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Abstract

Low-scale supersymmetry breaking in string motivated theories implies the presence of

O(100 TeV) scale moduli, which generically lead to a significant modification of the history of

the universe prior to Big Bang Nucleosynthesis. Such an approach implies a non-thermal origin for

dark matter resulting from scalar decay, where the lightest supersymmetric particle can account

for the observed dark matter relic density. We study the further effect of the decay on the baryon

asymmetry of the universe, and find that this can satisfactorily address the problem of the over-

production of the baryon asymmetry by the Affleck-Dine mechanism in the MSSM. Remarkably,

there is a natural connection between the baryon and dark matter abundances today, which leads

to a solution of the ‘Cosmic Coincidence Problem’.
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I. INTRODUCTION

Cosmological observations not only determine precisely the relic abundance of dark mat-

ter and baryons, but also imply an interesting connection between their relative amounts

Ωdm/ΩB ≈ 5, leading to what some have called the ‘Cosmic Coincidence Problem’. One

approach1 has been to try and realize the origin of both as coming from a single source. In

this paper we will take a different approach.

The Minimal Supersymmetric extension of the Standard Model (MSSM) with R-parity

has all the ingredients to address these issues. The Lightest Supersymmetric Particle (LSP)

is a good dark matter candidate that can naturally give rise to the observed dark matter relic

density. Moreover, the existence of many flat directions in the potential with B−L violating

operators allows the Affleck-Dine (AD) mechanism to work effectively [4], generating a

large baryon asymmetry from scalar decay. However, in this simple MSSM approach, the

dark matter density and baryon asymmetry are generated by different mechanisms and at

different epochs in the early universe – they are not correlated in general. Furthermore, the

AD mechanism usually over-produces the baryon asymmetry, resulting in a value which is

much higher than the observed value. In this paper we will argue that by simply accounting

for the presence of additional light scalars (moduli) we can resolve these two problems

simultaneously.

Moduli are generically expected from top-down approaches to the MSSM when the theory

is UV completed in String/M-theory compactifications. The presence of moduli can signifi-

cantly change the thermal history of the universe [5]. In particular, late decays of these fields

can interfere with Big Bang Nucleosynthesis leading to a ‘cosmological moduli problem’. To

avoid this moduli are typically required to have masses of order 10−100 TeV. These moduli

would not only dilute the primordial relics but also produce LSP dark matter through their

universal gravitational coupling. It has been shown in [6–9] that non-thermally produced

1 There have been many approaches to address the coincidence problem from a single source, but these

approaches are typically either involved or require the introduction of large parameters (or both). For

example, in [1] the authors use the decay of a scalar for generating both the baryon asymmetry and the

dark matter abundance. This requires a new sector for baryogenesis. In [2] Q-ball decay was used to

achieve the correct baryon-dark matter ratio through the Affleck-Dine mechanism. Recently, there have

been interesting proposals where dark matter is produced at the same time as the baryon asymmetry via

Affleck-Dine mechanism [3]. These models also require a new sector for dark matter.
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WIMPs from moduli decay can account for the observed dark matter abundance. On the

other hand, the entropy production from the moduli automatically provides a mechanism

to reduce the overproduced baryon asymmetry from AD mechanism. In this paper, we

consider this approach under conditions where non-thermal production provides the right

dark matter abundance, and ask if the observed baryon asymmetry can be simultaneously

achieved.

Previous suggestions for using the decay of scalars to address the over-production of

the baryon asymmetry in AD baryogenesis appeared in [4, 11–14]. Here we realize this

idea for the first time in a fundamental theory, where tight constraints may be placed on

the underlying parameters. Moreover, using this approach we find a natural explanation

for the relationship between the amount of baryon and dark matter because they result

from moduli decay. These moduli and other scalars including sfermions have masses mi ≃

m3/2 ∼ O(50) TeV. This is a generic consequence of SUSY theories with heavy scalars which

are required to not only yield realistic low-energy phenomenology (give rise to electroweak

symmetry breaking and generate hierarchies), but also be consistent (e.g. anomaly-free) at

high energies and in the presence of gravity [15]. This result is independent of the details of

SUSY breaking and very difficult to evade, as was recently discussed for the case of gauge

mediation in [16].

