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Abstract. We re-examine the importance of slow-roll corrections during the evolution

of cosmological perturbations in models of multi-field inflation. We find that in many

instances the presence of light degrees of freedom leads to situations in which next

to leading order slow-roll corrections become significant. Examples where we expect

such corrections to be crucial include models in which modes exit the Hubble radius

while the inflationary trajectory undergoes an abrupt turn in field space, or during a

phase transition. We illustrate this with two examples – hybrid inflation and double

quadratic inflation. Utilizing both analytic estimates and full numerical results, we find

that corrections can be as large as 20%. Our results have implications for many existing

models in the literature, as these corrections must be included to obtain accurate

observational predictions – particularly given the level of accuracy expected from CMB

experiments such as Planck.
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1 Introduction

The inflationary paradigm [1, 2] remains a convincing causal mechanism for providing

the needed initial conditions of the early universe – despite scrutiny from a wealth of

precision cosmological observations [3, 4] (see [5, 6] for reviews). Inflation accomplishes

this by providing a period of quasi-de Sitter expansion that leads to a classical spec-

trum of nearly scale invariant density fluctuations [7]. The evolving density contrast

then leads to the large scale structure and Cosmic Microwave Background (CMB)

anisotropies observed today. In the simplest models of inflation the acceleration is

assumed to be the result of a single scalar degree of freedom – the inflaton. In such

models it was shown long ago that the perturbation in the spatial curvature is a con-

served quantity on super-Hubble scales [8], which makes single field models of inflation

rather easy to analyze.

Embedding the concept of inflation in a more fundamental theory generically leads

to the existence of additional light degrees of freedom. These fields typically influence

the dynamics and may even help drive inflation, leading to multi-field models (early

examples are [9, 10]). In such situations the curvature perturbation does not necessarily

remain constant on super-Hubble scales, resulting in new theoretical challenges as well

as richer possibilities for observations [11–18]. One example arises when the inflationary

trajectory deviates from a geodesic in the field space [19, 20]. As a result, the curvature

perturbations are not constant after crossing the Hubble radius, and the näıve single-

field picture fails. Thus, the usual single-field relations between observable quantities

(such as the amplitude of the perturbations and the spectral index inferred from the

two-point correlation function) and the parameters of the inflationary potential are

lost. Another example is when a time dependent coupling between fields approaches

the regime of strong coupling, which in turn can lead to interesting observational

signatures [19–24].

Among the theoretical obstacles facing multi-field inflation models is finding sim-

ple (and universally applicable) tools for calculating the power spectrum of curvature

perturbations, particularly in the situation where couplings between fields are signifi-

cant. A common and useful tool for analyzing multi-field models is the so-called δN

formalism [25–27]. Indeed, this approach has even lead to interesting and quite re-

strictive bounds on multi-field inflation models from primordial non-gaussianity [28].

However, this approach requires (typically reasonable) assumptions about the ampli-

tude of the fluctuations at Hubble radius crossing. In particular, one assumes that the

amplitude is equal to that of perturbations of a light scalar field in pure de Sitter space,

where leading order in slow-roll is more than adequate to capture the dynamics – an

intuitive and very accurate approximation in many cases. However, it has been noted

that in special cases of hybrid inflation this approximation may fail, specifically when

mildly tachyonic modes source perturbations of the curvature, leading to inaccurate
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results [29–31]. Another example of such a violation was noted [32] in double infla-

tion models, where an appreciable contribution from the slow-roll parameters was the

culprit. These special situations provide examples where the de Sitter approximation

can fail within the δN formalism and the dynamics of these systems is not adequately

captured in the leading slow-roll approximation.

With these motivations in mind we revisit multi-field models of inflation. We find

the next to leading order corrections to the power spectra of curvature and isocurvature

perturbations near Hubble radius crossing and on super-Hubble scales utilizing the

transfer matrix formalism. We give simple examples of models where these corrections

are essential for obtaining accurate estimates of the power spectra. This generalizes

[33–37] to the multi-field case and extends the results of [16] to include higher order

corrections and an explicit expression for the transfer matrix of perturbations.

Outline.—The paper is organized as follows. In §2 we review canonically normalised

two-field inflation, discuss the usual slow-roll approximations and motivate considering

higher order slow-roll effects. In §3 we study the dynamics of the perturbations on a

Friedmann–Robertson–Walker background, around Hubble radius crossing. We derive

the expressions for the power spectra of curvature and isocurvature perturbations up

to next-order in the relevant slow-roll parameters. These analytical results are valid

up to a few e-folds after horizon crossing (when the modes have become classical), and

capture the relevant time and scale dependence of the power spectra. The evolution of

the perturbations on super-Hubble scales is the subject of §4, where we calculate the

transfer matrix for the perturbations up to next-order in slow-roll parameters. In §5
we present two simple but instructive examples of inflationary trajectories in hybrid

inflation and double quadratic inflation models, for which the importance of the next-

order corrections is manifest. We conclude in §6. The appendix collects additional

formulae necessary to compute the power spectra.

2 Perturbations in multi-field inflation

We will restrict our attention to the case of two scalar fields minimally coupled to

gravity, although our analysis is easily generalizable to more fields. At the level of

renormalizable interactions the action is then

S =

∫
d4x
√
−g
[

1

2
m2
pR−

1

2
(∂ϕ)2 − 1

2
(∂χ)2 − V (ϕ, χ)

]
, (2.1)

where mp = 1/
√

8πG ' 2.43× 1018 GeV is the reduced Planck mass. The background

equations of motion for the fields φ = {ϕ, χ} are given by

φ̈+ 3Hφ̇+ V,φ = 0 , (2.2)
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where the dot denotes differentiation with respect to cosmic time and V,φ ≡ ∂V/∂φ.

The cosmological evolution is described by the Friedmann equations

3H2m2
p = ϕ̇2 + χ̇2 + V (ϕ, χ) , (2.3a)

2Ḣm2
p = −

[
ϕ̇2 + χ̇2

]
, (2.3b)

where H ≡ ȧ/a is the Hubble parameter and in what follows we will work in units

where mp = 1 for simplicity. We now expand the fields in fluctuations around their

homogeneous background values

ϕ(t,x) = ϕ0(t) + δϕ(t,x) , (2.4a)

χ(t,x) = χ0(t) + δχ(t,x) . (2.4b)

A particularly convenient basis for interpreting the behavior of the fluctuations [12] is

found by performing the instantaneous rotation

δσ ≡ cos θ δϕ+ sin θ δχ , (2.5a)

δs ≡ − sin θ δϕ+ cos θ δχ . (2.5b)

The rotation angle θ is given by cos θ = ϕ̇/σ̇ and sin θ = χ̇/σ̇, where σ̇ ≡
√
ϕ̇2 + χ̇2.

