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Abstract

We present a critical review and summary of String Gas Cosmology. We include a

pedagogical derivation of the effective action starting from string theory, emphasiz-

ing the necessary approximations that must be invoked. Working in the effective

theory, we demonstrate that at late-times it is not possible to stabilize the extra

dimensions by a gas of massive string winding modes. We then consider additional

string gases that contain so-called enhanced symmetry states. These string gases

are very heavy initially, but drive the moduli to locations that minimize the energy

and pressure of the gas. We consider both classical and quantum gas dynamics,

where in the former the validity of the theory is questionable and some fine-tuning

is required, but in the latter we find a consistent and promising stabilization mech-

anism that is valid at late-times. In addition, we find that string gases provide a

framework to explore dark matter, presenting alternatives to ΛCDM as recently

considered by Gubser and Peebles. We also discuss quantum trapping with string

gases as a method for including dynamics on the string landscape.

∗Electronic address: Battefeld@physics.brown.edu
†Electronic address: watsongs@physics.utoronto.ca
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I. INTRODUCTION

String theory continues to have a number of challenges to address if it is to be made

experimentally verifiable. Cosmology offers an exciting opportunity to explore such chal-

lenges, since the early universe provides conditions where string dynamics would play

a vital role. To investigate the predictions of string cosmology it is important to have

concrete constructions of string models in backgrounds that are compatible with our un-

derstanding of the early universe. In particular, this presents us with the challenge of

finding solutions of string theory in time-dependent backgrounds and at nonzero temper-

ature.

The usual method for constructing models of string cosmology is to compactify any

extra dimensions and then focus on the low energy, massless degrees of freedom. However,

this presents a problem since the low energy equations of motion lack potentials to fix the

massless moduli. For cosmology, this implies the existence of many light scalars, which

if not fixed at late-times would seem to contradict current observations. Nevertheless, a

few light scalars could prove valuable to cosmology, since they could address the issue of

dark energy, dark matter, or provide a theoretical motivation for inflation.

String or Brane Gas Cosmology (SGC) is an approach to string cosmology which

began with the pioneering work of Brandenberger and Vafa in (Brandenberger and Vafa,

1989). They presented an elegant explanation for the dimensionality of space-time by

considering the effects of massive string modes on the evolution of the early universe. Since

this seminal paper, considerable effort has gone into realizing whether such a scenario is

possible. In fact, the cosmology of string gases has lead to interesting conclusions beyond

those originally proposed by Brandenberger and Vafa. In this paper we attempt to present
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a pedagogical, yet critical, review of the string gas approach.

In Section II, we review the origin of the effective action of string cosmology as it

arises from string theory in the low energy - weak coupling limit. For homogeneous fields,

this effective theory exhibits a dynamical symmetry, so-called scale factor duality. We

present the BPS fundamental string solution and corresponding stress-energy tensor for

the special case of a time-independent background. In Section III, after explicitly stating

the assumptions of the SGC approach, we generalize the fundamental strings to a time-

dependent background treating them as an ideal gas. We derive the corresponding energy

and pressure and discuss the duality properties of the spectrum. In Section IV, we return

to the Brandenberger and Vafa mechanism and review recent work that challenges the

heuristic argument. However, we point out that this argument is not quintessential to

string gas cosmology. Next, we consider the effect of a classical string gas on the time-

dependent background. This has been examined in the literature from both the 10D

String frame and 4D Einstein frame perspectives. We review these works, stressing the

importance that physical quantities are frame independent. Using this, we demonstrate

that string gases of purely winding modes are not enough to stabilize the extra dimensions.

A possible resolution to these problems consists of considering string states that become

massless at critical values of the radion (scale of the extra dimension). These gases can

drive the evolution of the radion to the location which minimizes the pressure of the gas.

However, we will see that this approach suffers from fine-tuning issues: first, each string

gas configuration can lead to a different attractor point on the moduli space; second, if

the radion starts far from the attractor point, the density of the gas will exceed the energy

cutoff of the effective theory, questioning the validity of the approach.

In Section V, we present a resolution to these fine-tuning problems, by considering the

quantum aspects of the string gas. This approach, known as quantum moduli trapping

(Kofman et al., 2004; Watson, 2004a), takes the initial theory to contain only the low

energy massless modes of the string. Then, as the radion nears a point of enhanced

symmetry (ESP) where additional states become light, the states must be included in the
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effective action. This leads to particle production of the additional light states. Once

on-shell, these states result in a confining potential, since their energy density grows as

the radion departs from the ESP.

In Section VI, we consider the possibility of obtaining observational signatures from

string gases. We demonstrate that remnant strings in the extra dimensions provide natural

candidates for the alternative ΛCDM model proposed recently by Gubser and Peebles in

(Gubser and Peebles, 2004b). We also comment on the possibility of combining string

gases with a period of cosmological inflation.

In Section VII we conclude. In the appendices we provide a short review on conformal

transformations and dimensional reduction, necessary for going between the 10D String

frame and 4D Einstein frames.

In this review, we attempt to provide a comprehensive survey of the existing SGC

literature, focusing on the string theory origin and the importance of moduli stabilization.

For complementary reviews with emphasis on cosmological aspects, we refer the reader

to (Brandenberger, 2005a,b).

II. DYNAMICS OF STRINGS IN TIME-DEPENDENT BACKGROUNDS

A closed string in a background generated by its bosonic, massless modes is described

by a nonlinear sigma model (Callan et al., 1985)

Sσ = − 1

4πα′

∫

d2σ
(√−γγabGµν(X) ∂aX

µ∂bX
ν + ǫabBµν(X) ∂aX

µ∂bX
ν
)

, (1)

where γab is the world-sheet metric, (2πα′) is the inverse string tension, Gµν is the back-

ground space-time metric, Bµν is the background antisymmetric tensor. Our convention

in this review will be that coordinates of the full space-time are denoted by Xµ with

µ = 0 . . .D − 1, where D is the space-time dimension. Spatial dimensions parameterized

by X i are denoted by indices i, j = 1 . . .D − 1, compact dimensions are given by coordi-

nates Y m with m,n running over compact spatial coordinates, and σa with σ0 ≡ τ, σ1 ≡ σ
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are the worldsheet coordinates.

In addition to the action above, one can add a topological term

Sφ = − 1

4π

∫

d2σ
√
γφ(X)R(2), (2)

where φ is the background dilaton, which is coupled to the world-sheet Ricci scalar R(2).

The string coupling is then given in terms of the vacuum expectation value of the dilaton

gs = eφ0 .

Varying the action (1) with respect to the fields, Xµ, gives the string equations of

motion in a general space-time

∂a

(√
γγab∂bX

µ
)

+ Γµλν
√
γγab∂aX

λ∂bX
ν +

1

2
Hµ

λνǫ
ab∂aX

λ∂bX
ν = 0. (3)

In addition, one must satisfy the constraint equations

Gµν(X)
(

∂aX
µ(σ, τ)∂bX

ν(σ, τ)− 1

2
γabγ

cd∂cX
µ∂dX

ν
)

= 0. (4)

The background fields, Gµν , Bµν , and φ, are realized as couplings of the non-linear sigma

model as can be seen from the action above. This model possesses a conformal symmetry

classically, but this is spoiled at the quantum level by anomalies; the couplings evolve in

accordance with the corresponding beta functions1. This is equivalent to demanding that

the trace of the world-sheet stress tensor given by

T aa = βGµν
√
γγab∂aX

µ∂bX
ν + βBµνǫ

ab∂aX
µ∂bX

ν + βφ
√
γR(2), (5)

vanishes, where the β functions are found, (e.g. by the background field method) to be

(Callan et al., 1985)

βGµν =
(

Rµν + 2∇µ∇νφ−
1

4
HµκσH

κσ
ν

)

+O(α′),

βBµν =
(

∇κHκµν − 2∇κφHκµν

)

+O(α′),

βφ =
1

α′

(D − 26

48π2

)

+
(

4∇κφ∇κφ− 4∇κ∇κφ− R +
1

12
HκµνH

κµν
)

+O(α′), (6)

1 Actually (2) already breaks conformal symmetry at the classical level, but is none-the-less required

(Fradkin and Tseytlin, 1985).
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with H = dB denoting the field strength associated with the field Bµν . Keeping terms

tree level in α′, these equations of motion can be derived from those of the low energy

effective action of supergravity in D space-time dimensions

S0 =
1

2κ2
D

∫

dDx
√
−Ge−2φ

(

R + c+ 4(∇φ)2 − 1

12
H2

)

, (7)

where c vanishes in the critical case, D = 26 (D = 10) for the bosonic (super) string, and

acts as a cosmological constant in the noncritical case. In the case D ≤ 10, the prefactor

takes the form 2κ2
D = (2π

√
α′)D−2g2

s(2π)−1 = 16πGD with ls =
√
α′ the string length and

GD the D dimensional Newton constant. By noting this prefactor we see that this action

is not only tree level in α′, but it is also tree level in gs = eφ0 where φ0 is the expectation

value of the dilaton 2.

The above action exhibits a new symmetry, scale factor duality, that is not found in

pure general relativity. To see this, let us consider cosmological solutions, ignoring flux

for the moment and working in the critical dimension (c = 0).We take the metric and

dilaton to have the form

ds2 = −dt2 +
d

∑

i=1

a2
i (t) dx

2
i ,

ai ≡ eλi(t), φ = φ(t), d = D − 1, (8)

where the spatial directions are taken to be toroidal. It will prove useful to perform a

field redefinition and introduce the shifted dilaton,

ϕ = 2φ− lnV = 2φ−
d

∑

i=1

λi. (9)

Plugging this ansatz for the fields into the action (7) one finds that the action is invariant

under the transformation

ai →
1

ai
, λi → −λi, ϕ→ ϕ. (10)

2 Higher gs corrections would come from considering corrections to the β equations from higher genus

surfaces for the string world-sheet corresponding to string interactions (we implicitly used a sphere,

genus zero).
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This symmetry is known as scale factor duality, and has interesting consequences for

cosmology. In particular, it tells us that the effective field theory of dilaton gravity for a

small scale factor is equivalent to that for a large scale factor.

