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ABSTRACT

Image and signal processing problems of practical importance, such as incomplete

data recovery and compressed sensing, are often modeled as nonsmooth optimization

problems whose objective functions are the sum of two terms, each of which is the

composition of a prox-friendly function with a matrix. Therefore, there is a practi-

cal need to solve such optimization problems. Besides the nondifferentiability of the

objective functions of the associated optimization problems and the larger dimen-

sion of the underlying images and signals, the sum of the objective functions is not,

in general, prox-friendly, which makes solving the problems challenging. Many algo-

rithms have been proposed in literature to attack these problems by making use of the

prox-friendly functions in the problems. However, the efficiency of these algorithms

relies heavily on the underlying structures of the matrices, particularly for large scale

optimization problems. In this dissertation, we propose a novel algorithmic frame-

work that exploits the availability of the prox-friendly functions, without requiring

any structural information of the matrices. This makes our algorithms suitable for

large scale optimization problems of interest. We also prove the convergence of the

developed algorithms.

This dissertation has three main parts. In part 1, we consider the minimization

of functions that are the sum of the compositions of prox-friendly functions with

matrices. We characterize the solutions to the associated optimization problems as

the solutions of fixed point equations that are formulated in terms of the proximity



operators of the dual of the prox-friendly functions. By making use of the flexibility

provided by this characterization, we develop a block Gauss-Seidel iterative scheme

for finding a solution to the optimization problem and prove its convergence. We

discuss the connection of our developed algorithms with some existing ones and point

out the advantages of our proposed scheme.

In part 2, we give a comprehensive study on the computation of the proximity

operator of the ℓp-norm with 0 ≤ p < 1. Nonconvexity and non-smoothness have

been recognized as important features of many optimization problems in image and

signal processing. The nonconvex, nonsmooth ℓp-regularization has been recognized

as an efficient tool to identify the sparsity of wavelet coefficients of an image or signal

under investigation. To solve an ℓp-regularized optimization problem, the proximity

operator of the ℓp-norm needs to be computed in an accurate and computationally

efficient way. We first study the general properties of the proximity operator of the

ℓp-norm. Then, we derive the explicit form of the proximity operators of the ℓp-norm

for p ∈ {0, 1/2, 2/3, 1}. Using these explicit forms and the properties of the proximity

operator of the ℓp-norm, we develop an efficient algorithm to compute the proximity

operator of the ℓp-norm for any p between 0 and 1.

In part 3, the usefulness of the research results developed in the previous two

parts is demonstrated in two types of applications, namely, image restoration and

compressed sensing. A comparison with the results from some existing algorithms

is also presented. For image restoration, the results developed in part 1 are applied



to solve the ℓ2-TV and ℓ1-TV models. The resulting restored images have higher

peak signal-to-noise ratios and the developed algorithms require less CPU time than

state-of-the-art algorithms. In addition, for compressed sensing applications, our

algorithm has smaller ℓ2- and ℓ∞-errors and shorter computation times than state-of-

the-art algorithms. For compressed sensing with the ℓp-regularization, our numerical

simulations show smaller ℓ2- and ℓ∞-errors than that from the ℓ0-regularization and

ℓ1-regularization. In summary, our numerical simulations indicate that not only can

our developed algorithms be applied to a wide variety of important optimization

problems, but also they are more accurate and computationally efficient than state-

of-the-art algorithms.
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Chapter 1

Introduction

1.1 Problem Statement

In this dissertation, we consider minimization problems of the form

min{f1(A1x) + f2(A2x) : x ∈ R
n}, (1.1)

where Ai are mi × n matrices for i = 1, 2. On the other hand, the functions fi :

Rmi → (−∞,+∞] may be nonsmooth, but prox-friendly. A function Φ is prox-

friendly ([6, 28]) if it allows us to solve, relatively easily, a subproblem of the form

min
w

Φ(w) + λ‖w‖2

for λ > 0.

Model (1.1) admits a wide variety of applications of interest. For instance, the

total variation (TV) based ROF denoising model [66], the ℓ2-TV image deblurring [3,

1



CHAPTER 1. INTRODUCTION 2

16, 59, 73], the ℓ1-TV image restoration [25, 41], the framelet based image deblurring

[9, 10], image inpainting [10], the basis pursuit problem in compressed sensing [23],

medical imaging [51, 52] and the SVM models [27, 71] in machine learning can be

identified as special cases of model (1.1). In particular, we briefly mention three

applications that are closed related to our research. For ease of exposition, we view

the terms f1 ◦A1 and f2 ◦A2 in model (1.1) as the fidelity and regularization terms,

respectively.

• Image deblurring with ℓ2-fidelity term. The aim of image deblurring is to recover

the underlying image from a noisy blurred image. If the observed image is

corrupted by noise of Gaussian type, an ℓ2-type function is favored for forming

fidelity term. As a consequence, f1 can be chosen as the ℓ2-norm or the indicator

function over an ℓ2-ball whose radius indicates the noise power. The matrix A1

is determined by the underlying imaging acquisition system. Various choices are

available for the regularization term. For instance, if the tight frame regularizer

[31, 65] is chosen, the matrix A2 corresponds to the frame system and f2 is

simply the ℓ1-norm. If the total variation [66] is adopted, A2 is the first order

difference operator and f2 is a variant of the ℓ1-norm.

• Image deblurring with ℓ1-fidelity term. When a blurred image is contaminated

by noise of non-Gaussian type, the ℓ2-type function is not appropriate for form-

ing fidelity term anymore. It is well accepted that the ℓ1-norm fidelity term can

effectively suppress the effect of outliers that may contaminate a given image,
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and is therefore particularly suitable for handling impulsive noise [19, 58]. In

this case, the ℓ1-norm is preferred for function f1 in the fidelity term. The ma-

trix A1 and the regularization term f2 ◦A2 can be chosen as those in the image

deblurring model with ℓ2-fidelity term.

• Compressed sensing. The goal in compressed sensing is to recover the underlying

sparse signal from incomplete measurements that are, possibly, contaminated by

Gaussian white noise. As a consequence, f1 should be an ℓ2-type function and

A1 is the associated measurement matrix. Further, in compressed sensing the

signal of interest is sparsely represented in a suitably chosen transform domain.

Hence, A2 should be chosen as the transformation matrix associated with the

transform. The function f2 can be chosen to be the ℓp-norm with 0 ≤ p ≤ 1.

A discussion on the ℓp-norm as a sparse-promoting function will be given in

Chapter 3.

1.2 Previous Work

A number of algorithms have been developed for solving the optimization prob-

lem (1.1). Depending whether the proximity operators of f1 ◦ A1 and f2 ◦ A2 are

prox-friendly or not, the existing algorithms can be roughly categorized in three

groups.

• Both f1◦A1 and f2◦A2 are prox-friendly. In this case, splitting algorithms such
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as Douglas-Rachford algorithm [35, 50] can be adopted for solving problem (1.1).

• Either f1 ◦ A1 or f2 ◦ A2 is prox-friendly. Under this circumstance, the first

order prima-dual algorithms recently developed in [15, 22, 36, 42] are suitable

for solving problem (1.1).

• Both f1 and f2 are prox-friendly while both f1 ◦A1 and f2 ◦A2 are not. In this

context, existing algorithms for the optimization problem (1.1) can be roughly

classified into two classes. Class 1 collects the algorithms that produce ex-

act solutions to problem (1.1) while Class 2 collects the algorithms that give

approximate solutions to problem (1.1). As we know, the coupling of a prox-

friendly function with a matrix causes the difficulty in solving the optimization

problem (1.1). This difficulty is tackled in different ways in the development of

algorithms in Class 1 and Class 2. In the development of algorithms in Class

1, two auxiliary variables are introduced to substitute the multiplications A1x

and A2x in (1.1). As a result, the unconstrained optimization problem (1.1) is

converted to a constrained one. The resulting constrained optimization problem

can be solved by the split Bregman method [40], the Augmented Lagrangian

method (ALM) [39, 43, 60, 63], or the alternating direction method of multi-

pliers (ADMM) [8, 38]. Methods of the split Bregman, ALM and ADMM have

been extensively applied in image restoration [1, 10, 40, 59, 70, 74]. In the

development of algorithms in Class 2, some auxiliary variables are introduced,

but used in a different way. For example, for the term f1(A1x) in (1.1), we use a
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variable u to replace A1x in the expression f1(A1x) and then enforce u and A1x

close measured by the ℓ2-norm of their difference. As a result, the solutions to

the resulting optimization problem are no longer the solutions, but approximate

ones, to the optimization problem (1.1). Algorithms designed in this line can

be found in [21, 25, 32, 41, 55, 72, 76], and the references therein. A poten-

tial shortcoming of the algorithms in Class 2 is that the solutions produced by

these algorithms may not possess desirable features as expected from the origi-

nal problem. Therefore, algorithms in Class 1 are preferred for problem (1.1).

1.3 Motivation

Based upon the review presented above, our research will focus on enriching and

complementing the existing algorithms in Class 1. To motivate our work, let us state

assumptions on problem (1.1) in the following discussion and point out shortcomings

of the existing algorithms in Class 1. We assume that

A1. Both f1 and f2 are prox-friendly.

A2. Both f1 ◦ A1 and f2 ◦ A2 are not prox-friendly.

Under these assumptions, we briefly review a general procedure in the development

of the existing algorithms in Class 1. By introducing two auxiliary variables u and v,

problem (1.1) is converted to the following one

min{f1(u) + f2(v) : A1x− u = 0, A2x− v = 0, x ∈ R
n, u ∈ R

m1 , v ∈ R
m2}, (1.2)
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which is an optimization problem with linear constraints. The split Bregman method,

ALM or ADMM can be adopted for solving the above constrained optimization prob-

lem. With any one of these algorithms, three sequences {uk}, {vk}, and {xk} are

generated. We can observe that the updating u and v are independent in the sense

that the updated uk+1 is not used in updating vk+1, and vise versa. Therefore, the

block Gauss-Seidel acceleration technique will not take effect. In addition, updating u

and v may require solving large scale systems that could be expensive if the matrices

A1 and A2 do not have special structures to exploit.

1.4 Contributions

In this dissertation, we propose a novel algorithmic framework that exploits the avail-

ability of the prox-friendly functions, without requiring any structural information of

the matrices. This makes our proposed algorithms suitable for large scale optimiza-

tion problems of interest. We also prove the convergence of the developed algorithms.

Our contributions are as follows:

• We characterize the solutions to the optimization problem (1.1) as the solutions

of fixed point equations that are formulated in terms of the proximity operators

of the dual of the prox-friendly functions f1 and f2. By making use of the

flexibility provided by this characterization, we develop a block Gauss-Seidel

iterative scheme for finding a solution to the optimization problem and prove

its convergence. We discuss the connection of our developed algorithms with
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some existing ones and point out the advantages of our proposed scheme.

• We give a comprehensive study on the computation of the proximity operator

of the ℓp-norm with 0 ≤ p < 1. We first study the general properties of the

proximity operator of the ℓp norm. Then, we derive the explicit form of the

proximity operators of the ℓp norm for p ∈ {0, 1/2, 2/3, 1}. Using these explicit

forms and the properties of the proximity operator of the ℓp-norm, we develop

an efficient algorithm to compute the proximity operator of the ℓp-norm for any

p between 0 and 1.

• We demonstrate the usefulness of our research results developed in two types of

applications, namely, image restoration and compressed sensing. A comparison

with the results from some existing algorithms is also presented. Our numerical

simulations indicate that not only can our developed algorithms be applied

to a wide variety of important optimization problems, but also they are more

accurate and computationally efficient than state-of-the-art algorithms.



Chapter 2

Composite Minimization:

Proximity Algorithms

2.1 Introduction

In this chapter, we focus on convex composite minimization problem with form (1.1),

that is,

min{f1(A1x) + f2(A2x) : x ∈ R
n},

where f1, f2 are proper, lower semi-continuous, convex functions. We assume that

both of f1 and f2 are prox-friendly functions but neither of f1 ◦ A1 and f2 ◦ A2 are

prox-friendly. We characterize the solutions to composite minimization problem (1.1)

as the solutions of fixed point equations that are formulated in terms of the prox-

imity operators of the dual of f1 and f2. By making use of the flexibility provided

8
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by this characterization, we develop a block Gauss-Seidel iterative scheme for finding

a solution to the optimization problem. We show the proposed algorithm can be

implemented efficiently when the functions f1 and f2 are prox-friendly. Further, con-

vergence analysis on the proposed algorithm is fulfilled using firm non-expansiveness

of the proximity operator. Lastly, connection of the proposed algorithm with the

Chambolle and Pock’s primal-dual method (CP), the augmented lagrangian method

(ALM) and the alternating direction method of multipliers (ADMM) will be discussed.

This chapter is organized in the following manner. In section 2.2, we provide

characterization of solutions to general problem (1.1) via sub-differentials and fixed

point equations based on proximity operators. In section 2.3, we propose a fixed

point algorithm in term of proximity operators. The proposed algorithm employs

block Gauss-Seidel acceleration. In section 2.4, convergence analysis on the proposed

algorithm is provided in this section. In section 2.5, we discuss the connection of the

proposed algorithms with CP[15], ALM and ADMM.

2.2 Fixed Point Characterization

In this section, we shall see that a solution of (1.1) can be characterized by fixed

point equations in terms of proximity operators. An iterative algorithm based on the

fixed-point equations will be proposed to solve model (1.1).

We begin with introducing our notation and reviewing some concepts from convex

analysis. For a vector x in the d-dimensional Euclidean space Rd, we use xi to denote
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the ith component of a vector x ∈ Rd for i = 1, 2, . . . , d. We define 〈x, y〉 :=∑d
i=1 xiyi,

for x, y ∈ Rd the standard inner product in Rd. The ℓ2-norm induced by the inner

product in Rd is defined as ‖ · ‖ :=
√
〈·, ·〉. For a k by d matrix A, its ℓ2-norm,

denoted by ‖A‖ is defined by ‖A‖=max{‖Ax‖ : ‖x‖ = 1, x ∈ R
d}. By S

d
+, we denote

the set of all d by d symmetric, positive definite matrix. Given a matrix H ∈ Sd+, the

weighted inner product associated with H in Rd is defined by 〈x, y〉H = 〈x,Hy〉 and

its induced norm is defined by ‖x‖H :=
√
〈x,Hx〉. When H is the identity matrix,

its associated weighted inner product and induced norm reduce to the standard inner

product and ℓ2-norm in Rd respectively. For the Hilbert space Rd, the class of all lower

semicontinuous convex functions ψ : Rd → R := (−∞,+∞] such that dom ψ := {x ∈

Rd : ψ(x) < +∞} 6= ∅ is denoted by Γ0(R
d).

We shall provide necessary and sufficient conditions for a solution to model (1.1).

To this end, we first recall the definitions of sub-differential and Fenchel conjugate.

The subdifferential of ψ ∈ Γ0(R
d), denoted by ∂ψ, is a set-valued operator and is

defined at x ∈ Rd as follows:

∂ψ(x) := {y ∈ R
d : ψ(z) ≥ ψ(x) + 〈y, z − x〉 for all z ∈ R

d}.

For a function ψ ∈ Γ0(R
d), the sub-differential ∂ψ(x) is a non-empty compact set for

any x ∈ dom ψ (see. e.g., [64]). For a function ψ : Rd → [−∞,+∞], the Fenchel

conjugate of ψ at x ∈ R
d is

ψ∗(x) := sup{〈y, x〉 − ψ(y) : y ∈ R
d}.

For a function ψ ∈ Γ0(R
d), its sub-differential and Fenchel conjugate are closely
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related. Indeed, for a function ψ ∈ Γ0(R
d), one has (see, e.g., [64, Proposition 11.3])

y ∈ ∂ψ(x) ⇐⇒ x ∈ ∂ψ∗(y). (2.1)

The following result provides a characterization to a solution to problem (1.1).

Proposition 2.1. Assume that the set of solutions to the optimization problem (1.1)

is nonempty. A vector x ∈ R
n is a solution to problem (1.1) if and only if there exist

vectors u ∈ Rm1 and v ∈ Rm2 such that the following relations hold

A1x ∈ ∂f ∗
1 (u), (2.2)

A2x ∈ ∂f ∗
2 (v), (2.3)

A⊤
1 u+ A⊤

2 v = 0. (2.4)

Proof. Suppose x is a solution to problem (1.1). By Fermat’s rule, 0 ∈ A⊤
1 ∂f1(A1x)+

A⊤
2 ∂f2(A2x). Therefore, there exist u ∈ ∂f1(A1x) and v ∈ ∂f2(A2x) such that 0 =

A⊤
1 u + A⊤

2 v, that is, (2.4) holds. Further, by (2.1), u ∈ ∂f1(A1x) and v ∈ ∂f2(A2x)

yield relations (2.2) and (2.3), respectively.

The above reasoning is reversible. That is, if there exist u ∈ Rm1 and v ∈ Rm2

such that (2.2)-(2.4) hold, then x is a solution to problem (1.1).

