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Abstract
Using a large sample (≈ 11800 events) of D+ → K−π+e+νe and D+ → K−π+µ+νµ decays

collected by the CLEO-c detector running at the ψ(3770), we measure the helicity basis form

factors free from the assumptions of spectroscopic pole dominance and provide new, accurate

measurements of the absolute branching fractions for D+ → K
∗0
e+νe and D

+ → K
∗0
µ+νµ decays.

We find branching fractions which are consistent with previous world averages. Our measured

helicity basis form factors are consistent with the spectroscopic pole dominance predictions for

the three main helicity basis form factors describing D+ → K
∗0
ℓ+νℓ decay. The ability to analyze

D+ → K−π+µ+νµ allows us to make the first non-parametric measurements of the mass-suppressed

form factor. Our result is inconsistent with existing Lattice QCD calculations. Finally, we measure

the form factor that controls non-resonant s-wave interference with the D+ → K
∗0
ℓ+νℓ amplitude

and search for evidence of possible additional non-resonant d- or f -wave interference with the K
∗0
.
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I. INTRODUCTION

We present new measurements of the D+ → K
∗0
e+νe and D+ → K

∗0
µ+νµ absolute

branching fractions, their ratio, and measurements of the semileptonic form factors control-
ling these decays.1,2 Exclusive charm semileptonic decays provide particularly simple tests
of over decay dynamics since long distance effects only enter through the hadronic form
factors [1]. A wide variety of theoretical methods have been brought to bear on the calcula-
tion of these form factors including quark models [2], QCD sum rules [3], Lattice QCD [4],
analyticity [5], and others [6]. Using a technique developed by FOCUS [7], we present non-
parametric measurements of the q2 dependence of the helicity basis form factors that give an
amplitude for the K−π+ system to be in any one of its possible angular momentum states
where q2 is the invariant mass squared of the lepton pair in the decay. The ultimate goal of
this study is to obtain a better understanding of the semileptonic decay intensity.

CLEO-c produces D mesons at the ψ(3770), which ensures a pure DD final state with no
additional final state hadrons. In events where the D+ → K−π+ℓ+νℓ is produced against a
fully reconstructed D− the missing neutrino can be reconstructed with unparalleled precision
using energy-momentum balance. Hence, CLEO-c data offer unparalleled q2 and decay angle
resolution allowing one to resolve fine details in the structure of these form factors without
the complications of a deconvolution procedure. The various helicity basis form factors are
distinguished based on their contributions to the decay angular distribution.

FIG. 1: Definition of the θV , θℓ, and χ angles.

The amplitude A for the semileptonic decay D+ → K−π+ℓ+νℓ is described by five kine-
matic quantities: q2; the kaon-pion mass (mKπ); the kaon helicity angle (θV), which is
computed as the angle between the π and the D direction in the K−π+ rest frame; the lep-
ton helicity angle (θℓ), which is computed as the angle between the νℓ and the D direction in
the ℓ+νe rest frame; and the acoplanarity angle between the two decay planes (χ). The decay
angles are illustrated in Fig. 1. The amplitude A can be expressed in terms of four helicity

amplitudes representing the transition to the vector K
∗0
: H+(q

2), H−(q
2), H0(q

2), Ht(q
2)

1 Throughout this paper the charge conjugate is implied when a decay mode of a specific charge is stated.
2 We reconstruct D+ → K

∗0
ℓ+νℓ modes as D+ → K−π+ℓ+νℓ decays, and use the Clebsch-Gordan factor

1.5 to correct for K
∗0 → K

0
π0 decays, which we do not detect.
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and a fifth form factor, h0(q
2)H0(q

2) describing a non-resonant, s-wave D+ → K−π+ℓ+νℓ
contribution.

The diferential decay width for the 4-body semileptonic process is

d5Γ

d cos θℓ d cos θV dχ dq2 dm2
Kπ

=
|A|2KPℓP

∗

256π6m2
D

√
q2mKπ

, (1)

where |A|2 is the decay intensity, K is the K−π+ momentum in the D+ rest frame, P ∗ is

the momentum of the kaon in the K−π+ rest frame, and |~Pℓ| is the momentum of the ℓ+ in
the ℓ+ν rest frame. Upon integration over χ, the differential decay width is proportional to:

∫
|A|2dχ =

q2 −m2
ℓ

8





((1 + cos θℓ) sin θV)2|H+(q
2)|2|β|2

+((1− cos θℓ) sin θV)2|H−(q
2)|2|β|2

+(2 sin θℓ cos θV)2|H0(q
2)|2|β|2

+8 sin2 θℓ cos θVH0(q
2)h0(q

2)Re{Ae−iδβ}





(2)

+
|β|2
8

(q2 −m2
ℓ)
m2

ℓ

q2





(sin θℓ sin θV)2|H+(q
2)|2 + (sin θℓ sin θV)2|H−(q

2)|2
+(2 cos θℓ cos θV)2|H0(q

2)|2
+(2 cos θV)2|Ht(q

2)|2 + 8 cos θℓ cos
2 θVH0(q

2)Ht(q
2)





The Ht(q
2) form factor, which appears in the second term of Eq. (2), is helicity suppressed

by a factor of m2
ℓ/q

2. The mass-suppressed terms are negligible for D+ → K−π+e+νe but
can be measured in D+ → K−π+µ+νµ. The Ht(q

2) form factor can only be effectively
measured in D+ → K−π+µ+νµ decays at low q2 where the mass suppression effects are least
severe. The semimuonic to semielectric branching ratio is sensitive to the magnitude of the
Ht(q

2) form factor.
We study the form factor of the non-resonant, spin zero, s-wave component to D+ →

K
∗0
µ+νµ first described in Ref. [8]. According to the model of Ref. [9], 2.4% of the decays

in the mass range 0.8 GeV/c2 < mKπ < 1.0 GeV/c2 are due to this s-wave component[15],
where mKπ is the K−π+ mass. The underlined term in Eq. (2) represents the interference

between the s-wave, K−π+ amplitude and the K
∗0

amplitude, represented as a simplified,
Breit-Wigner function of the form:

