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Abstract

We consider the effect of the ultraviolet (UV) or short wavelength modes on the background

of Brane Gas Cosmology. We find that the string matter sources are negligible in the UV and

that the evolution is given primarily by the dilaton perturbation. We also find that the linear

perturbations are well behaved and the predictions of Brane Gas Cosmology are robust against

the introduction of linear perturbations. In particular, we find that the stabilization of the extra

dimensions (moduli) remains valid in the presence of dilaton and string perturbations.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Understanding the behavior of strings in a time dependent background has been a

subject of much interest and has been pursued in a number of differing ways. One scenario,

known as Brane Gas Cosmology (BGC), is devoted to understanding the effect that string

and brane gases could have on a dilaton-gravity background in the early Universe [1,

2, 3, 4, 5, 8]. In [2], it was suggested that the energy associated with the winding

of strings around the compact dimensions would produce a confining potential for the

scale factor and halt the cosmological expansion1. The analysis of BGC was initially

performed under the assumption of a homogeneous and isotropic cosmology. The results

were recently extended to the case of anisotropic cosmology in [4]. There, it was shown

that string gases can give rise to three dimensions growing large and isotropic due to string

annihilation while the other six dimensions remain confined. In [5] it was shown that by

considering both momentum and winding modes of strings, the six confined dimensions

can be stabilized at the self-dual radius, where the energy of the string gas is minimal.

This result demonstrated that, in BGC, the volume moduli of the extra dimensions can

be stabilized in a natural and intuitive way.

In recent work [6], we considered the effect of string inhomogeneities and dilaton fluc-

tuations on BGC. The string sources of BGC are usually represented by a perfect fluid

with homogeneous energy and pressure densities given by the mass spectrum of the strings

(see e.g. [1, 5, 7]). One may worry that inhomogeneities of string sources (in particular

strings winding around the confined dimensions) as a function of the unconfined spatial

directions could lead to serious instabilities which could ruin the main successes of BGC,

namely the prediction that three directions become large leaving the other six confined

uniformly as a function of the coordinates of the large spatial sections. In [6], we found

that at the linear level BGC is robust with respect to long wavelength perturbations. In

1 This was later shown quantitatively in [3].
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that paper it was found that at late times the inhomogeneities are subleading compared

to the evolution of the background. In this paper we will extend our considerations to

the ultraviolet or small wavelength perturbations. Our expectation was that on small

wavelengths, the motion of the strings would smear out potential instabilities in a way

analogous to how the motion of light particles (“free-streaming”) leads to a decay of short

wavelength fluctuations in standard cosmology (see e.g. [9] for a review). However, we

will find that the string matter perturbations are actually sub-leading in the evolution

and the dilaton perturbation is the primary driving force of instability.

For reference, in Section 2 and 3 we present the background solution and perturbed

equations as found in [6]. The crucial new results appear in Section 4, where we derive

the perturbation equations for the UV modes and then solve for their late time behavior.

The full equations are presented in the Appendix. We conclude with a discussion of our

findings and future prospects in Section 5.

II. BACKGROUND SOLUTION

Our starting point is the low energy effective action for the bulk space-time with string

matter sources [3],

S =
1

4πα′

∫

dDx
√
−ge−2ϕ

(

R + 4(∇ϕ)2 − 1

12
H2
)

+ Sm , (1)

where R denotes the Ricci scalar, g is the determinant of the background metric, ϕ is the

dilaton field, and H is the field strength of an antisymmetric tensor field. The action of

the matter sources is denoted by Sm. For example, with D = 10 this is the low energy

effective action of type II-A superstring theory. For the purposes of this paper we will

ignore the effects of branes, since it will be the winding and momentum modes of the

string that ultimately determine the dimensionality and stability of space-time [1]. Here,

we will ignore the effects of fluxes 2, i.e. we set H = 0.