Based on Proposition 2.1, we shall provide fixed point equations characterization

of a solution to model (1.1) in terms of proximity operator. For a function ψ ∈ Γ0(R
d),

the proximity operator of ψ with respect to H ∈ Sd+, denoted by proxψ,H , is a mapping

from Rd to itself, defined at x ∈ Rd by

proxψ,H(x) := argmin

{
1

2
‖u− x‖2H + ψ(u) : u ∈ R

d

}
. (2.5)
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In particular, we use proxλψ for proxψ, 1
λ
I , where λ > 0 is a scalar.

The proximity operator is firmly non-expansive [2]. An operator J : Rd → Rd is

called firmly non-expansive with respect to a given matrix H ∈ Sd+ if for all x, y ∈ Rd

‖J y − J x‖2H ≤ 〈J y −J x, y − x〉H .

It can be observed that a firm non-expansive operator is also Lipschitz continuous

with Lipschitz constant 1. For the sake of completeness, the firm non-expansiveness

of proximity operator will be shown in the following lemma.

Lemma 2.2. Given ψ ∈ Γ0(R
d) and H ∈ Sd+, the proximity operator proxψ,H is firmly

non-expansive with respect to H.

Proof. Let x, y ∈ Rd. By the definition of proximity operator, we have

0 ∈ ∂ψ(proxψ,H(x)) +H(proxψ,H(x)− x),

and

0 ∈ ∂ψ(proxψ,H(y)) +H(proxψ,H(y)− y),

i.e.,

H(x− proxψ,H(x)) ∈ ∂ψ(proxψ,H(x)),

and

H(y − proxψ,H(y)) ∈ ∂ψ(proxψ,H(y)).
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The definition of sub-differential yields




〈proxψ,H(y)− proxψ,H(x), H(x− proxψ,H(x))〉+ ψ(proxψ,H(x)) ≤ ψ(proxψ,H(y))

〈proxψ,H(x)− proxψ,H(y), H(y − proxψ,H(y))〉+ ψ(proxψ,H(y)) ≤ ψ(proxψ,H(x))

.

Adding the above two inequalities and rearranging terms yield

〈proxψ,H(y)−proxψ,H(x), H(proxψ,H(y)−proxψ,H(x))〉 ≤ 〈proxψ,H(y)−proxψ,H(x), H(y−x)〉.

This completes the proof.

The sub-differential and the proximity operator are closely related. This relation

is given in the next proposition.

Proposition 2.3. Let ψ ∈ Γ0(R
d), H ∈ Sd+ and x, y ∈ Rd. Then Hy ∈ ∂ψ(x) if and

only if x = proxψ,H(x+ y).

Proof. Assume x = proxψ,H(x+y). By the definition of proximity operator, we have

x = argmin

{
1

2
‖z − (x+ y)‖2H + ψ(z) : z ∈ R

d

}
.

Being the minimizer of the objective function above, x satisfies the inclusion 0 ∈

H(x− (x+y))+∂ψ(x), i.e., Hy ∈ ∂ψ(x). This shows that x = proxψ,H(x+y) implies

Hy ∈ ∂ψ(x).

The above reasoning is reversible. That is, ifHy ∈ ∂ψ(x), then x = proxψ,H(x+y).

This completes the proof.

In particular, if ψ ∈ Γ0(R
d) and λ > 0, by choosing H = 1

λ
I we have from

Proposition 2.3 that

y ∈ ∂ψ(x)⇔ x = proxλψ(x+ λy). (2.6)
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With the relationship between the proximity operator and sub-differential given in

Proposition 2.3, an inclusion involving sub-differential can be rephrased as an equation

in terms of proximity operator. As a consequence, the characterization of a solution

to model (1.1) described in Proposition 2.1 can be rewritten as fixed point equations.

Proposition 2.4. Assume that the set of solutions to the optimization problem (1.1)

is nonempty. A vector x ∈ Rn is a solution to model (1.1) if and only if for any

positive numbers α1 > 0, α2 > 0, γ > 0, there exist u ∈ Rm1 and v ∈ Rm2 such that

the following equations hold






u = proxα1f∗1
(u+ α1A1x)

v = proxα2f∗2
(v + α2A2x)

x = x− γ(A⊤
1 u+ A⊤

2 v)

. (2.7)

Proof. It follows immediately from proposition 2.1 and equation (2.6).

We show equations in (2.7) can be rewritten in a compact form. To this end, we

denote H := Rm1 ×Rm2 ×Rn and define an operator T : H→ H at ρ = (u, v, x) ∈ H

by

T (ρ) :=
(
proxα1f∗1

(u), proxα2f∗2
(v), x

)
. (2.8)

We next show T defined in the above is the proximity operator of a new function

with respect to a matrix in Sd+. Actually, define F : H→ R at ρ ∈ H as

F (ρ) := f ∗
1 (u) + f ∗

2 (v) (2.9)
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and a diagonal matrix

R := diag

(
1

α1
I,

1

α2
I,

1

γ
I

)
, (2.10)

where 1
α1
I, 1

α2
I, 1

γ
I are m1×m1, m2×m2 and n×n scaled identity matrices respec-

tively. With this notational preparation, we are ready to show that T is the proximity

operator of F with respect to R.

Lemma 2.5. For T , F and R defined by (2.8), (2.9) and (2.10), respectively, one

has T = proxF,R.

Proof. For ρ = (u, v, x) ∈ Rm1 × Rm2 × Rn, by the definition of the proximity

operator, we have that

proxF,R(ρ) = argmin
{

1
2
‖ρ− ρ̃‖2R + F (ρ̃) : ρ̃ = (ũ, ṽ, x̃) ∈ Rm1 × Rm2 × Rn

}

= argmin

{
1
2
‖u− ũ‖21

α1
I
+ f ∗

1 (ũ) +
1
2
‖v − ṽ‖21

α2
I
+ f ∗

2 (ṽ)

+1
2
‖x− x̃‖21

γ
I
: (ũ, ṽ, x̃) ∈ Rm1 × Rm2 × Rn

}

=
(
proxα1f∗1

(u), proxα1f∗2
(v), x

)

= T (ρ).

(2.11)

Lemma 2.2 and Lemma 2.5 ensure that the operator T is firmly non-expansive

with respect to matrix R.

Define

S1 :=




0 0 A1

0 0 A2

−A1 −A2 0




(2.12)
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and

E1 := I +R−1S1. (2.13)

Then for ρ = (u, v, x) ∈ Rm1×Rm2×Rn, the characterization in (2.7) can be rewritten

in a compact form as

ρ = T (E1ρ). (2.14)

By Proposition 2.4 and equation (2.14), a solution to problem (1.1) is essentially a

fixed point of the operator T ◦E1. Although the operator T is firmly non-expansive,

the composition T ◦ E1 might not be due to the expansivity of E1. We shall show

this in the following lemma.

For a d × d matrix A, the norm ‖A‖H with respect to an H ∈ Sd+ is defined as

‖A‖H := max{‖Ax‖H : x ∈ Rd, ‖x‖H = 1}.

Lemma 2.6. Let R and E1 be defined in (2.10) and (2.12), respectively. Then

‖E1‖R > 1.

Proof. Given any ρ ∈ H with ‖ρ‖R = 1. By the definition of E1, one have

‖E1ρ‖2R = ‖(I +R−1S1)ρ‖2R

= ‖ρ‖2R + 2〈ρ, RR−1S1ρ〉 + ‖R−1S1ρ‖2R

= 1 + 2〈ρ, S1ρ〉+ ‖R−1S1ρ‖2R.

Noting that S1 is a nonzero skew matrix, we have 〈ρ, S1ρ〉 = 0 and there exists some

ρ ∈ H with ‖ρ‖R = 1 such that S1ρ 6= 0. Hence ‖E1‖R > 1.
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As a consequence of Lemma 2.6, the sequence {ρk} generated by ρk+1 = T (E1ρ
k)

with a given initial guess ρ0, may not converge. Actually, it was already observed

numerically in the application of the L1/TV model for impulsive noise removal [55].

2.3 Fixed Point Algorithm

Our goal is to develop an algorithm that can be used for finding a solution to equa-

tion (2.7) (i.e., (2.14)). It was pointed out in the previous section that a simple

iterative scheme would not be enough to yield a solution to equation (2.14). Since

any solution to problem (1.1) is also a solution to equation (2.7), this motivates us to

derive from (2.7) a mathematically equivalent characterization with which an iterative

scheme derived from the new characterization will lead to a solution to problem (1.1).

Proposition 2.7. Assume that the set of solutions to the optimization problem (1.1)

is nonempty. A vector x ∈ Rn is a solution to (1.1) if and only if for any positive

numbers α1 > 0, α2 > 0, β > 0, γ > 0, there exist u ∈ Rm1 , v ∈ Rm2 such that the

following hold





u = proxα1f∗1

(
u+ α1A1(x− β(A⊤

1 u+ A⊤
2 v))

)
,

v = proxα2f∗2

(
v + α2A2(x− β(A⊤

1 u+ A⊤
2 v))

)
,

x = x− γ(A⊤
1 u+ A⊤

2 v).

(2.15)

Proof. This follows from Proposition 2.4 and the fact that A⊤
1 u+ A⊤

2 v = 0.

Next, we present an iterative scheme for finding solutions to (2.15). For purposes

of comparison, we first include an iterative scheme arising from the characterization



CHAPTER 2. COMPOSITE MINIMIZATION: PROXIMITY ALGORITHMS 18

given in (2.7). Beginning with an initial estimate (u0, v0, x0) ∈ Rm1 ×Rm2 ×Rn, this

scheme updates its variables as follows:




uk+1 = proxα1f∗1

(
uk + α1A1x

k
)

vk+1 = proxα2f∗2

(
vk + α2A2x

k
)

xk+1 = xk − γ(A⊤
1 u

k+1 + A⊤
2 v

k+1)

. (2.16)

From the above scheme, we can see that updating uk+1 and vk+1 can be parallelized

in the sense that the computation of vk+1 is independent of the update of uk+1. We

then turn to the characterization given in Proposition 2.15. Beginning with an initial

estimate (u0, v0, x0) ∈ Rm1 × Rm2 × Rn, we propose an iterative scheme arising from

(2.15) that iterates as





uk+1 = proxα1f∗1

(
uk + α1A1

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)
))

vk+1 = proxα2f∗2

(
vk + α2A2

(
xk − β(A⊤

1 u
k+1 + A⊤

2 v
k)
))

xk+1 = xk − γ(A⊤
1 u

k+1 + A⊤
2 v

k+1)

(2.17)

The above scheme (2.17) shows that the update uk+1 can be immediately used in

computing vk+1. Algorithm 1 describes an entire procedure for finding a solution to

problem (1.1) based on the characterization in Proposition 2.7.

Algorithm 1: Gauss-Seidel Method for Model (1.1)

Input: Initialization: u0 ∈ Rm1 , v0 ∈ Rm2 , x0 ∈ Rn; α1, α2, β, γ > 0.

Result: x∞

while it is not convergent do

Computing (uk+1, vk+1, xk+1) via the iterative scheme (2.17).

In the following section, convergence analysis of Algorithm 1 will be given.
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2.4 Convergence Analysis

In this section, our effort will be devoted to the convergence analysis of Algorithm 1.

For easy of exposition, let us introduce the following notation:

S1 =




0 0 A1

0 0 A2

−A⊤
1 −A⊤

2 0



,

S2 =




0 −βA1A
⊤
2 0

−βA2A
⊤
1 0 0

0 0 0



,

P =




1
α1
I − βA1A

⊤
1 0 0

0 1
α2
I − βA2A

⊤
2 0

0 0 1
γ
I



,

E = R−1(P + S1 + S2).

(2.18)

Then the fixed point equations (2.15) can be rewritten in the compact form

ρ = T (Eρ), (2.19)

where ρ = (u, v, x) and T is defined by (2.8).

One useful property of the operator T ◦ E is as follows.

Lemma 2.8. Let T , R, and E be defined in (2.8), (2.10), and (2.18), respectively.

If pairs (ρi, ai) ∈ H×H with ρi = (ui, vi, xi) ∈ Rm1 × Rm1 × Rn, i = 1, 2, satisfy

ρi = T (Eρi +R−1ai), (2.20)
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then

〈ρ2 − ρ1, a2 − a1〉 ≥ β‖A⊤
1 (u2 − u1) + A⊤

2 (v2 − v1)‖2. (2.21)

Proof. By Lemma 2.5 and the firm non-expansiveness of T ,

‖ρ2 − ρ1‖2R = ‖T (Eρ2 +R−1a2)− T (Eρ1 +R−1a1)‖2R

≤ 〈ρ2 − ρ1, RE(ρ2 − ρ1) + a2 − a1〉

= 〈ρ2 − ρ1, (P + S1 + S2)(ρ2 − ρ1)〉+ 〈ρ2 − ρ1, a2 − a1〉

= 〈ρ2 − ρ1, P (ρ2 − ρ1)〉+ 〈ρ2 − ρ1, S1(ρ2 − ρ1)〉

+〈ρ2 − ρ1, S2(ρ2 − ρ1)〉+ 〈ρ2 − ρ1, a2 − a1〉.

Noting that S1 is a skewed matrix, we have that 〈ρ2 − ρ1, S1(ρ2 − ρ1)〉 = 0. Thus,

〈ρ2 − ρ1, a2 − a1〉 ≥ 〈ρ2 − ρ1, (R− P )(ρ2 − ρ1)〉 − 〈ρ2 − ρ1, S2(ρ2 − ρ1)〉. (2.22)

By the definitions of P and S2 given in (2.18), we have that

〈ρ2 − ρ1, (R− P )(ρ2 − ρ1)〉 = β‖A⊤
1 (u2 − u1)‖2 + β‖A⊤

2 (v2 − v1)‖2

and

−〈ρ2 − ρ1, S2(ρ2 − ρ1)〉 = 2β〈A⊤
1 (u2 − u1), A⊤

2 (v2 − v1)〉.

Hence,

〈ρ2 − ρ1, a2 − a1〉 ≥ β‖A⊤
1 (u2 − u1)‖2 + β‖A⊤

2 (v2 − v1)‖2

+2β〈A⊤
1 (u2 − u1), A⊤

2 (v2 − v1)〉

= β‖A⊤
1 (u2 − u1) + A⊤

2 (v2 − v1)‖2

.

This completes the proof.
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For a given a ∈ H, we define M : H → H by ρ =M(a) if (ρ, a) satisfies (2.20).

Lemma 2.8 actually implies the monotonicity of the operatorM. We next will discuss

the relation between two consecutive iterations from the iterative scheme (2.17). For

ease of exposition, we introduce the following notation:

L =




0 0 0

−βA2A
⊤
1 0 0

−A⊤
1 −A⊤

2 0



,

U =




0 −βA1A
⊤
2 A1

0 0 A2

0 0 0



.

(2.23)

Then the matrix E defined in (2.18) can be also written as

E = R−1(L+ P + U).

As a result, the iterative scheme in (2.17) can be rephrased as

ρk+1 = T (R−1Lρk+1 +R−1(P + U)ρk), (2.24)

where ρk = (uk, vk, xk). One can notice from equation (2.24) that ρk+1 is expressed

in an implicit way, but can be computed explicitly as shown in (2.17).

Lemma 2.9. Let T , R be defined in (2.8), (2.10) and let L, U be defined in (2.23),

respectively. For ρi = (ui, vi, xi) and ρ̃i = (ũi, ṽi, x̃i), i = 1, 2, if the pairs (ρi, ρ̃i) ∈

H×H satisfy

ρi = T (R−1Lρi +R−1(P + U)ρ̃i), (2.25)
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then

〈ρ2 − ρ1, P [(ρ2 − ρ̃2)− (ρ1 − ρ̃1)]〉 ≤ (γ − β)‖A⊤
1 (u2 − u1) + A⊤

2 (v2 − v1)‖2

+β〈A⊤
1 (u2 − u1), A⊤

2 [(v2 − ṽ2)− (v1 − ṽ1)]〉.

Proof. Notice that ρi = T (Eρi+R−1(P+U)(ρ̃i−ρi)). By identifying (P+U)(ρ̃i−ρi)

as ai in Lemma 2.8, we obtain the following

〈ρ2 − ρ1, P [(ρ2 − ρ̃2)− (ρ1 − ρ̃1)]〉 ≤ 〈ρ2 − ρ1, U [(ρ̃2 − ρ2)− (ρ̃1 − ρ1)]〉

−β‖A⊤
1 (u2 − u1) + A⊤

2 (v2 − v1)‖2.
(2.26)

Substituting U defined in (2.23) back to (2.26) and rearranging the terms yield

〈ρ2 − ρ1, P [(ρ2 − ρ̃2)− (ρ1 − ρ̃1)]〉 ≤ 〈A⊤
1 (u2 − u1), (x̃2 − x2)− (x̃1 − x1)〉

+〈A⊤
2 (v2 − v1), (x̃2 − x2)− (x̃1 − x1)〉

−β‖A⊤
1 (u2 − u1) +A⊤

2 (v2 − v1)‖2

+β〈A⊤
1 (u2 − u1), A

⊤
2 [(v2 − ṽ2)− (v1 − ṽ1)]〉

(2.27)

Further, equation (2.25) implies x̃i − xi = γ(A⊤
1 ui +A⊤

2 vi). Substituting this back in

(2.27), we have

〈ρ2 − ρ1, P [(ρ2 − ρ̃2)− (ρ1 − ρ̃1)]〉 ≤ γ‖A⊤
1 (u2 − u1) +A⊤

2 (v2 − v1)‖2

−β‖A⊤
1 (u2 − u1) +A⊤

2 (v2 − v1)‖2

+β〈A⊤
1 (u2 − u1), A

⊤
2 [(v2 − ṽ2)− (v1 − ṽ1)]〉

(2.28)

which completes the proof.