The background equations of motion (2.2) then become

σ̈ + 3Hσ̇ + V,σ = 0 , (2.6a)

θ̇ = −V,s
σ̇

, (2.6b)

where V,σ = cos θ V,ϕ + sin θ V,χ and V,s = − sin θ V,ϕ + cos θ V,χ.1 From the background

equations we see that in this basis δσ corresponds to the scalar field fluctuations along

the trajectory of the inflaton (adiabatic perturbations), whereas δs is the fluctuation

orthogonal to the trajectory (isocurvature perturbations).

Whereas the entropy perturbation δs is automatically gauge invariant, we need

to introduce a gauge invariant definition for the adiabatic perturbations. This may be

accomplished by introducing the Mukhanov-Sasaki [38, 39] variable Qσ = δσ − σ̇
H

Φ,

which corresponds to the instantaneous curvature perturbation on surfaces of constant

σ, where Φ is the Bardeen potential describing scalar perturbations of the metric2.

Given the gauge invariant perturbations Qσ and δs, it is convenient to introduce

the rescaled variables uσ ≡ aQσ and us ≡ a δs, in terms of which the equations of

motion for modes with comoving momentum k take the form [17]

u′′σ + 2a
V,s
σ̇
u′s +

[
k2 − a′′

a
+ a2Cσσ

]
uσ +

[
− 2a′

V,s
σ̇

+ a2Cσs

]
us = 0 (2.7a)

1More generally, with I, J ∈ {σ, s} and i, j ∈ {ϕ, χ}, we have V,IJ...K ≡ EiIE
j
J . . . E

k
KV,ij...k, where

Eϕσ = Eχs = cos θ, Eχσ = −Eϕs = sin θ.
2On super-Hubble scales, Qσ is related to the comoving curvature perturbation via R = (H/σ̇)Qσ.

Similarly, we can define a comoving isocurvature perturbation through S = (H/σ̇)δs.
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and

u′′s − 2a
V,s
σ̇
u′σ +

[
k2 − a′′

a
+ a2Csσ

]
us +

[
2a′

V,s
σ̇

+ a2Css

]
uσ = 0 , (2.7b)

where primed quantities are differentiated with respect to conformal time τ ≡
∫ t

dt̃/a(t̃)

and the coefficients CIJ are listed in Eqs.(A.1). We note that, since we are restricting

our attention to classical scalar fields with renormalizable interactions, both the scalar

fluctuations uσ and us propagate at the speed of sound c2s = 1.

2.1 Slow-roll approximation: the need for next-order contributions

We can simplify the equations of motion for the perturbations (2.7a) and (2.7b) by

applying slow-roll conditions. In many realistic models of inflation, the approximate

constancy of the Hubble parameter requires ε ≡ −Ḣ/H2 � 1 , while the approximate

scale invariance of the power spectrum of perturbations at Hubble radius crossing

(proportional to H2/ε) requires the smallness of

ε̇

εH
= 2(2ε− ησσ) , (2.8)

where ηIJ = V,IJ/3H
2. This yields ε, |ησσ| � 1. These requirements, however, do not

place severe constraints on the remaining slow-roll parameters, since the time evolution

of ηIJ is given by [16]:

1

H
η̇σσ = 2(εησσ − η2σs)− ξ2σσσ , (2.9a)

1

H
η̇σs = ησs(2ε+ ησσ − ηss)− ξ2σσs, (2.9b)

1

H
η̇ss = 2(εηss + η2σs)− ξ2σss , (2.9c)

where ξ2IJK ≡ V,σV,IJK/V
2. The quantities 3H2ηIJ contribute to the mass matrix of

the perturbations. In particular, ησs parametrizes the coupling between curvature and

isocurvature perturbations and it is therefore related to the bending of the inflationary

trajectory in field space via ησs = −θ̇/H.

As also observed in [24], there are three patterns for the slow-roll parameters ε

and ηIJ consistent with the requirements mentioned above. One possibility is that

they all have magnitudes much smaller than one. This is the pattern most often

considered in the discussion of two-field inflationary models. Another possibility is

that ε, |ησσ| � 1, ησs ' 0 and ηss is arbitrary. This is the decoupling regime, which

is effectively equivalent to a single-field inflationary model. A pattern interpolating

between these two possibilities is also conceivable with (ε, |ησσ|, |ησs|)� |ηss| < 1.

For the first case, in which all slow-roll parameters are much smaller than one, the

evolution of the modes is simplified: the perturbations freeze-in near Hubble radius
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crossing, and the effect of a small and almost constant coupling between curvature and

isocurvature modes can be easily included [15]. A quantitative description becomes

more intricate if there is a significant super-Hubble evolution of the isocurvature modes,

as in the recently considered models of hybrid inflation [29–31]. These models allow for

several tens of e-folds of inflation after a mild tachyonic instability develops, associated

with a moderate (and negative) ηss. Another instance in which the dynamics is partic-

ularly involved is the case where the slow-roll parameters are small only initially, with

some becoming of order one at a later time, without violating the slow-roll condition

ε < 1. This is the case, for example, in the model of double quadratic inflation [32].

We emphasize that in all of these models, in order to describe accurately the evolution

of the modes outside the horizon, one must keep higher order terms in the slow-roll

parameters. This will be the focus of §5.1 and §5.2.

Motivated by the discussion above, our strategy for probing the dynamics of the

curvature and isocurvature modes will be the following. First, in §3 we will track the

evolution of the perturbations up to a few e-folds around Hubble radius crossing. At

this stage all slow-roll parameters are restricted to have magnitudes smaller than one,

with the notable exception of ηss. As a result, the solutions of the equations of motion

(2.7a)–(2.7b) will have to be expanded to next-order in ηss, but only to leading-order

in the remaining slow-roll parameters. In §4 we will then follow the evolution of the

modes outside the Hubble radius. Since in this region the term proportional to k2 in

Eqs.(2.7a)–(2.7b) becomes negligible, the solutions simplify significantly and enter the

non-oscillatory regime. However, as we will see, to obtain a faithful estimate of the

amplitude of the perturbations one generally needs to expand the equations of motion

to next-order in all slow-roll parameters.

3 Dynamics near Hubble radius crossing

We start by noting that the expansions to next-order in slow-roll of the CIJ coefficients

in Eqs.(A.1) and of the background scale factor in Eqs.(2.7a)–(2.7b) do not contain any

terms proportional to η2ss. As a result, these quantities can be expanded to leading-

order in slow-roll. The first order derivative terms in Eqs.(2.7a) and (2.7b) can be

removed by changing variables to(
w1

w2

)
=

(
cosϑuσ + sinϑus
− sinϑuσ + cosϑus

)
, (3.1)

where ϑ̇ = −V,s/σ̇. As we justify in the Appendix, the angle ϑ can be chosen so that

the equations of motion for w1 and w2 decouple when a given reference scale, k?, crosses

the Hubble radius3. The equations of motion around the time of horizon crossing for

3Here and throughout the paper quantities with the subscript ? are to be evaluated when the

reference mode crosses the Hubble radius, i.e. when k? = a?H?.
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k? then simplify to(
w′′1
w′′2

)
+

[
k21− 1

τ 2

(
2 + λ1? 0

0 2 + λ2?

