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ABSTRACT 

Grazing animals influence a wide range of plant and soil processes in the world’s grasslands. 

Ecologists have long understood that grazing can stimulate aboveground net primary production 

(ANPP), although this phenomenon has not been broadly generalizable across grasslands and 

grazing regimes. The mechanisms underlying grazer stimulation of ANPP are therefore of 

interest to a wide variety of stakeholders from ecologists to land managers. Three data-supported 

hypotheses offer differing explanations for the ways in which grazing interacts with resource 

availability to drive ANPP: the compensatory continuum hypothesis (CCH) implicates 

background resource availability, the limiting resource model (LRM) considers the direct effects 

of grazers on resource availability, and the episodic herbivory model (EHM) considers the 

indirect effects of grazers on resource availability brought about by the removal of standing 

biomass. No studies have yet compared these three models to measure their relative influence on 

ANPP. I conducted a paired-plot defoliation experiment in two distinct grassland community 

types (mesic and dry) in Yellowstone National Park to test how well each model explained 

variation in ANPP over two months of the growing season. I simulated an average Yellowstone 

grazing intensity (50% biomass removed monthly) and measured plant-available N and soil 

moisture as indices of resource availability. I also collected data on ANPP and resource 

availability in plots grazed by bison to study support for each model under a natural grazing 

regime. Clipping increased relative growth rates in each grassland type by over 100% but had no 

effect on N availability or soil moisture. Clipping in June increased ANPP in mesic but not dry 

grassland, supporting the CCH at the landscape scale. Within mesic grassland there was support 

for the EHM, LRMmoist and CCHN, but the EHM explained over twice as much variation in the 

clipping effect on ANPP than the next best model. In dry grassland, the EHM was the only 



  

 

 

model with support. The poor predictive power of alternative models in dry grassland may be 

due to their neglect of resource colimitation, which in a previous study was found to interact with 

grazing to influence ANPP in this system. Effects of ungulate grazing on ANPP varied between 

grassland types, and grazer-stimulation of ANPP was accompanied by increases in relative 

growth rate and N availability, supporting the LRM. Relative growth rate was negatively related 

to standing biomass in both clipped and grazed plots in accordance with the framework of the 

EHM. The clipping study empirically demonstrates for the first time a key tenet of the EHM, that 

herbivory can increase ANPP without any direct effect on resource availability. Both the clipping 

and grazing studies suggest that the three models considered are not independent and can 

theoretically operate simultaneously. Considered in full, this thesis highlights the diversity of 

ways by which grazing by wild, migratory, ungulates can stimulate ANPP. 
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“Phenomena intersect; to see but one is to see nothing” – Victor Hugo 

 

“But the great fact [is] the land itself” – Willa Cather 

 

Introduction 

Grasslands cover over 40% of the Earth’s terrestrial surface and represent the dominant 

ecosystem in climatic regions with low to moderate rainfall (Dixon et al. 2014). They are among 

the most productive ecosystems on Earth and support a high density and diversity of the world’s 

large herbivore species (Olff et al. 2002). Consequently, many grasslands have a large proportion 

of their plant biomass consumed annually by grazing animals, representing a significant loss of 

photosynthetic potential (Frank et al. 1998, Augustine et al. 2003). Nevertheless, the long co-

evolutionary history of grasses and grazers has resulted in grasslands that are able to sustain 

biomass production in the face of chronic, intensive consumption (McNaughton 1985, Milchunas 

et al. 1988), a phenomenon that has been a topic of great research interest to ecologists, ranchers, 

and land managers for half a century (Noy-Meir 1973, Painter and Belsky 1993, Schwinning and 

Parsons 1999, Frank et al. 2016).   

The grazing optimization hypothesis 

A significant topic of debate among grazing ecologists is the validity of the so-called 

“grazing optimization hypothesis (GOH)” which posits that intermediate levels of grazing can 

increase aboveground net primary production (ANPP) (McNaughton 1979, Hilbert et al. 1981). 