Based on the result in Lemma 2.9, we shall establish a relationship between the

sequence {(uk, vk, xk) : k ∈ N} generated by the iterative scheme (2.17) and ρ̂ =
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(û, v̂, x̂) that satisfies fixed point equations (2.15). To this end, we introduce

P1 = 1
α1
I − βA1A

⊤
1

P2 = 1
α2
I − βA2A

⊤
2

(2.29)

Lemma 2.10. Let α1, α2, β, γ be positive, let ρ̂ = (û, v̂, x̂) ∈ H be a solution to

the fixed point equation (2.15), and let {ρk = (uk, vk, xk) : k ∈ N} be the sequence

generated by (2.17). If ‖A1‖2 < 1
α1β

, ‖A2‖2 < 1
α2β

, then the following equation holds:

(‖ρk+1 − ρ̂‖2P + β‖A⊤
2 (v

k+1 − v̂)‖2)− (‖ρk − ρ̂‖2P + β‖A⊤
2 (v

k − v̂)‖2) ≤ yk, (2.30)

where

yk = −‖uk+1 − uk‖2P1
− ‖vk+1 − vk‖2P2

− (β − γ)‖A⊤
1 u

k+1 + A⊤
2 v

k+1‖2

−β‖A⊤
1 u

k+1 + A⊤
2 v

k‖2.

Proof. Since the positive parameters α1, α2, β and γ satisfy ‖A1‖2 < 1
α1β

, ‖A2‖2 <

1
α2β

, the matrices P1, P2 in (2.29) and P in (2.18) are symmetric and positive definite.

Notice that ρk+1, ρk and ρ̂ satisfy

ρk+1 = T (R−1Lρk+1 +R−1(P + U)ρk),

and

ρ̂ = T (R−1Lρ̂+R−1(P + U)ρ̂).

Identifying ρk+1, ρk, and ρ̂, respectively, as ρ2, ρ̃2, ρ1 in Lemma 2.9 together with

A⊤
1 û+ A2⊤v̂ = 0 leads to

〈ρk+1−ρ̂, P (ρk+1−ρk)〉 ≤ (γ−β)‖A⊤
1 u

k+1+A⊤
2 v

k+1‖2+β〈A⊤
1 (u

k+1−û), A⊤
2 (v

k+1−vk)〉.
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Using the identity 2〈ρk+1− ρ̂, P (ρk+1−ρk)〉 = ‖ρk+1− ρ̂‖2P −‖ρk− ρ̂‖2P +‖ρk+1−ρk‖2P

and noticing that ‖ρk+1− ρk‖2P = ‖uk+1− uk‖2P1
+ ‖vk+1− vk‖2P2

+ 1
γ
‖xk+1− xk‖2 and

xk+1 − xk = −γ(A⊤
1 u

k+1 + A⊤
2 v

k+1) , we obtain

‖ρk+1 − ρ̂‖2P − ‖ρk − ρ̂‖2P ≤ −‖uk+1 − uk‖2P1
− ‖vk+1 − vk‖2P2

− 1
γ
‖xk+1 − xk‖2

+2(γ − β)‖A⊤
1 u

k+1 + A⊤
2 v

k+1‖2

+2β〈A⊤
1 (u

k+1 − û), A⊤
2 (v

k+1 − vk)〉.

= −‖uk+1 − uk‖2P1
− ‖vk+1 − vk‖2P2

+(γ − β)‖A⊤
1 u

k+1 + A⊤
2 v

k+1‖2

−β‖A⊤
1 u

k+1 + A⊤
2 v

k+1‖2

+2β〈A⊤
1 (u

k+1 − û), A⊤
2 (v

k+1 − vk)〉.

(2.31)

It can be verified by using A⊤
1 û+A

⊤
2 v̂ = 0 that the sum of the last two terms in (2.31)

equals to −β‖A⊤
1 u

k+1 + A⊤
2 v

k‖2 − β‖A⊤
2 (v

k+1 − v̂)‖2 + β‖A⊤
2 (v

k − v̂)‖2. Therefore,

(‖ρk+1 − ρ̂‖2P + β‖A⊤
2 (v

k+1 − v̂)‖2)− (‖ρk − βρ̂‖2P + ‖A⊤
2 (v

k − v̂)‖2) ≤ yk. (2.32)

This completes the proof of the result.

We are ready to prove the convergence of the sequence {(uk, vk, xk) : k ∈ N}

generated by the iterative scheme (2.17).

Theorem 2.11. Let α1 , α2, β, γ be positive numbers and let {ρk = (uk, vk, xk) : k ∈

N} be the sequence generated by scheme (2.17). If ‖A1‖2 < 1
α1β

, ‖A2‖2 < 1
α2β

, and

0 < γ ≤ β, then the sequence {(uk, vk, xk) : k ∈ N} converges to a triple ρ̂ = (û, v̂, x̂),

a solution of (2.15).
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Proof. We will show {(uk, vk, xk) : k ∈ N} converges to a triple (û, v̂, x̂) satisfying

(2.15) by three steps. Firstly, by Lemma 2.10 we show {ρk = (uk, vk, xk) : k ∈ N} is

bounded and therefore the sequence has a convergent subsequence. Next, we show

that this convergent subsequence converges to a triple ρ̂ = (û, v̂, x̂) satisfying (2.15).

Finally, we show the entire sequence {(uk, vk, xk) : k ∈ N} converges to this triple.

If ‖A1‖2 < 1
α1β

, ‖A2‖2 < 1
α2β

, then P1, P2, P are symmetric and positive definite.

If 0 < γ ≤ β, the values of yk in Lemma 2.10 is non-positive. Thus, from (2.30)

we know that the sequence {‖ρk − ρ̂‖2P + ‖A⊤
2 (v

k − v̂)‖2 : k ∈ N} is nonincreasing

and convergent. This implies the boundedness of the sequence {‖ρk − ρ‖P : k ∈ N}.

Therefore, the sequence {(uk, vk, xk) : k ∈ N} is bounded. Hence, there exists a

convergent subsequence {(uki, vki, xki) : i ∈ N} such that for some vector (ũ, ṽ, x̃) ∈

R
m1 × R

m2 × R
n

lim
i→∞

(uki, vki, xki) = (ũ, ṽ, x̃) (2.33)

We shall show that (ũ, ṽ, x̃) satisfies the fixed point equations (2.15). Summing

(2.30) for k from 1 to infinity, we conclude that

‖ρ1 − ρ̂‖2P + β‖A⊤
2 v

1 − v̂‖2 ≥
∞∑

k=1

‖uk+1 − uk‖2P1
+

∞∑

k=1

‖vk+1 − vk‖2P2

+
∞∑

k=1

(β − γ)‖A⊤
1 u

k+1 + A⊤
2 v

k+1‖22
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The convergence of three series in the above inequality yield that




limk→∞ uk+1 − uk = 0

limk→∞ vk+1 − vk = 0

limk→∞A⊤
1 u

k+1 + A⊤
2 v

k+1 = 0

limk→∞ xk+1 − xk = limk→∞−γ(A⊤
1 u

k+1 + A⊤
2 v

k+1) = 0

,

which particularly indicates




limi→∞ uki+1 − uki = 0

limi→∞ vki+1 − vki = 0

limi→∞A⊤
1 u

ki+1 + A⊤
2 v

ki+1 = 0

limi→∞ xki+1 − xki = 0

. (2.34)

By (2.33) and (2.34), we have that




limi→∞ uki+1 = ũ

limi→∞ vki+1 = ṽ

limi→∞ xki+1 = x̃

(2.35)

In (2.17), the involved proximity operators and matrices are continuous operators.

Equations (2.33) and (2.35) imply that (ũ, ṽ, x̃) satisfies (2.15).

Now, let us take (û, v̂, x̂) = (ũ, ṽ, x̃). Then from (2.33) we have that

lim
i→∞

(
‖ρki − ρ̂‖2P + β‖A⊤

2 (v
ki − ˆ̂v)‖2

)
= 0.

The monotonicity and convergence of the sequence {‖ρk − ρ̂‖2P + β‖A⊤
2 (v

k − v̂)‖2 :

k ∈ N} imply that

lim
k→∞

(
‖ρk − ρ̂‖2P + β‖A⊤

2 (v
k − v̂)‖2

)
= 0.
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Thus, the sequence {ρk = (uk, vk, xk) : k ∈ N} converges to a triple ρ̂ = (û, v̂, x̂)

satisfying (2.15). This completes the proof of this theorem.

2.5 Connections with Existing Algorithms

In this section, we point out the connections of our proposed algorithm with several

well-known methods. Specifically, we would explore the connection of the proposed

algorithm with Chambolle and Pock’s (CP) Primal-Dual method, Augmented La-

grangian Method (ALM) and Alternating Direction Method of Multipliers (ADMM).

To this end, we first consider a degenerated form of Algorithm 1 without Gauss-

Seidel acceleration between u and v and with equal parameters α1 = α2 = α. This

degenerated form is presented in Algorithm 2.

Algorithm 2: Degenerated form of Algorithm 1

Input: Initialization: u0 ∈ R
m1 , v0 ∈ R

m2 , x0 ∈ R
n; parameters α, β, γ.

Result: x∞

while it is not convergent do





uk+1 = proxαf∗1

(
uk + αA1

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)
))

vk+1 = proxαf∗2

(
vk + αA2

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)
))

xk+1 = xk − γ(A⊤
1 u

k+1 + A⊤
2 v

k+1)

(2.36)
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By letting

wk := (uk; vk), A :=



A1

A2


 , and f ∗(w) := f ∗

1 (u) + f ∗
2 (v),

we can rewrite (2.36) in a more compact form





wk+1 = proxαf∗
(
wk + αA(xk − βA⊤wk)

)

xk+1 = xk − γA⊤wk+1

. (2.37)

In the meantime, the fixed point equations corresponding to scheme (2.37) have the

following form





w = proxαf∗
(
w + αA(x− βA⊤w)

)

x = x− γA⊤w

. (2.38)

The fixed point equations (2.38) characterize a solution x to the following minimiza-

tion problem

min{f(Ax) : x ∈ R
n}, (2.39)

where f(w) is defined by f(w) := f1(u) + f2(v).

Next, we will show that we can specify scheme (2.37) as a special case of scheme

(2.17) and therefore the convergence of scheme (2.37) follows automatically. To cast

scheme (2.37) into scheme (2.17), we let

u = w, f ∗
1 = f ∗, f ∗

2 = 0, A1 = A, A2 = 0, α1 = α (2.40)

in scheme (2.17). For such the choice of those quantities, we are able to rewrite
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scheme (2.17) as





wk+1 = proxαf∗
(
wk + αA

(
xk − β(A⊤wk)

))

vk+1 = vk

xk+1 = xk − γ(A⊤wk+1)

, (2.41)

from which one can notice that sequence {vk : k ∈ N} is a constant vector sequence.

By ignoring the trivial step involving vk+1, scheme (2.41) becomes scheme (2.37).

Lemma 2.12. Let α, β, γ be positive, let ρ̂ = (ŵ, x̂) ∈ H satisfy the fixed point

equations (2.38), and let {ρk = (wk, xk) : k ∈ N} be the sequence generated by (2.37).

Set

Q :=
1

α
I − βAA⊤, P :=



Q

1
γ
I


 .

If ‖A‖2 < 1
αβ
, then

‖ρk+1 − ρ̂‖2P − ‖ρk − ρ̂‖2P ≤ −‖wk+1 − wk‖Q − (2β − γ)‖A⊤(wk+1 − ŵ)‖2. (2.42)

Proof. This is an immediate result of Lemma 2.10 by specifying corresponding quanti-

ties as in (2.40) and noticing that vk+1 = vk for such the choice of those quantities.

With Lemma 2.12, we can prove our result on the convergence of the sequence

{(wk, xk) : k ∈ N} generated by scheme (2.37).

Theorem 2.13. Let α, β, γ be positive, let ρ̂ = (ŵ, x̂) ∈ H satisfy the fixed point

equations (2.38), and let {ρk = (wk, xk) : k ∈ N} be the sequence generated by (2.37).

If ‖A‖2 < 1
αβ

and 0 < γ ≤ 2β then the sequence {(wk, xk) : k ∈ N} converges to a

pair (ŵ, x̂) satisfying (2.38).
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Proof. It follows the proof of Theorem 2.11 by specifying corresponding quantities in

scheme (2.17) as in (2.40) and using Lemma 2.12.

To guarantee convergence, it is necessary for Algorithm 1 that 0 < α1β < 1
‖A1‖2

and 0 < α2β < 1
‖A2‖2 , for Algorithm 2 that 0 < αβ < 1

‖[A1;A2]‖2 . It can be noticed

that max{‖A1‖2, ‖A2‖2} ≤ ‖[A1;A2]‖2, which implies min{ 1
‖A1‖2 ,

1
‖A2‖2} ≥

1
‖[A1;A2]‖2 .

Hence, more flexibility exhibits for the choice of α1, α2, β in Algorithm 1 than for the

choice of α, β in Algorithm 2.

2.5.1 Connection with Chambolle and Pock’s Algorithm

First of all, let us review Chambolle and Pock’s (CP) algorithm [15] for solving the

following optimization problem

min{f(Ax) + g(x) : x ∈ R
n}, (2.43)

where f ∈ Γ0(R
m), g ∈ Γ0(R

n), and A is a matrix of size m × n. We assume that

model (2.43) has a minimizer. The CP algorithm proposed in [15] for model (2.43)

can be written as





wk+1 = proxσf∗(w
k + σAx̄k),

xk+1 = proxτg(x
k − τA⊤wk+1),

x̄k+1 = 2xk+1 − xk.

(2.44)

For any initial guess (x0, x̄0, w0) ∈ Rn × Rn × Rm, the sequence {(xk, wk) : k ∈ N}

converges as long as 0 < στ < ‖A‖−2.
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In particular, when we set g = 0, a direct computation shows that proxτg is the

identity operator for any τ > 0. Set α = σ and β = 2τ . Accordingly, the general CP

method in (2.44) becomes





wk+1 = proxαf∗
(
wk + αA

(
xk−1 − βA⊤wk

))
,

xk+1 = xk − β
2
A⊤wk+1.

(2.45)

On the other hand, when we set g = 0, model (2.43) reduces to model (2.39). Our

algorithm for model (2.39) is presented in scheme (2.37).

Therefore, by comparing the CP algorithm and the scheme (2.37) for model (2.39),

we can see that the CP algorithm uses xk−1 while the scheme (2.37) uses xk in the

computation of wk+1. Further, the step size of the CP algorithm for updating xk+1

is fixed as β
2
while it can be any number in (0, 2β] for the scheme (2.37). Although,

the relation 0 < αβ < 2‖A‖−2 is required for the CP algorithm while the relation

0 < αβ < ‖A‖−2 is needed for the scheme (2.37), for a fixed α, we can choose the

step size for the scheme (2.37) twice bigger than that for the CP algorithm.

2.5.2 Connection with Augmented Lagrangian Methods

As discussed earlier, a reduced iterative scheme (2.36) from Algorithm 1 can be writ-

ten in a compact form of (2.37). Notice that the first step involving the proximity

operator proxαf∗ is equivalent to find the minimizer of a minimization problem. One
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can verify that (2.37) is equivalent to the following iterative scheme






wk+1 = argmin
{
f ∗(w)− 〈xk, A⊤w〉+ β

2
‖A⊤w‖2 + 1

2
‖w − wk‖2Q : w ∈ R

m
}

xk+1 = xk − γA⊤wk+1

(2.46)

where Q = 1
α
I − βAA⊤ is a positive definite matrix. The condition αβ < 1

‖A‖22

ensures the positive definiteness of Q. In the literature of nonlinear programming

[5], augmented Lagrangian methods (ALMs) are often used to convert a constrained

optimization problem to an unconstrained one by adding the objective function a

penalty term associated with the constraints. If we choose Q = 0 and γ = β in

(2.46), it reduces to the augmented Lagrangian method:





wk+1 = argmin{f ∗(w)− 〈xk, A⊤w〉+ β
2
‖A⊤w‖2 : w ∈ Rm}

xk+1 = xk − βA⊤wk+1

(2.47)

Even though we can assume that the proximity operator of f has a closed form, there

is lack of an effective way to update wk+1 in (2.47) when A is not the identity matrix.