β =

√
m0Γ

(
P ∗

P ∗

0

)

m2
Kπ −m2

0 + im0Γ
(
P ∗

P ∗

0

)3 (3)

where P ∗ is the kaon momentum in the K−π+ rest frame, and P ∗

0 is the value of P ∗ when

the K−π+ mass is equal to the K
∗0

mass3.
The s-wave form factor is denoted as h0(q

2) in the underlined piece of Eq. (2). Following
Ref. [8] we model the s-wave contribution as an amplitude with a phase (δ) and modulus

3 We are using a p-wave Breit-Wigner form with a width proportional to the cube of the kaon momentum

in the kaon-pion rest frame. Our Breit-Wigner intensity is proportional to P ∗3 as expected for a p-wave

Breit-Wigner resonance. Two powers of P ∗ come explicitly from the P ∗ in the numerator of the amplitude

and one power arises from the 4-body phase space as shown in Eq. (1). We are not including additional,

small corrections such as the Blatt-Weisskopf barrier penetration factor.
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(A) that are independent of mKπ. We have dropped the second-order, s-wave intensity
contribution (∝ |A|2) in Eq. (2) since A≪ |β|.

The χ integration significantly simplifies the intensity by eliminating all interference terms
between different helicity states of the virtual W+ with relatively little loss in form factor
information.

The four helicity basis form factors for the D+ → K
∗0
µ+νµ component are generally

written [10] as linear combinations of a vector (V (q2)) and three axial-vector (A1,2,3(q
2))

form factors according to

H±(q
2) = (MD +mKπ)A1(q

2)∓ 2
MDK

MD +mKπ

V (q2) ,

H0(q
2) =

1

2mKπ

√
q2

[
(M2

D −m2
Kπ − q2)(MD +mKπ)A1(q

2)

−4
M2

DK
2

MD +mKπ

A2(q
2)

]
, (4)

Ht(q
2) =

MDK

mKπ

√
q2

[
(MD +mKπ)A1(q

2)− (M2
D −m2

Kπ + q2)

MD +mKπ

A2(q
2)

+
2q2

MD +mKπ

A3(q
2)

]
,

where MD is the mass of the D+ and K is the momentum of the K−π+ system in the rest
frame of the D+. In the Spectroscopic Pole Dominance (SPD) model [9, 10], these axial and
vector form factors are given by

V
(
q2
)
=

V (0)

1− q2/M2
V

; A1,2,3

(
q2
)
=

A1,2,3(0)

1− q2/M2
A

, (5)

whereMV = 2.1 GeV/c2 andMA = 2.5 GeV/c2. The SPD model allows one to parameterize
the H−(q

2), H+(q
2), H0(q

2), and Ht(q
2) form factors using just three parameters, which

are ratios of form factors taken at q2 = 0 : rv ≡ V (0)/A1(0), r2 ≡ A2(0)/A1(0) and
r3 = A3(0)/A1(0). There are accurate measurements [9] of rv and r2, but very little is
known about r3, which is an important motivation for this work.

In this paper, we use a projective weighting technique [7] to disentangle and directly mea-
sure the q2 dependence of these helicity basis form factors free from parameterization. We
provide information on the six form factor products H2

±
(q2), H2

0 (q
2), h0(q

2)H0(q
2), H2

t (q
2)

and H0(q
2)Ht(q

2) in bins of q2 by projecting out the associated angular factors given by
Eq. (2). We next describe some of the experimental and analysis details used for these
measurements.

II. EXPERIMENTAL AND ANALYSIS DETAILS

The CLEO-c detector [11] consists of a six-layer inner stereo-wire drift chamber, a 47-
layer central drift chamber, a ring-imaging Cerenkov detector (RICH), and a cesium iodide
electromagnetic calorimeter inside a superconducting solenoidal magnet providing a 1.0 T
magnetic field. The tracking chambers and the electromagnetic calorimeter cover 93% of the
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full solid angle. The solid angle coverage for the RICH detector is 80% of 4π. Identification
of the charged pions and kaons is based on measurements of specific ionization (dE/dx) in
the main drift chamber and RICH information. Electrons are identified using the ratio of
the energy deposited in the electromagnetic calorimeter to the measured track momentum
(E/p) as well as dE/dx and RICH information. Although there is a muon detector in CLEO,
it was optimized for b-meson semileptonic decay, and is ineffectual for charm semileptonic
decay since a muon from charm particle decay will typically range out in the first layer of
iron in the muon shield.

In this paper, we use 818 pb−1 of data taken at the ψ(3770) center-of-mass energy with
the CLEO-c detector at the Cornell Electron Storage Ring (CESR) e+e− collider, which
corresponds to a (produced) sample of 1.8 million D+D− pair events [12].

We select the events containing a D− decaying into one of the following six decay modes:
D− → K0

Sπ
−, D− → K+π−π−, D− → K0

Sπ
−π0, D− → K+π−π−π0, D− → K0

Sπ
−π−π+, and

D− → K−K+π− along with a 4-body semileptonic candidate. To avoid complications due
to having two or more D+ → K−π+ℓ+νℓ decay candidates in the event, we select the decay
candidate with the smallest |Mbc −MD− | value where Mbc is the beam-constrained mass.

The beam-constrained massMbc is defined asMbcc
2 =

√
|(Ebeam)2 − c2P 2

D| where Ebeam
is the beam energy and PD is the D-tag momentum. More details on selecting the tagging
D− candidates as well as identifying π0 and K0

S candidates are described in Ref. [12].
We used extensive Monte Carlo (MC) studies to design efficient, background-suppressing

selections. The D+ → K−π+ℓ+νℓ reconstruction starts by requiring three well-measured
tracks not associated with the tagging D− decay. In order to select semileptonic decays, we
require a minimal missing momentum and energy of 50 MeV/c and 50 MeV, respectively.
Both the minimal missing momentum and energy are calculated using the center-of-mass
momentum and energy. In order to reduce backgrounds from charm decays with missing
π0 ’s, we require an unassociated shower energy of less than 250 MeV. The unassociated
shower energy refers to electromagnetic showers, which are statistically separated from all
measured, charged tracks. Charged kaons and pions are required to have momenta of at
least 50 MeV/c and are identified using dE/dx and RICH information. We require that the
pion deposits a shower energy, which is inconsistent with the electron hypothesis.

