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Abstract 

 
Background.  

Malaria transmission control in endemic areas is dependent on both individual 

and community level protective measures. Indoor residual spray (IRS) campaigns work to reduce 

transmission of malaria illness by covering the walls of houses in areas at risk with an insecticide 

that kills mosquitoes landing there. The World Health Organization recommends IRS campaigns 

successfully spray at least 80% of structures to maximize impact of the campaigns against 

malaria vectors. 

Methods. 

Programmatic data from the 2016 IRS campaign conducted in Luapula Province, Zambia 

was used to examine the spatial distribution of houses missed during spray campaigns. 

Additionally, Poisson regression methods examine various factors associated with increasing 

IRS coverage at the community levels. Spatial distribution was assessed through a difference in 

K-function analysis.  

Results. 

A difference in K-function analysis suggested clustering of missed houses at all spatial 

scales examined. Poisson regression analysis suggested that lower population density and fewer 

nighttime lights were negatively associated with spray teams’ ability to locate houses targeted for 

IRS implementation. Global Moran’s I analysis confirms high levels of spatial autocorrelation 

among missed houses. 
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Conclusions. 

These analyses indicate that the remoteness of structure location is a significant predictor 

of clusters of targeted structures being missed by spray teams during IRS campaigns. The impact 

that these missed clusters could have on the intended reduction of transmission control of malaria 

could be devastating for endemic areas, rendering many areas unprotected by IRS. Similar to 

issues of herd immunity, large gaps in coverage end up leaving all of the resources that are put 

into effective IRS program design and operations less effective if the minimum threshold is not 

met. Lack of threshold coverage may leave whole communities open to much higher levels of 

malaria transmission, and increased incidence of preventable malaria. 
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Identifying Factors Limiting Effective Coverage of Indoor Residual Spray Campaigns in 

Luapula, Zambia 

 

Introduction​: 

Malaria is a global disease caused by several species of parasites within the ​Plasmodium 

genus, although the most common infections are caused by ​Plasmodium falciparum ​and 

Plasmodium vivax ​(Trampuz et al. 2003)​. The ​Plasmodium​ life cycle is dependent on the 

transmission of the parasite between humans and mosquitoes ​(Rehman et al. 2011)​. Sporozoites 

are transmitted through the bite of the malaria vector, the female ​Anopheles​ mosquito, into the 

bloodstream of a human host where the parasite collects in the human liver, and then later, red 

blood cells. Mature sporozoites then release ‘daughter parasites’ called merozoites into the liver 

and bloodstream, the daughter parasites then continue infecting red blood cells throughout the 

body in the bloodstream ​(WHO, 2019)​. Once infected, disease symptoms appear between 10 and 

15 days later, and begin as fever, chills and headache, and if untreated, can cause death through 

progressive multisystem organ failure ​(Trampuz et al. 2003)​.  

The impact of malaria is seen globally, and specifically in the Middle East and areas of 

Africa ​(WHO 2019)​. One country significantly affected by malaria illness is Zambia. The World 

Health Organization’s World Malaria Report estimated that there were nearly 16,000,000 people 

at risk of malaria illness in Zambia ​(WHO 2019)​. Of those at risk, upwards of 4,000,000 were 

infected, and over 7,000 died in the year 2015 ​(WHO 2019)​. Proportionally, that means that 25% 

of the population at risk were directly affected by malaria illness in 2015.  

https://paperpile.com/c/5Km6vI/pZSP
https://paperpile.com/c/5Km6vI/7UBA
https://paperpile.com/c/5Km6vI/xl8g
https://paperpile.com/c/5Km6vI/pZSP
https://paperpile.com/c/k8ZoWa/JTt9
https://paperpile.com/c/5Km6vI/GrIO
https://paperpile.com/c/5Km6vI/GrIO
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The ‘Malaria Operational Plan’ constructed by USAID separates the level of control and 

severity of malaria illness into three distinct regions within Zambia ​(USAID 2015)​. The highest 

burden falls in ‘zone 3’ which is defined as “Areas where progress in malaria control has been 

achieved but not sustained and lapses in prevention coverage have led to resurgence of infection 

and illness, and parasite prevalence in young children exceeds 14% at the peak of the 

transmission season” (Eastern, Luapula, Muchinga, Northern, and North-Western Provinces) 

(USAID 2015)​. Within ‘zone 3’, Luapula Province shows a relatively high burden of disease 

with an estimated 600-800 cases per 1000 people compared to 400 or less in surrounding 

Zambian Provinces ​(USAID 2015)​. 

