farming methods.
WATER USE

- 70% AGRICULTURE USE
- 20% INDUSTRIAL USE
- 10% DOMESTIC USE

ENERGY USE

- 30% AGRICULTURE USE
- 70% OTHER INDUSTRIES

GLOBAL AGRICULTURE LAND USE

PERCENTAGE OF AREA UNDER CULTIVATION

- 0 %
- <10 %
- 10% to 25 %
- 25% to 50%
- 50% to 75%
- 75% to 90%
- 90% >

CROPLAND EXTENT IN 1700

CROPLAND EXTENT IN 2000

Data Sources: Our World in Data
Currently New York City imports over 20% of its vegetables. By 2030 this number is estimated to reach 40%. By implementing controlled agriculture facilities into the urban environment, we can lower imports and produce food locally.
TRADITIONAL FARMING METHODS

CHEMICAL FERTILIZERS
GMO's
SEED SUPPLIERS

FARM
IRRIGATION
PESTICIDES

EROSION
FLOODED CROPS

HIGH FUEL USE
CO2 EMISSIONS

HARVESTING
LONG HARVESTING TIMES
30% - 40% OF THE CROPS ARE LOST

PROCESSING

CO2 EMISSIONS

TRANSPORTATION
LONG STORAGE TIMES
LONG DISTANCES

DISTRIBUTION

CONSUMPTION
CONSUMED 1-2 WEEKS AFTER HARVEST

CHAPTER 1 | INTRODUCTION | ALTERNATIVES TO TRADITIONAL AGRICULTURE
CHAPTER 1 | INTRODUCTION | ALTERNATIVES TO TRADITIONAL AGRICULTURE
HYDROponics
A METHOD OF GROWING PLANTS USING MINERAL NUTRIENT SOLUTIONS, IN WATER, WITHOUT SOIL.

AERoponics
A PLANT-CULTIVATION TECHNIQUE IN WHICH THE ROOTS HANG SUSPENDED IN THE AIR WHILE NUTRIENT SOLUTION IS DELIVERED TO THEM IN THE FORM OF FINE MIST

AQUAPONICS
A METHOD OF GROWING FISH USING AQUACULTURE AND HYDROPONIC TECHNIQUES
SPINACH
MELON
KALE
CAULIFLOWER
BROCCOLI
CABBAGE
CUCUMBER
LETTUCE
HERBS
EGGPLANT
SPINACH
MINT
STRAWBERRY
WATERMELON
SWISS SHARD
RICE
TARO
WILD RICE
TOMATO
CALTROP
LOTUS ROOT
CABBAGE
MIMOSA
FLOAT HEART
HORN FERN
MUGWORT
SPHENOCIEA
WATERCRESS
FERN
PARSLEY
RADISH
CARROTS
POTATOES
BEET
GINGER
BLACK OLIVE
GRAPEFRUIT
MANDARIN
ORANGE
TOMATO
DRAGON FRUIT
MANGO
PEACH
CHESTNUT
LETTUCE
Growing plants on or within buildings helps lower carbon dioxide levels and provides clean oxygen for the occupants.
<table>
<thead>
<tr>
<th>Social</th>
<th>Economical</th>
<th>Ecological</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youth Development</td>
<td>Job Growth</td>
<td>Storm Water Management</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>Education</td>
<td>Local Community Simulation</td>
<td>Water Collection</td>
<td>Healthy Consumption</td>
</tr>
<tr>
<td>Food Security</td>
<td>Waste Management</td>
<td>Water Harvesting</td>
<td>Access to Safe Food</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composting</td>
<td></td>
</tr>
</tbody>
</table>
New York City is one of the most populated cities in the United States. According to the U.S Census Bureau, 8,550,405 residents live within the five boroughs; Manhattan, The Bronx, Queens, Brooklyn, and Staten Island. The Department of City Planning states that “the city has not witnessed such a robust pace of growth since the 1920's”(NYC.gov). As population increases our cities rely more and more on the existing food supply and the unsustainable industrial food system. This has also contributed to the rise in obesity and food related disease due to the consumption of un-healthy foods high in calories. We have no other choice but to reconsider how we produce our food in a sustainable, efficient manner.