)](
w1

w2

)
= 0 , (3.2)

where λ1? and λ2? are functions of the slow-roll parameters given in the Appendix.

3.1 Slow-roll expansion of the mode functions

The equations of motion (3.1) for the variables wA encapsulate the dynamics of the

curvature and isocurvature perturbations around Hubble radius crossing. The solutions

to the equations of motion (3.2) can be written, up to an irrelevant phase, as

wA ∝

√
π

2

√
−τ H(1)

µA
eA(k) , (3.3)

such that 〈eA(k)e∗B(k′)〉 = δAB δ
(3)(k − k′). Here A,B ∈ {1, 2} and H

(1)
µA are Hankel

functions of the first kind and of order

µA =

√
9

4
+ 3λA '

3

2
+ λA −

1

3
λ2A . (3.4)

We emphasize that the presence of λ2A in the expansion (3.4) introduces terms propor-

tional to η2ss in the expansion of the Hankel function in the slow-roll parameters. We

also note that deep inside the horizon, when k � aH, the modes are rapidly oscil-

lating and the solution (3.3) reduces to the standard Bunch-Davies vacuum [40]. The

two-point correlations of the wA variables satisfy

〈w†AwB〉 =
π

4
(−τ)

∣∣H(1)
µA

(−kτ)
∣∣2 δAB , (3.5)

in terms of which we can write the correlation functions for the uσ and us perturbations

[33].

In evaluating the correlation functions in Eq.(3.5) we will be interested in taking

the late times regime, when |kτ | → 0 and the modes are far outside the horizon. To

understand how good an approximation this is we can take the time evolution between

3 to 5 e-folds after the mode k has exited the horizon and show that the corrections to

the asymptotic limit of the Hankel function will be O(10−6 − 10−4). At this point, we

can drop the contribution from the decaying mode, and approximate the wavefunction

by its growing mode. We find that in the asymptotic regime∣∣∣H(1)
µA?

(−kτ)
∣∣∣2 ' − 2

πk3τ 3

{
1− 2λA?

[
− 2 + γE + ln(−2kτ)

]
+ λ2A?f(−kτ)

}
, (3.6)

where γE ' 0.577 is the Euler-Mascheroni constant and the time dependent function

f(−kτ) satisfies

6f(−kτ) = 16 + 3π2 + 4(γE + ln 2)(−11 + 3(γE + ln 2))+

+(4 + 6(γE − ln 2)) ln(−kτ) + 12 ln2(−kτ) .
(3.7)
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The discarded quadratic contributions in slow-roll parameters above are of the same

order as the discarded decaying mode. Therefore, this asymptotic expansion is valid

up to 1 part in 104 and, as we will see in §4, it encodes the relevant dynamics needed

for an accurate description of the evolution of the modes outside the horizon.

Although the asymptotic expansion of the Hankel function in Eq.(3.6) is often a

fairly accurate approximation of the predictions obtained by solving the full equations

of motion (2.7a)–(2.7b) for the curvature and the isocurvature perturbations, it has

some limitations. One of these comes from the expansion of the scale factor

a(τ) ' − 1

H?τ

[
1 + ε? + ε? ln(−k?τ)

]
, (3.8)

which is only valid for | ln(−k?τ)| . 1/ε?. Secondly, the diagonal form of the mass

matrix in Eq.(3.2) is strictly true at Hubble radius crossing. Since this matrix is rotated

by an angle ∼ ησs ln(−k?τ), our result is only limited to times for which this angle can

be considered small, unless λ1? ' λ2?. Finally, as the slow-roll parameters evolve slowly

in time, we can only treat them as constants when ln(−k?τ) is much smaller than any

of the right hand sides of Eqs.(2.9a)–(2.9c).

3.2 Power spectra

The two-point correlation function of a given perturbation Q is related to the (dimen-

sionless) power spectrum via

〈QA(k)QB(k′)〉 = (2π)3δ(3)(k + k′)
2π2

k3
PAB(|k|) , (3.9)

where QA,B = R,S (repeated indices are customarily shortened to a single one). Eval-

uating the power spectra around the time of horizon crossing, we find4

PR =
H2
?

8π2ε?

{
1− 2ε? + 2

[
2− γE − ln 2 + ln(k?/k)

][
3ε? − ησσ?

]}
, (3.10a)

PRS =
H2
?

4π2ε?

{
− 2 + γE + ln 2 + ln(−kτ)

}
ησs? , (3.10b)

PS =
H2
?

8π2ε?

{
1− 2ε? + 2 ln(−k?τ)

[
2ε? − ησσ? + ηss?

]
+ 2(ε? − ηss?)(2− γE − ln 2 + ln(k?/k)) + η2ss?f(−kτ)

}
, (3.10c)

where PR denotes the power spectrum of the comoving curvature perturbation, PS
that of the isocurvature perturbation, and PRS is the cross-correlation between the

two perturbations.

4This clarifies previous results found in Refs. [16, 17].
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Note that there are two types of logarithmic contributions in the power spectra:

those which depend explicitly on time, of the form ln(−kτ), and those which are

scale dependent, ∼ ln(k?/k).5 We can eliminate the latter type of logarithmic terms,

by choosing an appropriate reference scale, in this case k? = k. One still has to deal,

however, with the time-dependent logs, which cannot be removed. Although at Hubble

radius crossing −kτ = 1 and the time-dependent logarithms vanish, we will see in §5.1

that their inclusion beyond leading-order may be essential for accurately tracing the

evolution of the power spectra.

Finally, the absence of time-dependent terms in Eq.(3.10a) is just a reflection

of the fact that, without isocurvature modes, the curvature perturbations are frozen

after Hubble radius crossing. We emphasize that the isocurvature modes will source

the curvature perturbations, but this is a next-order effect in the slow-roll parameters

not involving ηss and can therefore be neglected around Hubble radius crossing, as we

have argued previously6. However, when describing the entire inflationary period this

sourcing cannot be neglected, as we will see explicitly in the next section.

4 Dynamics after Hubble radius crossing

The results derived in §3 are valid up to a few e-folds after the relevant scales have

exited the Hubble radius and the comoving curvature perturbation R has become

classical. To follow the subsequent evolution of the modes, however, one needs to

resort to other techniques such as the δN formalism or the transfer matrix method.