An implication of the GOH is that under appropriate management, grazing animals will exert 

positive feedbacks on their own food supply and sustain their population levels through time. It 

does not imply that grazing improves the fitness or survival of grazed plants, as plant biomass 

and productivity are not necessarily representative of fitness (Fridley 2017). The GOH was 
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developed from the synthesis of multiple field studies in the Serengeti-Mara region of East 

Africa, where it was observed that ANPP in grasslands grazed seasonally by large, migratory 

herds of wildebeest (Connochaetes taurinus), zebra (Equus quagga), and gazelle (Eudorcas 

thomsonii) was a unimodal function of grazing intensity (% biomass consumed) with a peak 

between 25 and 50% (McNaughton 1979, 1985). Stimulation of ANPP has since been observed 

in grazing systems around the world including tropical savannas in east Africa and India (Pandey 

and Singh 1992, Charles et al. 2017), tropical grasslands in South America (Altesor et al. 2005), 

and montane grasslands in North America (Frank et al. 2002, 2016). Other studies, however, that 

have attempted to recreate the curve predicted by the GOH have failed to do so (Williamson et 

al. 1989, Turner et al. 1993, Biondini et al. 1998, Knapp et al. 2012), sparking debate about the 

generality of the GOH and its relevance in particular to livestock grazing systems (Belsky 1987, 

Painter and Belsky 1993). Even among wildlife-dominated systems, stimulation may be more the 

exception than the rule, as syntheses of studies from grasslands around the world have found 

consistent negative effects of grazing on ANPP, with herbivores optimizing ANPP only under a 

specific, limited range of conditions (Milchunas and Lauenroth 1993, Ferraro and Oesterheld 

2002). This has led many ecologists to caution against the broadscale, general application of the 

GOH, particularly in both rangelands of the western U.S. with no evolutionary history of grazing 

and intensively grazed livestock systems that aim to maximize livestock production (Briske 

1993, Painter and Belsky 1993, Briske et al. 2008). 

While the empirical support for the GOH has therefore been mixed, the wide range of 

successes and failures in predicting when grazing will increase ANPP offers an opportunity to 

further study and understand the conditions under which the predictions of the GOH are 

observed. Such an understanding would help inform conservation efforts in systems dominated 
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by migratory grazers (which have provided the most support for the GOH) while also generating 

a framework to assess why the GOH has failed to predict grazing outcomes in more intensively 

managed systems. The key shortcoming of the GOH is that it does not explicitly consider how 

grazing interacts with resource limitation to affect ANPP, even though grazing can have dramatic 

effects on the availability of limiting resources (Bardgett and Wardle 2003). Here I will briefly 

review three models that invoke distinct interactions between grazing and resource availability as 

key drivers of the variation in herbivore effects on ANPP.  

The compensatory continuum hypothesis 

 The compensatory continuum hypothesis (CCH) states that plant tolerance to herbivory 

should be higher in systems with high levels of resource availability (Maschinski and Whitham 

1989). While originally developed to model individual plant tolerance of herbivory from a fitness 

perspective, its predictions have been applied to ANPP in grazing systems as well (Bardgett and 

Wardle 2003), as ANPP has long been understood to be driven by the availability of limiting 

resources such as soil moisture and plant-available N (Fay et al. 2015). The CCH therefore 

ignores potential feedbacks of grazers on resource availability, considering only the background 

resource availability at the time of grazing. A growth chamber study of the Serengeti grass 

Sporobolus kentrophyllus found that clipping increased production only under high levels of 

supplemental N (Hamilton et al. 1998). In a Kenyan savanna grazed by both livestock and 

wildlife, grazing increased ANPP only during wetter-than-average years in habitats with high 

levels of plant-available N and P (Augustine and McNaughton 2006). Grazing by bison in the 

grasslands of Yellowstone National Park more frequently increases production at mesic sites 

with high soil moisture levels than at drier sites (Frank et al. 2018). Other experimental field 

studies, however, have not supported the predictions of the CCH, finding no or negative effects 
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of simulated herbivory under high resource levels (Alward and Joern 1993, Leriche et al. 2003, 

Bagchi and Ritchie 2011). For a grazing system to support the predictions of the compensatory 

continuum hypothesis, grazing should have increasingly positive effects on ANPP as resource 

availability increases while having no effects on resource availability (Figure 1). These resource 

gradients can occur at spatial scales across a landscape as well as temporal scales throughout a 

growing season. 