The Urban Design Lab at Columbia University states that “Developing agriculture capacity within or close to urban areas like New York City has the potential to reduce food transportation costs and environmental impacts, provide economic and development opportunities, and reduce disparities in healthful food access that have led to the epidemic rates of obesity and diabetes among low income populations”(Columbia.edu). But where will we get the land needed to produce food within the city and at what costs will that come with? New York City is known for being the most developed city in the U.S. and because of this land availability is limited and price per square foot is substantially high. In turn, this makes it difficult to expand urban agriculture. But a potential solution could be that “public vacant land represents the greatest opportunity for urban agriculture because specific uses can be directly determined or incentivized through municipal land-use policy changes”(NYSERDA 1-4).

Urban agriculture has the potential to create value in communities where vacant land and underutilized space is present. This study with focus on New York City to determine potential sites where alternative agriculture techniques can be practiced and local food production can be established.
Producing food for 2 million people living in Manhattan excluding the surrounding boroughs is equivalent to a 35 mile radius surrounding the city.
35 mile radius
Over the course of the past 10 years New York City has worked to create community gardens, ground level farms, rooftop farms, and greenhouse indoor farms. Not only does this supply the five boroughs with local food production but it also helps reduce transportation costs and CO2 emissions. What’s noticeable on this map is that New York City does not have many greenhouses or indoor vertical farms. Through research and development a sustainable urban vertical farm can be integrated into the urban fabric of the city and provide large quantities of locally source produce.
FOOD PRODUCTION IN NEW YORK CITY

Data sources: UDL; Mara Gitleman/Farming Concrete; Tyler Caruso/Thread Collective
EMISSIONS (CO2)
70% OF GREENHOUSE GASES COME FROM CITIES

ORGANIC WASTE (FOOD)

INORGANIC WASTE (MUST BE TREATED)
URAL VERTICAL FARM

FOOD MARKETS

RESEARCH FACILITIES

PROCESSING & RECYCLING
LONG ISLAND CITY ROOFTOP FARM
BROOKLYN GRANGE FARM DESIGN

BROOKLYN NAVY ROOFTOP FARM
BROOKLYN GRANGE FARM DESIGN
Long Island City Farm is strategically located close to truck delivery routes and railways to maximize its distribution ability. Additionally, the heights of the surrounding buildings are lower than the farm allowing the plants to have maximum solar access.
With over 30 different species, tomatoes are the main crop that is grown on the rooftop farm. Herbs, lettuce, carrots, beets, beans, and radishes are also grown over the 9 month growing season. Special soil is used which is 20% lighter than traditional soil. This soil helps reduce the load on the buildings structure.
Brooklyn Navy Yard Rooftop Farm is strategically located next to a shipping yard along the East River. Additionally, there is great truck delivery routes along the Brooklyn-Queens expressway. The neighboring buildings are equal in height or smaller than the farm which allows the plants to have maximum sunlight throughout the day.
With over 30 different species, tomatoes are the main crop that is grown on the rooftop farm. Herbs, lettuce, carrots, beets, beans, and radishes are also grown over the 9 month growing season. Special soil is used which is 20% lighter than traditional soil. This soil helps reduce the load on the buildings structure.
GREENPOINT GREENHOUSE
GOTHAM GREENS DESIGN

WHOLE FOODS GREENHOUSE, GOWANUS
GOTHAM GREENS DESIGN
Greenpoint Gotham Greens in Brooklyn is conveniently located near the Brooklyn-Queens expressway so that their produce can be distributed efficiently to retailers. Additionally, the surrounding buildings are lower than the greenhouse, in turn the plants receive maximum sunlight.
The greenhouse can produce 5 1/2 times more food than the Brooklyn Navy Yard Rooftop Farm which is 4 times larger than the Greenpoint Gotham Greens. Since the greenhouse has a small footprint the company was able to install solar panels that supply the greenhouse with a sufficient amount of energy.
Whole Foods Gotham Greens in Brooklyn was constructed on an open lot which give the plants maximum solar exposure. It is the first large scale greenhouse integrated into a supermarket. Additionally, the greenhouse is located within Brooklyn and close to the city which allows farmers to harvest and sell in the same day.
The greenhouse can produce 10 times more food than the Brooklyn Navy Yard Rooftop Farm which is 3 times larger than the Whole Foods Gotham Greens. Additionally, the company has included solar panels as car cover ports in the parking lot and light post with wind turbines on the top. The energy generated from these systems is transfer back to the greenhouse.
Located in downtown Tokyo, Pasona O2 is a 215,000 square feet renovated office building that has over 200 different species of plants which are harvested and prepared within the building. The renovation consist of a double skinned green facade, office spaces, cafeteria, rooftop garden, and urban farming facilities. The space dedicated to the farm is over 43,000 square feet which is enough to feed all the workers daily throughout the year. “It is the largest and most direct farm-to-table of its kind ever realized inside an office building in Japan.