In addition to the low-energy action for the massless modes above, one may consider

the addition of classical or quantum string matter. One approach that was first advocated

in (Dabholkar et al., 1996, 1990; Dabholkar and Harvey, 1989) is to include the action (1)

as a phenomenological matter source for the background fields in (7). There are many

interpretations of what such a term may represent. In the supergravity (SUGRA) solutions

presented in (Dabholkar et al., 1996, 1990; Dabholkar and Harvey, 1989), the authors

observed that the string source was required at the origin to complete the solution. It has

also been argued that this action can be added as a method for taking into consideration

quantum corrections coming from higher genus worldsheets (see e.g. (de Alwis and Sato,

1996; Tseytlin, 1992)). This interpretation is clear from the additional power of g2
s that

appears in front of the action (1) relative to (7)3.

If we consider a single string source for the background fields the total action becomes,

S = S0 + Sσ. (11)

Varying this action we recover the equation of motion of the string (3), the constraints

(4), and the background equations sourced by the string which take the form

Rµν + 2∇µ∇νφ−
1

4
HµκσH

κσ
ν = − κ2

De
2φ

2πα′
√
−G

∫

d2σ
√
γγab∂aX

µ∂bX
νδ(D)(x−X(σ)),

(12)

∇µ

(

e−2φHµνρ
)

=
κ2
D

πα′
√
−G

∫

d2σǫab∂aX
ν∂bX

ρδ(D)(x−X(σ)), (13)

4∇κφ∇κφ− 4∇κ∇κφ−R +
1

12
HκµνH

κµν = 0. (14)

3 The action (7) carries a multiplicative factor of g−2

s
, whereas the action (1) has prefactor g0

s
. Thus,

the latter is one higher order in the closed string coupling g2
s

and is related to the 1-loop free energy

coming from strings on a toroidal worldsheet (see for example (Bassett et al., 2003; Borunda, 2003)).
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From (12) we see that the stress-energy tensor of a single string is

Tµν ≡
2√
−G

δSσ
δGµν

= − 1

2πα′
√
−G

∫

d2σ
√
γγab∂aX

µ∂bX
νδ(D)(x−X(σ)). (15)

These equations, along with (3) and (4), represent a system of a single string in the

presence of its background massless modes. Solving these equations would seem extremely

difficult given the non-linearity of the problem. However, static solutions were found

some time ago (Dabholkar et al., 1996, 1990; Dabholkar and Harvey, 1989) and these

so-called F-string solutions were shown to preserve some supersymmetries and exhibit

BPS-like properties similar to solitons. In particular, two parallel strings satisfy a no-

force condition, since the gravitational attraction is canceled by the scalar exchange of

the dilaton and flux. Instead, in SGC we will be interested in solutions generated by a gas

of strings at finite temperature and in cosmological (time-dependent) background fields.

III. COSMOLOGY WITH STRING GASES

We now want to attempt to solve for the background fields allowing for conditions

indicative of early universe cosmology. As mentioned in the previous section, generically

the equations resulting from (3) are very difficult to solve. However, by invoking some

approximations that are not in conflict with cosmological observation, the equations can

be made tractable. We will now explicitly state these approximations leaving a discussion

of their limitations to follow.

A. Assumptions of the string gas approach

• Homogeneous Fields: We will assume that the background fields (i.e. met-

ric, flux, and dilaton) are homogeneous and therefore at most functions of time.

The generalization to inhomogeneous fields was addressed in (Battefeld et al., 2005;

Watson, 2004b; Watson and Brandenberger, 2004).
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• Adiabatic approximation: We will assume that the background fields are

evolving slowly enough that higher derivative corrections, i.e. (α′) corrections, can

be ignored. This means that locally, string sources won’t be influenced by the

expansion and their evolution can be characterized by their scaling behavior.

• Weak Coupling: We will work in the region of weak coupling (i.e. gs ≪ 1), and

we will choose initial conditions for the dilaton that preserve this condition. Thus,

higher orders corrections in gs, can be neglected.

• Toroidal Spatial Dimensions: We assume that all spatial dimensions are

toroidal and therefore admit non-trivial one cycles. In the past this assumption

was believed to be crucial, however it was later shown that this condition may be

relaxed in some cases, allowing for more phenomenologically motivated backgrounds

(Easther et al., 2002).

From the point of view of cosmology, all of these approximations are familiar. However,

both the adiabatic and weak coupling approximation are very restrictive from the string

theory perspective. The string corrections that we are choosing to ignore may be very

important for early universe cosmology, especially near cosmological singularities. The

motivation here is to take a modest approach by slowly turning on stringy effects, as one

extrapolates the known cosmological equations backward in time to better understand

the departures from standard big-bang cosmology. This is to be contrasted to models of

string cosmology that invoke supersymmetry to avoid higher order corrections. From the

cosmological standpoint, one could argue that these models are less realistic since super-

symmetry should not be expected to hold in conditions favorable to the early universe,

i.e. time-dependent, finite temperature backgrounds. It is certainly premature to claim

one has a well established understanding of string theory in cosmological backgrounds,

but one hopes by the SGC approach to better understand what role strings play in the

early universe.
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B. Energy and pressure of a string gas

Given the assumptions stated above, we now want to find cosmological solutions to the

equations (12)-(14), given the presence of a string gas. The time-dependent background

fields are

ds2 = −dt2 +

d
∑

i=1

a2
i (t) dx

2
i ,

ai ≡ eλi(t), φ = φ(t), Bµν = 0, d = D − 1. (16)

The adiabatic approximation implies that the local effects of expansion on the string

can be neglected, allowing us to simplify the string equation of motion (3) to

∂a

(√
γγab∂bX

µ
)

+ Γµλν
√
γγab∂aX

λ∂bX
ν ≈

(

∂2
τ − ∂2

σ

)

Xµ(σ, τ) = 0, (17)

where we have fixed the gauge of the worldsheet metric to γab = f(τ, σ)ηab, with ηab =

diag(−1, 1). In this gauge the constraints (4) become

Gµν

(

ẊµẊν + X́µX́ν
)

= 0 (18)

GµνẊ
µX́ν = 0, (19)

where Ẋ ≡ ∂τX and X́ ≡ ∂σX. Since the Xµ satisfy a free wave equation, their solution

can be decomposed into left and right movers

Xµ = Xµ
L(τ + σ) +Xµ

R(τ − σ),

Xµ
R = xµR +

√

α′

2
pµR(τ − σ) + i

√

α′

2

∑

n 6=0

1

n
αµne

−in(τ−σ),

Xµ
L = xµL +

√

α′

2
pµL(τ + σ) + i

√

α′

2

∑

n 6=0

1

n
α̃µne

−in(σ+τ), (20)

where xR and xL are the center of mass position, pµR and pµL are the center of mass

momentum, and α (α̃) after quantization are the operators associated with right (left)
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moving oscillations of the string. If we take some of the spatial dimensions to be compact

with coordinates Y m, then the center of mass momenta become

pmR =

√
α′

R
nm − R√

α′
ωm,

pmL =

√
α′

R
nm +

R√
α′
ωm, (21)

where R is the scale factor in themth compact direction, nm is an integer giving the charge

of the Kaluza-Klein momentum in that direction and ωl = Gmnωm is an integer giving

the winding number of the wound string (Note: The placing of the indices is important,

for a generic metric Gmn, n
m and ωm are not integers.). It is important to note that we

are again invoking the adiabatic approximation, since we are treating the scale factor R

as a constant (locally).

If we now substitute this solution into the constraint equation (18) and use the gauge

choice X0 = Eτ
√
α′ we find4

−G00Ẋ
0Ẋ0 ≡ α′E2 = Gij

(

Ẋ iẊj + X́ iX́j
)

+Gmn

(

Ẏ mẎ n + Ý mÝ n
)

= α′ ~P 2 +
(p2
L + p2

R)

2
+ 2 (NL +NR + aL + aR) , (22)

which is the mass shell condition for the string E2 = ~P 2 + M2. The constants aR and

aL have been added to account for normal ordering, with aR = aL = −1 for the bosonic

string. For the heterotic string aL = −1 and aR = −1
2

for the Neveu-Schwarz sector, while

aR = 0 for the Ramond-Ramond sector, and NR (NL) is the excitation number of the

right (left) oscillators. We have also allowed for the presence of non-compact dimensions

X i, for which the string has center of mass momentum ~P and we have used X i =
√
α′ ~Pτ .

4 There is a subtlety here involving the quantization procedure and obtaining the physical degrees of

freedom. The correct way to deal with the constraints is to introduce light-cone coordinates in target

space and this results in only the oscillators in the transverse directions being excited. We will take

this for granted in what follows and we refer the reader to (Green et al., 1987a,b) for details.
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Using the other constraint (19) we find the level matching condition

p2
L − p2

R = 4nmω
m = 4(NR −NL + aR − aL). (23)

From the string mass spectrum we immediately see that strings are invariant under the

same duality as the massless background fields. Namely, the string spectrum is unchanged

under the transformation
R√
α′
→
√
α′

R
n←→ ω, (24)

which suggests that strings at small scale factor 1
R
, behave the same as strings at large

scale factor R. This property of the spectrum, known as t-duality, is a very important

property of strings and suggests that their effects on cosmological backgrounds may differ

greatly from that of ordinary point particles (Brandenberger and Vafa, 1989).

We would now like to reconsider the stress energy tensor (15) for this string configu-

ration (see e.g. (de Vega and Sanchez, 1995)). The T 00 component is given by

T 00 = − 1

2πα′
√
−G

∫

d2σ
√
γγab∂aX

0∂bX
0δ(D)(xµ −X(σ)µ)

=
1

2πα′
√
−G

∫

d2σ
(

Ẋ0Ẋ0 − X́0X́0
)

δ(D)(xµ −Xµ(σ)), (25)

where we have again used the conformal gauge for the worldsheet metric gab = f(τ, σ)ηab.

