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We propose a model for early universe cosmology without the need for fundamental scalar fields.
Cosmic acceleration and phenomenologically viable reheating of the universe results from a series
of energy transitions, where during each transition vacuum energy is converted to thermal radia-
tion. We show that this ‘cascading universe’ can lead to successful generation of adiabatic density
fluctuations and an observable gravity wave spectrum in some cases, where in the simplest case it
reproduces a spectrum similar to slow-roll models of inflation. We also find the model provides a
reasonable reheating temperature after inflation ends. This type of model may also be relevant for
addressing the smallness of the vacuum energy today.

PACS numbers:

I. INTRODUCTION

Despite the simplicity and promising phe-
nomenology of scalar driven, slow-roll inflation,
much remains to make the idea theoretically vi-
able. In particular, vexing issues such as the re-
quired flatness of the inflationary potential and the
very existence of a fundamental scalar (which must
be both extremely light and weakly interacting)
remain elusive (see however [1, 2, 3]). In recent
years, a substantial effort has been invested in un-
derstanding how to embed such models in a quan-
tum theory of gravity [6, 7], and there has also
been the suggestion of removing the need for slow-
roll completely [8] (see [9] for earlier work). How-
ever, in this paper we will take a different and yet
complimentary approach to inflation model build-
ing based on fundamental scalars.

As the universe expands and cools the fields
and particles affecting the expansion pass through
a number of different phases. In the very early
universe many of these transitions may have been

∗Electronic address: watsongs@physics.utoronto.ca

inflationary. In this paper, we propose the idea
of a ‘cascading universe’ by asking: if the uni-
verse passed through enough of these transitions,
could this provide an adequate alternative to scalar
driven inflation? Our goal will be to examine
whether the proposed cascading universe model
can satisfy the rigid constraints required of success-
ful inflation model building. We will postpone the
very important question of embedding the model
in a fundamental theory (such as string theory) for
future work.

In Section II, we present the cascading model
and obtain the constraints on the decay rate in
order for adequate inflation to solve the standard
cosmological problems (e.g. horizon and flatness
problems). In Section III, we address the nature
of the transitions and we find that adequate in-
flation and successful reheating are possible given
certain constraints on the nature of the transitions.
In particular, we find that cascading can proceed
via second order or weakly first order phase tran-
sitions and at a rate Γ . H as might have been
anticipated from intuition coming from the grace-
ful exit problem in old inflation. Working under
these assumptions, in Section IV we turn to the is-
sue of cosmological perturbations and demonstrate

http://arXiv.org/abs/hep-th/0610054v3
mailto:watsongs@physics.utoronto.ca


2

that a nearly scale invariant spectrum of both den-
sity and tensor perturbations results in the sim-
plest case of a constant decay rate. We also find
that in the more realistic case of a varying decay
rate it may be possible to distinguish this model
from the usual slow-roll models in that the evolving
adiabatic sound speed can result in an observable
tensor to scalar ratio. We conclude in Section V,
where we summarize our results and discuss future
considerations.

II. A CASCADING UNIVERSE

Let us consider the case of a universe domi-
nated by vacuum energy and an additional radia-
tion component that is subdominant. For a homo-
geneous and isotropic universe the Einstein equa-
tions are

3H2 =
8π

M2
p

ρ,

ä

a
= − 4π

3M2
p

(ρ + 3p) ,

Ḣ = − 4π

M2
p

(ρ + p) , (1)

where we work with the Planck mass, which is re-
lated to the Newton constant by GN = M−2

p . The
continuity equation is given by

∇µT µν = 0, (2)

⇒ ρ̇ = −3H (ρ + p) , (3)

We consider a two component fluid composed of
radiation and vacuum energy. The energy density
and pressure are given by

ρ = ρΛ + ρr, p = pΛ + pr, (4)

ρΛ =
ΛM2

p

8π
, ρr =

ρ0

a4
, (5)

pΛ = −ρΛ, pr =
1

3
ρr, (6)

with Λ > 0. For these sources the equations of

motion (1) and (2) become

3H2 =
8π

M2
p

(ρΛ + ρr) ,

ä

a
=

8π

3M2
p

(ρΛ − ρr) ,

Ḣ = − 16π

3M2
p

ρr,

ρ̇r = −4Hρr, (7)

where we have used ρ̇Λ = 0. We see that in or-
der for acceleration to occur we need ρr < ρΛ. In
fact, the amount of radiation present is a measure
of how far the universe is from an exactly de Sitter
phase. Quantitatively this can be seen by consid-
ering

d

dt
(H−1) = − Ḣ

H2
≡ ǫ̂, (8)

where ǫ̂ is a parameter measuring the deviation
from a pure dS space-time1. For inflation to occur
we thus expect ǫ̂ ≪ 1, which for this background
gives

ǫ̂ =
2ρr

ρΛ + ρr
≪ 1. (9)

One can solve the background equations (7) in
the absence of a coupling and we find

a2(t) = c2
0 sinh

(

√

4Λ

3
t + c1

)

, (10)

H(t) =

√

Λ

3
coth

(

√

4Λ

3
t + c1

)

, (11)

where

c2
0 =

(

8πρ0

M2
p Λ

)1/2

=
1

sinh(c1)
, (12)

are constants chosen so that when t = 0 we have
a = 1.