Pasona O2 uses both soil-based and hydroponic farming techniques equipped with smart LED lighting and climate controls. Pasona headquarters supports and educates over 350 student farmers so that generations to come have a better understanding of food production within dense urban cities. “Pasona urban farm is beyond aesthetic and visual improvement. It creates a unique workplace environment that promotes worker’s productivity, mental health, and social interaction and engages the wider community of Tokyo by showcasing the benefits and technology of urban agriculture”. The food produced within the building not only supports the workers but supplies the city as well.
nodegroup00: Mean Daylight Autonomy = 94.08 % of time occupied

nodegroup01: Mean Daylight Autonomy = 46.6 % of time occupied
THE LINKOPING MODEL
PLANTAGON
CHAPTER 2 | PRECEDENTS | CONTROL AGRICULTURE
SOUTH FACING GREENHOUSE

NORTH FACING OFFICES

O² IN

GREENHOUSE
700,000 LBS OF PRODUCE
PER YEAR

CO² OUT

100'

THESIS | MAY 2017 | TRAVIS TELEMAQUE | ADVISOR: TAREK RAKHA
DAYLIGHT AUTONOMY DISTRIBUTION
PLANTAGON FLOOR PLAN STUDY

DAYLIGHT AREA (DA 400 LUX (50%)
(94%) OF FLOOR AREA
MEAN DAYLIGHT FACTOR (7.8%)

OFFICE SPACE
WINDOW
GROWING SPACE
WINDOW
At the MetLife, we will not only have a huge vertical garden to adorn the 42nd floor from our offices. We will also benefit from increased airflow from its vertical circulation throughout our offices. A great way to reduce pests and enhance our productivity by 10%.

See the percentage of occupied hours where illuminance is at least 300 lux (average per year).
NEW PUBLIC SPACES

A: FRESH PRODUCE MARKET
B: NEW 8 STOREY ATRIUM
C: OUTDOOR TERRACE & GARDENS
D: PANORAMIC ELEVATORS
E: OBSERVATORY ROOFTOP

Existing Building

- North Facade / Double Skin
- Vertical Playground
- Vertical Garden Platforms
- Vertical Farm
- South Facade / Double Skin

Airflow Rate (m³/s)

Existing

Monthly Consumption (kWh)

Proposal

Monthly Consumption (kWh)

- Appliances
- Lighting
- Fan
- Cooling
- Hot Water
- Space Heating
- Electric Heating
OFFICE SPACE
68°

GREENHOUSE
75-77°

70°
With increasing research and development regarding solar exclosure technologies, CASE has designed a water reclamation and thermal controlled facade that addresses water management systems for buildings. This system can clean and recycle water, provide thermal comfort, and contribute to a building's water storage. The research team states that “Dynamic building water cycles present opportunity to analyze the potential for water-savings through intervention of architectural form and through the integration of multiple systems aiding the conservation of potable and non-potable water” (CASE | Center for Architecture and Ecology).

If this system is applied to an urban vertical farm we can potentially provide clean water for plants and building occupants. Additionally, thermal comfort is achieved creating low operation costs.
CASE | RENSSELAER | SOM
ACTIVE BIOREMEDIATION SYSTEMS

Plants have the ability to physically clean pollutants in the air while supplying fresh oxygen to our environment. Contemporary building materials have contributed to a rise in negative emissions when producing them and poor indoor air quality.