To track the evolution of the perturbations after Hubble radius crossing it is

convenient to write the equations in terms of the Mukhanov-Sasaki variables Qσ and

δs [17]:(
Q̈σ

δ̈s

)
+

(
3H 2V,s

σ̇

−2V,s
σ̇

3H

)(
Q̇σ

δ̇s

)
+

[
k2

a2
1 +

(
Cσσ Cσs
Csσ Css

)](
Qσ

δs

)
= 0 . (4.1)

The coefficients CIJ are given by Eqs.(A.1), and can be expanded consistently to

next-order (see Appendix). On super-Hubble scales we can neglect the k2/a2 term

in Eq.(4.1). Furthermore, noting that in this regime the variables Qσ and δs change

slowly compared to the scale factor, we can also neglect the double time derivatives.

Thus, using Eqs.(A.2a)–(A.2d) we obtain, to leading-order in the slow-roll parameters:

Q̇σ/H = −(ησσ − 2ε)Qσ − 2ησs δs , (4.2a)

δ̇s/H = −ηss δs . (4.2b)

5The appearance of both families of logarithmic contributions was mentioned in Ref. [37], whereas

Refs. [34, 41, 42] obtained time dependent logarithms.
6We expect PR to evolve as the inflationary trajectory bends in field space. In particular, since

θ̇ = −Hησs, its logarithmic time dependence will be proportional to η2σs.
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Differentiating Eqs.(4.2a)–(4.2b) with respect to time and using Eqs.(2.9a)–(2.9c), we

can obtain next-order slow-roll expressions for Q̈σ and δ̈s. Finally, plugging them

back into Eq.(4.1) and again using Eqs.(A.2a)–(A.2d), we find a next-order slow-roll

approximation for the full equations of motion:

dQσ

dN
= AQσ +B δs , (4.3a)

d δs

dN
= D δs , (4.3b)

where we have defined

A = −ησσ + 2ε− 1

3
η2σs +

5

3
εησσ −

4

3
ε2 − 1

3
η2σs −

1

3
ξ2σσσ , (4.4a)

B = −2ησs + 2εησs −
2

3
ησsησσ −

2

3
ησsηss −

2

3
ξ2σσs , (4.4b)

D = −ηss −
1

3
η2σs −

1

3
η2ss +

1

3
εηss −

1

3
ξ2σss . (4.4c)

Eqs.(4.3a)–(4.3b) can be integrated to give

Qσ(N) =

[
Qσ? + δs?

∫ N

N?

dN ′′B(N ′′)e
∫N′′
N?

dN ′(D(N ′)−A(N ′))

]
e
∫N
N?

dÑ A(Ñ) , (4.5a)

δs(N) = δs?e
∫N
N?

dÑ D(Ñ) , (4.5b)

where Qσ? and δs? are the initial conditions at N?. Taking N? to be the e-fold at which

the mode of interest crossed the Hubble radius and applying Eqs.(3.10a)–(3.10c), we

find that the instantaneous power spectra for R and S can be written as

PR = P?

[
1 +

(∫ N

N?

dN ′′B(N ′′)e
∫N′′
N?

dN ′G(N ′)

)2

+ c

∫ N

N?

dN ′′B(N ′′)e
∫N′′
N?

dN ′G(N ′)

]
(4.6a)

PS = PS?e2
∫N
N?

dN ′G(N ′) , (4.6b)

where G = D − A, P? = H2
?/8π

2ε? and PS? is given by Eq.(3.10c) setting k? = k and

−kτ = 1. The relative correlation between curvature and isocurvature perturbations

at Hubble radius crossing is denoted by c = −2ησs?(2− ln 2−γE) [16]. In the following

section we will apply the solutions (4.6a)–(4.6b) to specific inflationary models. We

will compare the accuracy of these solutions to that found by numerically integrating

the full equations of motion for the perturbations.

5 Numerical examples

Hybrid inflation [43] is unquestionably the most popular inflationary model with two

scalar fields. In its original version, the inflaton slowly rolls down the potential until it
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reaches a critical value. Then, the waterfall field becomes tachyonic and quickly rolls

down to the minimum of the potential, thereby terminating inflation. Such dynamics

leads, however, to a blue spectral index, inconsistent with observations. This motivated

a number of authors [29–31] to consider variants of hybrid inflation admitting a much

milder transition between the inflaton-dominated and waterfall-dominated regimes of

inflation7. In these models, the waterfall field remains tachyonic, but the magnitude of

its mass parameter can be much smaller than the Hubble scale. In this case one has to

analyze carefully the dynamics of the coupled system describing the behaviour of the

perturbations of the two scalar fields. In §5.1 we investigate precisely these types of

hybrid inflation models, whereas §5.2 will be devoted to models where the inflationary

trajectory has a turn in field space during which some slow-roll parameters may become

close to one while maintaining the slow-roll condition ε� 1.

5.1 A case study of hybrid inflation

As a concrete example, we shall study one particular inflationary trajectory which was

also investigated in Ref. [31]. The potential of the model is

V (ϕ, χ) = Λ4

[(
1− χ2

v2

)2

+
ϕ2

µ2
+

2ϕ2χ2

ϕ2
cv

2

]
, (5.1)

where we adopt their notation and v = 0.10, ϕc = 0.01 and µ = 1.00×103. The overall

normalization of the potential Λ does not play any role in this discussion and can be

arbitrarily chosen to ensure the correct normalization of the curvature perturbations

[3]. Our particular trajectory corresponds to the one shown in Fig. 4 of Ref. [31]: it

starts at ϕ0 = 1.00 × 10−2 and χ0 = 1.63 × 10−9, producing 62 e-folds of inflation.

In the following, we shall mainly focus on the evolution of modes leaving the Hubble

radius 8 e-folds after this initial time, so it is convenient to associate the beginning of

the zeroth e-fold with that moment (negative number of e-folds will then correspond

to earlier times).

In Fig. 1 we show the time evolution of the slow-roll parameters ε, ησσ, ησs and ηss.

It is clear that, for the initial 30 or so e-folds, the hierarchy (ε, |ησσ|, |ησs|)� |ηss| < 1

holds, realizing one of the possibilities discussed in §2.1.

We observe from Fig. 2 that the η2ss? corrections in Eq.(3.10c) are important for

ensuring the accuracy of the result for a few e-folds. The results are normalized to the

value P? = H2
?/8π

2ε? of the single-field power spectrum of curvature perturbations.