Noting our previous choice of X0 =
√
α′Eτ , we find

T 00 =
1

2πα′|Ẋ0|
√
−G

∫ 2π
√
α′

0

dσ δ(D−1)(xi −X i(σ))
(

Ẋ0Ẋ0 − X́0X́0
)

τ=τ(X0)

=
E√−GD−1

δ(D−1)(xi −X i(σ)), (26)

which is the energy density of a single string with the delta function enforcing that there

is no contribution unless we are at the position of the string. The explicit formula for the

energy of the string in terms of its oscillations and momentum then follows from (21) and

the constraint (22)

E =

√

~P 2 +Gmn
(

nm +
ωm
α′

)(

nn +
ωn
α′

)

+
4

α′ (NL + aL), (27)
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where we have eliminated NR in favor of the other quantum numbers by using (23). It

is straight forward to generalize this to a gas of N strings. We simply average over the

delta function sources and the energy density of the string gas is

ρ =
∑

s

ñsEs, (28)

where the sum is over all species s and ñs = NsV
−1 is the number density of the string

gas in spatial volume V , with a particular set of quantum numbers n, ω,NL, NR. We will

assume that the gas is a perfect fluid and non-interacting. Therefore, we can find the

pressure in the i-th direction

pi = − 1

V

∂(ρV )

λi
, (29)

where ai = exp(λi) is the scale factor in the i-th direction.

As a simple example, let us consider two bosonic string gases (aL = aR) composed of

strings wrapping the compact dimensions (ωm 6= 0, nm = NL = NR = 0) and strings with

momentum in the compact dimensions (nm 6= 0, ωm = NL = NR = 0). Assuming we can

neglect the non-compact momenta, ~P = 0, their energy density and pressure are given by

ρw =
d

∑

l=1

ñ(l)
w e

λl(t), ρm =
d

∑

l=1

ñ(l)
m e

−λl(t),

p(l)
w = −ñweλl(t), p(l)

m = ñme
−λl(t), (30)

where we now take d to denote the number of compact directions and we have vanishing

pressure in the D− 1− d non-compact dimensions. We have lifted the scale factors Ri =

eλi to time-dependent functions using the adiabatic approximation, with V (t) the time-

dependent spatial volume (lnV (t) =
∑D−1

i=1 λi(t)). For simplicity we have absorbed the

winding and momentum numbers ω, n into the number density of winding and momentum

modes in the lth direction ñ
(l)
w and ñ

(l)
m . We have also renormalized the mass to remove

the tachyonic zero point energy aL, which would be automatically removed in the case

of heterotic strings. Here we do this by hand, since we are mainly concerned with the

15



scaling of the string energy with λi. Given an isotropic distribution of strings in the extra

dimensions, we find that the equation of state for winding and momentum modes is

pw = −1

d
ρw, pm =

1

d
ρm, (31)

respectively. We see that winding modes contribute negative pressure whereas the mo-

mentum modes scale as radiation filling the extra dimensions. To close this section, we

have found that under the assumption that the string gas can be modeled as a perfect

fluid, the stress energy tensor of a single string (15) can be generalized to

T µν = diag (−ρ, p1, p2, . . . , pD−1) , (32)

where the energy density and pressure are given by (28) and (29), respectively.

IV. CLASSICAL DYNAMICS OF STRING GASES

A. Initial Conditions and the Dimensionality of Space-time

One of the successes of SGC is the possibility to explain the emergence of three large

and isotropic spatial dimensions, while six remain stabilized near the string scale. In

this way, SGC is the only cosmological model thus far that has attempted to explain

the dimensionality of space-time dynamically5. The qualitative argument, due to Bran-

denberger and Vafa (Brandenberger and Vafa, 1989), was that winding string modes can

maintain equilibrium in at most three spatial dimensions. This is based on the simple

fact that p dimensional objects can generically intersect in at most 2p + 1 dimensions

and the intuition that string interactions are due to intersections. They argued that once

the winding modes annihilate with anti-winding modes, three spatial dimensions would

be free to expand while the remaining six should remain confined by winding modes near

5 However, for recent variations of the ideas to be discussed see (Durrer et al., 2005; Karch and Randall,

2005; Majumdar and Christine-Davis, 2002).
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the string scale. Winding modes were shown to possess such confining behavior quanti-

tatively in (Tseytlin and Vafa, 1992). There, the importance of the dilaton was stressed

because this led to the observation that the negative pressure of winding modes leads to

contraction rather than accelerated expansion. It was later observed that the dilaton is

not the critical feature restoring the Newtonian intuition per se, rather it is the effect of

anisotropies6 7. In fact, it was shown many years ago that string winding modes could

lead to confinement in the case of general relativity (Kripfganz and Perlt, 1988).

This counting argument was verified numerically in a static background, focusing on

cosmic strings in (Sakellariadou, 1996) (see also (Cleaver and Rosenthal, 1995) ) and later

extended to the case of branes in (Alexander et al., 2000), where it was argued that the

strings remain the important objects, since branes fall out of equilibrium sooner than

strings, leading to a hierarchial structure of dimensions. The setup has been generalized

to more complex topologies (Biswas, 2004; Easson, 2003; Easther et al., 2002) and many

authors elaborated on these basic arguments (Arapoglu and Kaya, 2004; Deo et al., 1992,

1991; Hotta et al., 1997; Kaya, 2003, 2004, 2005a,b; Kaya and Rador, 2003; Kim, 2004;

Park et al., 2000; Rador, 2005a,b,c). The t-duality of branes was discussed in the context

of SGC in (Boehm and Brandenberger, 2003). Other recent attempts to address dimen-

sionality making use of branes in a different way have appeared in (Durrer et al., 2005;

Karch and Randall, 2005).

Despite the appeal of the BV argument, there remain serious challenges for its quantita-

tive realization. As a first step, a study in eleven dimensional supergravity (Easther et al.,

2003) employing a fixed wrapping matrix (based on the counting argument) yielded in-

deed the predicted anisotropic expansion. However, the internal dimensions were not

stabilized, but simply grew slower. This work was extended in (Easther et al., 2004) by

6 An easy way to see this is to think of the dilaton as the scale factor of another 11th dimension. Thus,

instead of the dilaton, one could simply take one of the other scale factors to evolve anisotropically

while keeping the dilaton; this would still lead to the same conclusions as in (Tseytlin and Vafa, 1992).
7 We thank Amanda Weltman and Brian Greene for discussions on this point.
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studying the coupled Einstein-Boltzmann equations for a thermal brane gas. It was found

that only highly fine tuned initial conditions yield the desired outcome. The most recent

study (Easther et al., 2005) focusing on dilaton gravity confirmed these results: either

all dimensions grow large, since the string gas annihilated entirely, or all dimension stay

small, since the string gas froze out – intermediate solutions can only be achieved by

fine-tuning the initial conditions. It was also observed that a string gas freezes out quite

quickly due to the coupling to the rolling dilaton (Danos et al., 2004).

A crucial input is the interaction rate of strings (Polchinski, 1988) that lead to the

corresponding Boltzmann equation. The interaction probability relies on the value of

gs and therefore the dilaton. As the dilaton runs to weak coupling this means that

interaction probabilities go to zero. Secondly, viewing interactions as intersections is an

entirely classical argument8. At the level of supergravity one has exchange of closed

strings that mediate interactions. This increases the probability of interaction, since

closed string exchange can take place in any number of dimensions with the only dilution

being due to the force following a generalized Newton law, i.e. F ∼ 1
rD−2 . Henceforth,

the conclusion of Easther et.al.’s investigations have been that compactification of all

or none of the dimensions is the most probable configuration (Easther et al., 2002, 2003,

2005). However, this analysis was done given our rather limited knowledge of string theory

dynamics. In particular, our knowledge of cosmological solutions when all radii are taken

to be at the string scale is sketchy at best. A more complete knowledge of both curvature

corrections (α′) and the strong coupling behavior of the theory could certainly change this

outcome. Moreover, time dependent solutions of the full string theory continue to be an

avenue that is being actively pursued. It will be interesting to see if the BV argument will

hold, given a more complete understanding of string theory dynamics. While awaiting

this progress, we will simply assume in what follows that winding modes were able to

annihilate in three spatial dimensions, causing those to be free to expand while a winding

8 We thank Liam McAllister for discussions.
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mode gas remains in the other six. Thus, our initial conditions will be no more unnatural

than those of usual models of cosmology.

B. Cosmological Evolution in the Presence of a String Gas

Anticipating the D = 3 + 1 + 6 split, due to the annihilation of the winding modes in

three dimensions, let us consider the following background field configuration

ds2 = −dt2 + e2λ(t)d~x2 + e2ν(t)d~y2, (33)

H3 = h dx1 ∧ dx2 ∧ dx3, φ = φ(t), (34)

where H3 is a constant three form flux restricted by the expected symmetries (namely,

3 + 1 + 6)9. We want to consider these background fields in the equations of motion

(12)-(14), with the string sources replaced by the averaged stress tensor of the string gas

(32). We have

Rµν + 2∇µ∇νφ−
1

4
HµκσH

κσ
ν = 16πG10e

2φTµν , (35)

∇µ

(

e−2φHµνρ
)

= 0, (36)

4∇κφ∇κφ− 2∇κ∇κφ− 1

6
HκµνH

κµν = 16πG10e
2φT, (37)

where G10 is the ten-dimensional Newton constant, T ≡ T µµ is the trace of the stress

tensor, and we have used the trace of (35) to rewrite the last equation. Writing (37) in

this form allows us to make the important observation that (ignoring flux) the dilaton can

only evolve if matter is not conformal (i.e. T 6= 0). This condition will be respected by

string gases in general, and it is this important observation that makes string cosmology

(dilaton gravity) very different from ordinary cosmology. The flux equation (36) is trivially

satisfied given the ansatz for the background fields and we assume that the flux of the

9 More general flux configurations were considered in (Brandenberger et al., 2005; Campos, 2005a;

Kanno and Soda, 2005) where it is clear that there is still much to consider.
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strings themselves average to zero10. The remaining equations can be written in the form

c− 3λ̇2 − 6ν̇2 + ϕ̇2 − h2

2
e−6λ = eϕE, (38)

λ̈− ϕ̇λ̇− 1

2
h2e−6λ =

1

2
eϕP3 (39)

ν̈ − ϕ̇ν̇ =
1

2
eϕ, P6, (40)

ϕ̈− 3λ̇2 − 6ν̇2 =
1

2
eϕE, (41)

where we have introduced the energy E = ρV , we define the scaled pressure Pi = piV , and

ϕ is the shifted dilaton (9). The first equation is an energy constraint, which if satisfied

at some initial time will remain satisfied for all times. The sources obey a conservation

equation,

Ė + 3λ̇P3 + 6ν̇P6 = 0. (42)

From the above equations we see that the term involving flux will be negligible at

late-times, since it scales as a−6. However, in the early universe as one approaches

the cosmological singularity this term may become vital to understanding the dynam-

ics (Friess et al., 2004). Also, if we decide to work in the non-critical theory (i.e. c 6= 0),

we see that c acts as an effective cosmological constant.