We now summarize our main conclusions. We find that acceptable values of the baryon

asymmetry can be realized from the combination of entropy from moduli decay and a large

initial baryon asymmetry as naturally arises from the AD mechanism in the MSSM. We also

find that for the same expected values associated with the moduli decay the correct dark

matter abundance can result. We note that both the baryon asymmetry and dark matter

abundance are essentially determined by the reheat temperature and the mass of the scalar,

and this gives a new explanation for the ‘cosmic coincidence problem’.

In the next section we briefly review the AD mechanism for baryogenesis. Next we turn

to the late-time production of entropy associated with the decay of moduli and demonstrate

how this can lead to acceptable values not only for the baryon asymmetry and dark matter

density, but also offers an explanation for the relative abundance today. We then summarize

with our conclusions.
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II. A BRIEF REVIEW OF AFFLECK-DINE BARYOGENESIS

In this section we briefly review the AD mechanism of baryogenesis. For a more de-

tailed review with references to the original literature we refer the reader to [17]. The AD

mechanism is realized through the existence of the many approximately flat directions in

the MSSM – which arise from products of squark and slepton fields. These flat directions

are expected to be lifted by non-renomalizable operators and the corresponding scalar fields

(AD fields) then develop large Vacuum Expectation Values (VEVs) in the early universe.

These VEVs may break baryon or lepton number, and non-zero CP-violating phases can re-

sult from SUSY breaking effects. The final Sakharov condition for baryogenesis is then met

by the expansion of the universe, which provides the out-equilibrium condition necessary to

generate the net baryon asymmetry.

The relevant potential for the AD field φ in the early Universe is [18, 19]

V (φ) = (−cH2 +m2
φ)|φ|

2 +

(

aH + Am3/2

Mn−3
λφn + h.c.

)

+ |λ|2
|φ|2n−2

M2n−6
, (1)

where c, a, A and λ are order one constants. The origin of the terms in the potential are easy

to understand. In the early universe the gravitational background or the presence of finite

temperature will break SUSY, e.g. during inflation. This leads to a Hubble-scale mass and

Hubble-scale A-terms for the AD field. At lower energy scales SUSY breaking soft terms

become dominant and generate a soft mass for the AD field (mφ) and additional A-terms,

which are of order the gravitino mass m3/2. The last term in the potential corresponds to a

higher dimensional operator in the superpotential, W ⊃ λφn/Mn−3, which acts to lift the flat

direction. Here M is the cutoff scale where new physics appears and is naturally expected

to be near the GUT or reduced Planck scale Mp ≃ 2.4 × 1018 GeV. It was pointed out

in [18, 19] that the Hubble mass term (1) must be tachyonic for successful AD baryogenesis

and we will adapt this standard assumption throughout the remainder of this paper2.

The AD field exhibits different behavior depending on the cosmological epoch in which

we consider. During high-scale inflation H & m3/2 and the soft terms in (1) are negligible.

The AD field will then have a Hubble-scale mass and so is almost critically damped, relaxing

into small oscillations about its minimum within a few efoldings irrespective of its initial

2 For a recent study of the behavior of the AD field during and following inflation see [20].
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displacement. The minimum of the potential during this epoch is given by

〈φ〉 ∼ M

(

H

M

)1/(n−2)

. (2)

As the expansion rate decreases H will eventually become comparable to m3/2, and the

Hubble induced terms in (1) become of the same order as the soft breaking terms. The AD

field then begins large oscillations when H . mφ ∼ m3/2, forming a scalar condensate which

evolves as non-relativistic matter. It is in this period that there exist both CP violation and

baryon number violation, and non-zero baryon number is generated in the AD condensate

in the usual way [17]. The baryon number generated at this epoch is given by

nB ≃
1

Mn−3
sin(δ)φn

0 , (3)

where δ is the CP-violating phase, and φ0 is the VEV of the AD field at H ∼ mφ. Using

(2) and that during oscillations we have H ∼ mφ we find the VEV

φ0 ∼ M
(mφ

M

)1/(n−2)

. (4)

The ratio of baryon number density to AD field at this epoch is (nB/nφ)i ≃ sin δ, where

nφ ≃ mφφ
2
0. Note that (nB/nφ)i depends on the CP-violating phase and can be as large

as O(1). We note that these are phases during the AD oscillations and not related to the

phases of the soft SUSY breaking Lagrangian.