1 This is analogous to the slow-roll parameter ǫ in models
of scalar field inflation, but because our model does not
contain any scalar fields we will avoid this terminology.
Moreover, in contrast to the slow-roll case, the definition
of ǫ̂ is exact and does not depend on any approximation.
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Since this solution is derived for the case of Λ =
constant, inflation of course does not end, and this
solution does not provide for a successful inflation-
ary epoch. When we include time varying values
of the vacuum energy, which results from multi-
ple transitions or cascades, we will see the result
becomes satisfactory.

The energy transfer from the vacuum energy
density to radiation (massless string states) is
given by

QΛ = −ΓρΛ,

Qr = ΓρΛ. (13)

where Γ is the transition rate and the modified
continuity equation becomes

∇µT µ0
Λ = ρ̇Λ = QΛ, (14)

∇µT µ0
r = ρ̇r + 4Hρr = Qr, (15)

⇒ ∇µ (T µν
Λ + T µν

r ) = 0. (16)

(17)

The equations of motion for the background are
then

3H2 =
8π

M2
p

(ρΛ + ρr) , (18)

ρ̇Λ = −ΓρΛ, (19)

ρ̇r = −4Hρr + ΓρΛ. (20)

From (19) we immediately find

ρΛ = ρΛ0
e−Γt. (21)

Using this result in the above equations we find

Ḣ + 2H2 =
16π

3M2
p

ρΛ0
e−Γt. (22)

The solutions are related to modified Bessel func-
tions. They can be simply expressed by introduc-
ing the dimensionless quantity

τ =

√

128πρΛ0

3M2
pΓ2

e−Γt/2 ≡ τ0e
−Γt/2. (23)

The scale factor and Hubble parameter are then
given by

a2 =
4

Γ
(α1I0(τ) + α2K0(τ)) , (24)

H =
Γτ

4

(

α2K1(τ) − α1I1(τ)

α2K0(τ) + α1I0(τ)

)

, (25)

FIG. 1: The deformation parameter for various values
of the decay rate Γ. Time is measured in units of the
Planck time and we take M4

p ≫ ρΛ0
≫ ρr. The various

curves are given by the values Γ = 0.01, 0.02, 0.03, 0.05
from left to right. As discussed in the text, ǫ̂ is initially
small and proportional to the density of radiation ρr.
As inflation proceeds, more and more energy is dumped
into radiation via the coupling Γ. At the very end of in-
flation we are left with a radiation dominated universe
corresponding to ǫ̂ = 2.

where the functions Iν and Kν are modified Bessel
functions of order ν (see e.g. [35]). The constants
are given by

α1 =
Γτe

4
K1(τe) − HeK0(τe), (26)

α2 =
Γτe

4
I1(τe) + HeI0(τe), (27)

with τe = τ(te), He the Hubble parameter at the
end of inflation (t = te) and we normalize so that
the number of efoldings is measured from the end
of inflation, N = ln(ae/a) = − ln(a) where ae = 1.

We can again introduce a deformation parame-
ter as in (9), however now it is time dependent,

ǫ̂(t) =
2ρr

ρΛ + ρr
= 2Ωr. (28)

Using this in (18) we find

ǫ̂(t) = 2 − 16πρΛ0

3H2M2
p

e−Γt, (29)

with H being given by (25). At the beginning of
inflation we have H2M2

p ∼ ρΛ and so ǫ̂ ≪ 1. As
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FIG. 2: The number of e-folds of inflation N =
R

Hdt
for various values of the decay rate Γ. Time is mea-
sured in units of the Planck time and we take M4

p ≫

ρΛ0
≫ ρr. The various curves are given by the val-

ues Γ = 0.01, 0.02, 0.03, 0.05 from top to bottom. We
see that the requirement of sufficient inflation places a
constraint Γ ≤ 0.02.

the energy is transferred from the vacuum energy
density to radiation via particle production, the
deformation parameter increases as can be seen in
Fig. 1. Inflation then ends when ρr ≈ ρΛ and
ǫ̂ ≈ 1, which can be seen in Figures 1 and 3. The
final result is ǫ̂ = 2 and we are left with a universe
filled by the radiation2 ρr. Let us now consider the
amount of inflation or number of e-folds. Using
the above expression for the deformation parame-
ter the Hubble equation can be rewritten as

3H2 =
16πρΛ0

M2
p (2 − ǫ̂)

e−Γt/2. (30)

This can then be integrated to find the number of

2 Much later, of course, the radiation is diluted as the vol-
ume increases and the small remaining constant energy
density again dominates.