C. Summary of 10d Dynamics and Moduli Stabilization

We will now briefly review the results of various authors in studying the system of

equations (38)-(41), where it will be assumed that h = 0 and c = 0 unless noted oth-

erwise. In (Brandenberger et al., 2002; Easson, 2001), the above equations were studied

with energy and pressure given by a gas of string winding modes as in (30). There it was

shown that the universe remains in a period of cosmological loitering until all of the wind-

ing modes have annihilated. Once the winding modes have all annihilated the dimensions

10 The vanishing of the total flux is required for consistency on the compact space, however local sources

can prove interesting in a time-dependent background (Brandenberger et al., 2005).
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are freed to grow large. It was observed that the period of loitering would resolve the

horizon problem, without the need to invoke cosmological inflation. These results agree

with the earlier study in (Tseytlin and Vafa, 1992), where it was shown that the negative

pressure of the string winding modes leads to contraction in string cosmology, not infla-

tion. In (Watson and Brandenberger, 2003b), the effect of the winding mode annihilation

processes on the three dimensions growing large was shown to lead to a natural explana-

tion for the observed isotropy of our universe. This resulted from the annihilation rate

depending on the size of the dimension and the expansion rate depending on the number

of winding modes present. Moreover, the string winding modes annihilate into unwound

closed string loops, or momentum modes, which we saw from (31) scale as radiation (d=3

in this case). Thus, it was shown that a large, three dimensional, radiation dominated

universe naturally evolves from SGC.

In the above investigations, the stabilization of the other six dimensions was assumed a

priori. In (Watson and Brandenberger, 2003a), these dimensions were included and filled

with a gas of string winding modes and a gas of string momentum modes, with energy and

pressure as in (30). It was shown that as the three spatial dimensions continue to grow

large, the six compact dimensions will oscillate about the self-dual radius, since winding

modes were unable to annihilate in these dimensions via the BV argument discussed

above. The oscillations are the result of the negative pressure of the string winding

modes (pw = −ñeν) driving the radius to smaller values and the positive pressure of the

string momentum modes (pm = ñme
−ν) driving the radius to larger values. For an equal

number of winding and momentum modes (i.e. ñw = ñm) one finds that the evolution is

driven to the critical radius, the so-called self-dual radius ν = 0 or b =
√
α′ where the

total pressure vanishes and t-duality is restored11. In order for stabilization to occur it

was crucial that the dilaton ran to weak coupling. This running of the dilaton leads to

11 Similar results were reported by Tseyltin sometime ago, however no details regarding the anisotropic

case were given in (Tseytlin, 1992).
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a damping effect of the internal dimensions, as can be seen in Figure 1. The running of

the dilaton implies that the Newton constant will evolve and this will prove problematic

at late-times. However, the important point here is that during the early stages of the

evolution, the extra dimensions are naturally led to the self-dual radius. In fact, the

important point stressed in (Watson and Brandenberger, 2003a) and later elaborated on

in (Patil and Brandenberger, 2005, 2006; Watson, 2004a) is the presence of additional

massless string states that become massless at the self-dual radius and should therefore

be considered in the low energy action. We will see in Section V that these states can have

a very important effect resulting in a stabilization mechanism for the extra dimensions.

So far, we have ignored the problem of inhomogeneities, since we have assumed all

the background fields to be homogeneous. This problem was considered at late-times

in (Watson and Brandenberger, 2004) and (Watson, 2004c), where it was shown that the

dilaton again plays a vital role. It was found that as long as the dilaton continues to roll to-

wards weak coupling, perturbations will be under control and stability of the string frame

radion will persist. So it would appear that the dilaton plays a very important role in SGC,

but as we will see in the next section, it must ultimately be stabilized if SGC is to agree

with observation. The role of inhomogeneities at early-times is a much more challenging

problem. As we approach the cosmological singularity, we might hope that the finiteness

of strings would resolve the singularity and/or provide a bounce. Although many different

approaches have been attempted (see e.g. (Gasperini and Veneziano, 2003; Khoury et al.,

2002)), no convincing models have been found (Polchinski, 2005). This seems a promising

area for SGC to investigate, given the various duality properties exhibited by the string

gas and background fields (Brandenberger and Vafa, 1989). The dynamics of SGC as the

singularity is approached has been largely ignored due to the lack of control of string

corrections and the expected breakdown of the assumptions stated in Section III. One

attempt at understanding the evolution is the work of (Friess et al., 2004), where it was

found that the background flux would play a crucial role and could no longer be ignored.

It will be interesting to see how string winding modes and strings as local sources of flux

22



can effect the evolution towards the singularity. This presents an important challenge for

SGC.

Before closing this section, we would like to briefly mention some other consideration of

SGC dynamics that have appeared in the literature. The assumption of toroidal geometry

used in (38)-(41) was generalized to orbifold backgrounds in (Easther et al., 2002), where

it was found that the confining behavior of winding modes still persists even in the absence

of non-trivial homotopy. Interactions of the string winding and momentum mode gases

were considered in both (Bastero-Gil et al., 2002) and (Danos et al., 2004), where in the

former it was argued that correlations between the winding and momentum modes lead

to modified dispersion relations that may help explain the small value of the cosmological

constant. In addition to the study of the equations (38)-(38), attempts to extend SGC

to M-theory via its connection with 11D SUGRA was considered in (Alexander, 2003;

Campos, 2005b; Easther et al., 2003, 2005). Campos has considered the importance of

background flux in SGC (Campos, 2003, 2004, 2005a). Whereas in (Brandenberger et al.,

2005) the effects of strings as sources of flux was considered, and in particular their

ability to stabilize shape moduli in addition to the radion. The idea of inflation or

cosmic acceleration from SGC was discussed in (Brandenberger et al., 2004; Kaya, 2004;

Parry and Steer, 2002) and remains a difficult challenge for SGC. We refer the reader to

our references for addition papers on SGC.

D. 4D Dynamics and the Effective Potential

Thus far the stability analysis of the extra dimensions has been carried out in the

string frame. In this frame it has been shown that the radion is stabilized at the self-

dual radius by the competing negative and positive pressure of the stringy matter, along

with damping provided by the dilaton which continues to run to weak coupling. How-

ever, at late-times an evolving dilaton is problematic for both particle phenomenology

and moduli stabilization. In fact, any evolving gravitational scalar will lead to a changing
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gravitational constant GN , which is tightly constrained by fifth force experiments (see

e.g. (Gubser and Khoury, 2004)). Moreover, because the Einstein frame radion is actu-

ally a linear combination of the string frame dilaton and radion, we will find that the

extra dimensions will be unstable as long as the dilaton evolves. We will briefly discuss

possibilities for dynamically stabilizing the dilaton in the next section, but let us first

review the problem of stability as discussed in (Battefeld and Watson, 2004) (see also

(Berndsen et al., 2005; Berndsen and Cline, 2004; Easson and Trodden, 2005)).

In order to examine the late time behavior of SGC it is most appropriate to work in the

4D Einstein frame. Since we have focused on homogeneous fields, the physical quantities

originating from these equations are equivalent to those of the 10D string frame we have

considered thus far; this is simply the consistency of dimensional reduction. The 10D

Einstein frame metric can be rewritten in terms of the string frame scale factors and

dilaton as

ds2
E = −dt2E + eφ/2a2(t)d~x2 + eφ/2b2(t)d~y2, with dt2E = eφ/2dt2s (43)

which immediately allows one to see the problem. Even if one fixes b(t), the dilaton

evolution still prevents stabilization of the Einstein frame radion. We see that in this case

the Einstein frame makes this instability manifest in a simple way. However, the same

conclusion could have been reached in the string frame by more complicated methods, such

as identifying the physical radion and examining the corresponding two-point function.

The important point is that the two frames are physically equivalent, but the

instability is manifest in the Einstein frame. In addition to the problem of the dilaton, we

will see that from the 4D Einstein frame additional problems arise regarding the dilution

of our string matter as a source of stabilization.

Beginning from the 10D string frame action (7) one can reduce to the 4D Einstein frame

by a conformal transformation followed by field redefinitions to canonically normalize the
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scalars. We leave the details to the appendix, where we find

S4 =

∫

d4x
√−g

(

1

16πG

[

R[gµν ]−
1

2
gµν∇µψ∇νψ −

1

2
gµν∇µφ∇νφ

]

− e4φ−
√

d
2
ψV(4+d)

s (λ, ϕ, ψ)

)

.

where again we neglect flux and work in the critical dimensions c = 0 and where the 4D

Newton constant is given by 16πG = 2πα′g2
s . The canonically normalized scalars, φ and

ψ are then 4D fluctuations about the fixed values for the dilaton and radion, respectively.

The 10D string frame potential V(4+d)
s includes the effects of any wrapped branes or

strings, flux, cosmological constant or any other contribution to the energy density.

As a simple example, consider a cosmological constant arising in the 10D string frame,

such as appears in the RR sector of massive Type II-A supergravity. We see that in the

4D Einstein frame this term is no longer constant

V(4+d)
s ∼ Λ −→ V(4)

E =
e4φ−
√

d
2
ψ

(2π
√
α′)4

Λ, (44)

and if we assume weak coupling, i.e. φ → −|φ|, we see that one gets a exponential

runaway potential.