The limiting resource model 

 While the CCH does not account for direct, herbivore-driven changes in resource 

availability, effects of grazing on soil nutrients and their consequences for ANPP are well 

documented (Ritchie et al. 1998, Augustine and Frank 2001, Pastor et al. 2006, Frank et al. 2018, 

Marshall et al. 2018), and theoretical models have shown that grazing can increase ANPP by 

increasing nutrient recycling (de Mazancourt et al. 1998). The limiting resource model (LRM) 

expands the framework of the compensatory continuum hypothesis to consider how herbivory 

affects resource availability (Wise and Abrahamson 2005, 2007). It makes multiple predictions 

that are contingent upon which resource is affected by herbivory and which resource limits plant 

tolerance to herbivory (Wise and Abrahamson 2005). As with the CCH, the conceptual 

underpinnings of the LRM are often applied to ANPP in systems grazed by wild ungulates 

(Bardgett and Wardle 2003, Pastor et al. 2006). 

Grasslands around the world are primarily limited by N and water (Fay et al. 2015), two 

resources on which grazers can have marked effects. Grazing mammals generally increase short-

term N availability and speed up rates of N cycling via N-rich dung and urine inputs that 

decompose much faster than ungrazed vegetation (Frank and Evans 1997, Frank and Groffman 

1998, Barthelemy et al. 2018, Veldhuis et al. 2018). Independent of dung/urine inputs, grazing 
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can also stimulate the exudation of soluble carbohydrates from grass roots that drive increases in 

microbial biomass, turnover, and N availability (Hamilton and Frank 2001, Hamilton et al. 

2008). Grazing can have variable effects on soil moisture among systems: the removal of 

biomass reduces shading and increases the evaporative demand on plants and soil, but it also can 

increase soil moisture by reducing the transpirational surface area of the vegetation (Veldhuis et 

al. 2014, Frank et al. 2018). For the limiting resource model to be supported, positive effects of 

grazing on the availability of a limiting resource should be associated with similarly positive 

effects on ANPP. Negative effects of grazing on both resource availability and ANPP should be 

linked as well (Figure 1). 

The episodic herbivory model 

The episodic herbivory model (EHM) is a theoretical model that uses classical population 

dynamics to consider how ANPP in grasslands responds to herbivory (Ritchie and Penner, in 

review). The EHM is based on the truism that for grazing to increase ANPP, regrowth by grazed 

plants must exhibit a higher relative growth rate (mass-specific growth rate, or RGR) than 

similar ungrazed plants (Hilbert et al. 1981). Grasses are particularly well-adapted to regrowth 

following grazing due to the protected location of intercalary meristems near the soil surface 

during periods of vegetative growth (Briske 1991, Ferraro and Oesterheld 2002). Leaf tissue that 

regrows following grazing often has a greater N concentration and photosynthetic rate than 

immediately prior to grazing as the metabolic energy of the plant is concentrated across a smaller 

surface area (Painter and Detling 1981, Anderson et al. 2013, Frank et al. 2018). These leaf traits 

are positively correlated with RGR at individual plant and community scales, demonstrating how 

grazing can increase RGR simply by altering the phenology of grazed plants (Poorter and 