2 See [10] for inclusion of fluxes in the scenario.
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This action yields the following equations of motion,

R ν
µ + 2∇µ∇νϕ = 8πM−2

p e2ϕT ν
µ ,

R + 4∇κ∇κϕ− 4∇κϕ∇κϕ = 0, (2)

where ∇ is the covariant derivative.

We will work in the conformal frame with a homogeneous metric of the form

ds2 = e2λ(η)
(

dη2 − δijdx
idxj

)

− e2ν(η)δmndx
mdxn, (3)

where (η, xi) are the coordinates of 3 + 1 space-time and xm are the coordinates of the

other six dimensions, all of which can be taken to be isotropic [4]. The scale factors a(η)

and b(η) are given by λ ≡ ln(a) and ν ≡ ln(b).

We consider the effect of the strings on the background through their stress energy

tensor

T ν
µ ≡ diag(ρ,−pi,−pm), (4)

where ρ is the energy density of the strings, pi (i = 1 . . . 3) is the pressure in the expanding

dimensions and pm (m = 4 . . . 9) is the pressure in the small dimensions (because of

our assumption of isotropy of each subspace, there is only one independent pi and one

independent pm).

Strings contain winding modes, momentum modes and oscillatory modes. However,

since the energies of the oscillatory modes are independent of the size of the dimensions,

and since the winding modes and momentum modes dominate the thermodynamic par-

tition function at very small and very large radii of the spatial dimensions, here we shall

neglect the oscillatory modes. In the absence of string interactions, the contributions to

the stress tensor coming from the string winding modes and momentum modes (Tw
µν and

Tm
µν respectively) are separately conserved,

Tµν = Tw
µν + Tm

µν

∇µTw
µν = 0, ∇µTm

µν = 0 . (5)
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The conservation equations take the form

ρ′ w,m +
9
∑

i=1

λ′i(ρ
w,m − p

w,m
i ) = 0, (6)

where the derivatives are with respect to the conformal time η, and where for the moment

we consider 9 independent scale factors.

Expressing (2) in terms of the metric (3) and the stress tensor (4), we find the following

system of equations,

− 3λ′′ − 6ν ′′ + 6λ′ν ′ − 6ν ′2 + ϕ′′ − λ′ϕ′ = 8πM−2
p eϕ+2λρ, (7)

−λ′′ + 2λ′2 + 6λ′ν ′ + λ′ϕ′ = −8πM−2
p eϕ+2λpi, (8)

−ν ′′ + 6ν ′2 + 2λ′ν ′ + ϕ′ν ′ = −8πM−2
p eϕ+2λpm, (9)

−6λ′′ − 12ν ′′ − 24λ′ν ′ − 42ν ′2 − 6λ′2 − ϕ′2 + 2ϕ′′ + 8λ′ϕ′ + 12ϕ′ν ′ = 0. (10)

The explicit forms of the energy density and pressure were given in [5]3,

ρ = 3µN (3)e−2λ−6ν + 3µM (3)e−4λ−6ν + 6µN (6)e−3λ−5ν + 6µM (6)e−3λ−7ν , (11)

pi = −µN (3)e−2λ−6ν + µM (3)e−4λ−6ν , (12)

pm = −µN (6)e−3λ−5ν + µM (6)e−3λ−7ν , (13)

where µ is a constant, N (3) and M (3) are the numbers of winding and momentum modes

in the large directions, and N (6) and M (6) in the six small directions.

We are interested in solutions that stabilize the internal dimensions, while allowing

the three large dimensions to expand. Such solutions were discussed in [5], where it was

shown that the winding and momentum modes of the strings lead naturally to stable

compactifications of the internal dimensions at the self dual radius. This remains true

as the other three dimensions grow large, which is possible because the string gas can

maintain thermal equilibrium in three dimensions and the string winding modes are able

3 The equations here are related to Eq. (18) in [5] by the volume factor V = e3λ+6ν , e.g. ρ = E

V
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to annihilate. Thus, we will set N (3) = 0. At the self dual radius, the number of winding

modes is equal to the number of momentum modes (i.e. N (6) = M (6)) and the pressure

vanishes (pm = 0).