We would now like to see if the situation improves in SGC, where it seemed earlier

that wrapped strings could stabilize the extra dimensions. We are interested in potentials

coming from wrapped and moving branes and strings on the compact space. Assuming

the string frame metric to have the form

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2, (45)

we can write the 10D string frame potential as

V(4+d)
s = µ

Nbk

a3bd
(46)

where µ = (2π
√
α′)−4 and following the notation in the appendix we have absorbed a

factor of (2π
√
α′)6 coming from the compactification into the definition of V(4+d)

s . The

number of strings (branes) is given by N and k ≤ |d| is the type of strings (branes)

25



(e.g., k = 2 is a wound 2-brane and k = −1 is a string with Kaluza-Klein momentum in

one compact direction). Of course, this expression is just a generalization of our earlier

expression (30), for the energy density of winding and momentum string gases. The

reduction to 4D leaves the potential unchanged, but we must transform the scale factor

a(t) when moving to the Einstein frame, i.e. ã(t) = e−ϕa(t), where ϕ is the canonical 4D

dilaton ϕ = 2φ− d ln b and ã(t) is the Einstein frame scale factor. The potential becomes

V(4+d)
s = µñe−

3

2
ϕbk−d = µñe−3φbk+

d
2 , (47)

where ñ is the number density in the Einstein frame and we have expressed the potential

in terms of the unshifted dilaton. Comparing this potential with the action (44) we find

that the potential in the 4D Einstein frame is

V(4)
E = µñeφbk−

d
2 = µñe−|φ| exp

[(

2k − d
2
√

2d

)

ψ

]

, (48)

where in the last step we have expressed the radion in terms of the canonical variable ψ

and we have assumed the dilaton evolves to weak coupling. From this potential we can

see that a confining potential only arises if k ≥ d
2
. For the case of a winding string (k = 1)

this is only true for a single extra dimension d = 1 and even then there is an overall factor

of the dilaton diluting this potential. We conclude that a gas of purely winding strings is

not enough to stabilize the extra dimensions.

Given this negative outcome, we would now like to consider a gas composed of a

less restrictive string configuration. Let us consider the stress energy tensor for a gas of

heterotic strings given by (28), (29), and (32). The energy of the individual string is given

by (27) and in the case of the heterotic string takes the form

EHE =

√

Gmn
(

nm +
ωm
α′

)(

nn +
ωn
α′

)

+
4

α′ (NL − 1), (49)

and the level matching condition follows from (23) as

nmω
m = NR −NL +

1

2
, (50)
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where we have used aL = −1 and aR = 1
2

for the heterotic string and we have again

assumed that ~P = 0. We are interested in ground state configurations of the string,

which in the case of NS Heterotic strings means setting the right oscillators to their

minimum value, NR = 1
2

(see (Polchinski, 1998b) for details). We then want to consider

non-oscillatory states (NL = 0), since we are interested in the terms that contain explicit

dependence on the scale factor of the extra dimensions. With these assumptions the

energy and constraint become

E(NL=0,NR= 1

2
,~n,~ω) =

√

Gmn
(

nm +
ωm
α′

)(

nn +
ωn
α′

)

− 4

α′ ,

nmω
m = 1. (51)

Let us consider the energy at the self-dual radius b =
√
α′, where we have seen that the

higher dimensional evolution naturally led us. At the self-dual radius, we can see from

the energy and level matching condition that additional massless states will occur if the

winding and momentum numbers satisfy the conditions

n · n + ω · ω = 2, n · ω = 1, (52)

where we introduce the notation n · n ≡ δmnnmnn, ω · ω ≡ δmnω
mωn, and n · ω ≡ nmω

m

with δmn the Kronecker delta symbol. Given that these states become massless at the

self-dual radius and then grow massive as the radion leaves, one might hope that this

could lead to a stabilizing potential in the 4D Einstein frame. Upon reducing we find

V(4+d)
s = µñe−3φb

d
2E

= µñe−3φe
1

2

√
d
2
ψE, (53)

where we have rescaled E to put all
√
α′ dependence in µ for simplicity. The 4D Einstein

frame number density is given by ñ, φ is the unshifted dilaton, ψ is the normalized radion,

and the energy E is given by

E =

√

n · n
b2

+ ω · ωb2 − 2n · ω =
∣

∣

∣

n

b
− ωb

∣

∣

∣

= 2

∣

∣

∣

∣

sinh

(

ψ√
2d

)
∣

∣

∣

∣

, (54)
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where we have set n = ω to satisfy the massless state conditions (52). The 4D Einstein

frame potential takes the form

V(4)
E = 2µñeφ−

1

2

√
d
2
ψ

∣

∣

∣

∣

sinh

(

ψ√
2d

)
∣

∣

∣

∣

. (55)

This potential does admit a local minimum, but as the dilaton runs to weak coupling the

minimum becomes shallow. This result is sensitive to initial conditions, but can lead to

interesting phenomenology if the dilaton is taken into close consideration.

A more serious objection to the above potential comes from considering its inclusion in

the low energy effective action (LEEA). That is, for b 6=
√
α′ we saw that the string states

are massive. In fact, they are very heavy since their masses are string scale. Only near

the self-dual radius (b ≈
√
α′) do these states become light enough that it makes sense

to include them in the LEEA. One can attempt to avoid this objection by insisting that

by including the strings as sources we have managed to capture the full action and not

just the LEEA. However, the problem resurfaces if we recall that we chose a very specific

heterotic string gas in order to obtain the potential (55). This is simply the objection

that if we include one massive state of the string, don’t we have to include all of them? In

fact, for many other states of the heterotic string we find additional points (even surfaces)

in moduli space where the states become light. These also act as attractors for the radion

and the point one gets trapped at becomes a function of initial conditions. We will see

in the next section that there is a possible resolution to the question of the relevance of

such trapping potentials in the LEEA.

V. QUANTUM DYNAMICS OF STRING GASES

In the last section we saw that a heterotic string gas carrying both winding and mo-

mentum can result in a stabilizing potential for the string frame radion. This potential

resulted from the dependence of the string mass on the value of the radion. The dynamics

then drives the radion to values that minimize the energy of the string gas, which in the
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case we considered corresponded to the self-dual radius b =
√
α′. This leads to a trapping

mechanism for the radion, given that the string gas survives the cosmological redshift

and the dilution resulting from the running of the dilaton. This idea of trapping by a

massive gas will be referred to as classical trapping12. The terminology classical is used

here to signify that this mechanism results from considering the effects of classical string

gas matter sources on the classical dilaton-gravity equations. As we mentioned in the last

section, one serious objection to this idea is that we have chosen to include states that

are very massive at generic locations of the moduli space, but we have not included all

the other massive string states.

An alternative (but not unrelated) point of view is to consider the quantum production

of these states as we pass near places in the moduli space where additional string states

become light. This is the idea of quantum trapping (Kofman et al., 2004; Watson, 2004a)

and differs from the classical case in that the states are not included in the action initially.

Instead, these states are produced as the modulus rolls near a place in moduli space where

additional states become massless. Then, the modulus continues to evolve, but because

the mass of the produced states depends on the modulus, backreaction of the produced

string gas results in a confining potential which can trap the modulus. It turns out that

such points, which we will call Enhanced Symmetry Points (ESP), are very common

in moduli space (Horne and Moore, 1994). The ubiquitousness of such states in string

models means that we can expect such trapping to occur as a natural consequence of the

dynamics. However, it also means that the determination of the string vacuum, and thus

our universe, may not be unique.

To see how quantum moduli trapping works, let us consider the simple case of a bosonic

string compactification on M4 × S1. Introducing complex light-cone coordinates on the

12 This idea has been considered in other works; including M-theory matrix models (Helling, 2000),

flop transitions on the conifold in both the M-theory (Mohaupt and Saueressig, 2005b), Type IIA

(Mohaupt and Saueressig, 2005a), and Type IIB string theory (Lukas et al., 2005) and for a gas of

massive extremal blackholes (Kaloper et al., 2005).
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world-sheet, the string action (1) and (2) in conformal gauge takes the form

S5D =
1

πα′

∫

d2z
[

GMN(X) +BMN(X)
]

∂XM ∂̄XN +
√
α′R(2)φ(X), (56)

where GMN is the 5dmetric withM,N = 0 . . . 5, ∂ (∂̄) is the left (right) derivative, and the

background dilaton and anti-symmetric tensor are denoted φ and BMN , respectively. In

order to reduce this theory on a circle of radius R, let us consider the following factorizable

background metric

ds2 = GMN = −g(4)
µν dx

µdxν +R2dy2. (57)

Using this metric in the above action we find

S4D+1 =
1

πα′

∫

d2z
[

Gµν(X) +Bµν(X)
]

∂Xµ∂̄Xν +
[

Gµ5(X) +Bµ5(X)
]

∂̄Xµ∂X5

+
[

Gµ5(X)−Bµ5(X)
]

∂Xµ∂̄X5 +G55(X)∂X5∂̄X5 +
√
α′R(2)Φ(X), (58)

where R ≡
√
G55 is the radius of the extra dimension. The mass of the string state is

given as before from (23) and (27), with aL = aR = −1 since we are considering bosonic

strings. The mass and level matching are then given by

M2 =
n2

R2
+
ω2R2

α′2 +
2

α′ (NL +NR − 2),

nω +NL −NR = 0, (59)

where the integers n and ω label the momentum and winding charge associated with

the extra dimensions and NL (NR) correspond to the number of left (right) oscillators

that are excited, which can be taken in the compact N
(5)
L , N

(5)
R or non-compact directions

N
(µ)
L , N

(µ)
R .

We are interested in the low-energy or massless states given by (59). For generic radii

no non-trivial winding or momentum is allowed, i.e. n = ω = 0. If the oscillators are

restricted to the non-compact dimensions, i.e. N
(5)
L = N

(5)
R = 0, we have the 4D graviton,

flux, and dilaton. If the oscillators are taken in the compact direction we get one scalar
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(the radion)

σ = ln

(

R√
α′

)

, (60)

and two vectors

Aµleft ≡ Aµ =
1

2
(Gµ5 +Bµ5) ,

Aµright ≡ Āµ =
1

2
(Gµ5 −Bµ5) . (61)

To find the evolution of the fields, we calculating the beta equations for the action (58)

and demand that the couplings do not spoil conformal invariance (Bagger and Giannakis,

1997). In the low energy limit these equations can be derived from the usual space-time

action for dilaton gravity with flux (7) with an additional contribution coming from the

fields above given by

Sm =

∫

d4x
√
G

[

(∂σ)2 − 1

4g2
(FµνF

µν)− 1

4g2
(F̄µνF̄

µν)

]

, (62)

where the abelian field strength is given by Fµν = ∂µAν − ∂νAµ and F̄µν = ∂µĀν − ∂νĀµ.
In addition, the beta equations naturally enforce the Lorentz gauge condition

∂µA
µ = 0. (63)

Thus, the low energy theory of a bosonic string compactified onM4× S1 is described by

4D dilaton-gravity with flux coupled to a chiral U(1) gauge theory.