When the Hubble expansion rate becomes much less than m3/2 the baryon number of the

condensate is frozen-in, and later will be converted into the baryon asymmetry. The inflaton

decays around the time scale ∼ Γ−1
I , where ΓI ∼ m3

I/m
3
p ≃ 109 GeV for mI ∼ 1012 GeV.

The baryon number density at this epoch is

nB(t ∼ Γ−1
I ) ∼ mφφ

2
0

(

ΓI

mφ

)2(
nB

nφ

)

i

, (5)

where ΓI/mφ comes from the expansion of the universe. After the inflaton decay,

the inflaton energy is converted to radiation where the reheating temperature is T I
R ∼

√

ΓIMp ≃ 109 GeV and the photon density is given by nγ ∼ T I
R
3
. Therefore, using (4) for

the value of φ0 we find the baryon to photon ratio

nB

nγ
∼

T I
R

mφ

φ2
0

M2
p

(

nB

nφ

)

i

∼
T I
RM

M2
p

(

M

mφ

)
n−4

n−2

(

nB

nφ

)

i

. (6)
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From (6) we see that for n = 4, (nB/nφ)i ∼ 1 and M ∼ Mp this is within the correct

range to explain the observed baryon asymmetry if there is no significant late-time entropy

production, i.e. in an approach that does not account for the presence of moduli. For larger

n ≫ 1 the scalar initial VEV φ0 can be as large as M , resulting in significantly larger

baryon asymmetry. For example, in the MSSM the flattest direction requires an operator

with n = 9 to lift it [21]. This indicates that for this particular flat direction decay would

result in a baryon to photon ratio nB/nγ ∼ 2 for M ∼ Mp ∼ 1018 GeV, or nB/nγ ∼ 10−4 for

M ∼ MGUT ∼ 1016 GeV. Therefore, the baryon asymmetry is typically over produced from

the AD mechanism in the MSSM. This points toward models with large entropy production

at late times from moduli decay.

III. LATE-TIME ENTROPY PRODUCTION AND DARK MATTER GENESIS

A. Baryon asymmetry after moduli decay

Now let us consider a simple case with one modulus X decaying long after the AD field

decayed to see how to estimate the needed numbers. The evolution of moduli after inflation

is similar to that of the AD flat directions discussed in the previous section. However,

since moduli originate from the coordinates of compact extra dimensions, they have a quite

different potential from that of the AD flat direction. Generically, it is expected to have

all renormalizable terms present in the potential. In the early universe with large inflaton

energy density, these terms receive large Hubble corrections. This typically leads to a Planck

scale displacement for moduli fields from their low-energy minimum X0 ∼ Mp [19].

Since the modulus couples gravitationally to all MSSM particles it generically decays to

SM particles and their superpartners with branching fractions of the same order of magni-

tude. The rest of the decay goes to SM particles which are then thermalized, resulting in a

significant increase in the total entropy. The decay width of the modulus can be parame-

terized as

ΓX = DX
m3

X

M2
p

(7)

where Mp is the reduced Planck scale and DX is a constant determined by the moduli

to matter couplings and typically takes values of O(1) in estimates arising from string

compactifications [7].
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Given the large initial displacement of the moduli field and its long lifetime it will come

to dominate the energy density of the universe prior to its decay. The ratio of the moduli

number density to entropy density before the moduli decay is determined by the initial

moduli amplitude and the reheating temperature in a similar way as the baryon asymmetry

Y 0
X ≡

nX

s
≃

3

4

T I
R

mX

(

X0

Mp

)2

(8)

where X0 is the amplitude at the start of the moduli oscillation, and we use an upper

index 0 to distinguish the yield after the modulus decay. Compared to (6), we can see that

the baryon to moduli ratio is determined by the initial amplitudes and masses of the fields

Y 0
B

Y 0
X

≃

(

mX

mφ

)(

φ0

X0

)2(
nB

nφ

)

i

. (9)

Since this ratio is unaffected by the moduli decay (it is a comoving quantity and so does

not depend on the expansion) it can be used to determine the baryon number density after

moduli decay,

Y 0
B → YB =

Y 0
B

∆
=

nB

safter
≃

nX

safter

(

Y 0
B

Y 0
X

)