In Ref. [5], the solutions subject to the above conditions on the winding and momentum

numbers were found numerically. In this paper, we wish to study the stability of these

solutions towards linear perturbations in the time interval when the internal dimensions

have stabilized and the large dimensions give power law expansion. In the following

section, we will derive the equations for the linear fluctuations. The coefficients in these

equations depend on the background solution. We will use analytical expressions which

approximate the numerically obtained solutions of [5]. We restrict our initial conditions

so that the evolution preserves the low energy and small string coupling assumptions

(gs ∼ e2ϕ ≪ 1).

We can approximate a typical solution of the equations (7-10) by

λ(η) = k1 ln(η) + λ0 or a(η) = a0η
k1,

ϕ(η) = −k2 ln(η) + ϕ0, (14)

where the constants k1, k2, λ0 and ϕ0 depend on the choice of initial conditions. We have

made use of ν = ν ′ = ν ′′ = 0, N (3) = 0, N (6) = M (6), pm = 0. Note that in this limit (9)

is trivially satisfied. An example of a solution yielding stabilized dimensions and three

dimensions growing large corresponds to k1 = 1
9

and k2 = 9
7
. The numerical solution of

[5] and the analytical approximation used in this paper are compared in Fig. 1, for the

above values of the constants k1 and k2.

III. SCALAR METRIC PERTURBATIONS

In this section we consider the growth of scalar metric perturbations (see e.g. [11] for a

comprehensive review of the theory of cosmological perturbations) due to the presence of

string inhomogeneities. We are interested in the case where the fluctuations depend only

6



FIG. 1: A comparison between the numerical background solutions obtained in [5] (red or light

line) and the analytical approximation used in this paper (green or dark line).

on the external coordinates and conformal time, not on the coordinates of the internal

dimensions. For simplicity we work in the generalized longitudinal gauge in which the

7



metric perturbations are only in the diagonal metric elements 4. Thus, the metric including

linear fluctuations is given by

ds2 = e2λ(η)
(

(1 + 2φ)dη2 − (1 − 2ψ)δijdx
idxj

)

− e2ν(η)(1 − 2ξ)δmndx
mdxn. (15)

The dilaton ϕ also fluctuates about its background value ϕ0. The dilaton fluctuation χ

is determined by

ϕ = ϕ0 + δϕ, χ ≡ δϕ. (16)

In the above, the fluctuating fields χ, φ, ψ and ξ are functions of the external coordinates

xi and time, i.e.

χ = χ(η, xi), φ = φ(η, xi), ψ = ψ(η, xi), ξ = ξ(η, xi). (17)

The perturbations of the matter energy momentum tensor result from over-densities

and under-densities in the number of strings. From (11)-(13) and noting that we are

interested in the case when N (3) = 0 and M (6) = N (6) we find,

δρ = δρw + δρm, (18)

δρw = 30µNξe−3λ + 18µNψe−3λ + 6δN (6)e−3λ, (19)

δρm = 42µNξe−3λ + 18µMξe−4λ + 18µNψe−3λ + 12µMψe−4λ + 6µδM (6)e−3λ + (20)

+3µδMe−4λ, (21)

δpλ = 6µMξe−4λ + 4µMψe−4λ + µδMe−4λ, (22)

δpν = 2µNξe−3λ − µδN (6)e−3λ + µδM (6)e−3λ, (23)

where we define5 N ≡ N (6) = M (6) and M ≡ M (3). The fluctuations δN (6), δM (6), and

4 As discussed e.g. in [12], for scalar perturbations depending on all spatial coordinates it would be

inconsistent to choose the perturbed metric completely diagonal, and one would have to add a metric

coefficient to the dtdxm terms, where xm are the coordinates of the internal dimensions. However, as

discussed in [13], if the fluctuations are independent of the coordinates xm, as in our case, the coefficient

can be chosen to vanish, and thus the perturbed metric is completely diagonal.
5 Notice that we must be careful to distinguish between the perturbed quantities δN (6) and δM (6).
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δM are taken as functions of both conformal time and the external space, e.g. δN (6) =

δN(η, xi).