Remkes 1990, Garnier et al. 2004, Laliberté et al. 2012).  
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The EHM modifies a previous theoretical model developed by Hilbert et al. (1981) that 

also studied the mathematical drivers of variation in herbivore effects at a given grazing 

intensity. Hilbert et al. (1981) concluded that grazing was more likely to increase ANPP under 

stressful, low-resource conditions where ungrazed plants would grow well below their maximum 

relative growth rate (RGRmax). When ungrazed plants grow near RGRmax it becomes much 

less likely for a grazed plant to achieve the RGR necessary to surpass the total production of the 

rapidly growing ungrazed plant. This prediction has empirical support from greenhouse studies 

of several tropical grasses (Oesterheld and McNaughton 1988, 1991), but it is at odds with the 

predictions of positive grazer effects at high resource levels made by the compensatory 

continuum hypothesis (see above). Furthermore, Hilbert et al. (1981) modeled plant growth as an 

exponential process with constant RGR even though RGR is well-known to decrease as biomass 

accumulates (Schwinning and Parsons 1999, Paine et al. 2012). 

The EHM uses a logistic growth model to explicitly consider the implications of density-

dependent resource limitation on the conditions necessary for grazing to increase ANPP (Ritchie 

and Penner, in review). It shows how grazing can increase ANPP by indirectly increasing 

resource availability as the removal of grazed tissue relieves limitations on relative growth rate 

imposed by density-dependence. For a given grazing intensity and frequency, the EHM shows 

that two parameters, RGRmax and initial biomass relative to steady-state, end-of-season peak 

biomass, determine whether or not grazing increases ANPP. When either parameter is high, the 

likelihood of grazing stimulating ANPP is high as well. These parameters can themselves be 

modelled as functions of resource availability using consumer-resource theory in a fashion that 

accounts for grazing-induced changes in resource supply rate or pool size (Ritchie and Penner, in 
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review). The EHM therefore predicts that stimulation of ANPP is possible under a wide range of 

conditions, including no to positive direct effects of grazing on resource availability. 

 The differing predictions of the CCH, LRM, and EHM offer an exciting opportunity to 

compare their predictions in the field. The EHM has not yet been tested against other models that 

attempt to explain variability in herbivore effects on ANPP. The CCH predicts that stimulation 

of ANPP should be greater at higher levels of limiting resource availability, independent of any 

interactions with grazing (Figure 1). The LRM predicts that stimulation of ANPP should be 

greater when grazing directly increases limiting resource availability (Figure 1). The EHM 

predicts that stimulation of ANPP should be greater when plots have a higher initial relative 

biomass, thereby indirectly alleviating resource limitations imposed by density-dependent 

growth (Figure 1). These three predictions can be compared using an herbivore exclosure 

experiment that is replicated across resource gradients. While these models are not mutually 

exclusive and could theoretically all operate simultaneously, a direct comparison of their relative 

influences on ANPP can nonetheless improve our mechanistic understanding of plant-herbivore 

dynamics in grasslands (Bagchi and Ritchie 2011). I conducted a paired-plot defoliation 

experiment in the grasslands of Yellowstone National Park to compare these three models and 

study the mechanisms responsible for grazer-stimulation of ANPP while controlling for 

defoliation intensity and frequency. I also conducted a small-scale grazing experiment to assess 

how grazing ungulates influenced the density-dependence of ANPP as predicted by the EHM 

and to compare the effects of simulated and actual grazing. 
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Methods 

Site Description 

 This study was conducted in Yellowstone National Park (YNP), an 8995 km2 preserve in 

the central Rocky Mountains of North America that supports large herds of migratory ungulates 

including bison (Bison bison), elk (Cervus canadensis), pronghorn (Antilocapra americana), 

bighorn sheep (Ovis canadensis), and mule deer (Odocoileus hemionus). Grazing pressure in 

YNP has shifted from elk-dominated to bison-dominated over the last 40 years, resulting in an 

increase in annual grazing intensities in areas where bison concentrate (Frank et al. 2016). YNP 

ungulates track the seasonal green-up of forage from low-elevation winter range to high-

elevation summer range each year (Frank and McNaughton 1992, Middleton et al. 2018), 

stimulating several ecosystem processes such as N mineralization (Frank and Groffman 1998) 

and net primary production (Frank et al. 2002). Other processes such as litter decomposition are 

unaffected by grazing and are driven instead by climatic variability (Penner and Frank 2019). 