 

Transmission Control Methods 

 Primary methods of transmission control for areas with endemic malaria include 

insecticide treated mosquito nets and indoor residual spray (IRS) programs. While having been 

used earlier, IRS programs became more widely utilized in the 1950’s for the World Malaria 

Eradication Programme ​(Mabaso et al. 2004)​. The IRS campaigns that were designed for the 

eradication programme utilized the chemical insecticide ​dichlorodiphenyltrichloroethane, known 

commonly as​ DDT, to kill mosquitoes when landing on walls of the structure. The application of 

this chemical insecticide treatment specifically targets the female vector mosquitoes that land 

and rest on treated walls following a blood meal ​(​WHO 2006)​. This method has historically been 

successful in largely eliminating malaria from areas of Latin America, Asia, and Russia for 

extended periods of time, and is still used today in the Middle East and Africa ​(WHO 2019)​. IRS  

 
 

https://paperpile.com/c/5Km6vI/jXI9
https://paperpile.com/c/5Km6vI/jXI9
https://paperpile.com/c/5Km6vI/jXI9
https://paperpile.com/c/k8ZoWa/lDj7
https://paperpile.com/c/5Km6vI/dB9C
https://paperpile.com/c/5Km6vI/dB9C
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is conducted by removing all of the possessions from the building, and then spraying all of the 

walls and surfaces in the residential structure with a chemical insecticide,​ ​of which there are 

several licensed for IRS campaign use, still including DDT in many areas ​(WHO 2006)​. When 

used appropriately, indoor residual spraying can be used to facilitate community-level protection 

against malaria transmission.  

Individual level  protective methods such as the insecticide treated mosquito net have 

made marked improvements in reducing malaria incidence over the last 20 years ​(Mabaso et al. 

2004)​. However, the protection of healthy individuals against malaria alone is not entirely 

sufficient, as the transmission cycle is not stopped entirely unless both infected and healthy 

individuals are protected against further vector contact. Due to the lifecycle of the Plasmodium 

parasite, it is possible for uninfected vector mosquitoes to pick up the malaria parasite from the 

bloodmeal of an infected individual when biting, and then later transmit that parasite to an 

otherwise healthy host. For this reason, transmission control is improved through the protection 

of infected hosts by preventing the increased circulation of the parasite in the vector population.  

In order for IRS campaigns to be effective, a certain percentage of structures need to be 

sprayed within the community to achieve ‘threshold coverage’. Threshold coverage with indoor 

residual spraying is similar to the concept of herd immunity with vaccinations, in which a certain 

number of people must be immunized to protect an entire community, the same concept applies 

here, only with vector control. Although there are documented positive effects, IRS campaigns 

have historically been assessed independently and without controls, so there is no definitive 

documentation of the direct impacts of IRS treatment on malaria outcomes ​(Pluess et al. 2010)​.  

 
 

https://paperpile.com/c/5Km6vI/dB9C
https://paperpile.com/c/k8ZoWa/lDj7
https://paperpile.com/c/k8ZoWa/lDj7
https://paperpile.com/c/k8ZoWa/ZdkB
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Recent studies have shown that at least 80% or higher coverage is needed for indoor residual 

spray campaigns to be effective on the community level ​(Rehman et al. 2011)​. In keeping with 

the most current research, the World Health Recommends that IRS campaigns target at least an 

80% threshold ​(WHO 2019)​. However, if threshold coverage is not achieved, there will be gaps 

in community protection, and the protective efficacy of indoor residual spray treatment is 

significantly reduced and generally ineffective in controlling transmission of malaria. Gaps in 

coverage of prevention program operations means malaria infections are still endemic in many 

countries. 

 

Burden of Malarial Disease in Zambia 

The prevalence of malaria illness has fallen significantly since the early 2000’s. This can 

largely be attributed to the introduction of insecticide treated mosquito nets (ITN), which covers 

the sleeping area of the individual at risk, and prevents the malaria vector from biting ​(Bhatt et 

al. 2015)​. Zambia is one of 19 countries that still struggles to prevent and control malaria illness 

(USAID 2015)​. While Zambia receives international aid and philanthropic funding for malaria 

control programs, there are still significant gaps in coverage of protective measures, resulting in 

malaria illness remaining prevalent all across Zambia, and particularly in Luapula province 

(WHO 2019)​.  

 

Limitations of Indoor Residual Spraying 

Although indoor residual spray campaigns have already been shown to be effective when 

implemented at high coverage levels, the implementation of programs have run into difficulties 

 
 

https://paperpile.com/c/5Km6vI/7UBA
https://paperpile.com/c/UYkpBZ/FyYV
https://paperpile.com/c/5Km6vI/haDQ
https://paperpile.com/c/5Km6vI/haDQ
https://paperpile.com/c/5Km6vI/ull4
https://paperpile.com/c/5Km6vI/GrIO
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in achieving full coverage due to several factors. One such factor is the lack of a public address 

system in Zambia ​(USAID 2015)​. Zambia, as well as many other malaria endemic countries, do 

not have formally documented or designed communities with unique identifiers or addresses that 

would allow for definitive mapping, targeting, and execution of indoor residual spray campaigns. 