CASE states that “by integrally cleaning airborne contaminants associated with poor indoor air quality, building-integrated active phytoremediation systems have the potential to decrease or even eliminate fresh air requirements required by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and with that the potential to both realize substantial energy savings in climate types with high heating and/or cooling loads and to reduce or eliminate the need to intake, treat and circulate poor quality air in heavily polluted urban areas” (CASE | Center for Architecture and Ecology).
THE INDUSTRIAL WATERFRONT

The Domino Sugar Factory in Williamsburg Brooklyn was once one of the leading sugar manufacturers in all of the United States. The community prospered as the waterfront became a major sugar exporting port and jobs were created. “The East River waterfront became extremely active as raw goods, such as sugar cane came from Cuba, Brazil and other countries was being brought in by ships and refined sugar was being shipped out.” For years Domino Sugar celebrated tremendous success until 1988 when food advocates stated that refined sugar was not healthy and began promoting sugar alternatives. The factory later shut down its operations in 2004 after a hard fought employee strike. What stands today is a reminder of the once booming industrial sugar age of Williamsburg.
NEW DOMINO DEVELOPMENT

What was once the Domino Sugar refinery is now becoming Brooklyn’s newest neighborhood. The proposal calls for the preservation of the sites refinery building with the construction of four new residential towers around it. Out of the 2,200 apartments proposed, half of them will be affordable for the poor and working class. “We’re taking this narrow, vacant industrial site and turning it into an incredibly powerful economic engine for the neighborhood,” said the developer, Michael Lappin, president of the Community Preservation Corporation. Well what if an urban farm was the machine that drove the neighborhood? The urban farm will act as a grocery store for the neighboring residential towers and surrounding area. The idea is that if you design an urban farm within large urban developments, people will benefit from local food production and learn how to harvest their own crops through a community garden education center.
The food system for New York City is not fully secure. Our current method of producing and distributing food is inefficient and wasteful. “Moreover, New York City is not fully capitalizing on its economic power to create good jobs and economic opportunity at each phase of the food system” (Foodworks).
INDUSTRIAL SITES
The urban vertical farm will act as an organic drop-off site for 40 plus food scrap collectors within the five boroughs. In turn the scraps will be composted and turn into soil for plants, or placed in a bioreactor for fuel.
SITE

PRIMARY TRANSPORT ROUTES: WILLIAMSBURG BRIDGE / HWY 278

SECONDARY STREETS
The character of R6 districts can range from neighborhoods with a diverse mix of building types and heights to large-scale “tower in the park” developments such as Ravenswood in Queens and C1-1 through C1-5 and C2-1 through C2-5 districts are commercial overlays mapped within residence districts. Mapped along streets that serve local retail needs, they are found extensively throughout the city’s lower- and medium-density areas and

The R6 district requires that the building has a setback of 15 degrees once it surpasses 60 feet.
<table>
<thead>
<tr>
<th>Community Garden</th>
<th>Address</th>
<th>Size (SQ FT)</th>
<th>Community Development Grant</th>
<th>Food Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keap Fourth Community Garden</td>
<td>347 Keap Street Brooklyn</td>
<td>2,900</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Berry Street Garden</td>
<td>303 Berry Street Brooklyn</td>
<td>5,946</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Northside Community Garden</td>
<td>599 Driggs Avenue Brooklyn</td>
<td>1,572</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Grant Street Community Garden</td>
<td>239 Grand Street Brooklyn</td>
<td>1,992</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>El Puente Earth Spirit Garden</td>
<td>203-207 South Street Brooklyn</td>
<td>10,363</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WILLIAMSBURG COMMUNITY GARDENS</th>
<th>PLANTING BEDS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keap Fourth Community Garden</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Berry Street Garden</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Northside Community Garden</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Grant Street Community Garden</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>El Puente Earth Spirit Garden</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
WEST FACADE: 32,400 SQ FT

SOUTH FACADE: 57,600 SQ FT

ROOF TOP: 57,600 SQ FT

WATERFRONT GARDEN: 50,000 SQ FT
DAYLIT AREA (DA 300lux (50%)) : 70% OF FLOOR AREA
MEAN DAYLIGHT FACTOR : 4.3%
OCCUPANCY : 3650 HOURS PER YEAR

% OCCUPIED HOURS

0
17
33
50
67
83
100
MACRO-SCALE

Initial building forms are generated based on site conditions and the surrounding urban context. Site location, views, sunlight, shadows, and maximum plant growth potential are taken into account when assessing potential forms.