In the left panel, the evolution of PS is calculated in four different ways. The yellow

line corresponds to the numerical integration of the full equations of motion. The

dashed black line is the prediction of Eq.(3.10c) neglecting η2ss?, while the solid black

7See [44] for a different approach where the authors investigate the importance of quantum diffusion

on the transition.
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Figure 1. The evolution of the slow-roll parameters ε, ησσ, ησs and ηss for the inflationary

trajectory introduced in §5.1.
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Figure 2. Left panel: the power spectrum of the curvature perturbations, PS , normalized

to the single-field power spectrum of curvature perturbations P? calculated in four different

ways as described in the text. Right panel: power spectra of the curvature and isocurvature

perturbations (PR and PS , respectively) for the case study of hybrid inflation described

in §5.1. They were calculated numerically (red and yellow lines) or taken from analytical

solutions (4.6a)–(4.6b) with parameters B and G expanded to leading (black dashed lines)

or next-order (black solid lines) in the slow-roll parameters. The latter practically overlap

with numerical results.

line corresponds to the full expression taking into account next-order effects. Finally,

the thin grey solid line is the result of applying the transfer matrix formalism discussed

in §3 with a leading-order slow-roll result for the power spectrum taken as the initial

condition at N = 0. These results show that, for |ηss?| = O(10−1), one must take into
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account corrections quadratic in ηss in order to obtain a faithful estimate of the power

spectrum of the isocurvature perturbations, valid for a couple of e-folds after Hubble

radius crossing.

Adhering to the particular trajectory in the model of hybrid inflation considered

here, we have calculated the evolution of curvature and isocurvature perturbations

during inflation for one particular mode leaving the Hubble radius at N = 0. The

results are shown in Fig. 2 (right panel). Yellow and red lines correspond to the

curvature and isocurvature perturbations, respectively, whose evolution was calculated

numerically from the full set of equations of motion (2.7a)–(2.7b). Black dashed (solid)

lines show the predictions of our analytical solutions (4.6a)–(4.6b) with coefficients B

and G expanded to next to leading order in the slow-roll parameters.

We find good agreement between the full numerical solution and the approxi-

mate solutions (4.6a)–(4.6b) obtained by including next-order slow-roll corrections.

On the other hand, terminating the expansion at leading-order in slow-roll parame-

ters gives inaccurate results. This behavior is a direct consequence of the fact that

with ηss ' −0.1 the isocurvature perturbation is temporarily tachyonic, and grows

for around twenty-five e-folds or so before the coupling between the curvature and the

isocurvature perturbations becomes large, and the curvature perturbations are sourced

by the amplified isocurvature modes. A correction of −2η2ss∆N/3 in the exponent of

(4.6b) can then easily be as large as around 20%, which is the magnitude of the effect

we observe.

In the δN formalism, the curvature perturbations on large scales are given by

R(tf ,x) = N (tf , t?,x)−N(tf , t?) , (5.2)

whereN (tf , t?,x) is the number of e-folds between an initial flat hypersurface at time t?
and a uniform density hypersurface at time tf , and N(tf , t?) =

∫ tf
t?
H(t) dt. Following

this definition, in two-field inflationary models one can write the power spectrum of

the curvature perturbations as

PR = PQϕ
(
∂N

∂ϕ

)2

+ PQχ
(
∂N

∂χ

)2

, (5.3)

where Qϕ and Qχ are the Mukhanov-Sasaki variables associated with the perturbations

of the scalar fields ϕ and χ, respectively. Also, PQϕ and PQχ are the power spectra

evaluated at t? and the partial derivatives are taken with respect to the values of the

fields at t?. Usually, one further simplifies this result, associating t? with a time soon

after Hubble radius crossing and taking PQϕ = PQχ = H2
?/4π

2. However, for the

inflationary trajectory considered here the latter assumption is not accurate enough:

at Hubble radius crossing the power spectrum of the isocurvature perturbations is

enhanced by nearly 20%, and this effect must be included in the calculation of the

final power spectrum of the curvature perturbations. Upon identifying Qχ with δs,

one notes that this correction is easily recognized as the O(η2ss) term in (3.10c).
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To close this section we comment on how some of the subtleties discussed above

impact existing results found in the literature. First, we note that Qσ and δs are

two independent quantum fields. In order to obtain their power spectra, one should

solve the equations of motion for the wave functions twice, assuming either δs = 0

or Qσ = 0 as initial conditions; the two results should be then added in quadratures.

Ref. [30] solves the equations of motion for the wave functions only once, which leads

to a spurious dip in the plot of |Qσ| shown in logarithmic scale. However, thanks

to a fortunate coincidence, the final result is numerically correct; the final curvature

perturbations are dominated by the contribution of the isocurvature perturbations, so

the initial curvature perturbation can be safely neglected. In Ref. [31] the sourcing

of the curvature perturbations by the isocurvature perturbations was neglected, which

not only leads to a final amplitude of the curvature perturbations that is orders of

magnitude smaller than the full result, but also gives an incorrect estimate ns − 1 =

−6ε?+2ησσ? for the scalar spectral index. Including the (dominant) contribution from

isocurvature perturbations gives instead ns − 1 ' −2ε? + 2ηss?. With ηss? ∼ −0.1

and negligible ε?, we conclude that such models are excluded by WMAP results [3],

irrespective of the constraints from the normalization of the perturbations [45].

5.2 A case study of double quadratic inflation

Double quadratic inflation models [32], given by the potential

V (ϕ, χ) =
1

2
m2
ϕϕ

2 +
1

2
m2
χχ

2 , (5.4)

are a well-studied class of multi-field inflation models. Here we study a trajectory

closely resembling the example investigated in Ref. [17]: we take mχ/mϕ = 7 and

start the evolution of the homogeneous fields at ϕ0 = 8 and χ0 = 8 (the overall

normalization of the potential only affects the normalization of the perturbations).

Inflation is initially driven by χ. Then, around N = 10 the field space trajectory

rapidly changes direction and there is a slight deviation from slow-roll, as measured

by the ε parameter.

The evolution of the slow-roll parameters ε, ησσ, ησs and ηss is shown in Fig. 3,

where we also display the evolution of the perturbations. Since in this example

ξ2IJK = 0, the coupling B between the curvature and isocurvature perturbations on

super-Hubble scales, given by Eq.(4.4b), is proportional to ησs, which explains a small

decrease in PR after reaching the maximum at N ' 11. The slow-roll expansion be-

comes unreliable when ηss becomes much larger than one. Our next-order slow-roll

expansion is, however, quite reliable before that happens. The discrepancy between

the results calculated up to leading and next-order in slow-roll comes from the con-

tributions to the parameter B, with the next-order contribution only twice smaller

than the first order one. At later times the isocurvature perturbations become very

massive and decay rapidly, no longer affecting the evolution of the curvature modes.
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Figure 3. Case study of double quadratic inflation described in Sec. 5.2. The left panel

shows the evolution of the slow-roll parameters ε, ησσ, ησs and ηss. The right panel shows

the power spectra of the curvature and isocurvature perturbations (PR and PS , respectively)

calculated numerically (red and yellow lines) or taken from the analytical solutions (4.6a)–

(4.6b) with parameters B and G expanded to leading (black dashed lines) or next-order

(black solid lines) in the slow-roll parameters.