Not only does this complicate IRS campaigns, but also many other community based public 

health programs. Other factors that could be negatively impacting the effective coverage of spray 

campaigns could be the remoteness of communities, density of natural vegetation, other naturally 

occurring barriers, and lack of identifiable roads that would make it difficult for non-native 

members of the community to locate and identify targeted structures. To compensate for the lack 

of documentation and visibility of household locations, satellite enumeration has been used to 

identify and target houses for spraying ​(Kamanga et al. 2015)​.  

 

Satellite Enumeration 

Satellite enumeration is a technique used for developing more accurate targeting maps 

and plans for indoor residual spray campaigns ​(Kamanga et al. 2015)​. Enumeration uses satellite 

imaging and geographic information systems (GIS) to pinpoint and document the locations of all 

the residential structures in a targeted area ​(Kamanga et al. 2015)​. This list and map of structures 

created through satellite enumeration can then be applied to other programs for targeting. The  

purpose of selecting certain structures within certain areas of the community as ‘targeted’ is to 

identify the best locations to focus IRS treatment to achieve the most cost and space effective 

treatment to achieve threshold coverage. This targeting strategy is also intended to ensure equal 

 
 

https://paperpile.com/c/5Km6vI/ull4
https://paperpile.com/c/5Km6vI/qSzh
https://paperpile.com/c/5Km6vI/qSzh
https://paperpile.com/c/5Km6vI/qSzh
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levels of coverage throughout the community and avoid clusters or pockets of high transmission 

(Akros, 2018)​.  

These processes provide a comprehensive map for spray campaign workers to find and 

spray enough houses to achieve community coverage within the preassigned targeted areas 

without having to do ground level surveillance beforehand. This allows not only for more 

efficient operations, but more accurate operations as well ​(Akros, 2018)​. Although these maps 

are provided for spray teams to target houses and they have improved accuracy from previous 

methods, large numbers of houses are still missed in the process. This loss of targeted structures 

compromises the efficacy of the campaign and protection of the community.  

The satellite enumeration data utilized for this study were obtained through the 

comprehensive database of the ‘mSpray’ program for indoor residual spray campaign data, 

which has been managed and stored by Akros through the mSpray program ​(Akros, 2018)​. Akros 

has designed a three stage process for theoretically efficient and effective indoor residual spray 

campaigns. The first stage of the process is satellite enumeration of the community to identify all 

potential structures. Then, structures within specific areas are targeted for spray treatment to 

provide the most efficient operational strategy for achieving threshold coverage of spray 

treatment. Lastly, the spray team operations are given the information and assigned specific 

zones to cover, and the spray campaign takes place ​(Akros, 2018)​. With these elements, 

structures are targeted on the basis of satellite identification and target technology as opposed to 

ground level targeting based on traditional land surveys.  

 

 

 
 

https://paperpile.com/c/5Km6vI/F8NC
https://paperpile.com/c/5Km6vI/F8NC
https://paperpile.com/c/5Km6vI/F8NC
https://paperpile.com/c/5Km6vI/F8NC
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Hypothesis 

The reason large numbers of houses are missed is currently unknown. Our hypotheses are 

that missed houses in a spray campaign cluster together in space, and that remoteness is a 

primary factor in missing houses during spray campaigns. If our hypotheses are correct, and the 

structures being missed are clustered, then there are significant pockets of communities going 

consistently unprotected. This could be leading to unusually high transmission of malarial 

disease of residents in those lost pockets of structures comparative to the surrounding area. 

Additionally, this potential missing of clusters of targeted structures could impact the 

effectiveness of the entire IRS campaign through inability to meet the minimum threshold 

coverage, impacting not only that area, but the entire community. 