However, the vector wk+1 in the scheme (2.46) can be effectively updated once a

proper Q is chosen. This essentially illustrates that Algorithm 2 is superior to the

ALM from the numerical implementation point of view.
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2.5.3 Connection with Alternating Direction Method of Mul-

tipliers

Similarly, the iterative scheme (2.17) in Algorithm 1 can be cast as a special case of

the following scheme




uk+1 = argmin{f ∗
1 (u) + f ∗

2 (v
k)− 〈xk, A⊤

1 u+ A⊤
2 v

k〉

+ β
2
‖A⊤

1 u+ A⊤
2 v

k‖2 + 1
2
‖u− uk‖2Q1

: u ∈ Rm1}

vk+1 = argmin{f ∗
1 (u

k+1) + f ∗
2 (v)− 〈xk, A⊤

1 u
k+1 + A⊤

2 v〉

+ β
2
‖A⊤

1 u
k+1 + A⊤

2 v‖2 + 1
2
‖v − vk‖2Q2

: v ∈ Rm2}

xk+1 = xk − γ(A⊤
1 u

k+1 + A⊤
2 v

k+1)

, (2.48)

where Q1 = 1
α1
I − βA1A

⊤
1 , Q2 = 1

α2
I − βA2A

⊤
2 are positive definite matrices. The

positive definiteness of Q1 and Q2 will be guaranteed under the conditions 0 < α1β <

1
‖A1‖2 and 0 < α2β <

1
‖A2‖2 . If Q1 and Q2 are taken as zero matrices and γ = β, the

scheme (2.48) reduces to the alternating direction method of multipliers (ADMM):





uk+1 = argmin{f ∗
1 (u) + f ∗

2 (v
k)− 〈xk, A⊤

1 u+ A⊤
2 v

k〉

+ β
2
‖A⊤

1 u+ A⊤
2 v

k‖2 : u ∈ Rm1}

vk+1 = argmin{f ∗
1 (u

k+1) + f ∗
2 (v)− 〈xk, A⊤

1 u
k+1 + A⊤

2 v〉

+ β
2
‖A⊤

1 u
k+1 + A⊤

2 v‖2 : v ∈ Rm2}

xk+1 = xk − β(A⊤
1 u

k+1 + A⊤
2 v

k+1)

. (2.49)

Similar to what we have observed for the ALM, solving the two optimization problems

in (2.49) is still challenging in general when both A1 and A2 are not the identity

matrix. However, the vectors uk+1 and vk+1 in the scheme (2.48) can be effectively
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updated once Q1 and Q2 are properly chosen. Hence our Algorithm 1 is superior to

the ADMM from the numerical implementation point of view.



Chapter 3

Computing the Proximity

Operator of the ℓp-Norm

3.1 Introduction

The notion of sparsity has been widely explored recently in compressed sensing, ma-

trix completion, machine learning, and image recovery. Typically, the sparsity of a

signal is characterized by the ℓ0-norm of the signal that is essentially the number of

non-zero components in the signal. Due to the non-convexity, it is often relaxed to

the ℓ1-norm which is convex and can promote sparsity as well. Seeking a solution to

a problem via the ℓ1-regularization has become the focus of attention of a massive

volume of research in the context of compressed sensing. The usefulness of the ℓ0-

and ℓ1-norm in sparsity-aware applications comes from the fact that their proximity

35
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operators have explicit forms and can be implemented easily. The concrete forms of

the proximity operators of the ℓ0- and ℓ1-norm will be given in the next section. The

proximity operator, introduced early in [56], is a useful and convenient tool in char-

acterizing the solutions of optimization problems and developing iterative algorithms

for finding them. Some recent applications of the proximity operator in signal and

image processing can be found in [21, 29, 47, 45, 48, 49, 54, 61, 62, 67, 68] and the

references therein.

Our main interest is to study the proximity operator of the ℓp-norm with 0 <

p < 1. The ℓp-regularization has been introduced in existing work. In [7], the ℓp-

regularization was introduced for image reconstruction. In [53, 57, 69], the ℓp-norm

is naturally involved in statistically modeling the wavelet coefficients of an image.

Particularly, a popular generalized Gaussian distribution (GGD) of the form P (x) ∼

exp(−|x/s|p) is often adopted with the value for p typically being in the range of

[1/2, 1]. Therefore, it is highly needed to compute the proximity operator of the

ℓp-norm with 0 < p < 1.

Unfortunately, the proximity operator of the ℓp-norm with 0 < p < 1 does not

have an explicit form except a few of p values. In [44], finding the proximity operator

of the ℓp-norm for p = 1/2 (or 2/3) is formulated as finding a root of a corresponding

cubic (or quartic) polynomial. In the approach proposed in [44], all the roots of the

polynomial should be computed and then compared to select a proper root by some

discriminate conditions. Recently, the closed-form of the proximity operator of the ℓp-
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norm was reported in [75] for p = 1/2 and in [14] for p = 2/3. Applications in image

deconvolution with ℓp-regularization (p = 1/2, 2/3) were also reported in [14, 44, 75].

For our contribution, we have a systematic study on the computation of the prox-

imity operator of the ℓp norm with 0 < p < 1. The properties of the proximity

operator of the ℓp norm are presented by analyzing the objective function of opti-

mization problem associated with the proximity operator. By using these properties,

the closed-form of the proximity operator of the ℓp (p = 1/2, 2/3) norm is given ac-

companying with an alternative, but simple, proof in comparison with that given in

[14, 75]. For computing the proximity operator of the ℓp norm with p not being 0, 1/2,

2/3, or 1, we need to solve a nonlinear equation associated with the proximity oper-

ator. We propose to use Newton’s method to solve this equation. To make Newton’s

method efficiently, the initial estimate for Newton’s method requires to be very close

to the true solution of the equation. We suggest a way to locate this initial estimate

by exploiting the availability of the proximity operators of the ℓ0-, ℓ1/2-, ℓ2/3-, and

ℓ1-norm.

The outline of this part is as follows. In section 3.2 we present the properties of

the proximity operator of the ℓp-norm with 0 < p < 1. In section 3.3, we give the

explicit forms of the proximity operator of the ℓp-norm for p = 1/2 and p = 2/3. In

section 3.4, we apply Newton’s method to develop a numerical algorithm to compute

the proximity operator of the ℓp-norm for 0 < p < 1.
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3.2 Properties of the Proximity Operator of the

ℓp-Norm

For a vector x = (x1, . . . , xd)
⊤ in Rd, its ℓ0-norm ‖x‖0 is simply the number of nonzero

entries in x and its ℓp-norm for p > 0 is defined by ‖x‖p :=
(∑d

i=1 |xi|p
)1/p

. Note that

‖ · ‖p is only a quasi-norm for 0 < p < 1. The proximity operator of the ℓp-norm with

index µ > 0 at x ∈ Rd is a set-valued operator from Rd → 2R
d
, with 2R

d
denoting the

collection of all sets of vectors in Rd, and is defined as

proxµ‖·‖pp(x) := argmin
u∈Rd

{
µ‖u‖pp +

1

2
‖u− x‖22

}
. (3.1)

Here, ‖ · ‖00 should be understood as ‖ · ‖0 when p = 0. By the definition of the

proximity operator, we have that

proxµ‖·‖pp(x) = proxµ|·|p(x1)× · · · × proxµ|·|p(xd), (3.2)

for x ∈ Rd. Therefore, in order to compute the proximity operator of the ℓp-norm we

only need to compute proxµ|·|p the proximity operator of the function | · |p in R. To

simplify our notation in the rest of discussion, we set

Tµ,p := proxµ|·|p.

The proximity operators Tµ,0 and Tµ,1 are the well-known hard- and soft-thresholding
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operators, respectively. Both have closed forms at x ∈ R as follows:

Tµ,0(x) =






{0}, if |x| < √2µ;

{0, x}, if |x| = √2µ;

{x}, otherwise.

(3.3)

Tµ,1(x) = sign(x) ·max{|x| − µ, 0}. (3.4)

Explicit forms of Tµ,p for p = 1/2 and 2/3 were discussed in [44]. The proximity

operator Tµ,p was also studied in [75].

For arbitrary p ≥ 0 and µ > 0, the operator Tµ,p at x ∈ R is the collection of the

minimizers of the function

Jµ,p,x(u) := µ|u|p + 1

2
(u− x)2 (3.5)

over R. That is,

Tµ,p(x) := argmin{Jµ,p,x(u) : u ∈ R}. (3.6)

Since the function Jµ,p,x is continuous for p > 0 and lower semi-continuous for p = 0 on

R and lim|u|→+∞ Jµ,p,x(u) = +∞, then there exists u⋆ such that Jµ,p,x(u⋆) ≤ Jµ,p,x(u)

for all u ∈ R. That is, u⋆ ∈ Tµ,p(x), equivalently, the set Tµ,p(x) is non-empty for any

x.

In the rest of this section, we will present the properties of the proximity operator

Tµ,p for p ≥ 0.

Lemma 3.1. For any p ≥ 0 and µ > 0, it holds that Tµ,p(−x) = −Tµ,p(x) for all

x ∈ R.
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Proof. We first prove that Tµ,p(−x) ⊆ −Tµ,p(x). By definition (3.5), the relation

Jµ,p,−x(u) = Jµ,p,x(−u) holds for u ∈ R. Now, suppose that u⋆ ∈ Tµ,p(−x). Thus

Jµ,p,−x(u⋆) ≤ Jµ,p,−x(u) for all u ∈ R. With the help of the above relation, this

inequality is equivalent to Jµ,p,x(−u⋆) ≤ Jµ,p,x(−u) which implies −u⋆ ∈ Tµ,p(x).

That is, u⋆ ∈ −Tµ,p(x). All above arguments are reversible, therefore we can show

that −Tµ,p(x) ⊆ Tµ,p(−x). This completes the proof.

With Lemma 3.1, it will be sufficient to study the set Tµ,p(x) for all non-negative

x. Specifically, for x = 0, we can straightforwardly derive that for all p ≥ 0 and µ > 0

Tµ,p(0) = {0}. (3.7)

For x being positive, the following lemma characterizes the elements in the set Tµ,p(x).

Lemma 3.2. For p ≥ 0, µ > 0 and x > 0, then every non-zero element in Tµ,p(x) is

positive and its value is less or equal to x. Moreover, assume that the set Tµ,p(x) has

a non-zero element, say, u⋆, then u⋆ = x if p = 0; and u⋆ < x if p > 0.

Proof. Suppose that u⋆ is in Tµ,p(x) and is non-zero. If u⋆ is negative, then | −

u⋆ − x| < |u⋆ − x| which yields Jµ,p,x(−u⋆) < Jµ,p,x(u⋆). Thus, u⋆ is not in Tµ,p(x),

which contradicts our assumption. Hence, u⋆ must be positive. We further show that

u⋆ ≤ x. If it is not true, that is u⋆ > x. We then define ũ := 2x−u⋆. It can be verified

directly that |ũ| < u⋆ and |ũ−x| = |u⋆−x|. Therefore, we have Jµ,p,x(ũ) < Jµ,p,x(u⋆).

This implies that u⋆ is not in Tµ,p(x), thus, contradicts our assumption again. Hence,

u⋆ ≤ x.



CHAPTER 3. COMPUTING THE PROXIMITY OPERATOR OF THE ℓP -NORM41

As we know that Tµ,0 is the hard-thresholding operator, by equation (3.3), every

non-zero element u⋆ in the set Tµ,0(x) is identical to x.

Finally, we prove that u⋆ < x for p > 0. Since u⋆ ≤ x, we only need to show that x

is not in the set Tµ,p(x). Actually it follows from the fact that J ′
µ,p,x(x) = µpxp−1 > 0

for any positive number x.

We remark that for p > 1, the set Tµ,p(x) contains only one element and this

element is non-zero if and only if x is non-zero. By Lemma 3.1 and equation (3.7),

we consider the case of x being positive. Since the function Jµ,p,x is strictly convex

and coercive, the set Tµ,p(x) has a unique element. We further notice that J ′
µ,p,x(0) =

−x < 0. Hence, the element cannot be zero. Hence, we can view Tµ,p as an operator

from R to R. This is a shrinkage, but not sparse-promoting, operator in the sense

that 0 6= |Tµ,p(x)| < |x| for any non-zero number x.

The situation, however, is completely different for p = 0 and p = 1 as indicated

by the hard- and soft-thresholding operators, respectively. Therefore, we turn our

attention for the operator Tµ,p with 0 < p < 1.

For convenience, given any µ > 0 and 0 < p < 1, we define

̟µ,p := (µp(1− p)) 1
2−p , τ̃µ,p := (2− p)(µp) 1

2−p (1− p) p−1
2−p . (3.8)

and

τµ,p :=
2− p

2(1− p)(2µ(1− p))
1

2−p , ̺µ,p := (2µ(1− p)) 1
2−p . (3.9)

We first study the convexity of the function Jµ,p,x on the interval [0,+∞) for

positive x. For our convenience, the first and the second derivatives of Jµ,p,x at u > 0
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are given as follows:

J ′
µ,p,x(u) = u+ µpup−1 − x and J ′′

µ,p,x(u) = 1 + µp(p− 1)up−2.

Lemma 3.3. For any fixed 0 < p < 1, µ > 0, and x > 0, the following statements

hold for the function Jµ,p,x.

(i) Jµ,p,x(u) is concave on [0, ̟µ,p] and convex on [̟µ,p,+∞);

(ii) If x ≤ τ̃µ,p, then Jµ,p,x is increasing on [0,+∞);

(iii) If x > τ̃µ,p, then J ′
µ,p,x(·) has exactly two roots, namely, u− and u+, on the

interval (0,+∞). Moreover, the roots satisfy the inequality u− < ̟µ,p < u+,

the function Jµ,p,x(u) has a local maximum at u = u− and a local minimum at

u = u+.

Proof. Item (i): The function Jµ,p,x is continuous on [0,∞). One can directly

verify that J ′′
µ,p,x(̟µ,p) = 0, J ′′

µ,p,x(u) < 0 for u ∈ (0, ̟µ,p), and J ′′
µ,p,x(u) > 0 for

u ∈ (̟µ,p,+∞). Hence, the function Jµ,p,x(u) having the inflation point at u = ̟µ,p,

is concave on [0, ̟µ,p] and convex on [̟µ,p,+∞).

Item (ii): It suffices to show J ′
µ,p,x(u) ≥ 0 on (0,∞). Define h(u) := J ′

µ,p,x(u). One

can check that h is convex on (0,∞) and has unique global minimizer at u = ̟µ,p

with the minimal value h(̟µ,p) = τ̃µ,p − x. Hence, h(u) ≥ h(̟µ,p) ≥ 0.

Item (iii): With the function h defined in the above, one can verify that limu→0+ h(u) =

+∞, limu→+∞ h(u) = +∞, and h(̟µ,p) = τ̃µ,p−x < 0. Further, it can be verified that

h′(u) < 0 for u ∈ (0, ̟µ,p) and h
′(u) > 0 for u ∈ (̟µ,p,+∞), that is, h is decreasing
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on (0, ̟µ,p) and increasing on (̟µ,p,+∞). Putting all above together and using the

mean value theorem, there exist a unique number u− ∈ (0, ̟µ,p) and a unique number

u+ ∈ (̟µ,p,+∞) such that h(u−) = h(u+) = 0. From item (i), one gets that Jµ,p,x(u)

has a local maximum at u = u− and a local minimum at u = u+.

In what follows, we will focus on the relationship between x and Tµ,p(x).

Proposition 3.4. Let x be a positive number. For any fixed 0 < p < 1 and µ > 0,

Jµ,p,x(u) defined on [0,+∞) attains its global minimum at u = 0 if and only if x ≤ τµ,p.

In particular, u = 0 is the unique minimizer of Jµ,p,x(u) on [0,∞) if and only if

x < τµ,p.

Proof. Assume Jµ,p,x(0) ≤ Jµ,p,x(u) for all u > 0, that is, 0 ≤ µup + 1
2
u2 − ux which

is the same as 0 ≤ µup−1 + 1
2
u − x. Define g(u) := µup−1 + 1

2
u. Clearly the function

g is strictly convex on (0,+∞) and achieves its minimum value at u = ̺µ,p over this

interval. The minimum value g(̺µ,p) is equal to τµ,p which should be greater than or

equal to x.

Conversely, x ≤ τµ,p implies that u = 0 is a minimizer of Jµ,p,x(u) since the above

arguments are reversible.

The equivalence between the uniqueness and the strict inequality follows in the

same manner by replacing “≤” with “<” in the proof.

Note that τ̃µ,p < τµ,p for any 0 < p < 1 and µ > 0. One knows from item (ii) of
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Lemma 3.3 that Jµ,p,x(u) achieves its global minimum only at u = 0 when x ≤ τ̃µ,p.

This observation is further confirmed by Proposition 3.4.