Electron candidates are required to have momenta of at least 200 MeV/c, lie in the
good shower containment region (| cos θ| < 0.9), and pass a requirement on a likelihood
variable that combines E/p, dE/dx, and RICH information. Our simulations indicate that
contamination of our kaon sample due to pions is less than 0.06% using this likelihood
variable. The only final state particle not detected is the neutrino in the semileptonic decay.
The neutrino four-momentum vector can be reconstructed from the missing energy and
momentum in the event. The q2 resolution, predicted by our Monte Carlo simulation, is
roughly Gaussian with an r.m.s. width of 0.02 GeV2/c4, which is negligible on the scale that
we will bin our data.

For D+ → K−π+µ+νµ candidates, it is difficult to distinguish the π+ track from the µ+

track. Because D+ → K−π+µ+νµ decay is strongly dominated by K
∗0 → K−π+, which is

a relatively narrow resonance, we select the positive track with the smallest |mKπ −m
K

∗0 |
as the pion and the other track as the muon. Our Monte Carlo studies concluded that this

K
∗0

arbitration approach was correct 84% of the time and works better than pion-muon
discrimination based on the electromagnetic calorimeter response.

We apply a variety of additional requirements to suppress backgrounds in D+ →
K−π+µ+νµ candidates. We require that the muon is inconsistent with the electron hy-
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pothesis according to the electron likelihood variable. We require that missing momentum
(Pmiss) lies within 20 MeV of the missing energy (Emiss). For D+ → K−π+µ+νµ candi-

dates, we also require −0.01 < M2
miss < 0.015 GeV2/c4. The M2

miss distributions for muon

and −0.01 < M2
miss < 0.015 GeV2/c4. The M2

miss distributions for muon and electron
candidates are illustrated in Fig. 2.

In order to suppress cross-feed from D+ → K−π+e+νe decay to our D+ → K−π+µ+νµ
sample, we construct the squared invariant mass of the lepton candidate, M̃2

µc
4 =

(
2Ebeam − EDtag − Eνµ −EK − Eπ

)2 − (cPℓ)
2, where EDtag is the reconstructed energy

of the D− produced against the D+ → K−π+ℓ+νℓ candidate and EK , Eπ, Pℓ are the
reconstructed kaon energy, pion energy, and lepton momentum. We require 0 < M̃2

µ <

0.020 GeV2/c4 to eliminate both D+ → K−π+e+νe cross-feed and D+ → K−π+π+π0 de-
cays. In order to suppress backgrounds to D+ → K−π+µ+νµ from D+ → K−π+π+ decays
with an accompanying bremsstrahlung photon, we require that cosine of the minimum angle
between three charged tracks and the missing momentum direction be less than 0.90. This
requirement is illustrated in Fig. 3.

We obtain 11801 D+ → K−π+ℓ+νℓ candidates. The mKπ distribution for these
D+ → K−π+ℓ+νℓ candidates is shown in Fig. 4. Finally, we require 0.8 GeV/c2 ≤ mKπ ≤
1.0 GeV/c2 and select 10865 events.

Two types of Monte Carlo simulations are used throughout this analysis. The generic

Monte Carlo simulation is a large charm Monte Carlo sample consisting of generic DD
decays, which is primarily used in this analysis to simulate the properties of backgrounds
to our D+ → K−π+ℓ+νℓ signal states. The generic Monte Carlo events are generated by
EvtGen [13] and the detector is simulated using a GEANT-based [14] program. In much
of the form-factor work, we use an SPD Monte Carlo simulation based on the SPD model
described in Sec. I and summarized by Eqs. (2–5). We use the SPD parameters of Ref. [9],
rv =1.504 , r2 =0.875, and we set r3=0.

The background shapes in Fig. 4 are obtained using generic Monte Carlo simulations.
Our simulation predicts a 6.5 % background for our D+ → K−π+µ+νµ sample with 4%
due to misidentified D+ → K−π+e+νe cross-feed events and the rest due to various charm
decays. The simulation also predicts a 1% background to our D+ → K−π+e+νe sample with
0.03 % due to D+ → K−π+µ+νµ cross-feed.

III. ABSOLUTE AND RELATIVE BRANCHING FRACTIONS

We have measured both the semimuonic to semielectric relative branching ratio and the

D+ → K
∗0
e+νe andD

+ → K
∗0
µ+νµ absolute branching fractions, which we will denote as Be

and Bµ, respectively. The Bµ/Be relative branching ratio is expected to be less than 1 due to
the reduced phase space available to the semimuonic decay relative to the semielectric decay.
The mass-suppressed terms in Eq. (2) will change the relative branching ratio compared to
the phase space ratio. In the context of the SPD model, Eq. (5), the relative branching
fraction will depend on r3 ≡ A3(0)/A1(0), which controls the strength of the Ht(q

2) form
factor and is essentially unknown. It is expected that Bµ/Be will increase with increasing
values of r3.

In order to obtain the semimuonic to semielectric branching ratio, we write the observed
D+ → K̄∗0µ+νµ and D+ → K̄∗0e+νe yields as

7



FIG. 2: The M2
miss distributions for events satisfying our nominal D+ → K−π+ℓ+νℓ selection

requirements apart from the M2
miss requirement. (a) shows the M2

miss distribution for D+ →
K−π+µ+νµ candidates, while (b) shows the M2

miss distribution for D+ → K−π+e+νe candidates.

For D+ → K−π+µ+νµ candidates, we require that M2
miss lies between the vertical lines. This cut

is placed asymmetrically on our semimuonic sample to suppress cross-feed from D+ → K−π+e+νe.

In each plot, the solid histogram shows the signal plus background distribution predicted by our

Monte Carlo simulation, while the dashed histogram shows the predicted background component.