It follows from (6) that the perturbed sources obey modified conservation equations

for both the winding and momentum modes,

δρ′ w,m +
9
∑

i=1

λ′i(δρ
w,m − δp

w,m
i ) +

9
∑

i=1

δλ′i(ρ
w,m − p

w,m
i ) = 0, (24)

where δλ = a−1δa = −ψ and δν = b−1δb = −ξ are spatial variations.

We rewrite (2) to take the more familiar form of the Einstein and dilaton equations,

namely

Rν
µ − 1

2
δν
µR = e2ϕT ν

µ − 2gαν∇µ∇αϕ+ 2δν
µ

(

gµν∇µ∇νϕ− gµν∂µϕ∂νϕ
)

,

gµν∂µϕ∂νϕ− 1

2
gµν∇µ∇νϕ =

1

4
e2ϕT µ

µ , (25)

where we invoke Planckian units (i.e. 8πM−2
p = 1). Plugging the perturbed metric (15)

and dilaton into these equations, making use of the background equations of motion, and

linearizing the equations about the background (i.e. keeping only terms linear in the

fluctuations) yields the following set of equations:

~∇2ψ + 3~∇2ξ − 9Hξ′ − 3Hψ′ − 3H2φ =
1

2
e2ϕ+2λ

(

2χT 0
0 + δT 0

0

)

− 6Hφϕ′

−3ψ′ϕ′ − 6ξ′ϕ′ − ~∇2χ + 3Hχ′ + 2φϕ′2 − 2χ′ϕ′, (26)

∂iψ
′ + 3∂iξ

′ + H∂iφ− 3H∂iξ =
1

2
e2ϕ+2λδT i

0 + ∂iφϕ
′ − ∂iχ

′ + H∂iχ, (27)

∂i∂j

(

φ− ψ − 6ξ − 2χ
)

= 0 i 6= j, (28)

(

∂2
i − ~∇2

)(

φ− ψ − 6ξ
)

− 2ψ′′ − 6ξ′′ − 4Hψ′ − 6Hξ′ − 2H2φ− 4H′φ− 2φ′H

= e2ϕ+2λ
(

2χT i
i + δT i

i

)

+ 2∂2
i χ− 4φϕ′′ − 2φ′ϕ′ − 4Hφϕ′ − 4ψ′φ′ − 12ξ′ϕ′

+2χ′′ − 2~∇2χ + 2Hχ′ + 4φϕ′2 − 4χ′ϕ′, (29)

9



− ~∇2φ+ 5~∇2ξ − 5ξ′′ + 2~∇2ψ − 3ψ′′ − 10Hξ′ − 3φ′H− 9Hψ′ − 6H2φ− 6H′φ

= e2ϕ+2λ
(

2χTm
m + δTm

m

)

− 4φϕ′′ − 2φ′ϕ′ − 8Hφϕ′ − 6ψ′ϕ′ − 10ξ′ϕ′ + 2χ′′

−2~∇2χ+ 4Hχ′ + 4φϕ′2 − 4χ′φ′, (30)

− 2φϕ′2 + 2ϕ′χ′ + φϕ′′ − 6ψHϕ′ +
1

2
φ′ϕ′ − 2Hφϕ′ − 3

2
ψ′ϕ′ − 3ξ′ϕ′ − 1

2
χ′′

+
1

2
~∇2χ−Hχ′ =

1

4
e2ϕ+2λ

(

2χT + δT
)

, (31)

where T ≡ T µ
µ is the trace of the stress tensor and ~∇2 ≡ ∂2

x + ∂2
y + ∂2

z is the spatial

Laplacian. The modified conservation equations (24) take the form

d
dη

(

δN (6)
)

= 7Nξ′, (32)

42µNξ′ − 72µMξλ′e−λ − 48µMψλ′e−λ + 12µMψ′e−λ + 6µ d
dη

(

δM (6)
)

−12µδMλ′e−λ + 3µ d
dη

(

δM
)

e−λ = 0. (33)

These equations give us the evolution of the metric perturbations φ, ψ, and ξ in terms of

the matter perturbations χ, δρ, and δpi. At first glance, it may appear that the above

system is over-determined since we have eight equations for seven unknowns. However, as

is the case in standard cosmology, the conservation equations are not independent of the

Einstein equations. Thus, we can choose to keep only one of the modified conservation

equations and our system will be consistent.