FIG. 3: The graphs above show the evolution of the
vacuum energy density ΩΛ = ρλ/ρ and the radiation
energy density Ωr = ρr/ρ relative to the total density.
We present the evolution for two values of the coupling
Γ = 0.05 (top) and Γ = 0.01 (bottom), where it an be
seen that stronger coupling means inflation ends faster,
through faster dissipation.

efoldings,

N =

(

16πρΛ0

3M2
p

)1/2 ∫ t0

te

e−Γt/2

√
2 − ǫ̂

dt,

≈ 2

Γ

(

16πρΛ0

3M2
p

)1/2

∼
8ρ

1/2
Λ0

ΓMp
∼ 8

Hb

Γ
, (31)

where t0 = 0 is the beginning of inflation, te is
the end and Hb is the initial Hubble scale. In the
second line we use the fact that the denominator
varies smoothly from

√
2 to 1 and exp(−Γte/2) ≈

0. As we may have anticipated the amount of in-
flation depends on the initial vacuum density and
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the decay rate.
As an example, consider inflation with a Hubble

scale near the GUT scale Hb ∼ MGUT ≈ 1015 GeV .
We see to get adequate inflation the decay rate
need only be slightly below the initial Hubble scale
Γ ∼ 1014 GeV . This condition is required in order
that cascading lasts long enough so that the cosmic
acceleration can resolve the horizon and flatness
problems. In Figures 1-3, we examine the evolution
numerically and find adequate inflation is possible
given modest values of the parameters.

Another important consideration is the reheat
temperature of the model. The cosmic accelera-
tion ends at the moment tr when ρr = ρΛ and
radiation comes to dominate. At this moment we
have 3H2 = 16πρΛ where ρΛ = ρr = ρΛ0

e−Γtr .
Using the exact solution (24) and (25) and assum-
ing the minimal amount of efoldings (N = 60) we
find Γtr ≈ 10 so that the reheating temperature
can be approximated as

Tr ≈ ρ1/4
r = ρ

1/4
Λ0

e−Γtr/4,

≈ 1015 GeV, (32)

where we have used ρΛ0
= Λ0M

2
p /8π and we have

taken the initial Hubble scale Hb ≈ 1014 GeV .
We will see in the next section that this is con-
sistent with producing the observed temperature
anisotropies in the cosmic microwave background
and avoiding over production of gravity waves.

III. NATURE OF THE TRANSITIONS

Another important constraint on the cascading
model comes from considering the type of phase
transition from level to level. In arriving at the
previous constraint on the decay rate Γ in the
last section, we have tacitly assumed that what-
ever the nature of the phase transition that it was
successfully completed and that the associated mi-
crophysics was irrelevant. However, obviously this
is not always the case and properties of the transi-
tions, such as whether they are first or second order
can play an important role. We will now consider
both cases of first and second order transitions.

First order transitions typically proceed by nu-
cleation of bubbles of the new phase in the back-
ground of the old phase (see however [27]). The en-
ergy difference between the phases is stored in the

bubble walls, and typical expand near the speed of
light. The transition from the old phase to the new
phase is complete when all the nucleated bubbles
collide, releasing the energy stored in their walls.

Completion of such transitions in cosmological
backgrounds can often be problematic. If the tun-
neling barrier (more precisely, the tunneling ac-
tion) is large, then this corresponds to a strongly
first order transition. In such cases the average
bubble size is typically comparable to the gravi-
tational scale (H−1) and the gravitational back-
ground can have important effects [28, 29, 30]. In
particular, in the case of inflationary backgrounds,
bubbles of the new phase will form in the expo-
nentially expanding background of the old phase.
In this case, although the nucleated bubbles ex-
pand at the speed of light, the background itself
is expanding faster. This makes bubble collisions
rare and instead of completion of the phase transi-
tion we find isolated bubbles expanding in a back-
ground of eternal inflation. This is the graceful
exit problem.