 

Methods​: 

Study Design 

This was a retrospective cross-sectional study which examined the geographic- and 

program-specific factors related to the ground identification of targeted structures by spray teams 

during an indoor residual spray campaign for the prevention of malaria transmission from the 

IRS campaign done in August of 2015, in Luapula Province, Zambia. The study design is based 

on a series of secondary analyses of the data to identify spatial and statistical patterns. These  

analyses can aid in the prediction of structure identification by spray teams to minimize loss and 

improve coverage of targeted structures in future spray campaigns. 
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Data 

  These data are the result of the efforts of the public health organizations, Akros, 

USAID, and the Zambian Ministry of Health. The organization Akros utilizes satellite 

enumeration techniques to locate and document the locations of individual residential structures 

as potential spray targets, then builds comprehensive databases designed to increase efficiency 

and accuracy of indoor residual spray campaigns and other public health programs. Although 

Akros identifies and designates all target structures and spray areas necessary for effective spray 

campaigns, the Zambian Ministry of Health uses and utilizes this data to designate target areas 

for spray treatment where spray teams are to locate all structures for the highest impact on 

malaria transmission.  

In addition to enumeration and spray campaign data, remotely sensed data from Google 

Earth Engine was also used to access environmental data for statistical analysis of potential 

predictive factors affecting loss of targeted structures. Datasets were identified and obtained 

through the Google Earth Engine raster repository, and include measures of vegetation density, 

land cover type, nighttime light emissions, population density, distance to the nearest city, and 

global friction surface (table 1). This data will be used to determine if there were geographic, 

environmental, or topographical barriers that could have been barring spray teams from locating 

targeted structures (table 2).  

Data on vegetation density and land cover type were obtained through Google Earth 

Engine and was created by NASA for the Terra Moderate Resolution Imaging Spectroradiometer 

Vegetation Indices database (MODIS, 2010). These data are both composed of two datasets, the 

first being a normalized difference vegetation index, the second being an enhanced vegetation 
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index. Together the two datasets provide an accurate measure of vegetation density from a 16 

day period in 2010 (MODIS, 2010). The difference between these two datasets is that the 

vegetation index provides vegetation density, while land cover data provides categorical data on 

the type of vegetation and land use for that area. This data provides a numeric value representing 

vegetation density with a pixel size of 250m (MODIS, 2010). 

Nighttime light data was also obtained through Google Earth Engine, sourced from the 

National Center for Environmental Information through the National Oceanic and Atmospheric 

Administration (NOAA, 2010). Nighttime lights data was collected through a normalized 

difference of two satellites over each calendar year. The data used for this study utilized the 

normalized values for 2010, which is the year with the most recently published data to the year 

of the spray campaign, 2015. Resolution of nighttime lights data is 30 arc seconds, or 

approximately 1 kilometer (NOAA, 2010).  

Similarly to the vegetation data, population density data from Google Earth Engine was 

also sourced from NASA. This dataset was created by the Socioeconomic Data and Applications 

Center, which utilized various countries' census data and population registrar data in 

coordination with relative spatial distribution to create an adjusted population density map 

(SEDAC, 2015).  

This data was for the year 2015, and has a recorded resolution of 30 arc seconds (SEDAC, 2015).  

Distance to nearest city and global friction surface data from Google Earth Engine were 

created through research done at the University of Oxford, and are utilized as part of the Malaria 

Atlas Project (Nelson et. al., 2018). These datasets were created to quantify traversability by 

incorporating factors such as roadmaps, vegetation, topography, railways, and bodies of water 
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into measures of perceived travel time. Friction surface values incorporate these factors to 

measure the adjusted time to travel 1 meter. Likewise, the accessibility layer assesses and 

quantifies the distance and estimated time it takes to travel from a point in space to the nearest 

major city, measured by minutes per total distance (Nelson et. al., 2018). Both of these datasets 

have a resolution of 30 arc seconds (Nelson et. al., 2018). 

This analysis specifically looked at houses within targeted spray areas during this spray 

campaign as a means of evaluating full community protection against malaria infection through 

the documented achievement of threshold coverage. The outcomes of interest for this study were 

the houses that were within the targeted spray areas, but were not visited, and the overall efficacy 

of targeted spray areas. These targeted spray areas and the structures within were the units 

studied as the subject of interest in this project. The efficacy of each targeted spray area was also 

studied as a means of evaluating difference in planned outcome versus operational outcome. 

 

Statistical Methods 

Statistical analysis used both spatial analysis and regression methods to assess factors 

associated with IRS campaign efficacy. These analyses assess the spatial and statistical 

relationships between classes of structures identified in the mSpray data. For the most accurate 

analysis of potential factors driving loss of targeted structures, some structures and target areas 

were omitted from analysis as outliers.  