(
ye
yµ

)
=

(
ǫe(~f ) cµ(~f )

ce(~f ) ǫµ(~f )

)(
ne

nµ

)
+

(
be
bµ

)
, (6)

where yµ,e are the observed yields, bµ,e are non-semileptonic backgrounds, and nµ,e give
the number of produced semileptonic decays in our data sample. The cross-feed matrix,

which multiplies the ne and nµ signal vector, is constructed from ǫµ,e(~f ), which are the

D+ → K̄∗0µ+νµ and D+ → K̄∗0e+νe detection efficiencies, and cµ,e(~f ), which are the cross-

feed efficiencies. For example, cµ(~f ) is the efficiency for reconstructing a D+ → K̄∗0µ+νµ
event as a D+ → K̄∗0e+νe candidate. The yµ,e yields are obtained by counting the number
of semimuonic and semielectric events in our mass range 0.8 < mKπ < 1.0 GeV/c2. The
relative branching ratio is given by Bµ/Be = nµ/ne.

The vector ~f represents parameters that the efficiencies and cross-feeds can depend on
such as the SPD parameters: rv , r2, and r3 and the s-wave amplitude and phase. The

detection efficiencies, ǫµ,e(~f ), and the cross-feed efficiencies, cµ,e(~f ), were obtained using
our Monte Carlo simulations. We will refer to the use of Eq. (6) to obtain the relative
branching ratio, Bµ/Be, as the cross-feed method.

We used the double-tag technique, described in Ref. [12], to measure the D+ → K̄∗0µ+νµ

8



FIG. 3: Distributions of the largest cosine between missing momentum vector and any of the three

charged tracks from the semileptonic candidate when all cuts are applied except the cut on largest

cosine. (a) shows the cos θmax distribution for D+ → K−π+µ+νµ candidates, while (b) shows

the cos θmax distribution for D+ → K−π+e+νe candidates. We remove all combinations to the

right of the vertical line, which removes the major part of remaining Kππ background for the

semimuonic sample. In each plot, the solid histogram shows the signal plus background distribu-

tion predicted by our Monte Carlo simulation, while the dashed histogram shows the predicted

background component.

and D+ → K̄∗0e+νe absolute semileptonic branching fractions (Bµ,e). We define single tag
(ST) events as events where the D− was fully reconstructed against one of our six tag modes
without any requirement on the recoil D+.

We estimate the number of ST events by fitting the ∆E distributions, shown in Fig. 5,
using a binned maximum likelihood fit4. Here ∆E ≡ ED−Ebeam, where ED is the energy
of the D-tag candidate.

The total number of reconstructed D− ST events is then

ni

ST = ND+D−ǫiSTBi
tag, (7)

where ni

ST is the number of ST reconstructed events in the i-th mode, ND+D− is the number

of produced D+D− events in our data sample, ǫiST is the ST detection efficiency, and Bi
tag

is the tag mode branching fraction.
For double tag (DT) events, we reconstruct D− into one of our six tagging modes, and

require the presence of either a D+ → K̄∗0µ+νµ orD+ → K̄∗0e+νe candidate. The DT yields

4 Our fitting function is a sum of Gaussian and Crystal Ball line-shape functions [12] over a first order

Chebyshev background polynomial.
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FIG. 4: The mKπ distributions for events satisfying our nominal D+ → K−π+ℓ+νℓ selection re-

quirements. (a) shows the mKπ distribution for D+ → K−π+µ+νµ candidates, while (b) shows the

mKπ distribution for D+ → K−π+e+νe candidates. Over the full displayed mass range, there are

11 801 (6 227 semielectric and 5 574 semimuonic) events satisfying our nominal selection. For this

analysis, we use a restricted mass range from 0.8 – 1.0 GeV/c2, which is the region between the ver-

tical lines. In each plot, the solid histogram shows the signal plus background distribution predicted

by our Monte Carlo simulation, while the dashed histogram shows the predicted background com-

ponent. In this restricted region, there are 10865 ( 5 658 semielectric and 5 207 semimuonic) events.

The inserted figures are on a finer scale to better show the estimated background contributions.

are then
ne,i

DT = ND+D−

(
ǫe,iDTB

i
tagBe + cµ,iDTB

i
tagBµ

)
(8)

and
nµ,i

DT = ND+D−

(
ce,iDTB

i
tagBe + ǫµ,iDTBi

tagBµ

)
, (9)

respectively. The yields ne,i

DT and nµ,i

DT represent the number of reconstructed DT events in
semielectric and semimuonic decay modes after the background subtraction. The efficiencies
ǫe,iDT and ǫµ,iDT are the DT event detection efficiencies for the semielectric and semimuonic

decay modes. The cross-feed efficiency cµ,iDT describes how often a semimuonic decay is

reconstructed as a semielectric candidate, while the cross-feed efficiency ce,iDT describes how
often a semielectric decay is reconstructed as semimuonic candidate. The variables Be, Bµ

are the respective D+ → K̄∗0e+νe and D+ → K̄∗0µ+νµ branching fractions, which we wish
to measure.

Dividing Eq. (8) and Eq. (9) by Eq. (7), we have:
(
ne,i

DT/n
i

ST
nµ,i

DT/n
i

ST

)
=

(
ǫe,iDT/ǫ

i

ST cµ,iDT/ǫ
i

ST
ce,iDT/ǫ

i

ST ǫµ,iDT/ǫ
i

ST

)(
Be

Bµ

)
. (10)

10



Equation (10) shows how the branching fractions of D+ → K̄∗0e+νe and D
+ → K̄∗0µ+νµ

semileptonic modes depend on the ratio of the DT and the ST yields, the detection efficien-
cies, and the cross-feed efficiencies.

Figures 6 and 7 shows the ∆E distributions for our double tag sample. For both semilep-
tonic decay modes, about half of our sample comes from the D− → K+π−π− D-tag mode.
The ST yields for this mode are nearly background free. The cross-feed fraction for the
D− → K∗0e−ν̄e semileptonic mode is less than 0.02%, while, for theD− → K∗0µ−ν̄µ semilep-
tonic mode, the cross-feed fraction is 3.7%. The background level is about 2.5 times smaller
for the D− → K∗0e−ν̄e mode than for the D− → K∗0µ−ν̄µ mode. The semielectric mode is
nearly background free because of the effectiveness of the electromagnetic calorimeter, while
our semimuonic mode uses a variety of less effective kinematic cuts to suppress background
and cross-feed.