The most striking result of the breakdown of the slow-roll expansion is the oscillatory

feature in the power spectrum of the isocurvature perturbations PS , resulting from a

sudden change of the mass parameter 3ηssH
2 of this perturbation. This also explains

an interesting feature in Fig. 3: after decaying for a short period (when N ' 11) the

quantity PR increases slightly. This effect goes beyond our analytic approximation,

but has almost no impact on the final value of the power spectrum.

6 Conclusions and outlook

In the present era of precision cosmology, the Planck satellite should deliver high-

precision data in the near future. Such observational standards need to be followed

by equally good theoretical precision so that one can make the most efficient use of

the Planck data. Whilst the inflationary power spectrum at lowest-order in slow-roll

can provide an accurate description of cosmological evolution in many scenarios, there

exist models where one requires slow-roll effects beyond lowest-order for an accurate

description of the evolution of the perturbations.

In this paper we have studied the evolution of the curvature and isocurvature

perturbations in two-field inflation models to next-order in the appropriate slow-roll

parameters. Using popular examples of two-field inflationary models, a variant of

hybrid inflation and double quadratic inflation, we have found that calculating the

– 14 –



two-point correlations of the isocurvature modes at next-order in ηss provides a very

precise estimate of the initial amplitude of the perturbations around the Hubble radius.

The isocurvature perturbations can source the curvature perturbations during a turn

in the inflationary trajectory in field space: all slow-roll parameters can (temporarily)

increase at this instance, which justifies keeping next-order effects in the analysis. To

follow the dynamical evolution, we have applied the transfer matrix method and have

found a remarkable agreement with the explicit numerical integration of the equations

of motion.

In conclusion, our results show that keeping slow-roll corrections to higher or-

der is necessary to obtain an accurate description of perturbations on super-Hubble

scales. We reached this conclusion using knowledge of a single inflationary trajectory,

which had the advantage of making the precision of our semi-analytical calculations

comparable to those of the full numerical methods. In the examples we considered we

found that this enables this class of models to be predictive at an accuracy required

for comparison with data expected from Planck.
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A Appendix

Some of the results reviewed in §2 and §3 require rather lengthy expressions which

might obscure the main line of thought. For completeness of the discussion, we have

collected them here.

The coefficients CIJ in the equations of motion (2.7a) and (2.7b) are:

Cσσ = V,σσ −
(
V,s
σ̇

)2

+ 2σ̇
V,σ
H

+ 3σ̇2 − σ̇4

2H2
, (A.1a)

Cσs = 6H
V,s
σ̇

+ 2
V,σV,s
σ̇2

+ 2Vσs + σ̇
V,s
H

, (A.1b)

Csσ = V,ss −
(
V,s
σ̇

)2

, (A.1c)

Css = −6H
V,s
σ̇
− 2

V,σV,s
σ̇2

+ σ̇
V,s
H

, (A.1d)

which are exact to all orders in slow-roll. We can expand these coefficients uniformly

to next-order in the slow-roll parameters:

Cσσ ' 3H2

(
ησσ − 2ε− 1

3
η2σs +

4

3
εησσ −

2

3
ε2
)
, (A.2a)

Cσs ' 3H2

(
2ησs +

2

3
ησsησσ

)
, (A.2b)

Csσ ' 3H2

(
−2

3
ησsησσ +

4

3
εησs

)
, (A.2c)

Css ' 3H2

(
ηss −

1

3
η2σs

)
. (A.2d)

We can proceed similarly with respect to the coefficient V,s/σ̇, multiplying the first

derivatives of the perturbations as Hησs(1 + ε/3).

One can now remove the first derivatives from the system of equations (2.7a) and

(2.7b) by performing a change of basis. We introduce the rotated field perturbations(
w1

w2

)
= R−1

(
uσ
us

)
(A.3)

where the rotation matrix is defined in terms of an angle ϑ

R ≡
(

cosϑ − sinϑ

sinϑ cosϑ

)
, (A.4)

with

ϑ̇ =
V,s
σ̇
. (A.5)
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The equations of motion for the perturbations w1 and w2 around the time of horizon

crossing are, to next-order in the slow-roll parameters(
w′′1
w′′2

)
+

[(
k2 − a′′

a

)
1 +

1

τ 2
R−1QR

](
w1

w2

)
= 0 , (A.6)

where

Q =

(
3ησσ − 6ε+ 10εησσ 3ησs + 8εησs

3ησs + 8εησs 3ηss + 6εηss

)
. (A.7)

The assumed pattern of the slow-roll parameters justifies treating them as constant in

the course of a few e-folds, around the time when the mode of interest with a comoving

wave number k? crosses the Hubble radius, that is, k? = a?H?. We can therefore replace

the slow-roll quantities by their values at Hubble radius crossing. Moreover, ϑ can also

be replaced by its value ϑ? at Hubble radius crossing, and we have the freedom of

choosing the constant term in the solution of (A.5) so that the matrix R−1QR is

diagonal. We can then write the equations of motion for the perturbations w1 and w2

as (
w′′1
w′′2

)
+

[
k21− 1

τ 2

(
2 + λ1? 0

0 2 + λ2?

)](
w1

w2

)
= 0 , (A.8)

where we used a′′/a = (2 − ε)(aH)2. Also, when writing Eq.(3.2), we used the fact

that, to leading-order in slow-roll, Vs/σ̇ = Hησs. The linear combinations

λA? = 3ε? + 20ε2? + 8ε?ησσ? − λ̃A? (A.9)

where A ∈ {1, 2}, can be expressed in terms of the angle ϑ? as

(λ̃1? − λ̃2?) sin(2ϑ?) = 6ησs? + 16ε?ησσ? , (A.10a)

(λ̃1? − λ̃2?) cos(2ϑ?) = 3ησσ? − 3ηss? − 6ε? + 10ε?ησσ? + 6ε?ηss? . (A.10b)

The relations

λ̃1? + λ̃2? = 3ησσ? + 3ηss? − 6ε? + 10ε?ησσ? + 6ε?ηss? , (A.11a)

λ̃21? + λ̃22? ' 9(η2ss? + 2η2σs? + η2σσ? − 4ε?ησσ? + 4ε2?) , (A.11b)

are also useful for obtaining the two-point correlations of the curvature and isocurva-

ture modes. With the assumed hierarchy ε, |ησσ|, |ησs| � |ηss| < 1 the results above

can be further simplified:

λ̃1 = 3ησσ? − 6ε? + 10ε?ησσ? − 9η2σs? , (A.12a)

λ̃2 = 3ηss? + 6ε?ηss? . (A.12b)

Note that all the previous equations have been expanded uniformly to next-order in

the slow-roll parameters. However, for the case studied in §5.1, only terms quadratic in
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the largest slow-roll parameter, ηss, are relevant for maintaining the required accuracy

in the evolution of perturbations. The only quadratic contributions to the equations

of motion (3.2) arise from quadratic terms in λA. The case studied in §5.2 has all

the slow-roll parameters much smaller than 1 at Hubble radius crossing, therefore the

standard results apply.