Within the data, there were designated spray areas assigned as either ‘targeted’ or ‘not 

targeted. Within these spray areas there were a number of enumerated structures which were also 

designated as ‘targeted’ or ‘not targeted’ based on the spray area category. Only spray areas 
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designated as ‘targeted’ and structures within those spray areas were included in this analysis. At 

the household level, there are three classes of residential structures within the original data. The 

first is ‘enumerated, visited, sprayed’ indicating that the structure was targeted, found, and 

sprayed. The second class is ‘enumerated, visited, not sprayed’, meaning the structure was 

targeted, visited, but not sprayed for some reason. The third class of structure is ‘enumerated, 

targeted, not visited’ meaning that the house was identified by satellite enumeration and targeted 

for spraying, but the house was not located by the spray team. This study focused on the third 

class of ‘enumerated, not visited’ structures. The first two classes of structures were combined 

into one dataset as ‘all visited structures’ as the comparison data against structures that were 

within targeted spray areas and not found. 

Beyond the classifications of ‘missed’ or ‘visited’, the efficacy of all spray areas were 

calculated, and all houses within spray areas that had no coverage at all, regardless of targeting, 

were eliminated from analysis. This analysis focused only on structures missed that were within 

targeted spray areas, and had achieved at least partial coverage of enumerated structures within 

that area. Based on this exclusion criteria, analysis focused on factors associated with missed 

houses within targeted spray areas that have achieved some documented coverage of IRS  

treatment or at least locating targeted structures. Further comparative analysis between missed 

and visited structures also gives perspective on the significance of the environmental factors 

assessed. 

Spatial point patterns will be analyzed using a difference in K-function, and Global 

Moran’s I analysis. The difference in K-function analysis is a spatial analysis tool that focuses on 

the degree of clustering existing among the two assigned structure classes of ‘visited’ and 
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‘missed’. Results of the difference in K-function analysis shows the degree of clustering within 

different scales of view from immediate surroundings up to 6 miles ​(Balakrishnan et al. 2014)​. In 

addition to providing cluster pattern analysis, the difference in K-function can be interpreted to 

identify if missed structures are clustered together in space or more evenly dispersed. This 

information also provides initial insight into whether environmental phenomena may be affecting 

the loss of targeted structures prior to full regression analysis of environmental factors.  

Following the analysis of spatial distribution and clustering, Poisson regression analysis 

was used to analyze the data. Poisson regression analysis predicts the statistical probability of 

how a categorical outcome will, or will not occur dependent on a series of external factors. For 

these regression models, the outcome of interest is whether or not a targeted structure was visited 

by a spray team on the spray area level. Environmental variables were analyzed as potential 

predictive factors of structures being located by spray teams.  

 

Odds Ratio = ( p / (1 - p)) 
 

Logit = ln [ p / (1 - p) ] 
 

L(𝛽) = Σ(y​i​x​i​𝛽 - e​xi𝛽​ - lny​i​!) 
 

Poisson regression analysis is done by combining the mSpray data with the raster data of 

the hypothesized external factors extracted from the Google Earth Engine databases using the 

statistical programs R, and Rstudio (​RStudio Team, 2019​). This overlay allows for Poisson 

regression analysis that will reveal if similarities and disparities in topography, community 

lighting, remoteness, population density, travel distance to major cities, and vegetation are 

 
 

https://paperpile.com/c/5Km6vI/iVe3
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significant factors affecting the outcome of interest, which is whether or not an enumerated 

structure was located by spray team operations. The output value of interest in any regression 

model is the beta value. The output of a regression model produces a beta for each covariate in 

the model which will be either positive or negative, indicating a positive or negative influence on 

the intercept. For this study, the beta is interpreted such that if there is a positive influence on the 

intercept, then that factor has a positive impact on the likelihood of structures being identified 

within those spray areas. Contrastingly, if the beta is negative, then it is interpreted as having a 

detrimental effect on the likelihood of structures being identified in those spray areas. These 

Poisson regression models assess factors potentially associated with program efficacy on the 

target area level. Other variables included in analysis are whether or not a structure was visited 

or missed as an individual predictor, i. This variable will be used in regression analysis to assess 

potential associations that will explain the loss of targeted structures during this IRS campaign. 

Tests of spatial autocorrelation are statistical tools by which the relationship of points in 

space are assessed and statistically significant patterns of dispersion that are not detectable to the 

naked eye can be identified. Spatial autocorrelation is rooted in the concept of Tobler’s first law 

of geography, stating that the closer objects that are to each other in space, the more similar those  

objects will be (Waller & Gotway, 2004). Global moran’s I analysis is a spatial statistical method 

that identifies the degree of spatial autocorrelation existing among the residuals of regression 

models. If high levels of spatial autocorrelation are found to exist among the residuals of the 

model, then there is a need for a distance-weighted autocovariate to be created. The purpose of 

this autocovariate is to give an objective interpretation of the degree of association that 

covariates have on the model intercept. In this analysis, global moran’s I analysis was done on all 
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regression models to determine the degree of spatial autocorrelation occurring among both 

missed and visited structures, and the significance of the potential associations between the 

selected hypothesized environmental factors have on the efficacy of targeted spray areas.  