Our absolute branching fraction results are summarized by Tables I and II. Table I gives
a “conditional” absolute branching fraction based only on D+ → K−π+ℓ+νℓ decays into the
mass range 0.8 < mKπ < 1.0 GeV/c2. This mass range is required for events entering into
Figs. 6 and 7. We find that the total systematic error for the semielectric and semimuonic
absolute branching fractions, presented in Table I, are comparable. The dominant system-
atic error for the semielectric decay is due to the 1% uncertainty in the efficiency our electron
identification requirements, while the dominant systematic error for the semimuonic branch-
ing fraction is due to the 0.8% uncertainty in the background subtraction. The remaining
systematic error, which is 1.2% for both the semielectric and semimuonic branching frac-
tions, includes uncertainties in the final state radiation corrections, as well as uncertainties
in the tracking and particle identification efficiencies for the kaon and pion tracks. Table II,

on the other hand, relies on models for the K
∗0

line-shape to extrapolate outside of the 200
MeV/c2 wide mass region where our measurements are made in order to report the conven-

tional D+ → K
∗0
ℓ+νℓ absolute branching ratios, which includes events over the entire mKπ

spectrum. We include an additional, Clebsch-Gordan factor of 1.5 in order to correct for

the undetected K
∗0 → K

0
π0 decay mode5. Finally, we have included an additional ±0.10 %

contribution to the quoted systematic error in Table II based on the difference between the

K
∗0

extrapolations made using our Generic and SPD models. This ±0.10 % systematic

error contribution includes both distortions to the K
∗0

line shape as well as uncertainties in
level of non-resonant contributions due to the s-wave amplitude.

TABLE I: Conditional absolute branching fractions. These branching fractions only represent the

K−π+ spectrum from 0.8 < mKπ < 1.0 GeV/c2.

Mode Branching fraction [%]

Γ(D+ → K−π+e+νe)/Γ(D
+) 3.19± 0.04 ± 0.05

Γ(D+ → K−π+µ+νµ)/Γ(D
+) 3.05± 0.04 ± 0.05

Figure 8 and Table III compare our relative Bµ/Be obtained using the cross-feed method
to the ratio of absolute branching ratios for the six tag states and generic and SPD Monte

5 The central values reported in Table II assume that all of the signal events in the 0.8 < mKπ < 1.0 GeV/c2

mass region, where our ∆E measurements made, are due to D+ → K
∗0
ℓ+νℓ decay.
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TABLE II: Comparison of our absolute branching fraction measurements to previously published

data. These branching fractions represent the Kπ contribution over the full mKπ spectrum and

include a systematic error contribution for uncertainties in the K
∗0
line shape.

Lumin. [pb−1] Be [%]

These results 818 5.52 ± 0.07 ± 0.13

CLEO [15] 56 5.56 ± 0.27 ± 0.23

World Average [16] – 5.49 ± 0.31

Lumin. [pb−1] Bµ [%]

These results 818 5.27 ± 0.07 ± 0.14

World Average [16] – 5.40 ± 0.40

TABLE III: The Bµ/Be branching ratio for the data based on relative and absolute measurements.

Method Bµ/Be [%]

Absolute 95.98 ± 1.93 ± 1.30

Cross-feed 94.64 ± 1.95 ± 1.03

PDG 2008 98.36 ± 9.16

Carlo simulations. The cross-feed method is reasonably consistent with the ratio of absolute
branching fractions.

IV. PROJECTIVE WEIGHTING TECHNIQUE

We extract the helicity basis form factors using the projective weighting technique more
fully described in Ref. [7]. For a given q2 bin, a weight designed to project out a given
helicity form factor, is assigned to the event depending on its θV and θℓ decay angles. We
use 25 joint ∆ cos θV×∆cos θℓ angular bins: 5 evenly spaced bins in cos θV times 5 bins in
cos θℓ.

6

For each q2i bin, we can write the bin populations ~Ni as a sum of the expected bin

populations ~mα from each, individual form-factor product contribution to Eq. (2). Thus ~Ni

can be written as a linear combination with coefficients fα(q
2
i ),

~Ni = f+(q
2
i ) ~m+ + f−(q

2
i ) ~m− + f0(q

2
i ) ~m0

+fI(q
2
i ) ~mI + fT (q

2
i ) ~mT + fTI(q

2
i ) ~mTI . (11)

Each of the six fα(q
2
i ) coefficients is associated with one of the form factor products that we

wish to measure. The six ~mα vectors are computed using SPD Monte Carlo simulations gen-

6 When we use a combined semielectric and semimuonic sample, we use a 50 component ~N vector with

the first 25 angular components reserved for D+ → K−π+e+νe candidates and the second 25 angular

components reserved for D+ → K−π+µ+νµ candidates.
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FIG. 5: Distribution of ∆E for single tag D− candidates when D+ and D− candidates have been

combined. The distribution for each of the six tags is shown in (a)–(f). The points with error bars

are the reconstructed yield from the data sample and the curves show our fit to the signal peak

over the dashed background line.

erated with the Eq. (2) intensity but including just one of the six form factor products. For
example, ~m+ is computed using a simulation generated with an arbitrary function forH+(q

2)
(such as H+(q

2) = 1) and zero for the remaining five form factors. The fα(q
2
i ) functions are

proportional to the true H2
α(q

2
i ) along with multiplicative factors such as G2

F |Vcs|2 (q2−m2
ℓ)

and acceptance corrections.
Reference [7] shows how Eq. (11) can be solved for the six form factor products H2

+(q
2),

H2
−
(q2), H2

0 (q
2), h0(q

2)H0(q
2), H2

t (q
2), and H0(q

2)Ht(q
2) by making six weighted q2 his-

tograms. The weights are directly constructed from the six ~mα vectors.
Figure 9 shows the six form factor products multiplied by q2 obtained from a Monte

Carlo simulation using our selection requirements. Because the isolated D+ → K−π+e+νe
sample provides no useful information on the mass-suppressed form factor products H2

t (q
2)

and H0(q
2)Ht(q

2), the second point is not plotted for these two form factor products. The
Monte Carlo sample was generated with our SPD Monte Carlo with r3 = 0 and was run with
three times our data sample. The reconstructed form factor products in the Monte Carlo
simulation are a good match to the input model indicating that the projective weighting
method is reasonably unbiased.