IV. ULTRAVIOLET MODES

We now want to solve the equations (26)-(31) in the limit of small wavelength (or high

energy). We can simplify the analysis by working in terms of the Fourier modes, e.g.

ψ(η, ~x) =
∑

k

ψk(η)e
i~k·~x, δN(η, ~x) =

∑

k

δNk(η)e
i~k·~x, etc....

Note that in the remainder of this paper it will be understood that when we speak of

perturbed quantities we are referring to the time dependent Fourier modes, e.g. ψ ≡
ψk(η).
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FIG. 2: A comparison between the numerical value of the external metric perturbation ψ (red

or dark line) and the analytical approximation found in this paper (green or light line).

Using (28) to eliminate the scalar metric perturbation φ, the equations (26)-(31) in

Fourier space take the form

61

7η
ξ′ +

61

21η
χ′ +

88

21η
ψ′ +

(

338

189η2
+ ~k2

)

χ+

(

338

63η2
+ 3~k2

)

ξ +

(

169

189η2
+ ~k2

)

ψ = 0, (34)

ψ′ + 3ξ′ + χ′ +
88

63η
ψ +

169

21η
ξ +

169

63η
χ = 0 (35)

2ψ′′ + 6ξ′′ + 2χ′′ +
176

21η
ψ′ +

230

7η
ξ′ +

230

21η
χ′ +

6434

3969η2
ψ +

12868

1323η2
ξ +

12868

3969η2
χ = 0, (36)

3ψ′′+5ξ′′+2χ′′+
244

21η
ψ′+

1978

63η
ξ′+

718

63η
χ′+

(

2672

1323η2
+~k2

)

ψ+

(

5344

441η2
−~k2

)

ξ+
5344

1323η2
χ = 0,

(37)
1

2
χ′′ − 9

7η
ψ′ +

250

63η
χ′ +

43

49η2
ψ +

510

49η2
ξ +

(

170

49η2
+

1

2
~k2

)

χ = 0. (38)
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FIG. 3: A comparison between the numerical value of the internal metric perturbation ξ (red

or dark line) and the analytical approximation found in this paper (green or light line).

To obtain these equations we have made use of the background solution (14) and dropped

all but the leading order terms since we are interested in the late time (η >> 1) and small

wavelength (k >> 1) behavior 6. In particular, we see that as in the long wavelength

case, the source terms δN , δM3, and δM6 are negligible at late times. This is because

the string matter sources are sub-leading in the evolution equations and instability is

primarily sourced by the dilaton perturbation. This result is crucial to our outcome and

is discussed in detail in the Appendix.

We also notice that (34) and (35) are only first order in time derivatives and can be

taken as constraints on the initial conditions. This leaves us with the equations of motion

(36), (37), and (38). These equations can be put in a more tractable form by introducing

6 For the interested reader, the full equations are presented in the Appendix.
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FIG. 4: A comparison between the numerical value of the dilaton perturbation χ (red or dark

line) and the analytical approximation found in this paper (green or light line).

the two fields ∆ and Θ,

ψ = ∆ + Θ ξ = ∆ − 1

3
Θ. (39)

The equations can then be written as

1

2
χ′′ +

250

63η
χ′ +

(

170

49η2
+

1

2
~k2

)

χ =
9

7η
∆′ +

9

7η
Θ′ − 79

7η2
∆ +

127

49η2
Θ (40)

4

3
Θ′′ +

704

189η
Θ′ +

(

4

3
~k2 − 226

567η2

)