Results: 

Descriptive Statistics 

The 2015 IRS campaign in Luapula Province, Zambia began with 219,813 residential 

structures enumerated and 769 identified spray areas. Of the total spray areas assigned and 

houses enumerated, 197,057 houses within 629 target spray areas were designated as targeted for 

treatment with indoor residual spray for this campaign. Of the 629 targeted spray areas, 82 were 

excluded from analysis due to no spray coverage at all, leaving 547 spray areas in the study data 

(figure 1). When assessing the efficacy of this campaign on the spray area level, it was observed  

that 410 (75%) of targeted spray areas achieved the recommended 80% threshold coverage, 

while 137 (25%) of spray areas did not (figure 2).  
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Figure 1. Inclusion and exclusion criteria utilized to narrow the sample population.  

During the spray campaign, data was collected by spray team operations on houses 

targeted and located. On the individual structure level, IRS campaign operations achieved 79% 

coverage of all structures within studied target spray areas. However, the efficacy of all targeted 

spray areas was only 73.5% coverage, and the total efficacy of non-targeted spray areas was 

2.3%. This added coverage had a positive impact on the campaign by increasing overall efficacy,  

and moving towards campaign-wide achievement of threshold coverage, further analysis showed 
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that while 410 spray areas achieved effective coverage, this campaign needed to have 438 spray  

areas treated effectively in order to achieve threshold coverage (table 3). Although the spraying 

of non-targeted structures improves overall campaign efficacy, it is representative of some 

discrepancy in program design and operations, as only structures within targeted spray areas 

were supposed to receive IRS treatment.

 

Figure 2. Distribution of Efficacy among targeted spray areas reached by spray teams during the IRS campaign in 
Luapula Province, Zambia 2015. Threshold coverage as reported by current research is 80% coverage, represented 
here by a dashed line as an x-intercept.  

 

Difference in K-Function 

Spatial analysis through difference in K-function showed that clustering is present among            

both visited and missed houses within targeted spray areas during the 2015 Luapula IRS 

campaign. Analysis showed extremely high levels of clustering of missed structures increasing            

through 4,000 meters, which then slightly decreased to more moderate clustering through 10,000  
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meters (Figure 3). 

 
Figure 3. Difference in K-Function between houses visited and houses missed within targeted spray areas during the                 
2015 IRS campaign in Luapula Province, Zambia. Envelope was constructed through 99 simulations in R using the                 
package ‘splancs’.  
 

Regression Analysis 

Poisson regression analysis was used to assess factors potentially impacting the 

identification of houses at the spray area level. This analysis showed that in all models, all 

covariates except for land cover distribution are significant predictors of structures being missed 

(table 4). Furthermore, of the covariates assessed, the factors of light emissions and accessibility 

to cities are shown to be positively impacting the identification of targeted houses by spray 

teams. Other environmental factors considered, including accessibility, vegetation and friction  

surface were found to negatively impact the number of structures identified by spray teams (table 

4). This indicates that targeted structures within less densely populated areas, with fewer  

nighttime light emissions and increased vegetation coverage are more likely to be lost and not 
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treated by spray teams.  

 

Global Moran’s I 

The global moran’s I analysis tested the residuals of all models for spatial 

autocorrelation. High levels of spatial autocorrelation would violate the independence 

assumption and suggest that there is an underlying environmental factor influencing patterns of 

spatial distribution (Waller & Gotway, 2004). Moran’s I tests of the residuals of the missed data 

regressions showed extremely high levels of spatial autocorrelation in all models (table 5). To 

account for the high levels of spatial autocorrelation, a distance-weighted autocovariate was 

created and incorporated into all missed structure models to objectively assess the impact of 

covariates of interest on the outcome without the interference of spatial autocorrelation.  

 

Discussion: 

These results show that structures missed by spray teams during indoor residual spray 

campaigns in Luapula Province, Zambia are not randomly distributed across space, but cluster in 

space. Further, these houses are more remote as measured by lower population density, more 

dense vegetation, and lower frequencies of nighttime light emissions. This negatively impacts 

campaign efficacy not only due to loss of targeted structures, but also due to loss of transmission 

control in the more rural communities which already have increased risk of malaria compared to 

more urban areas ​(Tatem et al. 2008)​. The difference in K-function analysis allows for 

visualization of cluster patterns of missed targeted structures, which also gives a new perspective 

on the perceived efficacy of IRS campaigns.​ ​Our difference in K-function, shown in figure 1,  
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revealed high levels of clustering of missed structures from less than 100 meters increasing 

through 4,000 meters, and slightly decreasing to moderate levels of clustering through 10,000 

meters, indicating smaller, more dense clusters accompanied by some larger clusters of structures 

in space. The most important information provided by spatial analysis of the missed structures is 

that there are extremely high levels of clustering among this group of structures, which carry 

implications of low to non-existent protection in pockets of these low efficacy areas of this IRS 

campaign. This was interpreted such that there were some external environmental factors driving 

the loss of enumerated targeted houses during spray campaigns. 