For x > τ̃µ,p, from item (iii) of Lemma 3.3 we know that Jµ,p,x(u) has its local

minimums at u = 0 and u = u+. We will then determine which one provides the

global minimum of Jµ,p,x. It turns out from Proposition 3.4 that if τ̃µ,p < x < τµ,p,

then the global minimum of Jµ,p,x achieves only at u = 0, i.e., Tµ,p(x) = {0}. The

cases of x = τµ,p and x > τµ,p will be studied in the following results.

Proposition 3.5. For any 0 < p < 1, µ > 0, if x = τµ,p then u+ = ̺µ,p and the

function Jµ,p,x attains its global minimizers at both u = 0 and u = u+. That is,

Tµ,p(x) = {0, u+}.

Proof. It can be directly seen that ̟µ,p < ̺µ,p and J
′
µ,p,x(̺µ,p) = 0. By Lemma 3.3,

one has u+ = ̺µ,p. Further, one computes Jµ,p,x(u+) = Jµ,p,x(0) =
1
2
τ 2µ,p. Hence, Jµ,p,x

achieves its minima at both u = 0 and u = u+.

Proposition 3.6. For any 0 < p < 1, µ > 0, if x > τµ,p then the function Jµ,p,x

attains its global minimum at u = u+. That is, Tµ,p(x) = {u+}.

Proof. By Lemma 3.3, the function Jµ,p,x has local minima at both u = 0 and

u = u+. By Proposition 3.4, one can conclude that Jµ,p,x has its global minimum at

u = u+. This completes the proof.

Table 3.1 presents the properties of the function Jµ,p,x for µ > 0, 0 < p < 1, and

x ≥ 0. Figure 3.1 provides plots of the objective functions Jµ,p,x for various values
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of x. More precisely, Figure 3.1(a) presents an instance of item (ii) in Lemma 3.3;

Figure 3.1(b) presents an instance of item (iii) in Lemma 3.3 and Proposition 3.4;

Figure 3.1(c) reflects the situation of Proposition 3.5; and Figure 3.1(d) gives an

example of Proposition 3.6.

Table 3.1: The properties of the function Jµ,p,x for µ > 0, 0 < p < 1, and x ≥ 0.

“l-min” and “g-min” stand for the local minimum and global minimum, respectively.

u ∈ [0, ̟µ,p] u ∈ [̟µ,p,+∞) u = 0 u = u− u = u+

x ∈ [0, τ̃µ,p) concave convex g-min – –

x ∈ [τ̃µ,p, τµ,p) concave convex g-min l-max l-min

x = τµ,p concave convex g-min l-max g-min

x ∈ (τµ,p,+∞) concave convex l-min l-max g-min
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Figure 3.1: The curves of Jµ,p,x for different choices of x: (a) x ≤ τ̃µ,p (x = 0.9τ̃µ,p); (b)

τ̃µ,p < x < τµ,p (x = τ̃µ,p+0.8(τµ,p− τ̃µ,p)); (c) x = τµ,p; and (d) x > τµ,p (x = 1.2τµ,p).
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From Table 3.1, Lemma 3.1, Propositions 3.4, 3.5, and 3.6, we conclude that

Tµ,p(x) =





{0}, if |x| < τµ,p;

{0, sign(x) · ̺µ,p}, if |x| = τµ,p;

{sign(x) · u+}, otherwise,

(3.10)

where u+ is the largest zero of the first derivative function J
′

µ,p,|x|.

From equation (3.10) one can see that Tµ,p is a sparse-promoting thresholding

operator with threshold τµ,p. The monotonicity of the threshold τµ,p with respect to

p is described in the following.

Proposition 3.7. If 0 < µ ≤ 1
2
, τµ,p as a function of p for a fixed µ is decreasing on

the interval (0, 1); if µ > 1
2
, it is increasing on the interval (0, 1− 1

2µ
) and decreasing

on the interval (1− 1
2µ
, 1).

Proof. Let us define f(p) := ln (τµ,p). Then the monotonicity of f(p) is consistent

with that of τµ,p as a function of p. By the definition of τµ,p in (3.9), we have that

f ′(p) = 1
(2−p)2 ln [2µ(1− p)]. If µ ≤ 1

2
, then f ′(p) < 0 on (0, 1). Therefore τµ,p is

decreasing on (0, 1) with respect to p. If µ > 1
2
, we have that f ′(p) > 0 on (0, 1− 1

2µ
)

and f ′(p) < 0 on (1− 1
2µ
, 1). Therefore, τµ,p is increasing on (0, 1− 1

2µ
) and decreasing

on (1− 1
2µ
, 1) with respect to p.

Figure 3.2 and Figure 3.3 display the proximity operators Tµ,p for various values

of p and µ. Figure 3.2 depicts the proximity operators T1/3,p for p = 0, 1
2
, 2
3
, 4
5
, 1 while

Figure 3.3 depicts the proximity operators T3,p for p = 0, 1
2
, 2
3
, 4
5
, 9
10
, 1. The blue curves



CHAPTER 3. COMPUTING THE PROXIMITY OPERATOR OF THE ℓP -NORM47

connecting point (τµ,p, ̺µ,p) (or (-τµ,p, -̺µ,p)) on black curve and point (τµ,p, 0) (or

(-τµ,p, 0)) on red curve in both Figure 3.2 and Figure 3.3 capture the evolution of the

(τµ,p, ̺µ,p) as p changes from 0 to 1. The evolution curve of (τµ,p, ̺µ,p) also validates

the statements in Proposition 3.7. Therefore, the main issue is to compute Tµ,p(x)
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Figure 3.2: The proximity operators Tµ,p for µ = 1
3
and p = 0, 1

2
, 2
3
, 4
5
, 1.

for x > τµ,p. That is, we need to find u+ at which the function Jµ,p,x attains its global

minimum. Actually, by Proposition 3.6, u+ is the largest root of the equation

u+ µpup−1 − x = 0. (3.11)

In section 3.3, we shall show that equation (3.11) can be converted to a polynomial

when p is an rational number. In section 3.4, we shall numerically compute u+ as a
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solution of equation (3.11) via Newton’s method when p is not 0, 1/2, 2/3, or 1.

To close this section, we will show that the proximity operator Tµ,p for 0 < p <

1 is not non-expansive. Recall that an operator Q : R → R is non-expansive if

|Q(x)−Q(y)| ≤ |x− y| for all x, y ∈ R.

Lemma 3.8. Let 0 < p < 1 and µ > 0, and let x1 and x2 be two real numbers

satisfying x1 < x2. Then for any ui ∈ Tµ,p(xi), for i = 1, 2, it holds that u1 ≤ u2.

Furthermore, if x1 < −τµ,p or x2 > τµ,p, then u1 is strictly less than u2.

Proof. By Lemma 3.1 and equation (3.10), it is sufficient to consider the case of

both x1 and x2 positive. By the definition of the proximity operator, one has that

Jµ,p,x1(u1) ≤ Jµ,p,x1(u2)

Jµ,p,x2(u2) ≤ Jµ,p,x2(u1).

Adding the above two inequations leads to (u2− u1)(x2− x1) ≥ 0. Since x1 < x2 one

obtains u1 ≤ u2.

Next, we show that if x2 > τµ,p then u1 < u2. In fact, if x1 < τµ,p, then u1 = 0

from equation (3.10) and u2 > ̟µ,p > 0 by Lemma 3.3. Hence, u1 < u2. If x1 = τµ,p

and u1 = 0, u1 < u2 holds. Therefore, we assume that x1 ≥ τµ,p and u1 6= 0. Then

by item (iii) of Lemma 3.3 or equation (3.11) the pairs (xi, ui), i = 1, 2, satisfy the

following equations µpup−1
i + ui − xi = 0. It indicates that u1 6= u2. Hence, u1 < u2.

This completes the proof.
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Proposition 3.9. Let 0 < p < 1 and µ > 0, and let x1 and x2 be two real numbers

such that x1 < x2. Then for any ui ∈ Tµ,p(xi), i = 1, 2, the following statements hold:

(i) if x1 and x2 have different signs or both them lie in the interval (−τµ,p, τµ,p),

then u2 − u1 < x2 − x1.

(ii) if both x1 and x2 lie in the interval (τµ,p,+∞) or (−∞,−τµ,p), then u2 − u1 >

x2 − x1.

Proof. If x1 and x2 have different signs, then Item (i) follows immediately from

Lemma 3.1 and Lemma 3.2. If both them lie in the interval (−τµ,p, τµ,p), then item

(i) follows from equation (3.10).

Now, we turn to prove item (ii). We first assume that both x1 and x2 lie in the

interval (τµ,p,+∞). By Lemma 3.3, u1 is the critical point of Jµ,p,x1 while u2 is the

critical point of Jµ,p,x2. Therefore, one has xi = ui + µpup−1
i , for i = 1, 2. It follows

that

x2 − x1 = u2 − u1 + µp(up−1
2 − up−1

1 ).

Since x1 < x2, one has u1 < u2 by Lemma 3.8. Hence, the difference up−1
2 − up−1

1

in the above equation is strictly less than zero. It yields that u2 − u1 > x2 − x1.

By Lemma 3.1, the result of item (ii) is also true for x1 and x2 lie in the interval

(−∞,−τµ,p). The proof is complete.

We conclude from item (ii) in Proposition 3.9 that Tµ,p is not non-expansive.
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3.3 The Proximity Operators of the ℓ1/2- and ℓ2/3-

Norm

As we mentioned in section 3.2 that the proximity operators Tµ,1/2 and Tµ,2/3 have

been discussed in [14], based on the properties presented in section 3.2 we will provide

the explicit forms of Tµ,1/2 and Tµ,2/3 with alternative, but much simple, proofs for

them.

We begin to show that for a rational number 0 < p < 1 and x > τµ,p the com-

putation of Tµ,p(x) can be reduced to finding the largest zero of a polynomial. More

precisely, let us write p = l
k
, where k, l are relatively prime integers. Actually, set

t = u
1
k . Substituting u in (3.11) by tk and simplifying the resulting equation lead to

the following polynomial equation

t2k−l − xtk−l + l

k
µ = 0, t > 0. (3.12)

Since k and l are relatively prime integers and k > l, the least degree of the polynomial

in (3.12) is 3 only when k = 2 and l = 1, that is, p = 1/2. The second least degree of

the polynomial is 4 only when k = 3 and l = 2, that is, p = 2/3. In the following, we

shall present the closed-form formulas for the proximity operators Tµ,p with p = 1/2

and p = 2/3. For other choices of the rational number p, we need to find the solutions

of equation (3.12) where the degree of the polynomial is higher than 4, therefore, it

is hardly to have a closed-form formula for representing the roots of the polynomial.

The closed-form formula for the proximity operators Tµ,1/2 is given as follows.
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Proposition 3.10. Let µ > 0. Then for x ∈ R

Tµ,1/2(x) =





{0}, if |x| < 3
2
µ

2
3 ;

{0, sign(x) · µ 2
3}, if |x| = 3

2
µ

2
3 ;

{
2
3
x
(
1 + cos

(
2
3
cos−1

(
−33/2

4
µ|x|−3/2

)))}
, otherwise.

(3.13)

Proof. One can check that τµ,1/2 = 3
2
µ

2
3 and ̺µ,1/2 = µ

2
3 . By equation (3.10) and

the fact of sign(x)|x| = x, one just needs to show that for x > 3
2
µ

2
3 ,

u+ =
2

3
x

(
1 + cos

(
2

3
cos−1

(
−3

3/2

4
µx−3/2

)))
. (3.14)

When p = 1/2, equation (3.12) becomes

t3 − xt + µ

2
= 0.

By item (iii) of Lemma 3.3, the above cubic equation has three real roots with two

positive roots and one negative root. Furthermore, u+ is the square of the largest

root of the cubic equation. Fortunately, using a formula in [?] this largest root is

t = 2

√
x

3
cos

(
1

3
cos−1

(
−3µ
4x

√
3

x

))
.

Hence u+ = t2. Using the formula cos2 θ = 1
2
(1 + cos(2θ)), we know that t2 exactly

equals to the right-hand side of equation (3.14). This completes the proof of the

result.

Next, we present the closed-form formula for the proximity operators Tµ,2/3.
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Proposition 3.11. Let µ > 0. Then for x ∈ R

Tµ,2/3(x) =





{0}, if |x| < 2(2
3
µ)

3
4 ;

{0, sign(x) · (2
3
µ)

3
4}, if |x| = 2(2

3
µ)

3
4 ;

{
sign(x) · 1

8

(√
2z +

√
2|x|√
2z
− 2z

)3}
, otherwise,

(3.15)

where

z =

(
1

16
x2 +

√
x4

256
− 8µ3

729

) 1
3

+

(
1

16
x2 −

√
x4

256
− 8µ3

729

) 1
3

. (3.16)

Proof. One can check that τµ,2/3 = 2(2
3
µ)

3
4 and ̺µ,2/3 = (2

3
µ)

3
4 . By equation (3.10)

and Lemma 3.1 we only need to compute the proximity operator Tµ,2/3(x) for x >

2(2
3
µ)

3
4 .

When p = 2/3, equation (3.12) becomes

t4 − xt+ 2µ

3
= 0, (3.17)

which also has two and only two positive roots and whose largest root can lead to

u+. We now find the largest positive root of equation (3.17). For any real number w,

equation (3.17) is identical to the following one

(t2 + w)2 = 2wt2 + xt + (w2 − 2

3
µ). (3.18)

In particular, we can choose a specific w so that the expression of the right-hand side

of the above equation can be completed in square with respect to the variable t. This

requires that w satisfies the following equation

w3 − 2

3
µw − 1

8
x2 = 0,
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which has at least one real solution. Actually, w = z with z given by (3.16) is the

solution of this cubic equation. With this choice, equation (3.18) is equivalent to the

following two equations

t2 +
√
2zt + (z +

√
2x

4
z−1/2) = 0 and t2 −

√
2zt + (z −

√
2x

4
z−1/2) = 0

The first quadratic equation has two complex roots while the second one has two

real roots. We therefore only need to find the largest root of the second quadratic

equation. Actually, this root is

t =
1

2

(
√
2z +

√
2x√
2z
− 2z

)
.

This completes the proof.

3.4 Computing the Proximity Operator of the ℓp-

Norm (0 < p < 1)

In the previous sections, we have already presented the closed-form formulas for the

proximity operator Tµ,p with p being 0, 1/2, 2/3 and 1. For other choice of p, we shall

develop in this section a numerical algorithm for computing the proximity operator

Tµ,p.

According to (3.10), it is essential to develop a numerical scheme that can compute

Tµ,p(x) for all x > τµ,p. Note that in this case the set Tµ,p(x) only contains one element

and we simply use Tµ,p(x) to denote this element. We further know that Tµ,p(x) with
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x > τµ,p is the largest solution of equation (3.11). To locate this solution, we propose

to approximate it by Newton’s method. For fixed µ > 0, 0 < p < 1, and x > τµ,p,

define

H(u) := u− h(u)

h′(u)
(3.19)

where h(u) := u+µpup−1−x. Newton’s method begins with an estimate u0 of Tµ,p(x)

and then defines inductively

un+1 = H(un), (3.20)

where n ≥ 0.

Proposition 3.12. For p ∈ (0, 1), µ > 0, and x > τµ,p, if an initial estimate u0 >

Tµ,p(x) then the sequence generated by (3.20) is decreasing and bounded below by

Tµ,p(x). Moreover, the sequence converges to Tµ,p(x).

Proof. Let us prove the sequence {un : n ∈ N} is decreasing and bounded below by

Tµ,p(x) first. We proceed inductively. For n = 0, it is true by the assumption that

u0 > Tµ,p(x). Now suppose that Tµ,p(x) ≤ uk+1 ≤ uk for all 0 ≤ k ≤ n− 1. We show

that Tµ,p(x) ≤ un+1 ≤ un. By Lemma 3.3, the function h is increasing and convex

on [Tµ,p(x),+∞). Hence, h(un) > 0 and h′(un) > 0. We obtain that un+1 < un from

the identity 0 = h(un) + h′(un)(un+1 − un). By the convexity of h, we have that

h(u) > h(un) + h′(un)(u − un) for all u ∈ [Tµ,p(x),+∞) and u 6= un. In particular,

taking u = Tµ,p(x) in this inequality, we have that 0 > h(un) + h′(un)(Tµ,p(x) − un).

This yields Tµ,p(x) ≤ un+1. Therefore, the sequence converges, says, limn→+∞ un =
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u⋆ ≥ Tµ,p(x). Taking the limit on both sides of equation (3.20) leads to h(u⋆) = 0.

Using Lemma 3.3 again, we know that u⋆ = Tµ,p(x).

By Lemma 3.2, we can choose u0 = x as our initial estimator in Newton’s method

(3.20). A better initial estimator can be chosen as well. To this end, we need the

following technical lemma.

Lemma 3.13. Let µ > 0 and x > 0. Let p1 and p2 be two numbers in [0, 1] with

p1 < p2. Define p12 := (p1/p2)
1/(p2−p1). Then for any ui ∈ Tµ,pi(x), i = 1, 2, we have

that u1 ≤ u2 if max{u1, u2} ≤ p12; u1 ≥ u2 if min{u1, u2} ≥ p12.