Θ = −16

9η
∆′ − 4

9η
χ′ − 226

81η2
∆ − 452

567η2
χ (41)

8∆′′ +
866

21η
∆′ +

6434

567η2
∆ = −2χ′′ − 230

21η
χ′ +

18

7η
Θ′ +

6434

3969η2
Θ − 12868

3969η2
χ (42)

where we have written the system as to isolate the second order derivative terms in Θ and

∆ and again dropped terms that are negligible given k, η >> 1. We first solve (40) for χ,

neglecting the right side of the equation and treating it as a negligible source term. This

perturbative approach will only be justified if, after solving for ∆ and Θ in the remaining

13



equations, we return to (40) to make sure these terms remain negligible. Proceeding in

this way we find that to first order χ is given by,

χ0 = c1(k)
Ja(kη)

(kη)a
+ c2(k)

Ya(kη)

(kη)a
, (43)

where the ci(k) are arbitrary constants, a = 147
126

, Ja is a Bessel Function of the first kind,

and Ya is a Bessel Function of the second kind. We proceed by solving (41) for Θ using

χ = χ0 and again neglecting the terms that depend on ∆. Thus, we wish to solve the

equation
4

3
Θ′′ +

704

189η
Θ′ +

(

4

3
~k2 − 226

567η2

)

Θ = SΘ(η), (44)

where

SΘ(η) = c3(k)
Jb(kη)

(kη)c
+ c4(k)

Jd(kη)

(kη)e
+ c5(k)

Jd(kη)

(kη)f
+ c6(k)

Jb(kη)

(kη)g
+ c7(k)

Yd(kη)

(kη)d

+c8(k)
Yb(kη)

(kη)c
+ c9(k)

Yd(kη)

(kη)f
+ c10(k)

Yb(kη)

(kη)g
, (45)

where again the ci’s are arbitrary constants and b = 59
126

, c = 815
126

, d = 185
126

, e = 941
126

,

f = 689
126

, and g = 563
126

. The solution is given by

Θ0 = c11(k)
Jh(kη)

(kη)h
+ c12(k)

Yh(kη)

(kη)h
+ c13(k)

∫

GΘ(η − η′)SΘ(η′)dη′, (46)

where GΘ is the Green’s function

GΘ(η, η′) =
3π

8ηhη′−i

(

Yh(kη)Jh(kη
′) − Jh(kη)Yh(kη

′)

)

, (47)

with h = 113
126

and i = 239
126

. This is valid for η > η′ and GΘ vanishes otherwise. On

evaluating the source integral we find that the leading behavior of Θ is given by the

homogeneous part of the solution, i.e.

Θ0 ∼ c11(k)
Jh(kη)

(kη)h
+ c12(k)

Yh(kη)

(kη)h
(48)

Using this result in (42) we finally find an equation for ∆

8∆′′ +
866

21η
∆′ +

6434

567η2
∆ = S∆(η), (49)
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where

S∆(η) = c14(k)
Jh(kη)

(kη)j
+ c15(k)

Jb(kη)

(kη)g
+ c16(k)

Jd(kη)

(kη)l
+ c17(k)

Ji(kη)

(kη)i
+ c18(k)

Jb(kη)

(kη)c

+c19(k)
Jd(kη)

(kη)f
+ c20(k)

Jd(kη)

(kη)e
+ c21(k)

Yh(kη)

(kη)j
+ c22(k)

Yb(kη)

(kη)g
+ c23(k)

Yd(kη)

(kη)l

+c24(k)
Yi(kη)

(kη)i
+ c25(k)

Yb(kη)

(kη)c
+ c26(k)

Yd(kη)

(kη)f
+ c27(k)

Yd(kη)

(kη)e
,

(50)

where j = 365
126

and l = 437
126

. The solution is given by

∆(η) =
c28(k)

(kη)m−n
+

c29(k)

(kη)m+n
+ c30(k)

∫

G∆(η − η′)S∆(η′)dη′, (51)

where m = 349
168

, n =
√

735905
504

, and G∆ is given by

G∆(η, η′) =
αη′p

ηm

[(

η

η′

)n

−
(

η′

η

)n]

, (52)

with p = 517
168

. The Green’s function, G∆, is valid for η > η′ and vanishes otherwise. Using

this result for ∆ and Θ0 one can check that we were justified in neglected the terms in

both (40) and (41). That is, these terms do not significantly change the evolution. Thus,

we have found that there are no growing exponential instabilities. In fact, we find that

the behavior of the perturbations is that of a decaying oscillator.