A conceptual framework of potential factors affecting indoor residual spray campaign 

operations and outcomes was used for the selection of environmental factors for possible 

correlation to clusters of missed houses (figure 4). Factors selected for spray area level Poisson 

regression analysis were population density, nighttime lights as a representation of remoteness, 

vegetation density, global friction surface, land cover type, and accessibility represented by 

distance to the nearest major city. These factors were chosen because they were deemed to be the 

most representative of remoteness and of  accessibility to residential structures in the absence of 

road maps and public address documentation. Remoteness and accessibility are the outcomes of 

interest because in Zambia, low degrees of  urbanicity  are known to be correlated with 

significantly increased risk of vector and parasite prevalence as well as malaria illness (USAID, 

2015). Global Moran's I analysis of the residuals for original regressions showed high degrees of  

spatial autocorrelation across all missed models, but much less so in visited models. This 

indicated that there are strong spatial relationships existing between environmental factors and  

structures that were missed by spray team operations. The original missed data models were 
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adjusted to account for this through the creation of a distance-weighted autocovariate. This 

autocovariate was incorporated into all missed structure regression models for the purpose of 

adjusting for the high levels of spatial autocorrelation expressed in the moran’s I.  

The adjusted regression models of missed structures showed that all covariates are still 

significant predictors of structures being located or lost by spray teams (table 4). Friction surface 

and accessibility are the most impactful predictors and are positively associated with the 

likelihood of a targeted structure being missed by spray teams. Vegetation was also positively 

associated, but was about equally as impactful as the vegetation covariate was in the visited 

structures model. Both distance to nearest city and friction surface covariates were also 

significant positive predictors in the visited structures model as well. These results support the 

initial hypothesis that structures further away from more densely populated areas are more likely 

to be missed by spray teams. All other covariates, including light, land cover, and population 

density are negatively associated with the likelihood of targeted structures being missed in both 

missed structure and visited structure models, however, the covariates for population density and 

nighttime lights are more impactful in the missed structure model. This indicates that lower 

population density and increased remoteness of structure are factors which are limiting the 

likelihood of structure identification. Given the difference in impact between missed and visited 

models, these can be considered contributing factors to the loss of targeted structures during this 

spray campaign. When categorized, negative predictors can be seen as a function of the 

remoteness of these missed structures, while positive predictors are a function of accessibility to  

structures.  
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Limitations 

The data used for this study is representative only of the 2015 mSpray campaign in 

Luapula Province, Zambia. This study excluded spray data of structures located outside of 

assigned spray areas. Additionally, not all houses located and visited were treated with indoor 

residual spray for various reasons, meaning efficacy could be much lower than initially 

calculated. Locating houses within target areas is essential, but whether or not the house was 

treated is a major factor in meeting the necessary 80% threshold for effective transmission 

control of malaria.  

Due to this data being only for Luapula Province in 2015, there could have been 

improvements made to enumeration, program design, and operational strategies to account for 

missing structures that have been implemented since the completion of this campaign that are 

unknown to the public. These analyses could also be representative of only this specific region 

and environment, as environments differ widely across not only Zambia, but all malaria endemic 

countries across Africa and the Middle East.  

Although environments may differ, and this is a cross sectional examination of indoor 

residual spraying campaigns, it is not unreasonable to extrapolate that many IRS campaigns face 

similar challenges and gaps in coverage regardless of environment or time when looking at 

campaigns of the last five years and in process for the future. Also taking into account that while  

these analyses are specific to a single campaign, the methods used here may be applied to other 

campaigns in other regions for campaign specific analysis of spray area coverage and efficacy.  