Proof. Since x > 0 and ui ∈ Tµ,pi(x), then both u1 and u2 are non-negative from

Lemma 3.2. By the definition of the proximity operator, from ui ∈ Tµ,pi(x), we

have that Jµ,p1,x(u1) ≤ Jµ,p1,x(u2) and Jµ,p2,x(u2) ≤ Jµ,p2,x(u1). Adding these two

inequalities together yields

up11 − up21 ≤ up12 − up22 . (3.21)

Define g(u) := up1 − up2 on the interval [0,+∞). We can check directly that g is

continuous, is increasing on [0, p12], and decreasing on [p12,+∞). Then, the results

of this theorem follows from inequality (3.21).

For any p ∈ (0, 1), but not 1/2 and 2/3, we define p− to be the largest element in
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the set {0, 1/2, 2/3, 1} that is smaller than p. That is,

p− =





0, if p ∈ (0, 1/2);

1/2, if p ∈ (1/2, 2/3);

2/3, if p ∈ (2/3, 1).

Proposition 3.14. For p ∈ (0, 1) \ {1/2, 2/3}, µ > 0, and x > max{τµ,p, τµ,p−}, if

x > max{τµ,p − ̺µ,p, τµ,p− − ̺µ,p−}+
(
p−
p

)1/(p−p−)

, (3.22)

then

Tµ,p(x) ≤ Tµ,p−(x).

Proof. By Item (ii) in Proposition 3.9, we have that Tµ,p(x) > x− (τµ,p − ̺µ,p) and

Tµ,p−(x) > x − (τµ,p− − ̺µ,p−). By the assumption (3.22) together the proceeding

two inequalities, both Tµ,p(x) and Tµ,p−(x) are bigger than (p−/p)
1/(p−p−). Our result

follows from Lemma 3.13.

To summarize the above discussions, a detailed pseudocode for computing the

proximity operator Tµ,p(x) including stopping criteria is given in Algorithm 3. We

point it out that the proximity operator T 1
3
, 4
5
showing in Figure ??(a) and the prox-

imity operators T3, 4
5
and T3, 9

10
showing in Figure ??(b) are computed numerically

through Algorithm 3.
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Algorithm 3: (Computing Tµ,p(x) for 0 < p < 1)

Input: p ∈ [0, 1], µ > 0, ǫ > 0, and x ∈ R

Result: Tµ,p(x)

begin

if p = 0, 1/2, 2/3, or 1 then

Tµ,p(x) is given by the formula (3.3), (3.13), (3.15), or (3.4).

else

if |x| ≤ τµ,p then

Tµ,p(x) =





{0}, if |x| < τµ,p;

{0, sign(x) · ̺µ,p}, if |x| = τµ,p;

else

Determine an initial estimator u0 for the Newton iteration;

if |x| > max{τµ,p − ̺µ,p, τµ,p− − ̺µ,p−}+
(
p−
p

)1/(p−p−)

and |x| > τµ,p−

then

u0 = Tµ,p−(|x|)
else u0 = |x|

Newton’s iteration;

while |un − un−1| > ǫ or h(un) > ǫ do

un+1 = H(un)

the final iterate is denoted by u∞ ;

Tµ,p(x) = sign(x)u∞;



Chapter 4

Applications and Numerical

Experiments

In this chapter, we formulate application problems in image processing and com-

pressed sensing as composite minimization problems. For convex composite mini-

mization problems arising from image deblurring and compressed sensing, proposed

algorithms from chapter 2 will be applied and comparisons of proposed algorithms

with other algorithms will be performed. Also, an algorithm using the proximity op-

erator of the ℓp-norm will be developed to solve the ℓp-regularized compressed sensing

problem.

59
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4.1 Applications

In the field of engineering, many application problems including image processing,

compressed sensing are aiming to recover underlying image or signal from a degraded

version. A degraded image or signal y can be modeled as

y =Mx+ η, (4.1)

where x ∈ Rn is the image or signal to be reconstructed, M is a d × n matrix that

models the measurement process, and η ∈ Rd is an additive noise. In linear inverse

problem (4.1), the goal is to recover image x when y and M are given. For different

choices of M , recovering x becomes different application problems. For instance, it

becomes the deblurring problem if M represents a blurring matrix; it becomes the

inpainting problem if M represents a projection of an image onto some known pixels

domain. If M is the identity matrix, it reduces to the denoising problem. If matrix

M models incomplete measurement and x has (approximately) sparse representation,

recovering x becomes a problem in compressed sensing. But linear inverse problem

(4.1) is usually ill-posed in image processing or compressed sensing. For instance,

in image deblurring, linear inverse problem (4.1) is ill-posed in the sense that the

blurring matrix A is ill-conditioned and solution could be sensitive to the additive

noise. With incomplete measurement in compressed sensing, linear inverse problem

(4.1) has infinite number of solutions.

To recover the underlying image or signal x in (4.1), one powerful method is

regularization method. A regularized model for model (4.1) can be derived from
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Bayesian rule depending on the prior information of image or signal x to be recovered

and the type of the additive noise. In Bayesian approach, we assume that the degraded

image or signal y is a realization from a random vector Y and the underlying image

or signal x is a realization of another random vector X . By Bayesian formula, the

conditional a posteriori probability p(x|y), the probability that x occurs when y is

observed, is given by

p(x|y) = p(y|x)pX(x)
pY (y)

. (4.2)

To find an estimate of x, A maximum a posteriori expectation maximization could

be used by maximizing the conditional a posteriori probability p(x|y). By taking

the negative logarithm of equation (4.2) and ignoring the constant term log pY (y), an

estimate of x is equivalent to a solution to the following minimization problem

min
x
{− log p(y|x)− log pX(x)}. (4.3)

The term log pX(x) is used to regularize a solution from the assumption on prior

information of x. Gibbs prior is usually assigned to the random vector X in practice.

Hence, the prior pX(x) has form

pX(x) =
1

T
e−γE(x), (4.4)

where T is a normalization factor, γ is a positive number and E(x) is a given energy

function of x. The choice of the energy function varies from application to applica-

tion. In image processing, as one choice of energy function E(x), the total variation

‖x‖TV[66] has been extensively used due to the fact that the total variation is sensitive
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to geometric features of images, such as edges. Another alternative is E(x) = ‖Wx‖1,

where W is a matrix representation of wavelet or framelet since natural images tend

to be sparse in the wavelet or framlet domain[26, 30, 31, 65]. In compressed sensing, if

the underlying signal itself is sparse, the ℓp-function ‖x‖pp with 0 ≤ p ≤ 1 is appropri-

ate for the energy function E(x) due to the fact that ℓp-norm is sparsity-promoting.

While if the signal is not sparse itself but is sparse in the transformation domain

associated with a linear transform T , then E(x) = ‖Tx‖p is suitable.

The expression log p(y|x) in (4.3) is viewed as a fidelity term measuring the discrep-

ancy between the noisy observation y and an ideal one. The fidelity term log p(y|x)

depends on the property of the additive noise η. For convenience, we assume the noise

η is d-dimensional. When the noise η is of Gaussian type, it is assumed that the com-

ponents ηi of η are independently and identically distributed(i.i.d.) from a Gaussian

distribution N (0, σ2). It follows that the likelihood p(y|x) = (2π)−
d
2σ−de−

‖y−Mx‖2

2σ2 .

Putting the expression pX(x) and p(y|x) into (4.3) and ignoring the constant, we

obtain an equivalent model of (4.3) when Gaussian noise is involved

min
x
{1
2
‖y −Mx‖2 + µE(x)}, (4.5)

where µ is a positive parameter related to the noise standard deviation σ and param-

eter γ in the Gibbs prior. As shown by model (4.5), an ℓ2-fidelity term is appropriate

for Gaussian noise corrupted data from statistics point of view. However, if the ob-

servation involves impulse noise rather than Gaussian noise, an ℓ2-fidelity term is

not suitable anymore. If the observation y is corrupted by salt-and-pepper noise (a



CHAPTER 4. APPLICATIONS AND NUMERICAL EXPERIMENTS 63

special type of impulse noise) with a noise level 0 < r < 1, y can be modeled as

yi =





0, with probability r
2
,

255, with probability r
2
,

(Mx)i with probability 1− r,

(4.6)

where yi is the i-th component of y. For observation corrupted by salt-pepper noise

given in (4.6), we have that

p(y|x) = (
r

2
)|{i:yi 6=(Mx)i}| · (1− r)|{i:yi=(Mx)i}|, (4.7)

where |S| denotes the number of elements in the set S. Note that |{i : yi 6= (Mx)i}| =

‖Mx − y‖0, where ‖ · ‖0 denotes the number of non-zero elements in a vector. Then

the equation (4.7) becomes

p(y|x) = (1− r)d(2
r
− 2)−‖Mx−y‖0. (4.8)

Putting the expression pX(x) and p(y|x) into (4.3) and ignoring the constant, we

obtain an equivalent model of (4.3) when salt-and-pepper noise is involved

min
x
{‖y −Mx‖0 + µE(x)}, (4.9)

where µ is a positive parameter related to the corruption percentage r and parameter

γ in the Gibbs prior. The non-convexity of the fidelity term ‖y −Mx‖0 introduces

numerical difficulties in solving the minimization problem (4.9). To overcome the

numerical difficulty resulted from the non-convexity of the term ‖y−Mx‖0, one way

is to relax the non-convex term ‖y −Mx‖0 to a convex function ‖y −Mx‖1. With
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such a relaxation, model (4.9) becomes

min
x
{‖y −Mx‖1 + µE(x)}. (4.10)

In fact, the ℓ1-norm fidelity term was first proposed by Nikolova for the total variation

regularization of images corrupted by impulse noise[58]. Its effectiveness in handling

impulse noise can be also found in [19]. The suitability of replacing the ℓ0-norm by

the ℓ1-norm was also addressed in compressed sensing[12].

The parameter µ in both (4.5) and (4.10) is called the regularization parameter

and need be predetermined. This regularization parameter balances the fitness of

observed data and preservation of prior information of underlying solution. If noise

power is less, more weight should be placed on the fidelity(fitting) term and therefore

smaller value of µ should be chosen; while bigger value of µ is desired if noise power is

more. But it is still challenging to choose an appropriate regularization parameter in

practice. If an estimated upper bound of the noise power is available, an unconstrained

model can be substituted by a constrained model without introducing regularization

parameter. In particular, if the involved noise is Gaussian type, a variant model of

(4.5) has the form

min
x
{E(x) : ‖y −Mx‖ ≤ ǫ}, (4.11)

where ǫ2 is an estimated upper bound on the noise power of Gaussian noise. Between

models (4.5) and (4.11), another difference is on the differentiability of the fidelity

term. As a quadratic function, the fidelity term in (4.5) is differentiable, while the

fidelity term in (4.11) that can be written as an indicator function is non-smooth.
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The exact form of models (4.5), (4.10) and (4.11) is highly related to the type of

noise in (4.1), the choice of regularization term and the matrix M . In the following,

the ℓ2-TV and ℓ1-TV models and models in compressed sensing will be reviewed

accordingly.

4.1.1 Applications to Image Deblurring

In this section, we first identify two well-known image deblurring models, namely the

ℓ2-TV and ℓ1-TV models, as special cases of the general model (1.1). We then give

details on how Algorithms 1 and 2 are applied. In particular, we present the explicit

expressions of the proximity operators of f ∗
1 and f ∗

2 . Since the total variation (TV)

is involved in both image deblurring models, we begin with presenting the discrete

setting for total variation.

For convenience of exposition, we assume that an image considered has a size of

√
n×√n. The image is treated as a vector in Rn in such a way that the ij-th pixel

of the image corresponds to the (i + (j − 1)
√
n)-th component of the vector in Rn.

The total variation of the image x can be expressed as the composite function of a

convex function ψ : R2n → R and a 2n × n matrix B. To define the matrix B, we
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need a
√
n×√n difference matrix D as follows:

D :=




0

−1 1

. . .
. . .

−1 1




.

The matrix D will be used to “differentiate” pixel values along rows or along columns

of an image matrix. Through the matrix Kronecker product ⊗, we define the 2n× n

matrix B by

B :=



I ⊗D

D ⊗ I


 , (4.12)

where I is the
√
n×√n identity matrix. The matrix B will be used to “differentiate”

the entire image matrix. The norm of B is ‖B‖2 = 8 sin2 (
√
n−1)π
2
√
n

(see [54]).

We define ψ : R2n → R at v ∈ R2n as

ψ(v) :=
n∑

i=1

∥∥[vi, vn+i]⊤
∥∥ . (4.13)

Based on the definition of the 2n × n matrix B and the convex function ψ, the

(isotropic) total variation of an image x can be denoted by ψ(Bx), i.e.

‖x‖TV := ψ(Bx). (4.14)

The ℓ2-TV Image Deblurring Model

If the additive noise is Gaussian type, model (4.5) can be adopted. Using the total

variation as the energy function yields the ℓ2-TV image deblurring model. The ℓ2-TV
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image deblurring model has the form of

min

{
1

2
‖Mx− y‖2 + µ‖x‖TV : x ∈ R

n

}
, (4.15)

where µ is a regularization parameter.

Now, let us set

m1 = n, m2 = 2n, f1 :=
1

2
‖ · −y‖2, f2 := µψ, A1 :=M, and A2 := B,

where ψ is given by (4.13) and B is defined by (4.12). Then the ℓ2-TV image de-

blurring mode (4.15) can be viewed as a special case of model (1.1). In addition,

f1 ∈ Γ0(R
n) and f2 ∈ Γ0(R

2n). Therefore, both Algorithms 1 and 2 can be applied

for the ℓ2-TV model. Furthermore, we give the explicit forms of the proximity oper-

ators proxαf∗1 and proxαf∗2 for any positive number α. Actually, by the definition of

Fenchel conjugate, we have

f ∗
1 (u) =

1

2
‖u‖2 + 〈u, y〉.

By the definition of proximity operator, we have that for u ∈ Rn

proxαf∗1 (u) =
1

1 + α
u− α

1 + α
y.

By introducing the ℓ2-ball B = {p ∈ R2 : ‖p‖ ≤ µ}, for v ∈ R2n we have

f ∗
2 (v) =

n∑

i=1

ιB([vi, vn+i]
⊤),

where the indicator function ιB over the non-empty set B is defined by

ιB(p) =





0 if p ∈ B,

∞ otherwise

.
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For v ∈ R2n, we write z = proxαf∗2 (v). Then for i = 1, 2, . . . , n, we have that

[zi, zn+i]
⊤ = min{‖[vi, vn+i]⊤‖, µ}

[vi, vn+i]
⊤

‖[vi, vn+i]⊤‖
. (4.16)

The ℓ1-TV Image Deblurring Model

The ℓ1-TV image deblurring model is usually used for the recovery of an unknown

image x ∈ Rn from an impulse noise corrupted observable data y ∈ Rn modeled by

(4.6), where M represents a blurring matrix and η is an impulse noise. To recover

the underlying image x from an observed data with impulse noise corruption, we

adopt model (4.10) with the ℓ1-norm fidelity term. Replacing the energy function by

total variation yields the ℓ1-TV image deblurring model. The ℓ1-TV image deblurring

model has the form of

min{‖Mx− y‖1 + µ‖x‖TV : x ∈ R
n}, (4.17)

where µ is again the regularization parameter.

Now, let us set

m1 = n, m2 = 2n, f1 := ‖ · −y‖1, f2 := µψ, A1 :=M, and A2 := B,

where ψ is given by (4.13) and B is defined by (4.12). Then the ℓ1-TV image de-

blurring mode (4.17) can be viewed as a special case of model (1.1). In addition,

f1 ∈ Γ0(R
n) and f2 ∈ Γ0(R

2n). Therefore, both Algorithms 1 and 2 can be applied

for the ℓ1-TV model. Further, the proximity operator proxαf∗2 has been given via

(4.16). We jus need to present the proximity operator proxαf∗1 . Actually, we have
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that for u ∈ Rn

(proxλf1(u))i =






yi + sign(ui − yi)(|ui − yi| − λ), if |ui − yi| ≥ λ;

yi, otherwise,

where i = 1, 2, . . . , n. Using the Moreau’s identity proxαf∗1 (u) = u− αprox 1
α
f2
(u
α
), we

have that for u ∈ Rn

(proxαf∗1 (u))i =





sign(ui − αyi), if |ui − αyi| ≥ 1;

ui − αyi, otherwise,

where i = 1, 2, . . . , n.

In summary, for both the ℓ2-TV and ℓ1-TV image deblurring models, the associ-

ated proximity operators proxαf∗1 and proxαf∗2 have closed forms. As a consequence,

the sequence {(uk, vk, xk) : k ∈ N} generated by Algorithms 1 and 2 can be efficiently

computed.