 My study examined two types of grasslands in YNP: mesic, productive grasslands on the 

core summer range of YNP bison, and dry, unproductive grasslands grazed transitionally during 

ungulate migration (Geremia et al. 2014). Mesic grasslands have deep soils with higher levels of 

soil C and N than the shallow, rocky soils of dry grasslands (Frank et al. 2018). Plant 

communities at mesic grasslands are dominated by non-native, sod-forming pasture species such 

as the grasses Poa pratensis, Agrostis stolonifera, and Phleum pratense, along with the forbs 

Trifolium repens and Taraxacum officinale. Dry grassland communities are dominated primarily 

by native bunchgrasses such as Poa secunda, Hesperostipa comata, and Festuca idahoensis, as 

well as a native sedge, Carex duriuscula. 
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Clipping Experiment 

Twenty 2.5 m x 2.5 m exclosures were established prior to snowmelt in 2018 across four 

sites in mesic and dry grassland on YNP’s Northern Range (10 replicates in mesic grassland 

distributed across 2 sites, 10 replicates in dry grassland distributed across 2 sites). Within each 

exclosure I paired two 0.5 m2 plots with a similar vegetative composition and randomly assigned 

treatments of clipped or unclipped. There was no difference in standing biomass between paired 

plots prior to treatment application at the end of May (t = 0.07, df = 19, p = 0.94). For clipped 

plots, I removed approximately half of the standing biomass of each shoot present twice over the 

course of the growing season: once during late May/early June and again one month later during 

late June/early July. This simulated grazing intensity of 50% mirrors observed grazing intensities 

by bison in YNP (Frank et al. 2016). All experimental plots were watered weekly following 

treatment application to reduce moisture limitations on ANPP. Each plot received five liters 

supplemental water per week for six weeks, a rate equivalent to the long-term precipitation 

average for the region during June (NOAA Climate Data Online). 

I used the canopy-intercept method (Frank and McNaughton 1990, Frank et al. 2018) to 

nondestructively estimate standing biomass throughout the experiment, quantifying pin-hits at 

the species level and converting hits per pin to biomass per m2 using previously determined 

calibration curves  (C. Geremia, unpublished data). Biomass was estimated in each plot over two 

months (late-May/early-June to late-July/early-August), a period that included peak standing 

biomass at each site. Growth intervals were between 24 and 32 days in June and between 22 and 

31 days in July. In clipped plots, I estimated biomass immediately before and after clipping the 

vegetation on each sampling date to quantify the simulated grazing intensity. Daily ANPP was 

calculated for each plot as the difference in standing biomass between sampling dates for each 
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month-long interval. Daily RGR was calculated as the difference in log-transformed (base e) 

biomass estimations between sampling dates. The monthly clipping effect on ANPP and RGR 

was calculated as the difference in ANPP or RGR between clipped and control plots. 

I indexed plant-available soil nitrogen concentrations using ion-exchange resin bags 

(Binkley and Matson 1983). Two level tablespoons (29.6 mL) of Dowex Marathon mixed-bed 

resin (Sigma Aldrich, St. Louis, MO) were placed into 4 x 4 x 1 cm nylon bags. Resin bags were 

buried in the top 10 cm of the soil immediately adjacent to each sampling plot to avoid soil 

disturbance in the sampling plot. Because resin bags were buried in the rooting zone and 

competed with roots for N uptake, total N adsorption to each bag represents the size of the 

available N pool and represents the steady state balance between supply rate and plant uptake. In 

clipped plots, the clipping treatment was applied to the vegetation surrounding the resin bag to 

ensure that the soil supplying nitrogen to the resin bags was under clipped conditions. Resin bags 

were left in the field for approximately one month following the first clipping treatment in late 