References

[1] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and

Flatness Problems, Phys.Rev. D23 (1981) 347–356, [doi:10.1103/PhysRevD.23.347].

[2] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the

Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,

Phys.Lett. B108 (1982) 389–393, [doi:10.1016/0370-2693(82)91219-9].

[3] WMAP Collaboration Collaboration, E. Komatsu et al., Seven-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,

Astrophys.J.Suppl. 192 (2011) 18, [arXiv:1001.4538],

[doi:10.1088/0067-0049/192/2/18].

[4] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. Nolta, et al., Seven-Year

Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and

WMAP-Derived Parameters, Astrophys.J.Suppl. 192 (2011) 16, [arXiv:1001.4635],

[doi:10.1088/0067-0049/192/2/16].

[5] J. E. Lidsey et al., Reconstructing the inflaton potential: An overview, Rev. Mod.

Phys. 69 (1997) 373–410, [arXiv:astro-ph/9508078], [doi:10.1103/RevModPhys.69.373].

[6] D. H. Lyth and A. R. Liddle, The primordial density perturbation: Cosmology,

inflation and the origin of structure, Cambridge University Press (2009).

[7] V. F. Mukhanov and G. Chibisov, Quantum Fluctuation and Nonsingular Universe.

(In Russian), JETP Lett. 33 (1981) 532–535.

[8] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous Creation of Almost

Scale - Free Density Perturbations in an Inflationary Universe, Phys.Rev. D28 (1983)

679, [doi:10.1103/PhysRevD.28.679].

[9] L. Kofman and A. D. Linde, Generation of Density Perturbations in the Inflationary

Cosmology, Nucl.Phys. B282 (1987) 555, [doi:10.1016/0550-3213(87)90698-5].

[10] J. Silk and M. S. Turner, Double Inflation, Phys.Rev. D35 (1987) 419,

[doi:10.1103/PhysRevD.35.419].

[11] T. T. Nakamura and E. D. Stewart, The spectrum of cosmological perturbations

produced by a multi-component inflaton to second order in the slow-roll approximation,

Phys. Lett. B381 (1996) 413–419, [arXiv:astro-ph/9604103],

[doi:10.1016/0370-2693(96)00594-1].

– 18 –

http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://arxiv.org/abs/1001.4538
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arxiv.org/abs/1001.4635
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://arxiv.org/abs/astro-ph/9508078
http://dx.doi.org/10.1103/RevModPhys.69.373
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1016/0550-3213(87)90698-5
http://dx.doi.org/10.1103/PhysRevD.35.419
http://arxiv.org/abs/astro-ph/9604103
http://dx.doi.org/10.1016/0370-2693(96)00594-1


[12] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens, Adiabatic and entropy

perturbations from inflation, Phys.Rev. D63 (2001) 023506, [arXiv:astro-ph/0009131],

[doi:10.1103/PhysRevD.63.023506].

[13] S. Groot Nibbelink and B. van Tent, Scalar perturbations during multiple field

slow-roll inflation, Class.Quant.Grav. 19 (2002) 613–640, [arXiv:hep-ph/0107272],

[doi:10.1088/0264-9381/19/4/302].

[14] F. Bernardeau and J.-P. Uzan, NonGaussianity in multifield inflation, Phys.Rev. D66

(2002) 103506, [arXiv:hep-ph/0207295], [doi:10.1103/PhysRevD.66.103506].

[15] F. Di Marco and F. Finelli, Slow-roll inflation for generalized two-field Lagrangians,

Phys.Rev. D71 (2005) 123502, [arXiv:astro-ph/0505198],

[doi:10.1103/PhysRevD.71.123502].

[16] C. T. Byrnes and D. Wands, Curvature and isocurvature perturbations from two-field

inflation in a slow-roll expansion, Phys.Rev. D74 (2006) 043529,

[arXiv:astro-ph/0605679], [doi:10.1103/PhysRevD.74.043529].

[17] Z. Lalak, D. Langlois, S. Pokorski, and K. Turzynski, Curvature and isocurvature

perturbations in two-field inflation, JCAP 0707 (2007) 014, [arXiv:0704.0212],

[doi:10.1088/1475-7516/2007/07/014].

[18] D. Langlois and S. Renaux-Petel, Perturbations in generalized multi-field inflation,

JCAP 0804 (2008) 017, [arXiv:0801.1085], [doi:10.1088/1475-7516/2008/04/017].

[19] A. Achucarro, J.-O. Gong, S. Hardeman, G. A. Palma, and S. P. Patil, Mass

hierarchies and non-decoupling in multi-scalar field dynamics, arXiv:1005.3848.

[20] A. Achucarro, J.-O. Gong, S. Hardeman, G. A. Palma, and S. P. Patil, Features of

heavy physics in the CMB power spectrum, JCAP 1101 (2011) 030, [arXiv:1010.3693],

[doi:10.1088/1475-7516/2011/01/030].

[21] S. Cremonini, Z. Lalak, and K. Turzynski, Strongly Coupled Perturbations in

Two-Field Inflationary Models, JCAP 1103 (2011) 016, [arXiv:1010.3021],

[doi:10.1088/1475-7516/2011/03/016].

[22] X. Chen, Primordial Features as Evidence for Inflation, arXiv:1104.1323.

[23] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the

Horizon, arXiv:1102.5343.

[24] G. Shiu and J. Xu, Effective Field Theory and Decoupling in Multi-field Inflation: An

Illustrative Case Study, arXiv:1108.0981.

[25] A. A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation

of Perturbations, JETP Lett. 42 (1985) 152–155. [Pisma

Zh.Eksp.Teor.Fiz.42:124-127,1985].

[26] M. Sasaki and E. D. Stewart, A General analytic formula for the spectral index of the

density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71–78,

[arXiv:astro-ph/9507001], [doi:10.1143/PTP.95.71].

– 19 –

http://arxiv.org/abs/astro-ph/0009131
http://dx.doi.org/10.1103/PhysRevD.63.023506
http://arxiv.org/abs/hep-ph/0107272
http://dx.doi.org/10.1088/0264-9381/19/4/302
http://arxiv.org/abs/hep-ph/0207295
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://arxiv.org/abs/astro-ph/0505198
http://dx.doi.org/10.1103/PhysRevD.71.123502
http://arxiv.org/abs/astro-ph/0605679
http://dx.doi.org/10.1103/PhysRevD.74.043529
http://arxiv.org/abs/0704.0212
http://dx.doi.org/10.1088/1475-7516/2007/07/014
http://arxiv.org/abs/0801.1085
http://dx.doi.org/10.1088/1475-7516/2008/04/017
http://arxiv.org/abs/1005.3848
http://arxiv.org/abs/1010.3693
http://dx.doi.org/10.1088/1475-7516/2011/01/030
http://arxiv.org/abs/1010.3021
http://dx.doi.org/10.1088/1475-7516/2011/03/016
http://arxiv.org/abs/1104.1323
http://arxiv.org/abs/1102.5343
http://arxiv.org/abs/1108.0981
http://arxiv.org/abs/astro-ph/9507001
http://dx.doi.org/10.1143/PTP.95.71


[27] M. Sasaki and T. Tanaka, Super-horizon scale dynamics of multi-scalar inflation, Prog.