We turn next to a discussion of our normalization convention. Equation (4) tells us
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FIG. 6: Distribution of ∆E for double tag events for the data, where D− candidate is reconstructed

in one of the six tag modes [(a)–(f)], and D+ candidate is reconstructed in K̄∗0e+νe mode. The

points with error bars are the reconstructed yield from the data sample and the curves show our

fit to the signal peak over the dashed background line.

that as q2 → 0, q2H2
±
(q2) → 0; and q2H2

0 (q
2), q2h0(q

2)H0(q
2), q2H2

t (q
2), q2H0(q

2)Ht(q
2) all

approch the same constant. Therefore, we normalized the form factor products in Fig. 9 by
scaling the weighted histograms by a single common factor so that q2H2

0 (q
2) = 1 as q2 → 0

based on the q2H2
0 (q

2) measured in the combined D+ → K−π+e+νe and D
+ → K−π+µ+νµ

sample.
Figure 9 shows that the isolated D+ → K−π+µ+νµ and D+ → K−π+e+νe samples

produce similar error bars for the measured H2
+(q

2), H2
−
(q2), and h0(q

2)H0(q
2) form factor

products, while the H2
0 (q

2) errors are much larger for the D+ → K−π+µ+νµ sample than
for the D+ → K−π+e+νe. This is due to the large correlation between the H2

0 (q
2) and

H2
t (q

2) form factors present in the D+ → K−π+µ+νµ sample owing to the similarity in
their associated angular distributions. For this reason, the error bars on the H2

t (q
2) form

factor product are dramatically reduced when one combines the D+ → K−π+µ+νµ and
D+ → K−π+e+νe samples.
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FIG. 7: Distribution of ∆E for double tag events, where D− candidate is reconstructed in one

of the six tag modes [(a)–(f)], and D+ candidate is reconstructed in K̄∗0µ+νµ mode. The points

with error bars are the reconstructed yield from the data sample and the curves show our fit to

the signal peak over the dashed background line.

V. FORM-FACTOR RESULTS

We turn next to a discussion of our form-factor measurements. Figure 10 compares the
h0(q

2)H0(q
2) distribution below the nominal pole (a) to that above the nominal K∗0 pole

(b). Figure 10 shows that there is no significant h0(q
2)H0(q

2) signal above the K∗0 pole. The
absence of a h0(q

2)H0(q
2) signal above the nominal K∗0 shows that our data are consistent

with the δs phase obtained in Refs. [7–9]. A related interference pattern was observed in the
FOCUS [8] discovery of the s-wave interference in D+ → K−π+µ+νµ decay. We can thus
improve our statistical errors by restricting our h0(q

2)H0(q
2) measurements to events with

0.8 < mKπ < 0.9 GeV/c2. This additional requirement was applied to the q2h0(q
2)H0(q

2)
plot of Fig. 11, while the other five form factor products use the full 0.8 < mKπ < 1.0 GeV/c2

mass range.
Figure 11 shows the six form factor products multiplied by q2 obtained for data using our

q2H2
0 (q

2) = 1 as q2 → 0 normalization convention. The background was subtracted using
our Monte Carlo samples. Although the data are a reasonably good match to the SPD
model for the q2H2

0 (q
2) and q2H2

±
(q2) form factors, the model does not match the data for
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FIG. 8: Results on the relative branching ratio, Bµ/Be obtained for the six tag states and the error

weighted average of these six values. We compare the relative branching ratio using the cross-feed

method [Eq. (6)] to the ratio of absolute branching fractions. Table III gives a summary of these

results.

q2h0(q
2)H0(q

2), and the mass-suppressed form factors q2H2
t (q

2) and q2H0(q
2)Ht(q

2). These
disagreements will be discussed in Sec. VI.

Because of our excellent q2 resolution, there is negligible correlation among the ten q2

bins for a given form factor product, but the relative correlations between different form
factor products in the same q2 bin can be much larger. Most of the correlations are less than
30 %. There are, however, some very strong (> 70%) correlations for H−(q

2) with various
other form factors – most notably in the three lowest q2 bins in the correlations between the
H−(q

2) and the HT H0 as well as H2
0 form factor products.

Table IV, a tabular representation of Fig. 11 for the D+ → K−π+µ+νµ and D+ →
K−π+e+νe combined sample, gives the center of each q2 bin, the measured form-factor
product, its statistical uncertainty (first error) and its estimated systematic uncertainty
(second error). The biggest source of the systematic uncertainty is from the background
estimation. We separately consider systematic uncertainties from non-semileptonic decay
backgrounds, and semileptonic decay backgrounds. The semileptonic backgrounds include
cross-feed as well as semimuonic events where the pion and muon are exchanged.

For the background uncertainty, we assign a conservative systematic error by increasing
the level of the non-semileptonic background and semileptonic background subtractions by a
factor of 1.5 and comparing these form factor products to the results with the nominal back-
ground subtractions. For H2

+(q
2) and h0(q

2)H0(q
2), the non-semileptonic and semimuonic

background subtraction systematic uncertainty is less than 20 % of the statistical error,
while for the other four form factor products the systematic error is less than 40% of the
statistical error.

We also assess a relative systematic error due to uncertainties in track reconstruction
and particle identification efficiencies. The systematic uncertainty from this source is rather
small since we are reporting form factor shapes rather than absolute normalization. This
uncertainty is estimated as less than 1.9 % for all the form factor products. Finally, we assess
a scale error of 13.4% on the h0(q

2)H0(q
2) form factor product due to the uncertainties in
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FIG. 9: Non-parametric form factor products obtained for the SPDMonte Carlo sample (multiplied

by q2) for ten, evenly spaced q2 bins. The reconstructed form factor products are shown as the

points with error bars, where the error bars represent the statistical uncertainties. The three

points at each q2 value are: filled circles a combined D+ → K−π+µ+νµ & D+ → K−π+e+νe
sample, empty squares D+ → K−π+e+νe only, and empty triangles D+ → K−π+µ+νµ only. The

solid curves represent our SPD model, which was used to generate the Monte Carlo sample. The

histogram plots are: (a) q2H2
+(q

2), (b) q2H2
−(q

2), (c) q2H2
0 (q

2), (d) q2h0(q
2)H0(q

2), (e) q2H2
t (q

2),

and (f) q2H0(q
2)Ht(q

2).