May, after which they were replaced with fresh bags in the same location for the subsequent 

clipping treatment in late June. Once collected, all bags were washed with DI water to remove 

soil and roots before being air-dried. All bags were stored in sealed containers at room 

temperature prior to lab extractions. I extracted the resin bags by shaking each bag in 125 ml of 2 

M KCl for one hour. Resin bags sat in solution for an additional hour, after which I collected 15 

ml KCl from each sample in a plastic vial. Vials were kept at -20°C prior to analysis for 

extractable NH4
+ and NO3

- on a SEAL Autoanalyzer3 colorimetric analyzer (SEAL Analytical, 

Mequon, WI). Total N adsorption rate (N availability) was calculated on a per day basis over the 

same growth intervals used to measure ANPP. Volumetric soil moisture was measured in each 
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plot at each sampling date with a Hydrosense II soil-water sensor (Campbell Scientific, Logan, 

UT).  

Grazing Experiment 

ANPP and RGR were calculated during June and July in grazed grassland using 1 m2 

moveable exclosures (n = 5 for each grassland type) (Frank et al. 2002, 2018). Exclosures were 

randomly relocated each month. Grazing intensity was calculated as the proportion of biomass 

removed in randomly located grazed plots relative to temporarily protected plots. In ungrazed 

grassland, ANPP and RGR were calculated each month in 5 plots distributed across three 3 x 3 m 

fixed exclosures established after snowmelt. Standing biomass was estimated at the beginning 

and end of each month using the canopy-intercept method, and daily ANPP and RGR were 

calculated as previously described for the clipping experiment. Soil N availability and soil 

moisture were also measured as previously described. Grazed plots were not paired with 

ungrazed plots, allowing for only mean comparisons between grazed and ungrazed treatments. 

Plots in the grazing experiment did not receive supplemental water.  

Statistical Analysis 

Realized clipping intensities were calculated as the proportion of standing biomass 

removed by clipping. I used 2-way ANOVA with Tukey’s HSD post-hoc test to analyze the 

effects of grassland type and clipping or grazing treatment on ANPP, RGR, N availability, and 

soil moisture in each month. To test the biomass dependence predicted by the episodic herbivory 

model, I plotted RGR as a function of biomass at the beginning of the growth period (post-

clipping) for each grassland in each month. The EHM predicts that this relationship is linear and 

negative, with a y-intercept of RGRmax and an x-intercept of K (peak biomass). I used 
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standardized major axis (SMA) regression in the R library ‘smatr’ (Warton et al. 2012) to 

minimize error in both x and y while estimating these parameters and testing the slope of the 

line. 

I used Bayesian multiple linear regression to compare the relative effect sizes of each 

model at each grassland with ΔANPP (clipped – control) as the response variable. Month was 

modeled as a random intercept to account for repeated sampling across months while increasing 

statistical power. I modelled mesic and dry communities separately because previous work has 

shown that grazing had different ecological effects on soil resources between these two 

communities (Frank et al. 2018). Terms modelled for the compensatory continuum hypothesis 

were N availability and soil moisture in clipped plots. Terms added for the limiting resource 

model were ΔN availability and Δsoil moisture. Interaction terms between N availability and soil 

moisture were not significant for the CCH and LRM and were not included in the final model. 

The term added for the episodic herbivory model was a function of the biomass in the control 

plot relative to peak biomass (K) for the grassland type in the given month, referred to hereafter 

as “initial relative biomass”. The final regression model, run separately for mesic and dry sites, 

combined these five terms standardized to the Z distribution (eqn 1). 