This was made more precise by Guth and Wein-
berg in [28]. Consider the zero temperature bubble
nucleation rate per volume3

Γ̃ = Ae−SE , (33)

where SE is the Euclidean action and A comes
from a one-loop determinant factor that depends
on the microphysics and is typically the energy
(density) scale of the transition. We note with
hindsight that if the transition is going to com-
plete then the typical bubble size rb must be much
less than the gravitational scale4, i.e. rb ≪ H−1.
In this case gravitational effects in (33) are neg-
ligible. The authors of [28] then showed that the
probability of a point to remain in the false vacuum
is given by

p(t) ∼ exp

(

−4π

3
βHt

)

, (34)

3 Note this is not the same as the decay rate Γ that we
have introduced above, however we will see that these
quantities can be related.

4 A detailed discussion of this point appears in [30], where
it is shown that the only feasible first order transition is
one that results in a distribution of bubble sizes sharply
peaked around rb and with rb ≪ H

−1, i.e. a weakly first
order transition.
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where we introduce the dimensionless quantity β =
Γ̃/H4. We see that the corresponding decay time
is given by

τ =

(

4πβH

3

)−1

=
3

4π

H3

Γ̃
. (35)

The number of efoldings resulting from the tran-
sition is N ≈ Hτ . The authors of [28, 30] found
that for percolation to occur and the transition to
complete β & βc = 9/(4π), which we see corre-
sponds to N . 1/3. Thus, we see in the cascad-
ing model we have presented in this paper, that
if we assume transitions are first order than they
must be weakly so and the maximum number of
efoldings per level is N = 1/3 corresponding to

Γ̃/H4 = 9/(4π). To build a successful inflation
model we will need a large number of transitions
( ≈ 150 − 180) of this type to get the required
50− 60 efoldings in order to solve the horizon and
flatness problems. This idea for the case of a fun-
damental scalar field has been argued for in [4, 5]
and is similar to the original proposal of Abbott
[31]. To relate this to the phenomenological cas-
cading model we presented in the last section, we
note that this is exactly what one expects from a
course grained approach. The decay of vacuum en-
ergy to radiation will proceed as explained above,
but on gravitational scales t & H−1 this will sim-
ply be seen as a decay of the vacuum energy to
radiation, whereas on very small scales t ≪ H−1

one would see that it was small bubble collisions
that had been responsible for replenishing the ra-
diation bath. Thus, by treating the percolation
events as instantaneous (as seen from the gravi-
tation scale) the constraint on Γ (as opposed to

Γ̃) is simply that of the last section Γ/H . 1/8.
Combining both the microscopic constraints, along
with the macroscopic requirements we see that the
first order transition can work, but it is in a very
special regime. It will be a challenge to embed
such an approach into a fundamental theory, such
as string theory, where e.g. in the case of scalars,
potential barriers typically lead to strongly first
order transitions.

Of course the other possibility is that the transi-
tions proceed via a second order phase transition.
Since such transitions do not proceed via quan-
tum mechanical tunneling, bubble percolation is
no longer a concern. Immediate examples of such

transitions are provided by that of a scalar field,
in which case we simply recover slow-roll inflation
models such as new inflation and chaotic inflation.
Another possible example is provided by that of
the ‘thermalons’ [32], where transitions are stimu-
lated by thermal fluctuations and so-called ‘over-
barrier’ tunneling.

In summary, we find that the cosmological phase
transitions of the cascading model must either be
second order or weakly first order.

IV. COSMOLOGICAL PERTURBATIONS

Let us consider density and tensor fluctuations
about the background solution (7). We will be pri-
marily interested in modes that leave the Hubble
radius 50 − 60 e-folds before the end of inflation,
since these are the modes that are responsible for
the CMBR anisotropies observed today. There-
fore, instead of working with the exact solution (7)
for the study of perturbations, it will often be sim-
pler to work in the conformal time η = −∞ . . . 0
where dη = a−1dt and with approximate solution

a(η) = (−η)−(1+ǫ̂), (36)

H(η) =
1 + ǫ̂

−η
, (37)

where H is the conformal Hubble parameter H =
aH and is related to the deformation parameter by

ǫ̂ = 1 − H
′

H2 . The approximate solution treats the
deformation parameter as a constant, since its rate
of change is small ( ˙̂ǫ ∼ ǫ̂), but of course this solu-
tion must break down towards the end of inflation
when ǫ̂ ∼ 1.

We now consider linearized perturbations about
the background (7) and in what follows we will
adopt the conventions of [33].