Now let us consider the mass spectrum at the self-dual radius σ = 0. In this case the

mass and constraint (59) become

α′M2 = (n + ω)2 + 4(NL − 1),

nω +NL −NR = 0, (64)

leading to the additional massless states;
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Scalars N
(µ)
L N

(µ)
R N

(5)
L N

(5)
R n w

0 0 0 0 0 ±2

0 0 0 0 ±2 0

0 0 1 0 ±1 ∓1

0 0 0 1 ±1 ±1

Vectors N
(µ)
L N

(µ)
R N

(5)
L N

(5)
R n w

1 0 0 0 ±1 ∓1

0 1 0 0 ±1 ±1

These new states combine with the previous scalar and vectors to fill out the adjoint

representation of SUL(2) × SUR(2) (Bagger and Giannakis, 1997). Thus, for arbitrary

radius the matter action is given by the chiral U(1) gauge theory (62), and as we approach

the ESP (self-dual radius) the theory is lifted to a non-Abelian chiral SU(2) gauge theory.

In the latter case the field strengths are now given by the Yang-Mills theory

F a
µν = ∂µA

a
ν − ∂νAaµ + gǫabcAbµA

c
ν , (65)

F̄ a
µν = ∂µĀ

a
ν − ∂νĀaµ + gǫabcĀbµĀ

c
ν , (66)

and the scalars couple through the (a,0) and (0,a) gauge covariant derivatives

(Dµφ)a = ∂µφ
a + gǫabcAbµφ

c, (67)

(D̄µφ)a = ∂µφ
a + gǫabcĀbµφ

c, (68)

where the coupling g is of O(1) for the states we are considering13 and φa is in the (3,3)

adjoint representation of the chiral SU(2). The gauged kinetic term leads to an effective

mass for the vectors m2
A ∼ g2σ2 and similarly for the additional scalars. Thus, we see

13 For example, for the heterotic string the four dimensional gauge coupling is given by g2 = 4κ2/
√

α′,

where κ is the gravitational length and contains the dilaton expectation value. One can usually choose

these values so that g is order one, which is expected from the Yang-Mills theory. This implies that

the string scale is close to the gravitation scale. For a complete discussion see (Polchinski, 1998a,b).
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that the radion is acting to give masses to the string states in the same way as the Higgs

particle in ordinary gauge theories with spontaneously broken symmetries (Polchinski,

1998a).

It was observed in (Watson, 2004a) that considering this effect for homogeneous, but

time-dependent fields can lead to a stabilization mechanism for the radion. For simplicity

let us take the dilaton to be fixed and using the adiabatic approximation, let us consider

strings in a 4D FRW universe with metric

ds2
4 = −dt2 + e2λ(t)d~x2. (69)

The effective action for generic σ is given by

Seff =

∫

d4x
√
g

[

R − 1

2
(∂σ)2 − Veff

]

, (70)

where Veff initially represents the contribution from the chiral U(1)s, although near the

self dual radius it should incorporate the effects due to the additional massless states.

Let us consider the background equations of motion first, neglecting the backreaction

near the ESP. The equations following from (70) are

3λ̇2 =
1

2
σ̇2 + ρsub, (71)

2λ̈+ 3λ̇2 = −1

2
σ̇2 − psub, (72)

σ̈ + 3λ̇σ̇ =
∂Veff
∂σ

, (73)

where ρsub and psub represent the subdominant contribution from the UL(1)×UR(1) con-

tained in Veff at generic radii. This contribution will be subdominant at early-times,

since the kinetic term has an equation of state ρ = p and thus scales as ρ = a−6. The

corresponding scale factor is a(t) ∼ t1/3 and λ̇ = 1/3t. In this limit we can ignore the

potential in (73) and σ is given for small t as

σ(t) = σ0 + v0t. (74)
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We start the time evolution at t = 0 when the field is closest to R =
√
α′, thus we see

that σ0 is a measure of how close the radion comes to the ESP. In the previous section

it was shown that by including the dilaton in the dynamics, along with the winding and

momentum modes of the string, the radion will naturally pass through σ = 0 and be

localized around the ESP. Motivated by this result we assume σ0 = 0, which is the most

efficient case for particle production, since the states will be exactly massless there.

We proceed to address particle creation in a way analogous to (p)reheating in so-called

NO (No Oscillation) models of inflation (Felder et al., 1999a,b). The method of quantum

trapping was first discussed in (Kofman et al., 2004), where the application of the trapping

was applied to a D-brane moduli space with the trapped modulus corresponding to the

separation of two D-branes and the light states corresponding to open strings stretched

between the branes which become massless as the branes approach. Since we are discussing

the creation of strings, one might wonder if we are justified in taking the field theoretic

approach that is usually utilized in models of reheating. This issue was addressed in

(Gubser, 2004), where it was shown that the effective field theory is adequate to describe

string production mode by mode in a way analogous to the usual point particle case. Using

this approach, we can think of each string mode as a scalar field with a time varying mass.

For example, let us consider the effects of producing one of the additional massless

vectors that appear at the ESP. From the coupling in (67) we see that the additional

states would lead to a potential

Veff(σ,Aµ) =
1

2
(∂µAν)

2 − 1

2
g2σ2AµA

µ, (75)

where Aµ is one of the additional massless vectors. Note that we are neglecting the other

Yang-Mills interactions, as these would lead to the same generic dynamics for σ. However,

it would be interesting to include these interactions in future work, as they are examples

originating directly from string theory of the type of interactions recently considered in

(Gubser and Peebles, 2004b) as dark matter candidates. We will discuss this possibility

in the next section in some detail.
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From (75), we can identify m(t)2 = g2σ2 as a time dependent mass for Aµ. As σ

approaches the ESP, the Aµ’s become massless and easy to create. Then, as σ leaves the

ESP these states will grow massive. Considering this backreaction results in an attractive

force pulling σ back towards the ESP.

Let us consider the time dependent frequency of a particular Fourier mode Aµk

ωk(t) =

√

~k2 + g2σ2(t). (76)

A particular mode becomes excited when the non-abiabaticity parameter satisfies ω̇/ω2 ≥
1. When this condition holds for a particular mode, it results in particle production and

an occupation number

nk = exp

(

−π
~k2 + g2σ2

0

gv0

)

. (77)

Recall that we can take σ0 = 0, while g is a positive constant of order unity in string

units. The energy density of produced particles is given by

ρA =

∫

d3k

(2π)3
nkωk ≈ g|σ(t)|N, (78)

with N ∼ (gv0)
3/2. Thus, comparing this to (71) we see that the initial kinetic energy

associated with the radion 1
2
v2
0 is dumped into production of Aµ particles as the radion

passes through the ESP. Given a large enough v0, the radion will continue its trajectory

and the modes will become massive as we have seen. This results in an always attractive

force of magnitude gN pointing the radion back towards the ESP. The effective equation

for σ including the backreaction is then given by

σ̈ + 3λ̇σ̇ = −gN(t). (79)

This process will continue with each pass of the radion, until all of its initial kinetic

energy has been used up and it settles to the self dual radius. Therefore, we are led to

the conclusion that the additional states associated with the enhanced symmetry result

in a fixed value for the radion at the self dual radius.

35



One immediate concern might be whether this method is stable to perturbations.

Moreover, one could worry that the initial kinetic energy of the radion is so high that

the force associated with the backreaction is not enough to over come its inertia. Both

of these problems are overcome by considering the Hubble friction associated with the

second term in (79). One expects this friction to damp out any perturbations and to

actually enhance the stabilization mechanism. This was discussed in models of string

gas cosmology (Battefeld and Watson, 2004) and a similar conclusion was reached in

(Kofman et al., 2004). Moreover, it was shown in (Battefeld and Watson, 2004) that

once we switch to the effective theory the Hubble friction is enough to keep the radion

evolving slowly compared to the growth of the three large dimensions. We conclude that

Hubble friction combined with the ESP backreaction should be more than adequate to

stabilize the radion at the self dual radius.

Despite this promising result for stabilizing the radion, the dilaton still remains a se-

rious challenge. One approach to stabilizing the dilaton would be to search for enhanced

symmetry states that depend on the value of the dilaton in much the same way they did

for the radion. However, this is problematic, since it requires a knowledge of the effective

theory for all values of the string coupling (dilaton). One way to circumvent this is to

search for additional light BPS states, since such states are non-perturbative in the sense

that they are understood for all values of the coupling. Preliminary results suggest that

dynamical stabilization of the dilaton may be possible by considering certain bound states

of membranes in M-theory (Cremonini and Watson, 2006). These membranes have a ten-

sion that depends on the radius of the 11th dimension, which is related to the dilaton upon

compactification to 10D string theory. This suggests that one could stabilize the dilaton

at locations where the membrane tension vanishes in much the same way as the radion

above. One challenge in this case is understanding the production of string states, since

this depends crucially on the string coupling. Moreover, as the string coupling changes

there can be competing effects governing the dynamics in moduli space. It was shown in

(Silverstein and Tong, 2004), that at strong coupling corrections to moduli trajectories
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from virtual effects of the ESP states can have a more important effect than on-shell

production. This could actually slow the modulus before it finally reaches the ESP. Thus,

we learn that the dynamics of moduli can be quite rich if we go beyond the usual static

moduli space approximation. One might hope that with further investigation and a better

understanding of the dynamics of moduli space the need to resort to anthropic arguments

or a landscape might be avoided. Instead, the universe could be determined through the

effect of string dynamics on a time-dependent background.

VI. LATE TIME COSMOLOGY AND OBSERVATIONS

So far, our main concern has been the impact of strings and branes on the evolution

of moduli fields, either at the classical or the quantum level. We have seen the emergence

of possible mechanisms to stabilize moduli fields at various instances. Given a stabilizing

mechanism, e.g. provided by a classical gas of massless string modes or by quantum

trapping as outlined in the previous section, we can turn our attention to late time

cosmology 14, and search for observational imprints. Two interesting possibilities naturally

surface:

1. If a string gas is responsible for stabilizing internal dimensions today and it is taken

in the dark sector, this naturally leads to a candidate for cold dark matter.