≃
3

4

TX
R

mφ

(

φ0

X0

)2(
nB

nφ

)

i

, (10)

where ∆ = safter/sbefore is the dilution from decay and we have made use of (8). Here nB

and nX are the number densities of baryons and moduli at the time of decay and safter is the

entropy density after the decay. The YB obtained above is related to the baryon to photon

ratio today given by the equation nB/nγ ≃ 7.04 YB. Here the factor 7.04 is the entropy to

photon ratio at the current epoch. Then the baryon to photon ratio today is

nB

nγ
≃ 4.5× 10−10 ×

(

TX
R

64 MeV

)(

75 TeV

mφ

)(

φ0/X0

10−2

)2

(11)

where we have taken (nB/nφ)i ∼ 1 and we have chosen fiducial values which are typical

from the underlying theory and can simultaneously yield the correct abundance of dark

matter: DX = 4, mX ≃ 2m3/2 = 150 TeV. The resulting reheat temperature is given by

TX
R ≃ (90/π2g∗)

1/4(ΓXMp)
1/2 ≃ 64 MeV, where g∗ ≃ 15 was used. For φ0/X0 ∼ 10−2, the

obtained ratio is just the right number to compare with the observed asymmetry nB/nγ =

6.1 × 10−10. Note that because the reheat temperature TX
R ∝ m

3/2
X ∼ m

3/2
φ , there is only a

mild dependence on m
1/2
φ .

The above result shows that the baryon to photon ratio in this approach is intimately

related to the ratio of the initial amplitudes of the AD field and the modulus, φ0/X0. This is
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easy to understand since the photon density is dominantly generated from the modulus decay.

As we have discussed in Section II, the initial amplitude for the AD field is calculable and is

given in (4). Note that φ0 depends nontrivially on the dimension of the non-renormalizable

operator that lifts the flat direction. Since larger n leads to larger φ0 and therefore larger

contribution to the baryon asymmetry, we can focus on the flattest directions in MSSM

that require the largest n to get lifted3. As showed in Ref. [21], the flattest direction (one

of the Q, u, e combinations) corresponds to n = 9. Assuming that the non-renormalizable

operator is generated at the reduced Planck scale M ∼ Mp and taking mφ ∼ 105 GeV we

find φ0 ∼ 1016 GeV. For the next flattest direction (one of the d, L combinations) – which

is not lifted until n = 7 – we have φ0 ∼ 3 × 1015 GeV. So we can see that these flattest

directions in the MSSM naturally have amplitudes two or three order of magnitudes smaller

than Mp, i.e., φ0/X0 ∼ 10−3 − 10−2. This “little hierarchy” is exactly what is needed to

explain the baryon asymmetry observed. Its origin can be traced back to the matter content

and gauge structure of the MSSM.

B. Dark matter density

As discussed in subsection IIIA moduli decay to superpartners with a large branching

ratio. Each of these superpartners will eventually decay to an LSP and so typically there

are 2B(X → χχ) LSPs produced per moduli, where B(X → χχ) is the branching fraction

for moduli decay to superpartners. Therefore, the yield of LSPs after the decay is given by

Yχ = 2B(X → χχ)YX =
3

2
B(X → χχ)

TX
R

mX
. (12)

The produced LSPs undergo an out-of-equilibrium annihilation. For that to occur the self

annihilation rate must be larger than the expansion rate nχ〈σv〉 > H , which leads to the

following condition

nχ & nc
χ ≃

H

〈σv〉

∣

∣

∣

∣

T=TX

R

(13)

where nc
χ is the critical density for annihilations. For TX

R ≈ 100 MeV and mX ≈ 105 GeV

we find that the abundance is too large (Yχ ≈ 10−7 vs Y c
χ ≈ 10−11 ) and LSPs will further

annihilate. The final abundance is determined by the critical number density nc
χ from the

3 We assume all non-normalizable operators that are allowed by gauge invariance and R-parity are generated.
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out-of-equilibrium annihilation of LSPs. The final dark matter yield is

Yχ ≃
nc
χ

s
≃

45

2π2g∗

H

T 3〈σv〉

∣

∣

∣

∣

T=TX

R

≃
1

4

(

90

π2g∗

)1/2
1

MpTX
R 〈σv〉

(14)

The above equation can be converted into the relic abundance today,

ΩLSP =
mLSPYχ

ρc/s0
≃ 0.11h−2 ×

( mχ

100 GeV

)

(

3× 10−7 GeV−2

〈σv〉

)(

64 MeV

TX
R

)

,

where ρc and s0 are the current critical density and entropy density, and their ratio is given

by ρc/s0 ≃ 3.6 × 10−9 h2 GeV. For the non-thermal history that we are considering if a

neutralino is to be the dark matter candidate it must be primarily wino-like meaning a larger

annihilation cross section which is given by [6]

〈σv〉 =
g42
2π

1

m2
χ

(1− xw)
3/2

(2− xw)2
,

where g2 ≃ 0.65, xw = m2
W/m2

χ with mW ≃ 80.4 GeV. For mχ = 100 GeV, the annihilation

rate is 3.3× 10−7 GeV−2.