We work in longitudinal gauge with the per-
turbed line element

ds2 = −(1 + 2Φ)dt2 + (1 + 2Ψ + hij)dxidxj , (38)

where the tensor perturbation is traceless and
transverse (i.e., hi

i = ∇ih
ij = 0) and can be bro-

ken into its two polarizations h±. Our background
contains no anisotropic stress so one finds from the
Einstein equations Φ = Ψ. Thus, we have only
one scalar metric degree of freedom associated with
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the density perturbation and two tensor metric de-
grees of freedom for the gravity waves. Because we
are considering linearized perturbations the scalar
and tensor metric fluctuations decouple and we will
treat each one in-turn.

A. Density Fluctuations

Working in conformal time the equations for
density perturbations are,

∇2Φ − 3H(HΦ + Φ′) = 4πGa2δρ (39)

∂i (HΦ + Φ′) = 4πGa(ρ + p)δui, (40)

Φ′′ + 3HΦ′ + (2H′ + H2)Φ = 4πGa2δp, (41)

where δρ, δp, and δui are the perturbations of the
total energy density, pressure, and velocity, respec-
tively and H = da

dη a−1 is the conformal Hubble

parameter and ∇ is the comoving gradient. The
pressure perturbation is related to the energy den-
sity and entropy density perturbations by

δp =
∂p

∂ρ

∣

∣

∣

∣

s

δρ +
∂p

∂s

∣

∣

∣

∣

ρ

δS, (42)

= c2
sδρ + τδS, (43)

with cs the adiabatic sound speed at which the
perturbations evolve and should not be confused
with the equation of state parameter w = p/ρ,
which depends on the background quantities.

Indeed, for the model we consider here these
quantities are quite different. The adiabatic sound
speed for long-wavelength perturbations is given
by5

c2
s =

ṗ

ρ̇
=

1

3
− ΓρΛ

3Hρr
, (44)

where we see in the limit Γ → 0 our perturba-
tions will evolve like pure radiation. This is con-

5 Strictly speaking it is incorrect to think of c2s = ṗ
ρ̇

as the

sound speed during inflation, since this is only true on

large scales where c2s = δp
δρ

˛

˛

˛

S
≈

ṗ
ρ̇

and these modes evolve

on scales beyond the sound horizon. On small scales dur-
ing inflation the metric perturbation Φ oscillates and the
effective adiabatic sound speed is found to be c

2
s = 1, in

agreement with causality.

sistent with the fact that a true cosmological con-
stant does not propagate, i.e. is constant. This
allows us to see the importance of the graviton
and other particle production (Γ term), since in
an quasi-exponentially expanding background with
no transfer the perturbations will be immediately
damped away.

The equation of state parameter is given by

w =
p

ρ
= −1 +

4ρr

3(ρΛ + ρr)
, (45)

= −1 +
2

3
ǫ̂, (46)

which reduces to the pure de Sitter solution if
ρr = ǫ̂ = 0 as we have noted. We see that w(t) is
explicitly time dependent and in general this im-
plies that there can be a significant contribution
from non-adiabatic pressure in (43) by the entropy
term τδS. This could result in significant genera-
tion of entropy perturbations, a possibility that we
will analyze in Section (IV A2).

We now return to solving the system (39)-(41).
Combining equation (39) with (41) and working in
momentum space ∇2Φ → −k2Φ, we find a second
order differential equation,

Φ′′
k + 3H(1 + c2

s)Φ
′
k +

[

c2
sk

2 + 2H′+ (47)

+ (1 + 3c2
s)H2

]

Φk = 4πGa2τδS. (48)

subject to the constraint (40). We can simplify
this equation by introducing the field redefinition,

uk =
Φk

4πGρ1/2
√

1 + w
, (49)

θ2 =
8πM−2

p

3a2(1 + w)
, (50)

where w = p/ρ. Then (47) becomes

u′′
k +

(

k2c2
s −

θ′′

θ

)

uk = N (51)

with N giving the contribution from entropy
modes as

N = a2ρ1/2
√

1 + w τδS. (52)

1. Adiabatic Fluctuations

We will first consider solutions to (51) in the ab-
sence of entropy modes, i.e. N = 0. For modes
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that are far inside the sound horizon kcs ≫ H we
find that u oscillates with a constant amplitude
that is to be found by the initial conditions after
quantization. Far outside the horizon kcs ≪ H
and by inspection we have the solution u ∼ θ.
However, this solution corresponds to a decaying
mode for the metric perturbation Φ. Instead, it is
the growing mode that is of interest, which can be
found by noting θ′′ ≈ 0 during inflation, so that u
constant is also a solution. Assuming that we are
deep in the inflation epoch where ǫ̂ is nearly con-
stant an exact solution can be found by integra-
tion. In terms of the original metric perturbation
Φ one finds

Φ =
H
a2

(

A1 + A2

∫

(1 + w) a2dη

)

, (53)

=
H
a2

(

A1 +
2

3
A2

∫

ǫ̂a2dη

)