MESO-SCALE

Within the urban farm programatic relationships are determined based on the amount of square footage needed. Furthermore, the mechanical and structural systems are assessed for specific parts of the program in order to determine proper locations for each.

MICRO-SCALE

This scale focuses on the building envelope and how it responds to program. Concept, performance, and assembly are assessed for each facade type generated. By analyzing the building at this scale an envelope can be selected that has a high ability to modulate light for plant growth.
PARAMETERS

MAXIMUM BUILDING HEIGHT 200'

PARAMETER 1

CENTRAL VOID CREATES A PUBLIC COURTYARD

PARAMETER 2

SOUTHEAST CORNER LOWERED TO 40'

PARAMETER 3

HIGHLINE CONNECTION

PARAMETER 4
A COURTYARD WILL BE LOCATED IN THE CENTER OF THE BUILDING WHICH WILL HOST VARIOUS ACTIVITIES SUCH AS TRADITIONAL FARMING AND COMMUNITY ENGAGEMENT PROGRAMS.

THE GROUND FLOOR PROGRAM WILL CONTAIN A FARMERS MARKET, COMMUNITY EDUCATION CENTER, VIEWING ROOM FOR CONTROLLED HYDROPONICS, AND A VIRTUAL INTERACTIVE MEDIA ROOM.

A SERIES OF STEPPED TERRACES PROVIDES ACTIVE OUTDOOR SPACE FOR RESEARCH LABS AND EMPLOYEE HOUSING.

A 35,000 SQUARE FOOT GREENHOUSE WILL RUN ALONG THE SOUTHERN FACADE.
PROGRAMATIC RELATIONSHIPS
ITERATION SELECTION

ITERATION 2

ITERATION 3
Daylight Autonomy Simulation

Floor 00: Mean Daylight Autonomy = 51.01 %
Floor 01: Mean Daylight Autonomy = 85.32 %
Floor 02: Mean Daylight Autonomy = 95.00 %
Floor 03: Mean Daylight Autonomy = 67.51 %
Floor 04: Mean Daylight Autonomy = 83.92 %
Floor 05: Mean Daylight Autonomy = 69.38 %
Floor 06: Mean Daylight Autonomy = 70.23 %
Northwest Orientation

Mean Daylight Autonomy (300 LUX)

Floor 07: Mean Daylight Autonomy = 67.27 %
Floor 08: Mean Daylight Autonomy = 68.94 %
Floor 09: Mean Daylight Autonomy = 66.88 %
Floor 10: Mean Daylight Autonomy = 69.01 %
Floor 11: Mean Daylight Autonomy = 38.74 %
Floor 12: Mean Daylight Autonomy = 80.62 %
Floor 13: Mean Daylight Autonomy = 95.42 %
Daylight Autonomy Simulation

Floor 00: Mean Daylight Autonomy = 24.28 %
Floor 01: Mean Daylight Autonomy = 20.99 %
Floor 02: Mean Daylight Autonomy = 41.19 %
Floor 03: Mean Daylight Autonomy = 91.59 %
Floor 04: Mean Daylight Autonomy = 19.35 %
Floor 05: Mean Daylight Autonomy = 47.22 %
Floor 06: Mean Daylight Autonomy = 32.01 %
Daylight Autonomy (1000 LUX)

Floor 07: Mean Daylight Autonomy = 37.13%
Floor 08: Mean Daylight Autonomy = 35.58%
Floor 09: Mean Daylight Autonomy = 39.53%
Floor 10: Mean Daylight Autonomy = 35.51%
Floor 11: Mean Daylight Autonomy = 38.74%
Floor 12: Mean Daylight Autonomy = 46.26%
Floor 13: Mean Daylight Autonomy = 92.22%