the A and δ values reported in Ref. [9]. When this s-wave scale error is added in quadrature
to the subtraction systematic error, the total systematic error rises to about 85% of the
statistical error in the lowest three q2 bins of the h0(q

2)H0(q
2) form factor product, but

systematic errors on the form factor shape are less than 20% of the statistical error.
Figure 12 illustrates our sensitivity to the pole masses in Eq. (4) by comparing measure-

ments of the q2 H2
−
(q2) form factor product to a model with spectroscopic axial and vector

pole masses versus a model with infinite pole masses, implying constant axial and vector
form factors. Our data favor the spectroscopic pole masses given in Eq. (5), for the high q2

bins of the H2
−
(q2) form factor product. The other five form factor products are consistent

with either pole mass choice.
It is of interest to search for the possible existence of additional non-resonant amplitudes

of higher angular momentum. It is fairly simple to extend Eq. (2) to account for potential

d-wave or f -wave interference with the K
∗0
Breit-Wigner amplitude. We search specifically

for a possible zero helicity d-wave or f -wave piece that interferes with the zero helicity

K
∗0

contribution. One expects that such potential h
(d)
0 (q2) and h

(f)
0 (q2) form factors would
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FIG. 10: We show uncorrected plots of the h0(q
2)H0(q

2) for data with D+ → K−π+µ+νµ and

D+ → K−π+e+νe combined. (a) is for events below the nominal K∗0 pole: 0.8 < mKπ <

0.9 GeV/c2. (b) is for events above the nominal pole: 0.9 < mKπ < 1.0 GeV/c2. There is a

strong h0(q
2)H0(q

2) signal below the nominal pole but no evidence for a non-zero h0(q
2)H0(q

2)

form factor above the pole. Note the order of magnitude difference in the y-axis scales between

the left and right plots.

FIG. 11: Non-parametric form factor products obtained for the data (multiplied by q2) for ten

evenly spaced q2 bins. The reconstructed form factor products are shown as the points with error

bars, where the error bars represent the statistical uncertainties. The three points at each q2 value

are: filled circles a combined D+ → K−π+µ+νµ & D+ → K−π+e+νe sample, empty squares D+ →
K−π+e+νe only, and empty triangles D+ → K−π+µ+νµ only. The solid curves show our SPD

model. The histogram plots are: (a) q2H2
+(q

2), (b) q2H2
−(q

2), (c) q2H2
0 (q

2), (d) q2h0(q
2)H0(q

2),

(e) q2H2
t (q

2), and (f) q2H0(q
2)Ht(q

2).
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TABLE IV: Summary of form factor product results for ten, evenly spaced q2bins for the D+ →
K−π+µ+νµ and D+ → K−π+e+νe combined sample. The first and second errors are statistical

and systematical uncertainties, respectively. The numbers are normalized using the condition:

q2H2
0 (q

2) = 1 as q2 → 0.

q2 q2 H2
+(q

2) q2 H2
−(q

2) q2 H2
0 (q

2)

0.05 0.0013±0.0061±0.0010 0.0398±0.0304±0.0099 1.1979±0.0737±0.0276

0.15 0.0417±0.0135±0.0026 0.2467±0.0380±0.0146 1.0598±0.0616±0.0253

0.25 0.0993±0.0209±0.0036 0.4242±0.0471±0.0221 1.1160±0.0656±0.0274

0.35 0.1079±0.0259±0.0039 0.6704±0.0535±0.0175 1.0520±0.0690±0.0217

0.45 0.1401±0.0290±0.0031 0.8822±0.0575±0.0120 0.9556±0.0721±0.0203

0.55 0.2140±0.0358±0.0026 1.0809±0.0605±0.0025 1.0941±0.0832±0.0181

0.65 0.3874±0.0457±0.0057 1.2094±0.0692±0.0017 0.9692±0.0891±0.0165

0.75 0.3907±0.0548±0.0060 1.4181±0.0830±0.0085 1.0531±0.1030±0.0195

0.85 0.5670±0.0759±0.0090 1.2612±0.0982±0.0164 1.3298±0.1415±0.0307

0.95 0.7475±0.1495±0.0084 1.5113±0.1952±0.0263 1.4912±0.2539±0.0421

q2 q2 h0(q
2)H0(q

2) q2 H2
t (q

2) q2H0(q
2)Ht(q

2)

0.05 1.5263±0.2649±0.2068 -0.1535±1.0530±0.2330 -0.4717±0.4033±0.1983

0.15 1.3410±0.2081±0.1802 0.3069±0.8381±0.3261 -1.1157±0.7390±0.3345

0.25 1.5601±0.2470±0.2092 -0.9425±1.0708±0.4993 -1.0842±0.8925±0.2879

0.35 0.3432±0.2450±0.0657 -2.8312±2.2685±1.1741 1.0604±1.2657±0.3050

0.45 1.0085±0.2927±0.1378 5.0488±3.2535±1.3110 1.4500±2.2843±0.5273

0.55 0.7593±0.3344±0.1186 -3.5770±4.0787±1.6076 -1.2391±3.1060±0.3136

0.65 0.5340±0.3524±0.0906 -0.1290±5.8905±2.2112 -1.1319±4.1718±0.2507

0.75 0.3474±0.3856±0.0758 6.2982±7.6928±2.1522 9.9457±7.8013±0.7991

0.85 -0.0682±0.3905±0.0538 -16.9593±10.8847±3.1543 -13.1707±11.6553±0.0672

0.95 0.1968±0.8383±0.0266 -75.1674±33.6395±4.8926 -2.1058±16.0185±0.0680

peak as 1/
√
q2 near q2 → 0 as is the case for the other zero helicity contributions H0(q

2)
and h0(q

2). If so, the zero helicity contributions should be much larger than potential d-
or f -wave ±1 helicity contributions. The d-wave projectors are based on an additional
interference term of the form

4 sin2 θℓ(3 cos2 θV − 1)H0(q
2) h

(d)
0 (q2) Re{Ade

−iδdβ}. (12)