Theor. Phys. 99 (1998) 763–782, [arXiv:gr-qc/9801017], [doi:10.1143/PTP.99.763].

[28] N. S. Sugiyama, E. Komatsu, and T. Futamase, Non-Gaussianity Consistency Relation

for Multi-field Inflation, Phys.Rev.Lett. 106 (2011) 251301, [arXiv:1101.3636],

[doi:10.1103/PhysRevLett.106.251301].

[29] S. Clesse, Hybrid inflation along waterfall trajectories, Phys. Rev. D83 (2011) 063518,

[arXiv:1006.4522], [doi:10.1103/PhysRevD.83.063518].

[30] A. A. Abolhasani, H. Firouzjahi, and M. H. Namjoo, Curvature Perturbations and

non-Gaussianities from Waterfall Phase Transition during Inflation, Class. Quant.

Grav. 28 (2011) 075009, [arXiv:1010.6292], [doi:10.1088/0264-9381/28/7/075009].

[31] H. Kodama, K. Kohri, and K. Nakayama, On the waterfall behavior in hybrid

inflation, arXiv:1102.5612.

[32] D. Langlois, Correlated adiabatic and isocurvature perturbations from double inflation,

Phys. Rev. D59 (1999) 123512, [arXiv:astro-ph/9906080],

[doi:10.1103/PhysRevD.59.123512].

[33] E. D. Stewart and D. H. Lyth, A More accurate analytic calculation of the spectrum of

cosmological perturbations produced during inflation, Phys.Lett. B302 (1993) 171–175,

[arXiv:gr-qc/9302019], [doi:10.1016/0370-2693(93)90379-V].

[34] J.-O. Gong and E. D. Stewart, The Density perturbation power spectrum to second

order corrections in the slow roll expansion, Phys.Lett. B510 (2001) 1–9,

[arXiv:astro-ph/0101225].

[35] J. Choe, J.-O. Gong, and E. D. Stewart, Second order general slow-roll power spectrum,

JCAP 0407 (2004) 012, [arXiv:hep-ph/0405155], [doi:10.1088/1475-7516/2004/07/012].

[36] X. Chen, M.-x. Huang, S. Kachru, and G. Shiu, Observational signatures and

non-Gaussianities of general single field inflation, JCAP 0701 (2007) 002,

[arXiv:hep-th/0605045], [doi:10.1088/1475-7516/2007/01/002].

[37] C. Burrage, R. H. Ribeiro, and D. Seery, Large slow-roll corrections to the bispectrum

of noncanonical inflation, JCAP 1107 (2011) 032, [arXiv:1103.4126],

[doi:10.1088/1475-7516/2011/07/032].

[38] V. F. Mukhanov, Gravitational Instability of the Universe Filled with a Scalar Field,

JETP Lett. 41 (1985) 493–496.

[39] M. Sasaki, Large Scale Quantum Fluctuations in the Inflationary Universe,

Prog.Theor.Phys. 76 (1986) 1036, [doi:10.1143/PTP.76.1036].

[40] T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space: Renormalization

by Point Splitting, Proc.Roy.Soc.Lond. A360 (1978) 117–134.

[41] M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys.

Rev. D69 (2004) 043508, [arXiv:astro-ph/0306006], [doi:10.1103/PhysRevD.69.043508].

[42] D. Seery, One-loop corrections to the curvature perturbation from inflation, JCAP

– 20 –

http://arxiv.org/abs/gr-qc/9801017
http://dx.doi.org/10.1143/PTP.99.763
http://arxiv.org/abs/1101.3636
http://dx.doi.org/10.1103/PhysRevLett.106.251301
http://arxiv.org/abs/1006.4522
http://dx.doi.org/10.1103/PhysRevD.83.063518
http://arxiv.org/abs/1010.6292
http://dx.doi.org/10.1088/0264-9381/28/7/075009
http://arxiv.org/abs/1102.5612
http://arxiv.org/abs/astro-ph/9906080
http://dx.doi.org/10.1103/PhysRevD.59.123512
http://arxiv.org/abs/gr-qc/9302019
http://dx.doi.org/10.1016/0370-2693(93)90379-V
http://arxiv.org/abs/astro-ph/0101225
http://arxiv.org/abs/hep-ph/0405155
http://dx.doi.org/10.1088/1475-7516/2004/07/012
http://arxiv.org/abs/hep-th/0605045
http://dx.doi.org/10.1088/1475-7516/2007/01/002
http://arxiv.org/abs/1103.4126
http://dx.doi.org/10.1088/1475-7516/2011/07/032
http://dx.doi.org/10.1143/PTP.76.1036
http://arxiv.org/abs/astro-ph/0306006
http://dx.doi.org/10.1103/PhysRevD.69.043508


0802 (2008) 006, [arXiv:0707.3378], [doi:10.1088/1475-7516/2008/02/006].

[43] A. D. Linde, Axions in inflationary cosmology, Phys.Lett. B259 (1991) 38–47,

[doi:10.1016/0370-2693(91)90130-I].

[44] J. Martin and V. Vennin, Stochastic Effects in Hybrid Inflation, arXiv:1110.2070.

[45] A. A. Abolhasani, H. Firouzjahi, and M. Sasaki, Curvature perturbation and waterfall

dynamics in hybrid inflation, arXiv:1106.6315.

– 21 –

http://arxiv.org/abs/0707.3378
http://dx.doi.org/10.1088/1475-7516/2008/02/006
http://dx.doi.org/10.1016/0370-2693(91)90130-I
http://arxiv.org/abs/1110.2070
http://arxiv.org/abs/1106.6315

	The Importance of Slow-Roll Corrections During Multi-field Inflation
	Recommended Citation

	1 Introduction
	2 Perturbations in multi-field inflation
	2.1 Slow-roll approximation: the need for next-order contributions

	3 Dynamics near Hubble radius crossing
	3.1 Slow-roll expansion of the mode functions
	3.2 Power spectra

	4 Dynamics after Hubble radius crossing
	5 Numerical examples
	5.1 A case study of hybrid inflation
	5.2 A case study of double quadratic inflation

	6 Conclusions and outlook
	A Appendix