Northwest Orientation
Floor 00: Mean Daylight Autonomy = 24.28%
Floor 01: Mean Daylight Autonomy = 20.99%
Floor 02: Mean Daylight Autonomy = 41.19%
Floor 03: Mean Daylight Autonomy = 91.59%
Floor 04: Mean Daylight Autonomy = 19.35%
Floor 05: Mean Daylight Autonomy = 47.22%
Floor 06: Mean Daylight Autonomy = 32.01%

Southeast Orientation
Floor 07: Mean Daylight Autonomy = 37.13 %
Floor 08: Mean Daylight Autonomy = 35.58 %
Floor 09: Mean Daylight Autonomy = 39.53 %
Floor 10: Mean Daylight Autonomy = 35.51 %
Floor 11: Mean Daylight Autonomy = 38.74 %
Floor 12: Mean Daylight Autonomy = 46.26 %
Floor 13: Mean Daylight Autonomy = 92.22 %
STRUCTURAL SYSTEMS

BUILDING CORES + FLOOR PLATES

COLUMNS + BEAMS + ETFE MEMBRANE
PROGRAMATIC STRUCTURAL ISSUES
NORTH FACADE EXPLODED
BASEMENT FLOOR PLAN
CROP PRODUCTION CALCULATIONS

OFFICE VERTICAL CONVEYOR GROW SYSTEM
2,400 SQ. FT. X 6.6 LBS PER SQ. FT. = UP TO (15,840 LBS)
OF PRODUCE PER YEAR

NORTH FACADE HYDROPONIC GROW SYSTEM
5,500 SQ. FT. X 6.6 LBS PER SQ. FT. = UP TO (36,300 LBS)
OF PRODUCE PER YEAR

ROOFTOP GREENHOUSE HYDROPONICS
7,000 SQ. FT. X 6.6 LBS PER SQ. FT. = UP TO (46,200 LBS)
OF PRODUCE PER YEAR

PUBLIC VERTICAL CONVEYOR GROW SYSTEM
7,000 SQ. FT. X 6.6 LBS PER SQ. FT. = UP TO (46,200 LBS)
OF PRODUCE PER YEAR

COMMERCIAL GREENHOUSE HYDROPONICS
10,800 SQ. FT. X 6.6 LBS PER SQ. FT. = UP TO (98,880 LBS)
OF PRODUCE PER YEAR

COMMERCIAL AEROPONICS
15,600 SQ. FT. X 28.5 LBS PER SQ. FT. = UP TO (347,700 LBS)
OF PRODUCE PER YEAR

* CALCULATIONS ARE BASED OFF DATA FROM AEROFARMS AND GOTHAM GREENS INC.
THE ETFE SYSTEM COLLECTS RAIN MORE EFFICIENTLY THAN A STANDARD GREENHOUSE GLASS PANE. THE RAIN IS HARVESTED THROUGH A SERIES OF SMALL GUTTERS WHICH IS THEN FILTERED AND SUPPLIED BACK TO THE HYDROPONIC SYSTEM.

- LIGHT WEIGHT
- HIGH TRANSPARENCY
- HIGH RESISTANCE TO POLLUTION AND CHEMICALS
- 95% LIGHT TRANSMISSION
THE PROPOSED CURTAIN WALL SYSTEM WILL GIVE BOTH THE RESIDENTS AND COMMUNITY DIRECT ACCESS TO FRESH HYDROPONIC GREENS.

THE FACADE IS DESIGNED TO MAINTAIN A CONSTANT TEMPERATURE THAT IS FIT FOR GROWING VARIOUS TYPES OF GREENS.
The plants are grown on a operable vertical conveyor system to ensure an even distribution of light.

Workers can harvest, re-plant, and provide maintenance to the hydroponic system.
Integrating food production into dense urban areas can reconnect us with food and create more resilient cities. By establishing a sustainable prototype urban farm there is great potential for these structures to germinate across cities. I conclude that building technology and design can adapt to feed the increasing urban populace.

Furthermore, this model for urban farming can be tested in cities with larger populations as well as incorporate residential programs into the design. In the future, buildings will be able to produce and harvest food directly on-site in turn supplying food directly to surrounding neighborhoods.

CONCLUSION
THANK YOU!