, (54)

= A1
H
a2

+ Φ0ǫ̂, (55)

where we have used w = −1 + 2
3 ǫ̂ is nearly con-

stant during inflation. The first term in (55) corre-
sponds to the decaying mode found above (u ∼ θ),
whereas the second mode is nearly constant with
Φ0 = 2

3A2 to be determined by matching to the os-
cillating mode inside the sound horizon. We note
the importance of the graviton production in this
model resulting in a non-zero radiation density,
since in the pure de-Sitter case where ρr = 0 so
that ǫ̂ = 0 we see no density metric perturbation
would remain since Φ → 0 as ǫ̂ → 0 and all that
is left is the decaying mode. This is an illustration
of the no hair theorem for pure de Sitter space.

In summary, we have found that during infla-
tion the metric perturbation is nearly constant on
super-horizon scales, whereas on sub-horizon scales
we find u ∼ Φ undergoes constant amplitude oscil-
lations. What remains is to quantize the perturba-
tions in order to determine the unknown constant
Φ0. However, we must first justify neglecting the
entropy mode term ( i.e. N ) in (51).

2. Entropy Flucutations

In this section we consider the role of entropy
fluctuations in the model. We will follow [34] where

a systematic procedure for the study of perturba-
tions in multi-fluid systems was described. It will
be useful to introduce ζ, which is curvature pertur-
bation on constant energy density hypersurfaces.
We will drop the momentum index in what follows,
writing ζ ≡ ζk.

In the presence of multiple fluids, the total cur-
vature perturbation can be expressed as a sum of
the curvature perturbation due to each fluid com-
ponent as

ζ =
∑

α

ρ′α
ρ′

ζα, (56)

where

ζα = Φ +
H
ρ′α

δρα, (57)

and we have used the lack of anisotropic stress to
again write Φ = Ψ as before. For entropy fluctua-
tions we are interested in the non-adiabatic contri-
bution to the pressure perturbation in (43), which
is given by

δpnad ≡ τδS = δp − c2
sδρ. (58)

As discussed in [34], there are two sources of non-
adiabatic pressure

δpnad = δprel
nad + δpint

nad, (59)

which are the relative and intrinsic non-adiabatic
pressures, respectively. In the model we are con-
sidering here the two fluid components have fixed
equation of state, i.e. δpΛ = −δρΛ and δpr =
1/3δρr so that there is no intrinsic non-adiabatic
pressure, i.e. δpint

nad = 0. The contribution to the
relative non-adiabatic pressure is [34]

δprel
nad = − 1

6Hρ̇

∑

α,β

ρ̇αρ̇β(c2
α − c2

β)Sαβ ,

= − 1

3Hρ̇
ρ̇Λρ̇r(c

2
Λ − c2

r)SΛr, (60)

where we have introduced the relative entropy per-
turbation

Sαβ = 3(ζα − ζβ), (61)

= −3H

(

δρα

ρ̇α
− δρβ

ρ′β

)

, (62)
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with the factor of three due to the convention of
normalizing to baryons. For the model we consider
here

SΛr = −SrΛ = −3H

(

δρΛ

ρ̇Λ
− δρr

ρ̇r

)

. (63)

Returning to (60) we see that the relative non-
adiabatic pressure is proportional to ρ̇r, the rate
of change of the radiation density. During infla-
tion one finds from the background solution (24)
and (25) that ρ̇r ≈ 0. That is, the transfer of vac-
uum energy to the radiation density via the cou-
pling Γ is just enough to counter the dilution of the
radiation by the exponential expansion. Thus, the
non-adiabatic pressure is negligible and we need
not worry about the presence of entropy perturba-
tions during inflation.

However, there is a more fundamental reason to
expect entropy perturbations to be absent from
this model. The crucial point is that a relative
entropy perturbation is produced when two fluids
generate different curvature perturbations. This
difference can then be mediated from one fluid to
the other via the gravitational background. A well
known example is the perturbation in the baryon-
photon ratio

SBγ = 3(ζB − ζγ) =
δρB

ρB
− 3

4

δργ

ργ
, (64)

which does not vanish because the two fluids are
perturbed differently.

However, in the case we consider here things are
different. In the absence of the coupling Γ there
is only one fluid with propagating fluctuations,
namely the radiation density with fluctuations δρr.
In this case the long-wave fluctuations propagate
at c2

s = 1/3 and the cosmological constant remains
a constant, i.e. δρΛ = 0. In the presence of the
coupling Γ the fluctuations now propagate at a dif-
ferent adiabatic sound speed (44), but the two flu-
ids are coupled through their equations (19) and
(20) through the term ±ΓρΛ. Thus, there is really
only one propagating degree of freedom and the
two fluids do not evolve independently, resulting
in SΛr = 0.