4.1.2 Application to Compressed Sensing

In this section, we consider the problems from compressed sensing. The breakthrough

of the compressed sensing theory is that one can represent a signal at a rate signifi-

cantly below the Nyquist sampling frequency [13]. The basic principle in compressed

sensing is that a sparse or compressible signal can be reconstructed from a small

number of measurements, measured through appropriate linear combinations of sig-

nal values, via an optimization approach. An essential goal in compressed sensing is to

reconstruct the ideal signal from a small number of measurements. A key to this goal
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is the notion of sparsity. It was shown mathematically in [13] that under the sparsity

assumption, the signal can be exactly reconstructed from the given measurements

and the chance of its being wrong is infinitesimally small. The sparsity of the signal

can be captured by using regularization with the ℓ1-norm or ℓp-norm with 0 ≤ p < 1.

In the seminal work [11, 33], the compressed sensing problem was described as solving

the ℓ1-minimization problem subject to linear constrains that involve measurements

and a measurement matrix. In the work[17, 18], an exact recovery of a sparse signal

was described by solving the ℓp-minimization problem.

We identify the ℓ1-minimization or ℓp-minimization problems in compressed sens-

ing as special cases of the general composite minimization model (1.1). If the ℓ1-

norm is adopted for regularization, the composite minimization problem has convex

objective function and proposed algorithms from chapter 2 can be applied. If the

ℓp-regularization (0 ≤ q < 1)is chosen, existing algorithms arising from convex mini-

mization may be extended to solve the non-convex ℓp-minimization problem.

The ℓ1-Regularization for Compressed Sensing

In this section, we consider the ℓ1-regularized minimization problem from compressed

sensing and identify it as a special case of the convex composite minimization model

(1.1). The proposed algorithms from chapter 2 can be applied by providing explicit

form of the proximity operators proxαf∗1 and proxαf∗2 for the specific functions f ∗
1 and

f ∗
2 .
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In compressed sensing, the signal of interest x ∈ Rn is assumed to have (approx-

imately) sparse representation in some linear transform domain. A collected signal

y ∈ Rm1 is modeled by (4.1), where M is an m1 × n (m1 < n) matrix and models

the incomplete measurement. By convention, η ∈ R
m1 in (4.1) represents an additive

Gaussian noise. The underlying signal x can be restored by solving the unconstrained

model (4.5) or the constrained model (4.11) with an appropriate energy function E(x).

If an upper bound of noise power is available and x has a sparse representation under

a linear transform T (an m2 × n matrix), restoring the underlying signal x can be

formulated as solving the following ℓ1-minimization problem

min{‖Tx‖1 : x ∈ R
n}, subject to‖Mx− y‖ ≤ ǫ, (4.18)

where ǫ2 indicates the upper bound of noise power. Let C := {u ∈ Rm1 : ‖u−y‖ ≤ ǫ}

and f1 := ιC , f2 := ‖ · ‖1, A1 := M,A2 := T , then the minimization problem (4.18)

can be viewed as a special case of the general problem (1.1). The conjugate function

f ∗
2 of f2 = ‖ · ‖1 is the indicator function ιB , where B = {v ∈ Rm2 : ‖v‖∞ ≤ 1}

represents the unit l∞-ball. As a result, the proximity operator proxαf∗2 (v) is the

projection of v onto the set B. Indeed, we have for v ∈ Rm2

(proxαf∗2 (v))i =






vi, if |ui| ≤ 1,

sign(ui), otherwise

,

for i = 1, · · · , m2 . Since the function f1 is an indicator function over the ℓ2-ball C

with center y and radius ǫ, the proximity operator proxλf1(u) is the projection of v
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onto C, i.e.,

proxλf1(u) =





u, if ‖u− y‖ ≤ ǫ,

y + ǫ
‖u−y‖(u− y), otherwise

.

Using the Moreau’s identity proxαf∗1 (u) = u− αprox 1
α
f1
(u
α
), we can get

proxαf∗1 (u) =





0, if ‖u− αy‖ ≤ αǫ,

(1− αǫ
‖u−αy‖)(u− αy), otherwise

.

As displayed above, the proximity operators proxαf∗1 and proxαf∗2 associated to model

(4.18) have closed form. As a consequence, the sequence {(uk, vk, xk) : k ∈ N}

generated by Algorithms 1 and 2 can be efficiently computed as well for problem

(4.18).

The ℓp-Regularization for Compressed Sensing

In this section, we consider the non-convex composite minimization problem with

the ℓp-regularization (0 < p < 1) in compressed sensing. For the ℓp-regularization,

researchers have shown their interest and considerable effort has been devoted to

its study[7, 17, 18, 24, 37, 46, 53, 57, 69, 75]. It has been shown from numerical

experiment that using the ℓp-norm promotes sparser solutions and lower prediction

errors for model selection when compared to the use of the ℓ1-norm[75]. Moreover,

It has also been proven that fewer measurements as well as weaker conditions are

required for sparse signal recovery[18, 46, 75]. For simplicity, it is assumed that the

signal itself is sparse, i.e., the matrix T is the identity matrix. Replacing the ℓ1-norm
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in model (4.18) by the ℓp-norm yields the following variant model

min
x
{‖x‖pp : ‖Mx− y‖ ≤ ǫ}. (4.19)

When p = 1, model (4.19) reduces to the constrained basis pursuit denoising model

in [23], which is convex and has been solved by many algorithms, see, for example,

[4, 34] and references therein. We also developed an accurate and efficient algorithm

for solving the optimization problem with p = 1 in [20].

However, replacing the ℓ1-norm by the ℓp-norm with 0 < p < 1 results in a

non-convex model in (4.19). Desirable properties involving Fenchel conjugate that

are seen in proper semi-continuous convex function, would not be seen in the ℓp-

norm. The proposed algorithms in chapter 2 would not work appropriately for the

ℓp-minimization problem (4.19). In the numerical experiment for the non-convex

ℓp-regularized compressed sensing, we will extend the algorithm for basis pursuit

denoising model in our recent work[20] to solve the ℓp-minimization problem (4.19).

4.2 Numerical Experiments

In this section, numerical experiments are carried out to demonstrate the perfor-

mance of our proposed Algorithms 1 and 2 for the image deblurring and the ℓ1-

regularized compressed sensing. Numerical performance of the ℓp-regularization for

compressed sensing is also presented. For convex composite minimization problem,

the Chambolle-Pock (CP) algorithm and ZBO algorithm[77] for (1.2) are compared
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to the proposed algorithms from chapter 2 for the ℓ2-TV, ℓ1-TV image deblurring and

the ℓ1-regularized compressed sensing model (4.18). The ZBO algorithm proposed in

[77] solves model (1.2) via the following scheme





wk+1 = argmin
{
f(w)− 〈λk, Axk − w〉+ β

2
‖Axk − w‖22

+1
2
‖w − wk‖2Q1

: w ∈ Rm
}

xk+1 = argmin
{
−〈λk, Ax− wk+1〉+ β

2
‖Ax− wk+1‖22

+1
2
‖x− xk‖2Q2

: x ∈ Rn
}

λk+1 = λk − γ(Axk+1 − wk+1)

, (4.20)

where Q1, Q2 are positive definite matrices, and β, γ > 0. When Q1 and Q2 are

chosen as Q1 = ( 1
α1
−β)I and Q2 =

1
α2
I−βA⊤A respectively, scheme (4.20) has closed

form. The positive definiteness of Q1 and Q2 ensures that α1β < 1 and α2β <
1

‖A‖2 .

Each algorithm is carried out until the stopping criterion ‖xk+1 − xk‖2/‖xk‖2 ≤ Tol is

satisfied, where Tol representing the tolerance, will be specified differently in different

applications.

4.2.1 Parameter Settings

Prior to applying Algorithms 1 and 2, the CP algorithm and the ZBO algorithm to the

ℓ2-TV model and the ℓ1-TV model and the ℓ1-regularized compressed sensing model,

the parameters arising from those algorithms need to be determined. Convergence

analysis of the algorithms specifies the relation between these parameters. Under the

conditions on parameters that guarantee convergence, we notice that larger product
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of the parameters results in faster convergence[20]. Therefore, once one parameter is

fixed, the others can be described by this fixed one. To this end, we fix the value of

the parameter β in each above algorithm and then figure out the values of the others.

The setting of parameters is described as follow.

For Algorithm 1, the positive parameters α1, α2, and γ satisfy

α1 <
1

β‖A1‖2
, α2 <

1

β‖A2‖2
, and γ ≤ β. (4.21)

For Algorithm 2, the parameters α and γ satisfy

α <
1

β‖[A1;A2]‖2
and γ ≤ 2β. (4.22)

For the CP algorithm (see (2.45)), we set

α <
2

β‖[A1;A2]‖2
. (4.23)

For the ZBO algorithm, the parameters α1, α2, and γ satisfy

α1 <
1

β
, α2 <

1

β‖[A1;A2]‖2
, and γ ≤ β. (4.24)

With such settings on the parameters for the algorithms , the convergence of

Algorithm 1, Algorithm 2, and the CP method are guaranteed by Theorem 2.13,

Theorem 2.11, and a result from [15], respectively. With the given stopping criterion,

the parameter β in each algorithm is chosen in a way that it would produce better

recovered images in terms of PSNR value for image deblurring and β is chosen to

produce better recovered signal in terms of ℓ2-error for compressed sensing.
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4.2.2 Numerical Results for Image Deblurring

In this section, numerical experiments for image deblurring are carried out to demon-

strate the performance of our proposed Algorithms 1 and 2 for the 256 × 256 test

images “Cameraman”, “Peppers”, “Goldhill” and 512× 512 test image “Lena”’. The

tolerance Tol in the stopping criterion is chosen to be 10−6. The quality of the re-

covered images from each algorithm is evaluated by the peak-signal-to-noise ratio

(PSNR), which is defined as PSNR := 20 log10
(

255n
‖x̃−x‖

)
, where x ∈ Rn is the original

image and x̃ represents the recovered image. The evolution curve of the function

values with respect to iteration will be also adopted to evaluate the performance of

algorithms.

In our simulations, blurring matrices M in model (4.1) for image deblurring are

generated by a rotationally symmetric Gaussian lowpass filter of size “hsize” with

standard deviation “sigma” from the MATLAB script fspecial(’gaussian’,hsize,sigma).

Such matrix M is referred to as the (hsize, sigma)-GBM. We remark that the norm

of M is always 1, i.e.,

‖M‖ = 1. (4.25)

The (15, 10)-GBM and (21, 10)-GBM are used to generate blurred images in our

experiments. To compute the pixel values under the operation of M and B near the

boundary of images, we choose to use “symmetric” type for the boundary extension.

Let B be the difference matrix defined by (4.12). We know ‖B‖ <
√
8. As a result,

the parameters are set in the following way.
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For Algorithm 1, we set the parameters α1, α2, and γ as follows:

α1 :=
0.999

β
, α2 :=

1

8β
, and γ := β. (4.26)

For Algorithm 2, we set the parameters α and γ as follows:

α :=
1

8β
and γ := 2β. (4.27)

For the CP algorithm(see (2.45)), we set

α :=
1

4β
. (4.28)

For the ZBO algorithm, we set the parameters α1, α2, and γ as follows:

α1 :=
0.999

β
, α2 :=

1

8β
, and γ := β. (4.29)

Numerical Results for the ℓ2-TV Image Deblurring

In problems of image deblurring with the ℓ2-TV model, a noisy image is obtained

by blurring an ideal image with a (hsize, sigma)-GBM followed by adding white

Gaussian noise. Two blurring matrices, namely (21, 10)-GBM and (15, 10)-GBM, are

used in our experiments.

For blurring matrix (21, 10)-GBM, the white noise with mean zero and standard

deviation 1 is added to blurred images while for blurring matrix (15, 10)-GBM, the

additive white noise has mean zero and standard deviation 5. The regularization

parameter in the ℓ2-TV model (4.15) is set as µ = 0.02 for blurring matrices (21, 10)-

GBM and as µ = 0.2 for blurring matrices (15, 10)-GBM. With these settings, numer-

ical results for four test images “Cameraman”, “Lena”, “Peppers”, and “Goldhill” are
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reported in Table 4.1 for (21, 10)-GBM and in Table 4.2 for (15, 10)-GBM in terms

of numbers of iterations, the CPU times, and the PSNR values. As shown in the

Tables, Algorithm 1 performs best in terms of computational cost (total iterations

and CPU time). The quality of the recovered images from Algorithm 1 is better than

or comparable to the quality of recovered images from other algorithms in terms of

PSNR values. The evolution curves of function values for each images are shown in

Figures 4.1, 4.2, 4.3, and 4.4 for (21, 10)-GBM, and in Figures 4.5, 4.6, 4.7, and 4.8

for (15, 10)-GBM. Also, as shown in the Figures, the sequence of function values at

{xk : k ∈ N} generated by Algorithm 1 approaches the minimum value fastest, fol-

lowed by sequences from Algorithm 2 and then by that from CP and ZBO algorithms.

The performance of CP and ZBO algorithms is quite similar in terms of iterations,

CPU time, PSNR and evolution of function values.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 177 18.82 23.09 157 107.57 26.45 205 21.10 25.38 166 16.64 24.80

ZBO 177 19.90 23.09 157 109.51 26.45 205 22.96 25.38 166 18.43 24.80

Alg. 2 151 15.98 23.35 140 93.92 26.66 171 17.17 25.61 152 15.48 24.87

Alg. 1 93 11.34 23.45 84 45.60 26.79 98 10.73 25.75 91 10.01 25.13

Table 4.1: Numerical results for the ℓ2-TV model for images blurred by the (21, 10)-

GBM.
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Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 88 8.00 22.88 77 51.82 26.12 89 8.64 23.98 76 7.42 24.27

ZBO 84 8.95 22.88 77 54.50 26.12 89 9.42 23.98 76 8.06 24.27

Alg. 2 81 7.76 23.11 76 50.59 26.17 86 8.45 24.19 75 7.53 24.26

Alg. 1 50 5.18 23.00 46 23.75 26.12 50 5.15 24.13 44 4.68 24.29

Table 4.2: Numerical results for the ℓ2-TV model for images blurred by the (15, 10)-

GBM.

Numerical Results for the ℓ1-TV Image Deblurring

In problems of image deblurring with the ℓ1-TV model, a noisy image is obtained by

blurring an ideal image with a (hsize, sigma)-GBM followed by adding impulse noise.

Two blurring matrices, namely (21, 10)-GBM and (15, 10)-GBM, are used again in

our experiments.

For the blurring matrix (21, 10)-GBM, the impulse noise with noise level p =

0.3 is added to blurred images while the additive impulsive noise has noise level

p = 0.5 for the blurring matrix (15, 10)-GBM. We set the regularization parameter

µ = 0.01 for (21, 10)-GBM and µ = 0.02 for (15, 10)-GBM in the ℓ1-TV model

(4.17). With these settings, numerical results for four test images “Cameraman”,

“Lena”, “Peppers”, and “Goldhill” are reported in Table 4.3 for (21, 10)-GBM and

in Table 4.4 for (15, 10)-GBM in terms of numbers of iterations, the CPU times, and

the PSNR values. One can observed from the Tables that Algorithm 1 yields higher

PSNR value and consumes less CPU time than Algorithm 2, CP and ZBO algorithms.

The evolution curves of function values with respect to iteration are shown in Figure
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Figure 4.1: Evolution of function values for the ℓ2-TV model for image “Cameraman”

blurred by the (21, 10)-GBM.

4.9, 4.10, 4.11 and 4.12 for (21, 10)-GBM, and in Figure 4.13, 4.14, 4.15 and 4.16

for (15, 10)-GBM. It can be noticed that sequence of function values generated from

Algorithm 1 approaches the minimum value fastest. Further, visual quality of the

deblurred images is shown in Figure 4.17 and Figure 4.18 for each algorithm. The

visual improvement by Algorithm 1 over CP and the ZBO algorithm can be seen by

the deblurred images.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 367 44.39 23.47 354 241.09 26.53 414 45.57 25.73 381 42.07 25.05

ZBO 368 45.09 23.48 355 251.43 26.53 415 47.70 25.74 382 44.28 25.04

Alg. 2 275 29.92 23.57 272 194.29 26.69 315 34.68 25.82 312 34.56 25.16

Alg. 1 192 21.34 24.22 189 136.42 27.38 207 22.79 26.66 208 23.09 25.74

Table 4.3: Numerical results for the ℓ1-TV model for images blurred by the (21, 10)-

GBM.



CHAPTER 4. APPLICATIONS AND NUMERICAL EXPERIMENTS 81

0 50 100 150 200 250

10
5

10
6

 

 

Alg. 1
Alg. 2
CP
ZBO

Figure 4.2: Evolution of function values for the ℓ2-TV model for image “Peppers”

blurred by the (21, 10)-GBM.

4.2.3 Numerical Results for the ℓ1-Regularized Compressed

Sensing

This section will be devoted to the comparison of Algorithm 1 to CP and ZBO for

the ℓ1-regularized compressed sensing problem (4.18). we assume that the underlying

signal is not necessarily sparse itself, but is sparse when mapped to another domain

via linear transform.