As another check of our approximation, we can compare our analytic solution with a

numerical treatment. By approximating ∆ and Θ0 as we have discussed, i.e. ignoring the

source terms, we find the following approximate form for the perturbations

ψ ∼ η−m+n + η−m−n +
cos(kη + δ1)

ηq
,

ξ ∼ η−m+n + η−m−n − 1

3

cos(kη + δ2)

ηq
,

χ ∼ cos(kη + δ3)

ηr
, (53)

where we have used the asymptotic form of the Bessel functions, q = 88
63

, r = 250
63

and the

δi represent time-independent phases. In Fig. (2), Fig. (3), and Fig. (4) we compare

15



these approximate solutions to the numerical solution of the full equations (40)-(42). We

find agreement at late times (large η) giving us a second check that our approximations

were warranted. Thus, we conclude that the small wavelength or ultraviolet perturbations

are well behaved in the linear regime.

V. CONCLUSIONS

We have extended the analysis of perturbations in BGC to include the UV modes. We

have derived the evolution equations for the fluctuations at small wavelengths and at late

times. We then solved these equations using a perturbative approach, which we were able

to check both analytically and numerically. We find a novel behavior for the perturbations,

in that string matter sources are negligible compared with the dilaton perturbation and

the resulting behavior is that of a decaying oscillator. This has interesting consequences in

regards to the worry of black hole formation and the usual worrisome behavior of Kaluza-

Klein massive states on the background. We have concluded that at the linear level and

in the gas approximation these types of string matter sources will have a negligible effect.

Moreover, we find that the predictions of BGC remain robust under the consideration of

both long and short wavelength perturbations. In particular, the prediction that 3 + 1

dimensions will grow large while 6 dimensions remain stabilized around the self dual radius

remains intact.

Although these results are promising for BGC there is still much to be done. A more

complete treatment of the perturbations would need to take into consideration the non-

linear behavior. It would also be interesting to test the string gas approach itself. That

is, how does one go from the consideration of the effects of individual strings to the

known predictions of BGC? Finally, it is an important consideration to reexamine these

perturbations in the presence of a frozen dilaton. We know that at very late times in

the cosmological evolution the dilaton most likely acquired a mass. Since the dilaton

perturbation played such a vital role in this analysis it could be expected that the results

16



would change dramatically in the massive dilaton case. However, if the perturbations do

remain well behaved in this case, it would also be of interest to see if BGC could give rise

to a method of structure formation or a unique signature to be observed in the Cosmic

Microwave Background. We leave these questions and concerns to future work.
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APPENDIX A: PERTURBATION EQUATIONS FOR UV MODES

In this appendix we will examine in more detail the arguments that led to the string

matter source terms being dropped from (34)-(38). We begin by introducing the Fourier

modes,

ψ(η, ~x) =
∑

k

ψk(η)e
i~k·~x, ψk(η) ≡ ψ, (A1)

ξ(η, ~x) =
∑

k

ξk(η)e
i~k·~x, ξk(η) ≡ ξ, (A2)

χ(η, ~x) =
∑

k

χk(η)e
i~k·~x, χk(η) ≡ χ, (A3)

δM(η, ~x) =
∑

k

δMk(η)e
i~k·~x, δMk(η) ≡ δM̃, (A4)

δN (6)(η, ~x) =
∑

k

δN
(6)
k (η)ei~k·~x, δN

(6)
k (η) ≡ δÑ (6), (A5)