In fact, in this regard this is not unlike the
case of inflation by a single scalar field where it
is known that there are only adiabatic pertur-
bations. Instead of working with the scalar di-

rectly, we could consider two fluids, one represent-
ing the kinetic energy with a stiff equation of state
p1 = ρ1 = 1/2φ̇2 and a second fluid composed of
the potential p2 = −ρ2 = V (φ). Insisting on this
two-fluid description and demanding that the full
equations of motion are satisfied we are led to an
energy exchange term Q± = ±φ̇V ′(φ), similar to
the case we have above. However, since we know
there is only one degree of freedom, we certainly
know that there are no entropy perturbations and
no non-adiabatic pressures. This can be seen by
examining the perturbation equations in full detail,
and in particular one finds that the two fluids do
not evolve independently due to the coupling Q±

and the fact that the second fluid does not prop-
agate in the absence of the coupling (i.e. δρ2 = 0
for Q = 0).

In sum, we see that entropy perturbations in the
cascading model are negligible during inflation for
the case of a constant decay rate Γ. For the case
of a time varying Γ, this issue must be revisited,
which is work in progress.

B. Spectrum of Fluctuations

Having shown that entropy perturbations are
negligible, we proceed to find the spectrum of the
density fluctuations. In order to find the power
spectrum all that remains is to determine the un-
known constant Φ0 in (55). We can then find the
gauge invariant, comoving curvature perturbation

Rk = Φk +
2

3

(

Φ′
k + HΦk

1 + w

)

, (65)

which is related to the curvature perturbation ζk

from the last section by

Rk = ζk +
1

3

k2Φk

H′ −H2
, (66)

so that for large scales modes (which are the ones
of interest) k → 0 and Rk → ζk. The density
power spectrum is then defined as

Pζ =
k3

2π2
|ζk|2, (67)

which can be compared with observations.
Finding the constant Φ0 is accomplished by en-

forcing the correct initial condition on the modes.
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However, these modes are born in their vacuum
state far below the Hubble radius. This requires us
to quantize the perturbations, starting their evo-
lution in the standard adiabatic vacuum. Then we
have seen that the solution inside (kcs ≫ H) oscil-
lates with constant amplitude until Hubble radius
crossing where it can be matched to the solution
outside (kcs ≪ H) providing us with the required
normalization constant.

The only obstacle to quantization is finding the
canonical field which diagonalizes the action. For
the case of hydrodynamical fluids, as we consider
here, this was done in [33]. There it was found
that the canonical field vk (the so-called Mukhanov
variable) which is related to uk by

uk = − (vkθ)
′

csk2θ
. (68)

and the curvature perturbation (65) by vk = zζk,
reduces the action to that of a harmonic oscillator
with time dependent frequency. In terms of this
variable the equation of motion (51) becomes

v′′k +

(

k2c2
s −

z′′

z

)

vk = 0, (69)

where z = (csθ)
−1. In terms of the new variable vk

the solutions on large scales (kcs ≫ H) are given
by vk ∼ z. Notice this is the growing mode of inter-
est in contrast to the classical case where uk ∼ θ
decayed and it is this squeezing of the quantum
state that will result in classical fluctuations on
large scales. On small scales the momentum term
dominates and we again have oscillations with con-
stant amplitude.

We could now proceed with the approximate so-
lution, however in the case ǫ̂ ≪ 1 we can solve (69)

exactly. We find z′′

z = ν2
−1/4
η2 where ν = 3/2 + ǫ̂

and the solutions can be expressed in terms of Han-
kel functions. We require that the modes begin in
the adiabatic vacuum, which amounts to the con-
dition

vk =
1√
2csk

e−ikcsη as kcsη → −∞. (70)

The appropriate solution is then given by

vk(η) =
α

2

√−η H(1)
ν (−kcsη), (71)

where H
(1)
ν is a Hankel function of the first kind

and |α| = 1. We can then immediately find the
curvature perturbation

ζk =
∣

∣

∣

vk

z

∣

∣

∣
=

1

2z

√−η H(1)
ν (−kcsη) (72)

On large scales using the asymptotic expansion of
the Hankel function we have

|ζk| ≈
1

z
√

2πkcs

(−kcsη)1/2−ν , (73)

and using z = (csθ)
−1 the power spectrum (67) is

Pζ =
1

4π2csǫ̂

(

H

Mp

)2

(−kcsη)−2ǫ̂ . (74)

We note that this reduces to the standard slow-roll
inflation result for the case |cs| = 1.