2. It is widely believed that some period of cosmological inflation must have occurred

in the past and it seems unavoidable to incorporate inflation into SGC. However,

inflation must have taken place before the moduli were stabilized by the string

gas – otherwise the gas would have been diluted too much to effectively stabilize

14 The consistency of the stabilization mechanism in the presence of matter was shown quantitatively in

(Ferrer and Rasanen, 2005), where it was also noted that it is not consistent with the presence of a

cosmological constant – however, an explanation of the currently observed late time acceleration via the

dynamics of the radion seems possible within SGC (Ferrer and Rasanen, 2005) (see also (Biswas et al.,

2005)).
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the radion. Since the observed large scale structure of the universe evolved from

quantum fluctuations seeded during inflation, it is possible that the string gas left

observable imprints on the spectrum of fluctuations.

Both avenues are in their initial stages of being examined and a lot of work needs to be

done before an honest prediction can be made. Nevertheless, we will have a closer look

at recent progress in the next two sections.

A. Dark Matter

Within the framework of SGC we do not expect to observe single strings, because the

model relies on the presence of a gas of strings. Such a gas will appear as a component of

the energy budget of the universe, not as single objects. We will take the strings to lie in

the dark sector, which suggests they may offer candidates for both dark energy and dark

matter. Both dark energy and dark matter can only be observed via their gravitational

interaction 15, but they differ in their equation of state p = wρ: Dark energy has w close

to −1 (if it is exactly -1, it is a cosmological constant) and dark matter has either w = 0

if it is cold (like pressureless dust), or 1/3 if it is hot (like radiation).

In the following, we will provide a general treatment of different cold dark matter

(CDM) types, following closely (Gubser and Peebles, 2004a,b; Nusser et al., 2005). There-

after, we discuss how dark matter arises in the framework of SGC (Battefeld and Watson,

2004), focusing on a simple realization via a classical gas of winding and momentum modes

in a universe with only one extra dimension.

15 They are observable in the spectrum of fluctuations in the CMBR, gravitational lensing, galaxy rotation

curves, etc.
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1. General setup

Our starting point is a low energy effective action, valid at late-times. We saw in

the previous sections how scalars like the radion arise in an effective four dimensional

description, with a potential dictated by the string gas under consideration. Hence we

will focus on a single scalar with action

Seff =

∫

d4x
√
−g

(

1

2l2p
R[gµν ]−

1

2
gµν∇µψ∇νψ + V(λ, ψ)

)

, (80)

where V(ψ, λ) =
∑

i nimi defines the masses mi and number densities ni. We keep the

potential and hence the masses mi general for the time being, and give a concrete example

later.

We are interested in the way different dark matter particles interact with each other

and furthermore, how they influence structure formation. With this knowledge one can

then discuss specific imprints onto the large scale structure of the universe, as was done in

(Gubser and Peebles, 2004a; Nusser et al., 2005). The deviations from standard ΛCDM

models are in the form of an additional fifth force, mediated by the scalar.

From the Klein Gordon equation of motion for ψ one can read off the magnitude of

the force between the dark matter particles of different type (Gubser and Peebles, 2004b)

Fij = βij
Gmimj

r2
, βij = 1 +

QiQj

l2pmimj

, (81)

where we introduce the scalar charges

Qi =
dmi

dψ
. (82)

Since we are considering scalar gravity, we have that like charges attract and unlike charges

repel. We also note that ψ should be stabilized by a potential V in order to avoid problems

with observations. As a consequence, charge neutrality

∑

Qini = 0 (83)
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is required. If the charges vanish, as is the case for standard baryonic matter, we are left

with the Newtonian limit of general relativity, as it should be. It is via its charge that

the CDM we are interested in modifies structure formation.

In order to understand structure formation one first needs to understand how small

initial under- and over-densities grow due to the gravitational instability. This means we

need to study how perturbations in the densities of each matter type evolve. Since this is

not our main focus, we refer the reader to the literature (Gubser and Peebles, 2004b) and

summarize the main results below. Let us introduce the density contrast of dark matter

δi =
δρi
ρ
, (84)

where ρi = nimi are the densities of dark matter and ρ is the total density. The equations

of motion for the δi become

δ̈i + 2λ̇δ̇i =
ρl2p
2

∑

j

βijfjδj , (85)

where we introduced the mass fraction fi = nimi/
∑

i nimi. Once again, the Newtonian

limit is recovered in the case of vanishing charges. We would like to emphasize that the

whole treatment up to this point holds true only for small curvatures and nonrelativistic

dark matter, which is exactly the case we are interested in at late-times.

By discussing solutions to (85) one can study how the large scale structure with its

filaments and voids builds up. If one compares the resulting universe to common ΛCDM

computations and observations, one has a way of verifying or excluding the existence of

a specific string or brane gas. However, this seems to require improved observations.

We conclude this brief summary and refer the interested reader to (Gubser and Peebles,

2004a; Nusser et al., 2005) where the study of structure formation was developed in much

more detail, and the connection to observations has been discussed.
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2. Example: A dark matter candidate within SGC

We shall now examine a simple example as introduced in (Battefeld and Watson, 2004).

The goal here is not to present a complete model, but only to suggest how dark matter

may arise from SGC. The generalization to other types of string/brane gases should be

straightforward.

Let us consider the case of only one extra dimension filled with a gas of winding and

momentum modes. Going to the Einstein frame and integrating out the extra dimension

an effective action of type (44) results. Giving the dilaton a VEV of φ = 0, the potential

turns out to be

V =
µV1Ne

√
6lpψ

6

e3λ
+
µV1Me

−
√

6lpψ

2

e3λ
, (86)

after following the procedures of Subsection IV.D. Here V1 is the spacial volume of the

extra dimension (so that M2
p = V1M

2
5 ), and M , N are the numbers of winding and

momentum modes, respectively. A stable minimum at the self dual radius ψ = 0 results,

if we have 3M = N 16. For other string gases the potential will differ accordingly.

We can now identify the number densities

n1 =
M

e3λ
, n2 =

N

e3λ
(87)

and the masses

m1 = µV1e
−

√
6

2
lpψ , m2 = µV1e

√
6

6
lpψ . (88)

The densities scale as e−3λ, just like matter, so that we can identify this specific string gas

as a CDM candidate. Computing the charges Qi one sees that the total charge vanishes

at the self dual radius, as it should. The mass fractions become f1 = f2 = 1/2 and the β

16 It is then consistent to give the dilaton the VEV we chose.
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matrix is given by

βij = 4





1 0

0 1
3



 . (89)

The matrix is diagonal showing the absence of any long range interaction between winding

and momentum modes. This is consistent with the overall setup.

One can now go ahead and solve the equation of motion (85) and follow up with a

numerical treatment once the perturbations become nonlinear. Here we will only mention

the modes of instability in the linear regime (Battefeld and Watson, 2004); there is an

adiabatic mode and another subdominant mode. The adiabatic mode corresponds to the

movement of strings together with the expansion in the matter dominated epoch.

The addition of other string or brane gases is straightforward, and one can find rich

physics in the dark sector that still needs to be explored in more detail. Also, a connection

to Chameleon cosmology as proposed by Khoury and Weltman seems possible (see e.g.

(Brax et al., 2005) and references within), but has not yet been examined.

B. Imprints onto Perturbations

In this section, we are interested in possible imprints of string gases on perturbations

of the metric degrees of freedom. These signatures can then be probed, e.g. via an

observation of the cosmic microwave background radiation.

We begin in a phase with three dimensions inflating, while the other dimensions are

deflating. During this phase, metric fluctuations are generated by the string gases and

continue to evolve until the perturbation exits the Hubble radius. As a consequence, a

nearly scale invariant spectrum of fluctuations should result. Once the internal dimensions

evolve to a value where enhanced symmetry occurs, massless string modes get produced

and these modes can stabilize the internal dimensions as we discussed in the last section.

We are then left with a radiation dominated FRW universe that is effectively 3 + 1
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dimensional. Then as the universe evolves in the post inflationary epoch, long wavelength

modes enter the horizon again and leave imprints on the cosmic microwave background

radiation that we observe today.

The weak point of this proposal is clearly that no successful incorporation of infla-

tion into the setup of SGC has been realized yet, however efforts in this direction were

considered in (Brandenberger et al., 2004; Kaya, 2004; Parry and Steer, 2002). Another

possibility is a period of anisotropic inflation as proposed by Levin and others in the mid

nineties (Levin, 1995) or more recently in (Patil, 2005). If inflation can be realized, then

another immediate concern arises: Given that a nearly scale invariant spectrum of fluc-

tuations can be generated during the inflationary phase, one might fear that the violent

production of a string gas at the end of inflation and the resulting stabilization of the

radion will spoil the spectrum. However, a recent study (Battefeld et al., 2005) showed

that the spectrum remains unaltered, which was certainly unexpected. The analysis was

performed in a full 5D setting (the extra dimension being either a circle or an orbifold),

with a classical gas of massless string modes and a radiation bath present. After finding

an approximate analytic solution for the background, all quantities (the string gas, the

radiation bath and the metric) were perturbed up to first order, the relevant equations

of motion derived and solved (approximate analytical and numerical). The most promi-

nent features of the solution are the following: long wavelength modes of the Bardeen

potentials (super horizon modes) stay approximately frozen until they re-enter the Hub-

ble horizon, since the transient oscillations of the radion only source equally transient

oscillations in the Bradeen potentials. The perturbation of the radion itself exhibits only

decaying modes, consistent with a stable radion. Henceforth, a given spectrum of fluc-

tuations will survive the trapping of the radion in a similar way as a spectrum survives

reheating after standard scalar field driven inflation.