Finally the baryon to dark matter ratio today is

ΩB

Ωχ
≃ 0.2×

(

100 GeV

mχ

)(

TX
R

64 MeV

)2(
〈σv〉

3× 10−7 GeV−2

)(

75 TeV

mφ

)(

φ0/X0

10−2

)2

(15)

This approach can naturally reproduce nearly the observed baryon-to-dark matter ratio

today. It is easy to understand each of the relevant factors in (15). The dependence on the

moduli reheat temperature TX
R follows because higher values increase the baryon asymmetry

since the moduli density was then higher in the early universe. Moreover, higher values will

decrease the dark matter density because of the corresponding increase in entropy production

at the time of decay. The dependence on the averaged annihilation cross-section and velocity

〈σv〉 is understood because the amount of dark matter depends inversely on its ability to self

annihilate. The dependence on the AD field 1/mφ comes from the number density of the AD

field (flat direction) nφ ∼ ρφ/mφ. In fact, as mentioned in the beginning of Section II, the

AD mass mφ is of the same order as the gravitino and moduli mass ∼ m3/2 ∼ mX/2. Thus,

the true dependence of the baryon to dark matter ratio on the mass scale is ∼ m2
3/2 after

rewriting the reheating temperature in terms of the moduli mass. In the last factor, φ0 and

X0 are the initial amplitudes of the AD flat direction and the modulus. The factor arises

9



from the ratio of their corresponding energy densities and determines how much baryon

asymmetry is left after the dilution.

Our results are derived assuming that the AD condensate evolved homogeneously after it

formed. In general, it is also possible that the AD condensate becomes unstable with respect

to spatial perturbations and turns into non-topological solitons, so-called Q-balls [22]. In

such a case, Q-balls can decay very late and greatly change the resulting baryon asymmetry.

Nevertheless, as we have checked, in the approach considered here, where gaugino masses

are suppressed compared to the scalar mass, a large set of flat directions with second and

third generation squarks will not fragment into Q-balls, in contrast to the more usual result

based on the MSSM spectrum with one mass scale. This includes the flattest directions

that are lifted at the level n = 7 and n = 9. The associated condensates if formed are

likely to dominate the energy density compare to all other flat directions. If Q-balls do

form from other less flat directions, they will likely decay before the moduli decay and their

contribution will be washed away. A full detailed treatment of the Q-ball in our approach

is beyond the scope of this paper, and will appear elsewhere.

IV. CONCLUSIONS

In this paper, we have studied AD baryogenesis and the baryon-dark matter so-called

coincidence problem in the MSSM accounting for the presence of moduli and the possibility

of a non-thermal history for the early universe. Such an approach emerges from String/M

theory compactifications with stabilized moduli and realistic soft supersymmetry breaking.

For such an approach, it is natural for the baryon asymmetry to arise via the AD mechanism

in which MSSM flat directions with U(1)B−L charge form a condensate which later decays

into baryons. In many instances this mechanism is too efficient and gives a baryon asymme-

try of order unity. However, here we have seen that when moduli decay shortly before BBN,

the resulting entropy dilution leads to an acceptable baryon asymmetry. As discussed in

detail in the text, for moduli and gravitino masses of order 100 TeV and reheat temperature

of order 100 MeV, the resulting baryon to dark matter ratio is

ΩB

Ωχ
≃ 0.2×

(

100 GeV

mχ

)(

TX
R

64 MeV

)2(
〈σv〉

3× 10−7 GeV−2

)(

75 TeV

mφ

)(

φ0/X0

10−2

)2

(16)
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implying a fundamental relation between the amounts of baryonic and dark matter. More-

over, for the same set of parameters the dark matter abundance is in near agreement with

cosmological observations. We emphasize that these results are robust and hold in a large

class of string compactifications with stabilized moduli. They do not require the addition of

ad-hoc or special mechanism.
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