The tilt of the power spectrum is given by

ns = 1 +
d lnPζ

d ln k
= 1 − 2ǫ̂, (75)

= 1 − 4Ωr, (76)

where Ωr = ρr/ρ. By noting that ρ̇r ≈ 0 during
the time modes of interest exit the Hubble radius
(i.e. N ∼ 50), we see that the tilt of the spectrum
is set by the initial abundance of radiation since
ǫ̂ ≈ 2Ωr0

is constant during inflation.
Comparing (74) to the best fit WMAP3 data

[36],

Pζ = 19.9+1.3
−1.8 × 10−10, (77)

we find that

H

csǫ̂1/2
. 10−5Mp. (78)

Since ǫ̂ ≪ 1 during inflation this implies an upper
bound on the Hubble scale during inflation H .
1014 GeV . Combining this with the constraint for
adequate inflation from (31), i.e. Γ/H . 1/N we
find an upper bound on the decay rate of the vac-
uum energy Γ . 1013 GeV consistent with our
earlier results and our general approach.

1. Gravity Waves

The gravitational wave spectrum is found in
much the same way as the spectrum of density
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perturbations. One first decomposes the gravi-

ton into its two polarizations h
(+)
k and h

(−)
k . The

modes then obey the same equation (69) as the
density fluctuations except in this case we have
vk = ahkMp (where we set h ≡ h±) and z is re-
placed by the scale factor a. The solution is again
in terms of Hankel functions, and one finds for the
long-wavelegnth fluctuations

hk ≈ 1

a
√

2πk
(−kη)1/2−ν , (79)

and the power spectrum is

Ph =
8

π2

(

H

Mp

)2

(−kη)
−2ǫ̂

, (80)

with the tilt of the tensor spectrum nT = −2ǫ̂.
Thus, we see that the main difference between
the tensor and density spectrum is the deforma-
tion factor and the presence of the adiabatic sound
speed in the spectrum of density perturbations.
Our tensor to ‘scalar’ ratio is then

r =
Ph

Pζ
= 16ǫ̂cs, Scalar Free Model (81)

which contains the adiabatic sound speed cs eval-
uated at the time of Hubble radius crossing.

This is an important result and is similar to
models of kinetic inflation [9], where the adiabatic
sound speed offers a way to distinguish this model
from standard slow-roll inflation which gives in-
stead

r = 16ǫ, Scalar Slow-roll Inflation, (82)

where we recall that ǫ ≈ ǫ̂ is the usual slow-roll
parameter which measures the slope of the scalar
field potential in units of the Hubble scale.

We have seen the adiabatic sound speed does not
differ greatly from the usual slow-roll inflation case
for the choice of Γ = constant that we have consid-
ered here. However, for the case of non-constant
Γ this could dramatically change, since the adia-
batic sound speed could differ greatly from one.
This could allow for an observable tensor to scalar
ratio, where standard models of scalar driven in-
flation starting near the string scale seem to gener-
ically predict an unobservable spectrum [38]. This
is work in progress.

FIG. 4: The figure above summarizes the constraints
found on the Hubble scale during inflation and transi-
tion rate Γ between levels. In addition to these con-
straints one should also add the requirement that the
transitions proceed via second order or weakly first or-
der phase transitions.

V. FURTHER CONSIDERATIONS AND

CONCLUSIONS

In this paper we have considered a cascading
model for the early universe that provides a period
of cosmological acceleration, which can account for
the required number of efoldings. As the universe
cascades, vacuum energy is converted into radia-
tion inhomogeneously, resulting in a nearly scale
invariant spectrum of cosmological density pertur-
bations and a small amount of gravitational waves.
Once the radiation density overtakes the decay-
ing vacuum energy, the model naturally exits in a
radiation dominated universe with a temperature
which we found can be as large as Tr ≈ 1015GeV .
As the universe evolves through the radiation and
matter epochs the vacuum density will once again
dominate the energy density if the decay does not
proceed to zero vacuum energy.

We have seen that our approach has one basic
(in principle calculable) parameter, the level decay
rate Γ. The number of e-foldings, the reheating,
and the density fluctuations all depend on Γ, and
we find there does exist a range of values of Γ con-
sistent with the data for all of these, which might
not have happened.
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Although these preliminary findings are promis-
ing, much remains to be addressed. A particularly
pressing issue is a concrete derivation of the decay
rate Γ or equivalently a better understanding of the
level spacing and the time spent in a given energy
(density) level. In fact, we argued in Section V
that if Γ is not taken constant, the result is a vary-
ing adiabatic sound speed which can result in den-
sity perturbations and gravity waves that would
further distinguish the cascading model presented
here from usual slow-roll inflation.
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