Based on these results, an important next step within the SGC program is the incor-

poration of inflation. This will then allow one to search for imprints onto the spectrum

of perturbation that are unique for SGC.
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VII. SUMMARY

We have seen that an important concept leading to recent progress in SGC is that of

quantum moduli trapping via light states at points of enhanced symmetry. These states

first appeared in SGC while considering the classical dynamical effects of massive string

states containing nontrivial winding and momentum. The massive states were included

in the tree level theory by including the string sigma model directly in the action to

obtain higher order corrections to the tree level action. This approach was questionable

given the necessary truncation of the string beta equations in order to obtain the low

energy action. However, it lead to uncovering the importance of additional massless

states that had been missed in the low energy theory. This is an example that suggests

if we are to build more realistic models of string cosmology, we really need to go beyond

the moduli space approximation and obtain a better understanding of time-dependent

string solutions. Moreover, even though the focus of SGC has shifted to massless states

for moduli stabilization, the massive modes may still prove vital, especially if the ideas

of Brandenberger and Vafa are to be realized. We discussed that current calculations in

the low energy theory suggest that the heuristic argument for dimensionality may not be

realized. Although, it seems that a better understanding of the non-perturbative aspects

of string theory are needed to be sure.

At late-times, we saw that not only do string gases near ESPs provide moduli stabiliza-

tion through trapping, but that string gases also act as an alternative candidate for cold

dark matter. In addition, the framework for studying signals in the large scale structure

of the universe originating from this dark sector has already been developed by Gubser

and Peebles.

Another conclusion of the string gas approach is that it leads naturally to a string

landscape. This results from the fact that ESPs are quite common in moduli space and

the moduli stabilization can occur at any one of these ESPs. In fact, ESPs are ubiquitous

in any theory with N = 4 D = 4 supergravity as a low energy limit. This makes moduli
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trapping a common feature on the landscape of vacua, but it also leaves the question of

a definitive vacuum unanswered. It should also be noted that one lesson learned from

SGC is that our understanding of moduli space dynamics is in need of further study.

Moduli trapping is only one of many dynamical effects that one might anticipate on the

landscape, and a better understanding of the dynamics will perhaps lead to a definitive

vacuum after-all. Moreover, in order to obtain realistic phenomenology we are interested

in low energy vacua with at most N = 1 SUSY and chiral fermions. Thus, much remains

to be done if we are to build more realistic models, but we hope that we have demonstrated

that SGC offers a framework where many of these questions may be explored.
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APPENDIX A: Conformal Frames and Dimensional Reduction

In this appendix we present a brief summary of the methods of dimensional re-

duction and conformal transformations. A more complete account can be found in

(Birrell and Davies, 1982; Carroll et al., 2002; Lidsey et al., 2000; Silverstein, 2004). We

will use the mostly plus convention for the metric (− + + + . . .) and we follow the sign

conventions of (Wald, 1984), denoted (+ + +) in (Misner et al., 1973).
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1. Conformal Transformations

In general, a conformal transformation

d̄s
2

= Ω2ds2, ḡµν = Ω2gµν , ḡµν = Ω−2gµν ,
√
−ḡ = ΩD

√
−g, (A1)

does NOT leave the action invariant and results in the following transformations

Γ̄λµν =
1

2

(

ḡµκ,ν + ḡνκ,µ − ḡµν,κ
)

(A2)

= Γλµν +
1

Ω

(

gλµΩ,ν + gλνΩ,µ − gµνgλκΩ,κ

)

, (A3)

R̄ = Ω−2
(

R− 2(D − 1)� lnΩ− (D − 2)(D − 1)gµν
Ω,µΩ,ν

Ω2

)

, (A4)

�̄φ = Ω−2
(

�φ+ (D − 2)gµν
Ω,µ

Ω
φ,ν

)

, (A5)

where quantities with a bar denote the new frame. We can invert to find the old Ricci

scalar in terms of the new one

R = Ω2
(

R̄ + 2(D − 1)�̄ lnΩ− (D − 2)(D − 1)ḡµν
Ω,µΩ,ν

Ω2

)

. (A6)

We see that if we begin with an action

S =

∫ √
−gf [φ(xµ)]

(

R + . . .
)

(A7)

for a general modulus field f [φ(xµ)] multiplying the Ricci scalar, the term can be

transformed to the canonical Einstein frame by choosing Ω2 = f
2

D−2 .

String frame to Einstein frame

As an example, consider starting with the bosonic string frame action in D dimensions

SS =
1

2κ2

∫

dDx
√
−Ge−2φ

(

R + 4(∂φS)
2 − 1

12
H2

)

. (A8)

We can then go to the Einstein frame by the transformation

gEµν = Ω2gSµν , Ω2 = exp
(

− 4φ

D − 2

)

, φE = 2

√

2

D − 2
φ, (A9)
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with the field redefinition making φE canonical. The action becomes

SE =
1

16πGD

∫

dDx
√
−G

(

R − 1

2
(∂φE)2 − 1

12
e−2
√

2

D−2
φEH2

)

, (A10)

where factors of g2
s and α′ are present in the D dimensional Newton constant GD and φE

is the scalar fluctuation associated with the dynamical dilaton.

2. Dimensional Reduction

Consider the toriodal compactification of the bosonic degrees of freedom with action

SD+d =
1

2κ2
D+d

∫

dD+dx
√

−GD+de
−2φ

(

RD+d + 4(∂φ)2 − 1

12
H2

)

, (A11)

where GD+d is the higher dimensional metric, φ is the dilaton, and H = dB is the NS

three form field strength of the fundamental string. For this toriodal compactification the

geometry is factorizableMD+d =MD × Td with metric

ds2
D+d = gµνdx

µdxν + habdy
adyb, (A12)

where gµν is the metric onMD parameterized by coordinates xµ, and hab is the metric on

the compactified space Td with periodic coordinates ya. We will assume that all matter

fields are at most functions of the xµ, e.g. φ = φ(xµ). This implies that the compact

space must be Ricci flat, and we will further assume the flux B is block diagonal. Given

this metric, the Ricci scalar will factorize as

RD+d = RD +
1

4
∇µh

ab∇µhab +∇µ(ln
√
h)∇µ(ln

√
h)− 2√

h
�

√
h, (A13)

where we used the relation ∂µ lnh = hab∂µhab. Plugging (A13) into the action (A11) and

defining the lower dimensional dilaton

ϕ ≡ 2φ− 1

2
ln det hab. (A14)
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we find

SD =
1

2κD

∫

dDx
√−gDe−ϕ

[

RD +∇µϕ∇µϕ− 1

12
HµνλH

µνλ +
1

4
∇µh

ab∇µhab

−1

4
∇µB

ab∇µBab

]

, (A15)

where 2κ2
D = 2κ2

D+dV−1
0 = 2κ2

D+d(2π
√
α′)−d and we have defined the d dimensional volume

as

Vd = V0

∫

ddy
√

det hab = V0h
1/2(xµ), (A16)

where we used the fact that h(xµ) does not depend on the ya and its components will

appear, along with the Bab, as fluctuating scalars in the D dimensional theory. The

constant V0 is a reference volume and for a string scale compactification given by V0 =

(2π
√
α′)d. The lower dimensional Newton constant is then given by

1

16πGD
=

V0

16πGD+d
. (A17)

We would like to put (A15) in Einstein canonical form, which is accomplished by the

conformal transformation

g̃µν = Ω2gµν , Ω2 ≡ exp

[

− 2

D − 2
ϕ

]

, (A18)

and a field redefinition canonically normalizes the lower dimensional dilaton

ϕ̃ ≡
√

2

D − 2
ϕ (A19)

which gives the desired form

S =
1

16πGD

∫

dDx
√

−g̃D
[

R̃D −
1

2

(

∇̃ϕ̃
)2

− 1

12
e−
√

8/(D−2)ϕ̃H̃µνλH̃
µνλ

+
1

4
∇̃µhab∇̃µhab − 1

4
∇̃µBab∇̃µBcdh

achbd
]

, (A20)

where we have used 2κ2
D = 16πGD.
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Now let us specialize this result to the case of an isotropic internal metric, where the

radion is the only degree of freedom. In this review we have primarily been interested in

the case of vanishing flux (H = 0) and we started with the string frame metric

ds2 = −dt2 + a(t)2d2x+ b2(t)dy2, (A21)

where b(t) is the 10D string frame radion. By noting hab = b2 and plugging this result

into (A20), along with D = 4 and neglecting flux, we find

S =
1

16πG

∫

d4x
√−g

[

R− 1

2
(∂ϕ)2 − db−2(∂b)2

]

. (A22)

We can canonically normalize the radion by the field redefinition

ψ =
√

2d ln b, (A23)

so that we arrive at the desired action

S =
1

16πG

∫

d4x
√−g

[

R− 1

2
(∂ϕ)2 − 1

2
(∂ψ)2

]

, (A24)

where the four dimensional dilaton is given by

ϕ = 2φ−
√

d

2
ψ. (A25)

Finally, we would like to consider the addition of a potential term allowing for the presence

of strings, branes, or other matter. If we begin with the potential in the string frame,

S(4+d)
m = −

∫

d4+dx
√

G4+d V(4+d)
s , (A26)

after the reduction we have

S(4)
m = −(2π

√
α′)d

∫

d4x
√
g4 b

d V(4+d)
s . (A27)

Now performing the transformation (A18) to convert to the Einstein frame the action

becomes

SEm = −
∫

d4x
√

g̃4 e
2ϕbd Ṽ(4+d)

s , (A28)
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where we note that the transformation (A19) is trivial in four dimensions, i.e. ϕ̃ = ϕ,

and we have absorbed the constant prefactor in (A27) into the potential. To illustrate

the scaling with volume and coupling, let us restore the unshifted dilaton and compact

volume using (A25) and (A23)

SEm = −
∫

d4x
√

g̃4
e4φ

b2d
bd V(4+d)

s . (A29)

The final reduced action in the Einstein frame is

S =

∫

d4x
√
−g

[

1

16πG

(

R− 1

2
(∂ϕ)2 − 1

2
(∂ψ)2

)

− e4φ e−
√

d
2
ψ V(4+d)

s

]

. (A30)

Thus, we see the potential is diluted as the volume runs to large values or the dilaton

runs to weak coupling. Unfortunately, it is in these limits that string cosmology is best

understood and string corrections are understood. Moreover, if the potential V(4+d)
s does

not contain large enough powers to overcome the dilaton and radion, then a local minimum

for stabilization is not found.
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Figures
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FIG. 1 This graph shows the primary results of (Watson and Brandenberger, 2003a), where

stabilization of the string frame radion (green or light line) in the presence of string winding

and momentum modes was demonstrated. The damping of the oscillations relied crucially on

the dilaton running slowly to weak coupling (red or dark line).
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