First of all, we describe how the signals are generated. The underlying signal we
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Figure 4.3: Evolution of function values for the ℓ2-TV model for image “Lena” blurred

by the (21, 10)-GBM.

consider is obtained by sampling the piecewise linear function

s(t) =






1 + 2t, 0 ≤ t ≤ 1

3, 0 < t ≤ 2

5− t, 2 < t ≤ 3

2, 3 < t ≤ 4

6− t, 4 < t ≤ 5

. (4.30)

To obtain the original test signal, we take 512 sample points with equal width from

the function (4.30).The original test signal is shown in Figure 4.19. The m1 × n

random matrix M whose entries are i.i.d. from standard normal distribution N (0, 1)

is given in advance. The norm ofM denoted by ‖M‖ can be calculated by MATLAB

script norm(M). The observed signal is acquired after the underlying signal passes by

the measurement matrixM and is contaminated by Gaussian noise, which is modeled
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Figure 4.4: Evolution of function values for the ℓ2-TV model for image “Goldhill”

blurred by the (21, 10)-GBM.

by equation (4.1).

Further, to use model (4.18), an appropriate matrix T by which the original signal

is mapped to a sparse signal, and the parameter ǫ indicating the noise power need be

determined. With the given original signal as in Figure 4.19, a good choice of T will

be a matrix that represents the high-pass filters of a framelet. Specifically, the high-

pass filters associated with T are chosen as h1 =
√
2
4
[1, 0,−1] and h2 = 1

4
[−1, 2,−1].

With symmetric extension on the boundary of the signal, the matrix T of size 2n×n
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Figure 4.5: Evolution of function values for the ℓ2-TV model for image “Cameraman”

blurred by the (15, 10)-GBM.

associated with those two high-pass filters has explicit form

T =




√
2/4 −

√
2/4

√
2/4 0 −

√
2/4

. . .
. . .

. . .

√
2/4 0 −

√
2/4

√
2/4 −

√
2/4

1/4 −1/4

−1/4 2/4 −1/4
. . .

. . .
. . .

−1/4 2/4 −1/4

−1/4 1/4




, (4.31)

where the upper half corresponds to the high-pass filter h1 and the lower half corre-
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Figure 4.6: Evolution of function values for the ℓ2-TV model for image “Peppers”

blurred by the (15, 10)-GBM.

sponds to the other high-pass filter h2. The norm ‖T‖ ≤ 1 since T only contains the

part of high-pass filters of a tight frame system. The parameter of noise power is set

as ǫ =
√
m1σ, where σ represents the variance of the Gaussian noise. Regarding the

variance of the noise, we will choose σ = 0.05 and σ = 0 in our experiment. In the

case σ = 0, it implies that the observed signal is noise free. For different noise level,

we set Tol differently. When σ = 0.05 Tol is set to be 10−4, while it is set to be 10−6

when σ = 0. The maximal number of iterations allowed for each algorithm is set to

5,000.

To solve model (4.18), Algorithm 1, CP and ZBO will be applied. The setup of

parameters α introduced in those algorithms are chosen in the similar manner as in

image deblurring discussed earlier. That is, if β is assumed to be predetermined, α’s

and γ’s are set to be as large as possible under the condition that the convergence
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Figure 4.7: Evolution of function values for the ℓ2-TV model for image “Lena” blurred

by the (15, 10)-GBM.

is guaranteed. The parameter β for each algorithm is chosen such that it will yield

smaller relative ℓ2-error. The setting of parameters is described as follow.

For Algorithm 1, the positive parameters α1, α2, and γ satisfy

α1 :=
0.999

β‖M‖2 , α2 :=
0.999

β
, and γ := β. (4.32)

For the CP algorithm (see (2.45)), we set

α := 2
0.999

β‖[M ;T ]‖2 . (4.33)

For the ZBO algorithm, the parameters α1, α2, and γ satisfy

α1 :=
0.999

β
, α2 :=

0.999

β‖[M ;T ]‖2 , and γ := β. (4.34)

Numerical experiment is conducted on different settings on the m1 × n measure-

ment matrix M and on the variance σ of the Gaussian noise. With the given original
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Figure 4.8: Evolution of function values for the ℓ2-TV model for image “Goldhill”

blurred by the (15, 10)-GBM.

signal shown in Figure 4.19, one should notice that n = 512. For each setting of m1

and σ, Table 4.5 reports the performance of each algorithms in terms of iteration,

CPU time consumed, relative ℓ2-error and absolute error under the same stopping

criterions. Figures 4.20, 4.21, 4.22 and 4.23 show the evolution curves of function

values with respect to iteration. Figures 4.24, 4.25, 4.26 and 4.27 show the relative

ℓ2-error respectively with respect to iteration. One can easily observe that Algorithm

1 outperforms CP and ZBO algorithms dramatically for all of the metrics. Smaller

relative ℓ2-error and function values can be achieved much faster from Algorithm 1.
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Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 280 29.78 23.77 289 200.71 27.15 300 31.85 25.75 294 32.01 25.15

ZBO 281 31.51 23.77 290 209.85 27.15 300 35.82 25.74 295 32.82 25.15

Alg. 2 228 24.14 24.20 235 170.57 27.55 250 26.59 26.28 247 26.56 25.52

Alg. 1 147 16.10 24.42 149 108.95 27.89 153 16.37 26.61 151 16.06 25.76

Table 4.4: Numerical results for the ℓ1-TV model for images blurred by the (15, 10)-

GBM.

Alg. 1 CP ZBO

m1 σ Itrs CPU(s) ℓ2-err ℓ∞-err Itrs CPU(s) ℓ2-err ℓ∞-err Itrs CPU(s) ℓ2-err ℓ∞-err

n/2 0.05 195 0.3750 1.38e-3 1.77e-2 3455 3.3281 5.73e-3 3.80e-2 4052 3.6718 5.28e-3 3.76e-2

n/4 0.05 313 0.1718 1.87e-3 4.27e-2 4740 1.7031 8.29e-3 6.21e-2 4345 1.8281 8.57e-3 6.83e-2

n/2 0.0 613 0.7344 6.46e-6 5.35e-5 5000 4.2343 3.51e-3 3.10e-2 5000 4.4375 3.95e-3 2.89e-2

n/4 0 1840 0.7500 1.99e-5 1.55e-4 5000 1.8125 6.30e-3 5.16e-2 5000 2.28125 6.57e-3 5.65e-2

Table 4.5: Numerical results for the ℓ1−regularized compressed sensing.

4.2.4 Numerical Results for the ℓp-Regularized Compressed

Sensing

This section is devoted to showing the numerical performance of the ℓp-regularization

for compressed sensing. We demonstrate numerically that the ℓp-regularization with

0 < p < 1 often performs better than the ℓ1-regularization for compressed sensing in

terms of the quality of recovered sparse signals.

We begin with a description on the sensing matrix and sparse signals. In our

experiments, the sensing matrix M of size m× n (m < n) is a random matrix whose

elements are generated independently from standard normal distribution N (0, 1).

According to [4], a length-n, s-sparse signal (a signal having exactly s nonzero com-
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Figure 4.9: Evolution of function values for the ℓ1-TV model for image “Cameraman”

blurred by the (21, 10)-GBM.

ponents) x in our experiments, is generated in such a way that non-zero components

are given by

η110
θ, (4.35)

where η1 = ±1 with probability 1/2 and θ is uniformly distributed in [0, 1]. The

locations of the nonzero components are randomly permuted. Clearly, the range of

the magnitude of nonzero components of an s-sparse signal is [1, 10]. The sparsity

s is chosen to be 0.01n. The noisy observed signal y ∈ Rm is obtained by equation

(4.1), where the entries in the noise vector η are i.i.d. from a Gaussian distribution

with mean zero and standard variance σ. The standard deviation σ is chosen as 0.05.

The underlying sparse signal x to be recovered is formulated as a solution to

the ℓp-regularized minimization problem (4.19), where ǫ =
√
mσ denotes the upper

bound of noise power. The extension of an algorithm proposed in [20] to solve problem
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Figure 4.10: Evolution of function values for the ℓ1-TV model for image “Peppers”

blurred by the (21, 10)-GBM.

(4.19) with p < 1 is described in Algorithm 4. The key step in the implementation

of Algorithm 4 is to evaluate the proximity operator of the ℓp-norm which can be

efficiently computed by Algorithm 3. We remark that the convergence analysis of

Algorithm 4 was already given in [20] for p = 1, but is unknown for p < 1 due to the

difficulty caused by the non-convexity of the corresponding cost function of problem

(4.19).

In our numerical experiments, we will investigate the performance of model (4.19)

using Algorithm 4 for various values of p ∈ {0, 1/2, 2/3, 4/5, 1}. The maximum

number of iterations of Algorithm 4 is set to be 1000. The accuracy of a solution

obtained from Algorithm 4 with a specific value of p is quantified by the relative

ℓ2-error and the absolute ℓ∞-error defined, respectively, as follows:

‖x− x⋄‖/‖x‖ and ‖x− x⋄‖∞, (4.36)
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Algorithm 4: Algorithm for model (4.19)

Input: Initialization: v0 ∈ Rm, x0 ∈ Rn, ǫ > 0, α > 0, and β > 0 with

β
α
< 1

‖M‖2 ; set v
−1 = v0 − (Ax0 − y);

Result: x∞

while it is not convergent do

Step 1:

xk+1 ← T 1
α
,p

(
xk − β

α
A⊤(2vk − vk−1)

)

Step 2: Denote pk := Axk+1 + vk − y.

vk+1 ←






0, if ‖pk‖2 < ǫ;

(
1− ǫ

‖pk‖2

)
(pk), otherwise.
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Figure 4.11: Evolution of function values for the ℓ1-TV model for image “Lena”

blurred by the (21, 10)-GBM.

where x is the true data and x⋄ is the restored data by Algorithm 4. All those errors

reported in this section are the means and standard derivation of these relative errors

from simulations that were performed 50 trials.

To use Algorithm 4, one needs to fix the parameters α and β such that β/α < 1
‖A‖2 .

It has been demonstrated numerically in [20] that Algorithm 4 for p = 1 performs

best in terms of the errors in (4.36) for a large ratio β/α. Therefore, we set β = 0.999
‖A‖2α

in our numerical experiments. In such the way, α is essentially the only parameter

that needs to be determined. The parameter α is chosen such that it would produce

relatively optimal average error over the 50 trials.

The parameters used in our experiments are n = 4096, m ∈ {256, 512} and

p ∈ {0, 1/2, 2/3, 4/5, 1}. The numerical results over 50 trials are reported in Table

4.6 and Figure 4.28, 4.29. Form = 512, one can see that the performance of Algorithm
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Figure 4.12: Evolution of function values for the ℓ1-TV model for image “Goldhill”

blurred by the (21, 10)-GBM.

4 with p ∈ {0, 1/2, 2/3, 4/5} is comparable, but better than that with p = 1. For

m = 256, the performance of Algorithm 4 with p ∈ {1/2, 2/3, 4/5} is comparable, but

better than that with p ∈ {0, 1}. We can conclude that Algorithm 4 with 0 < p < 1

performs superiorly to that with p = 0, 1 in terms of accuracy and robustness,

particularly, in the scenario of a small number of measurements.
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Figure 4.13: Evolution of function values for the ℓ1-TV model for image “Cameraman”

blurred by the (15, 10)-GBM.

0 50 100 150 200 250 300 350
4.2

4.4

4.6

4.8

5

5.2x 10
6

 

 

Alg. 1
Alg. 2
CP
ZBO

Figure 4.14: Evolution of function values for the ℓ1-TV model for image “Peppers”

blurred by the (15, 10)-GBM.
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Figure 4.15: Evolution of function values for the ℓ1-TV model for image “Lena”

blurred by the (15, 10)-GBM.
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Figure 4.16: Evolution of function values for the ℓ1-TV model for image “Goldhill”

blurred by the (15, 10)-GBM.
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Figure 4.17: Recovered images of “Cameraman”, “Lena”, “Peppers”, and “Goldhill”

(from top row to bottom row) with the ℓ1-TV model for images blurred by the (21, 10)-

GBM and corrupted by impulsive noise of level p = 0.3. Row 1: the CP; Row 2: ZBO;

Row 3: Algorithm 2; Row 4: Algorithm 1.
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Figure 4.18: Recovered images of “Cameraman”, “Lena”, “Peppers”, and “Goldhill”

(from top row to bottom row) with the ℓ1-TV model for images blurred by the (15, 10)-

GBM and corrupted by impulsive noise of level p = 0.5. Row 1: the CP; Row 2: the

ZBO; Row 3: Algorithm 2; Row 4: Algorithm 1.
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Figure 4.19: Original test signal for the ℓ1-regularized compressed sensing.
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Figure 4.20: Evolution of function values for model (4.18) of compressed sensing with

respect to iteration. m2 = n/2, σ = 0.05.
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Figure 4.21: Evolution of function values for model (4.18) of compressed sensing with

respect to iteration. m2 = n/4, σ = 0.05.
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Figure 4.22: Evolution of function values for model (4.18) of compressed sensing with

respect to iteration. m2 = n/2, σ = 0.
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Figure 4.23: Evolution of function values for model (4.18) of compressed sensing with

respect to iteration. m2 = n/4, σ = 0.
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Figure 4.24: Evolution of relative ℓ2-error of recovered signal with respect to iteration.

m2 = n/2, σ = 0.05
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Figure 4.25: Evolution of relative ℓ2-error of recovered signal with respect to iteration.

m2 = n/4, σ = 0.05.
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Figure 4.26: Evolution of relative ℓ2-error of recovered signal with respect to iteration.

m2 = n/2, σ = 0.
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Figure 4.27: Evolution of relative ℓ2-error of recovered signal with respect to iteration.

m2 = n/4, σ = 0.

(m, n) = (256, 4096) (m, n) = (512, 4096)

p ℓ2-error ℓ∞-error ℓ2-error ℓ∞-error

0 (2.2978e-1, 1.5371e-1) (2.5759e0, 9.5095e-1) (5.0219e-4, 7.0712e-5) (5.6873e-3, 1.0695e-3)

1/2 (3.2857e-3, 1.1173e-2) (4.1458e-2, 1.6342e-1) (5.5597e-4, 1.2796e-4) (6.2438e-3, 1.3898e-3)

2/3 (1.1604e-3, 1.6500e-4) (1.2177e-2, 2.3400e-3) (6.6470e-4, 1.5286e-4) (7.2339e-3, 1.4871e-3)

4/5 (1.3583e-3, 3.4781e-4) (1.3723e-2, 3.8123e-3) (7.4240e-4, 1.3873e-4) (7.7716e-3, 1.4080e-3)

1 (1.0070e-1, 1.3429e-1) (7.2380e-1, 9.5382e-1) (1.7355e-3, 1.9504e-4) (1.3659e-2, 1.5971e-3)

Table 4.6: The pairs of the means and standard derivation of the relative ℓ2-error and

the absolute ℓ∞-error over 50 simulations are given for the recovery for each value of

p.
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Figure 4.28: Errors of recovered data for each of 50 trials. Row 1-5 represents the

performance of Algorithm 4 for p = 0, 1/2, 2/3, 4/5, 1 respectively. The first and

second column represents the relatively ℓ2-error, absolute ℓ∞-error respectively. The

setting for m, n is n = 4096, m = 256.
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Figure 4.29: Errors of recovered data for each of 50 trials. Row 1-5 represents the

performance of Algorithm 4 for p = 0, 1/2, 2/3, 4/5, 1 respectively. The first and

second column represents the relatively ℓ2-error, absolute ℓ∞-error respectively. The

setting for m, n is n = 4094, m = 512.



Chapter 5

Future Research

The following lines of research are proposed as ways of further advancing understand-

ing of composite optimization problems and the ℓp-regularization:

1. The rate of convergence of Algorithm 1. In this thesis, the convergence analysis

of Algorithm 1 has been studied. It is worthy to investigate in what rate the

proposed algorithm will converge to a desirable solution. It is also interesting

to know if the Nesterov acceleration technique can be adapted to Algorithm 1

with an improved rate of convergence.

2. Composite convex optimization problems with three or more terms. In our cur-

rent study, we developed algorithms for composite convex optimization prob-

lems with two terms. This might limit its applications. For example, in com-

pressed sensing MRI, the function to be minimized in [51, 52] is the sum of

three terms, namely, a sparsity promoting term, a total variation regularization
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term, and a fidelity term that describes the data consistency. Hence, there is a

practical need to extend our current research to composite convex optimization

problems with three or more terms.

3. Convergence analysis for the ℓp-regularization. In our current research, the

convergence analysis of Algorithm 4 is missing due to the difficulty caused by

the nonconvexity of the ℓp-norm with 0 ≤ p < 1, even though Algorithm 4

performs well in our numerical experiments. Therefore, convergence analysis

of Algorithm 4 will provide theoretical guarantee of its numerical performance.

Its impact may go beyond the current research context.
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