 

Conclusion: 
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Although there are limitations, this study is one of the first to examine the efficacy of 

spray team operations during IRS campaigns that have utilized mSpray satellite enumeration 

technology in their program design. The incorporation of satellite enumeration into IRS 

campaigns has already led to vast improvements in program design and coverage for better 

operational management and malaria transmission control. If gaps between satellite enumeration 

and program operations could be resolved, campaign efficacy could be further improved, 

reducing community level malaria transmission. Knowing that for this campaign, structures 

located in less urban areas and less populous areas are more likely to be missed by spray teams, 

preventative measures may be designed and implemented for more effective operations during 

IRS campaigns in the future.  
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Figure 4. Conceptual Framework of Potential Factors Associated with Continued Malaria 
Endemicity in Luapula Province, Zambia 2015 
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Table 1. Descriptive Statistics of Environmental Data for Luapula Province, Zambia  

Environmental Data for Missed Structures      

Variable Missed Mean Minimum Maximum sd 

Friction 0.005022368 0.0005 0.069509 0.01011073 

Population 40.12723 2.036 75.137 18.82954 

Light 8.510362 4 42 6.689595 

Landcover  72.32327 30 210 50.49798 

Accessibility 47.88214 0 184 44.35917 

Vegetation  5841.781 1679 7892 890.2426 

Environmental Data for Visited Structures      

Variable Mean Minimum Maximum sd 

Friction 0.0055077 0.0005 0.081144 0.01144514 

Population 37.69972 0.3956 75.1367 16.28339 

Light 8.028717 4 42 6.658624 

Landcover  71.90865 30 210 50.37754 

Accessibility 56.89666 0 184 48.01032 

Vegetation  5812.793 1679 7915 930.2975 
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Table 2. Unit of Measurement of Environmental Data for Luapula Province, Zambia 

Environmental Factor Unit of Measurement 

Friction Surface Environmentally Adjusted Time to Travel 1 meter 

Population Density Census Reported Number of Persons Per km 

Light Emissions Average Intensity of Nighttime Light Emissions as Measured by Satellite 

Land Cover Distribution 

Numerical Values Assigned to Land Covering Vegetation by Size and 

Density 

Accessibility to Cities Travel Time from Location to Nearest Major City in Minutes 

Vegetation Density Normalized Vegetation Density Indices Measured By Satellite  
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Table 3. Average Efficacy of Spray Areas in Luapula Province, 2015 

Efficacy Status N Efficacy 

Achieved Threshold 410 75.00% 

Missed Threshold 137 25.00% 

Total 547 100.00% 

Target Threshold 438 80% - 85% 
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Table 4. Scaled/Distance Adjusted Regression Coefficients of Environmental Factors  

Associated with Loss of Targeted Structures 
Predictor B p Significant 

Adjusted    

Intercept -1.82E-01 <0.0001 * 

Friction -3.77E-03 1.54E-01 * 

Population -3.29E-02 <0.0001 * 

Light 1.19E-03 6.96E-01  

Landcover -4.42E-03 1.04E-01  

Accessibility 3.93E-02 <0.0001 * 

Vegetation -1.09E-02 <0.0001 * 

Autocovariate 8.49E-12 8.32E-01  

    

Unadjusted Friction Surface    

Intercept -1.81E-01 <0.0001 * 

Friction 7.05E-03 4.41E-03 * 

Autocovariate 9.67E-12 8.09E-01  

    

Unadjusted Population Density    

Intercept -1.81E-01 <0.0001 * 

Population -2.40E-02 <0.0001 * 

Autocovariate 9.01E-12 8.22E-01  

    

Unadjusted Light Emissions    

Intercept -1.81E-01 <0.0001 * 

Light -1.22E-02 <0.0001 * 

Autocovariate 9.97E-12 8.03E-01  

    

Unadjusted Landcover Distribution    

Intercept -1.81E-01 <0.0001 * 

Landcover -1.36E-03 5.88E-01 
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Autocovariate 9.82E-12 8.06E-01  

    

Unadjusted Distance to City    

Intercept -1.82E-01 <0.0001 * 

Accessibility 3.12E-02 <0.0001 * 

Autocovariate 9.71E-12 8.08E-01  

    

Unadjusted Vegetation Density    

Intercept -1.81E-01 <0.0001 * 

Vegetation -5.18E-03 3.86E-02 * 

Autocovariate 9.77E-12 8.07E-01  
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Table 5. Distance Weighted Global Moran's I Analysis of Environmental Factors Associated 
With Loss of Targeted Structures  

Model  Moran's I  P-Value Spatial Pattern 

Model 1 5.11E-01 2.20E-16 Clustered 

Friction Surface Unadjusted  5.11E-01 2.20E-16 Clustered 

Population Density Unadjusted 0.50897 2.20E-16 Clustered 

Light Emissions Unadjusted 0.51059 2.20E-16 Clustered 

Landcover  Distribution Unadjusted 5.11E-01 2.20E-16 Clustered 

Accessibility to Cities Unadjusted 5.09E-01 2.20E-16 Clustered 

Vegetation Density Unadjusted 5.10E-01 2.20E-16 Clustered 
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