δM (6)(η, ~x) =
∑

k

δM
(6)
k (η)ei~k·~x, δM

(6)
k (η) ≡ δM̃ (6), (A6)

δT i0(η, ~x) =
∑

k

δT i0
k (η)ei~k·~x, δT i0

k (η) ≡ δT̃ i0. (A7)
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Note that in the remainder of this paper it will be understood that when we speak

of perturbed quantities we are referring to the time dependent Fourier modes, e.g. ψ ≡
ψk(η). Given these modes, the equations (26)-(31) now become

(

61

21η
+

324

49η2

)

χ′ +

(

88

21η
+

162

49η2

)

ψ′ +

(

12N

η
169

63

+
3M

η
176

63

+ ~k2 +
338

189η2

)

χ +

+

(

972

49η2
+

61

7η

)

ξ′ +

(

3~k2 +
36N

η
169

63

+
9M

η
176

63

+
338

63η2

)

ξ + 3
δN

η
169

63

+

+

(

6M

η
176

63

+
169

189η2
+

18N

η
169

63

+ ~k2

)

ψ +
3

2

δM

η
176

63

+ 3
δM (6)

η
169

63

= 0, (A8)

ψ′ + 3ξ′ + χ′ +
88

63η
ψ +

169

21η
ξ +

169

63η
χ+

δT̃i0

η
148

63

= 0 (A9)

2ψ′′ + 6ξ′′ + 2χ′′ +
176

21η
ψ′ +

230

7η
ξ′ +

230

21η
χ′ +

(

6434

3969η2
+

4M

η
176

63

)

ψ +

+

(

12868

1323η2
+

6M

η
176

63

)

ξ +

(

12868

3969η2
+

2M

η
176

63

)

χ+
δM

η
176

63

= 0, (A10)

3ψ′′ + 5ξ′′ + 2χ′′ +
244

21η
ψ′ +

1978

63η
ξ′ +

718

63η
χ′ +

(

2672

1323η2
+ ~k2

)

ψ +

+

(

5344

441η2
+

2N

η
169

63

− ~k2

)

ξ +
5344

1323η2
χ+

δM (6)

η
169

63

+
δN (6)

η
169

63

= 0, (A11)

1

2
χ′′ − 9

7η
ψ′ +

250

63η
χ′ +

(

18N

2η
169

63

+
43

49η2

)

ψ +

(

30N

2η
169

63

+
510

49η2

)

ξ +

+

(

6N

η
169

63

+
170

49η2
+

1

2
~k2

)

χ+
3δN (6)

η
169

63

= 0. (A12)

From these equations we see that for late times (η >> 1) and small wavelengths (k >> 1)

a number of terms can be neglected and we arrive at equations (34)-(38). In particular,

notice that the string matter perturbations δM , δN (6), δM (6) appear to be negligible

compared to the other terms. This means that the dilaton perturbation δϕ = χ is the

most important source of the scalar metric perturbation. Of course, depending on the
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time dependence of the string perturbations it could be that these terms are not negligible.

We can test our assumption in the following way. In Section 4, by neglecting these (and

other terms of explicit higher order) we found the approximate solutions (53).

ψ ∼ η−m+n + η−m−n +
cos(kη + δ1)

ηq
,

ξ ∼ η−m+n + η−m−n − 1

3

cos(kη + δ2)

ηq
,

χ ∼ cos(kη + δ3)

ηr
, (A13)

We must now plug these quantities back into the full equations (A8)-(A12) and check

that the negligible quantities remain negligible. However, in the case of the string matter

perturbations it turns out that we can perform another check. For example, in the case

of the perturbation δN (6) we can use the conservation equation (32) to find

δN (6) = 7Nξ + constant. (A14)

By plugging this into (A8)-(A12) we see that the term is indeed negligible compared to

the other terms. Similarly, this can be shown for the other two matter perturbations

using the conservation equation (33) and the constraint equation (A8). Thus, we have

demonstrated that the matter perturbation is negligible and the dilaton perturbation is

the primary source of the fluctuations.
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