To search for the presence of zero helicity d-wave amplitude we use the technique of Ref. [7]
to construct a projector which is orthogonal to the projectors for each of the six terms in
Eq. (2). The f -wave weights are based on an additional interference term of the form

4 sin2 θℓ(5 cos3 θV − 3 cos θV)H0(q
2) h

(f)
0 (q2) Re{Afe

−iδfβ}. (13)

Averaging over the Breit-Wigner intensity, the interference should be proportional to

Ad,f sin δd,f h
(d,f)
0 (q2)H0(q

2) and will disappear when the non-resonant amplitude is orthog-

onal to the average, accepted K
∗0

amplitude. Fig. 13 shows the q2h
(d,f)
0 (q2)H0(q

2) form
factor products obtained in the data using projective weights generated assuming a phase
of zero. The projective weights are normalized so that q2h(d,f)(q2)H0(q

2) = 1 in the limit
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FIG. 12: Evidence for finite pole masses. We show the measured q2H2
−(q

2) form factor shown

in Fig. 11 overlayed with two models. (a) uses the same SPD model shown in Fig. 11 while (b)

overlays the data with a SPD model where the axial and vector poles [MA and MV in Eq. (2)] are

set to infinity. We show the data with D+ → K−π+µ+νµ and D+ → K−π+e+νe combined. The

slight scale difference between the data points in the two plots is an artifact of our q2H2
0 (q

2) = 1

as q2 → 0 normalization scheme, which is based on the two different pole mass predictions for the

H2
0 (q

2) form factor product.

q2 → 0 if the putative d,f -wave amplitude had the same strength as the s-wave amplitude

relative to the K
∗0

Breit-Wigner amplitude. There is no evidence for either a d-wave or

FIG. 13: Measurements of the d-wave form factor product (a) and f -wave form factor product

(b) for an assumed phase of 0 radians relative to the K
∗0

Breit-Wigner amplitude.

f -wave component with this phase.
Figure 14 shows our amplitude and limits for sixteen phase assumptions. As illustrated by

Fig. 10, our ability to measure a non-resonant amplitude can depend critically on its phase

relative to the average, accepted K
∗0

phase. In order to maximize our sensitivity to the non-
resonant amplitude, for each phase assumption and q2 bin we made our measurement based
on three mKπ mass regions: 0.8 < mKπ < 0.9 GeV/c2, 0.8 < mKπ < 1.0 GeV/c2, and 0.9 <

mKπ < 1.0 GeV/c2, which puts the average K
∗0

reference phase at roughly 3π/4, 3π/2, and
7π/4 for these three mass regions, respectively. We chose the mass region with the smallest

expected error according to the Monte Carlo simulation. Under the assumption h
(d,f)
0 (q2) =
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FIG. 14: Search for d-wave, (a) and (b), and f-wave, (c) and (d), interference effects for each phase

assumption as described in the text. The phases δd and δf represent the phase of possible d and

f -wave contributions relative to the phase of the K
∗0
Breit-Wigner amplitude. They are measured

in radians.

H0(q
2), used in Ref. [9], we performed a χ2 fit of Fig. 13 to the form Ad,f sin δd,f H

2
0 (q

2) over
the region q2 < 0.6 GeV2/c4 to find the amplitude and limits shown in Fig. 14.

Figure 14 shows that this “mass selection” method produced non-amplitude limits, which
are reasonably independent of assumed phase. If, on the other hand, one used the full
0.8 < mKπ < 1.0 GeV/c2 mass range for all sixteen phase assumptions, one would get
dramatically poorer limits for phase choices orthogonal to the Breit-Wigner amplitude phase.
It is apparent from Fig. 14 that we have no compelling evidence for either a d-wave, or an
f -wave component.

VI. SUMMARY

We present a branching fraction and form factor analysis of the D+ → K−π+ℓ+νℓ decay
based on a sample of approximately 11800 D+ → K−π+e+νe and D

+ → K−π+µ+νµ decays

collected by the CLEO-c detector running at the ψ(3770). We find Be(D
+ → K

∗0
e+νe) =

(5.52 ± 0.07 ± 0.13)% and Bµ(D
+ → K

∗0
µ+νµ) = (5.27 ± 0.07 ± 0.14)%. Our direct

measurement of the relative semimuonic to semielectric branching ratio using Eq. (6) is
Bµ/Be = (94.64± 1.95± 1.03)%.

We also present a non-parametric analysis of the helicity basis form factors that control
the kinematics of the D+ → K−π+ℓ+νℓ decays. We used a projective weighting tech-
nique that allows one to determine the helicity form factor products by weighted histograms
rather than likelihood based fits. We find consistency with the spectroscopic pole dominance
model for the dominant H2

+(q
2), H2

−
(q2) and H2

0 (q
2) form factors. Our measurement on the

h0(q
2)H0(q

2) form factor product suggests that the h0 form factor falls faster than H0 with
increasing q2. The form factors determined using D+ → K−π+µ+νµ decays are consistent
with those determined using D+ → K−π+e+νe decays and are consistent with our earlier
study [17] of D+ → K−π+e+νe. Our measured H2

−
(q2) form factor data are more consis-

tent with axial and vector form factors with the expected spectroscopic pole dominance q2

dependence than with constant axial and vector form factors.
Our measurements of the H2

t (q
2) and H0(q

2)Ht(q
2) form factor suggests a much smaller

21



Ht(q
2) form factor than expected in Lattice Gauge Theory models [4]. Within the context

of the spectroscopic pole dominance model Eq. (5), our H0(q
2)Ht(q

2) measurements are
most consistent with a small Ht(q

2) form factor contribution implying a very negative value
for r3 ≡ A3(0)/A1(0), such as r3 = −10, which would place the predicted Bµ/Be relative
branching ratio close to the phase space estimate of 91%. Finally, we have searched for
possible d-wave or f -wave non-resonant interference contributions to D+ → K−π+ℓ+νℓ. We
have no statistically significant evidence for d-wave or f -wave interference, but are only able
to limit these terms to roughly less than 1.0 and 1.5 times the observed s-wave interference
for d-wave and f -wave respectively.
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