ΔANPPmesic ~ βCCH,N*Nclip + βCCH,moist*moistclip + βLRM,N*ΔN + βLRM,moist*Δmoist + 

βEHM*initial relative biomass + (1|month)       (1) 

I assessed the collinearity of model predictors from all others with Pearson correlation. I 

then ran the full model in JAGS (Plummer 2003) using ‘R2jags’ (Su and Yajima 2015) and 

compared posterior distributions for each coefficient: for a model to be supported, coefficients 

needed to be > 0. Prior distributions were non-informative: priors for fixed effects were normally 

distributed with mean zero and variance 105 and priors for random effect standard deviations 
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were uniformly distributed (0,100). The final model was run as three concurrent Markov chain 

Monte Carlo (MCMC) chains for 50,000 iterations, the first 10,000 of which were thrown out as 

burn-in. I used the Gelman-Rubin diagnostic (<1.1) to confirm that models converged (Gelman 

and Hill 2007).  

Finally, I used non-metric multidimensional scaling (NMDS) to determine if clipping had 

systematic effects on species composition that were related to ΔANPP, standardizing species 

composition by plot biomass to account for material removed by clipping and assessing 

compositional similarity between plots using Bray-Curtis dissimilarity. In the grazing experiment 

I analyzed the effects of grassland and grazing on ANPP, RGR, N availability, and soil moisture 

with 2-way ANOVA. I didn’t perform post-hoc analyses in the grazing experiment due to small 

sample size (n = 5) and limited statistical power. Plots were not paired in the grazing experiment, 

so I tested only the assumption of resource-limited, density-dependent growth from the episodic 

herbivory model. I used SMA regression to determine if there was a negative relationship 

between RGR and standing biomass for each grassland in each month and compared estimates of 

RGRmax and K to those from the clipping experiment. 

 

Results 

Clipping Experiment 

Mesic sites were more productive than dry sites in June (F = 56.50, df = 1,36, p = <0.001) 

and July (F = 34.92, df = 1,36, p = <0.001) (Figure 2). ANPP at mesic sites was dominated by 

two introduced grasses, Poa pratensis and Agrostis stolonifera, along with the introduced 

legumes Trifolium repens and Taraxacum officinale (Figure 3, Table 2) while ANPP at dry sites 
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was dominated primarily by a suite of native bunchgrasses including Poa secunda, Hesperostipa 

comata, Pseudoroegneria spicata, and Festuca idahoensis (Figure 4, Table 2). Soil moisture was 

greater in mesic grassland than dry grassland in June (F = 38.10, df = 1,35, p = <0.001) and July 

(F = 33.07, df = 1,36, p = <0.001), but there was no difference in N availability between 

grasslands in either month (Figure 5). 

Clipping treatments simulated moderate grazing intensities slightly below the intended 

50% grazing intensity (mean ± SD, 42 ± 11 %). Species composition varied across plots within 

each grassland at the beginning and end of the experiment but was not affected by clipping 

(Figure 6). There was an interaction between clipping and grassland type during June such that 

clipping increased ANPP at mesic grassland but not dry (F = 4.05, df = 1,36, p = 0.05) (Figure 

2). There was no effect of clipping on ANPP at either grassland in July (F = 0.97, df = 1,36, p = 

0.33) (Figure 2). RGR was similar between mesic and dry sites in June (F = 0.09, df = 1,36, p = 

0.77), but was slightly greater in mesic sites during July (F = 3.74, df = 1,36, p = 0.06) (Figure 

2). Clipping increased RGR by over 100% at all sites in June (F = 32.13, df = 1,36, p = <0.001) 

and July (F = 17.08, df = 1,36, p = <0.001) (Figure 2). There were no effects of clipping on plant 

N availability or soil moisture in either June or July (Figure 5). 

RGR was negatively related to standing biomass at both communities in each month 

(Table 1, Figure 7). The relationship between standing biomass and RGR was strongest at mesic 

sites in June and was weaker at dry sites (Table 1). Estimated maximum growth rate, RGRmax 

values decreased from June to July for both communities, while estimated peak biomass, K, 

values increased (Table 1).  

 N availability and ΔN availability were correlated in dry grassland, but no other model 

predictors were collinear in either grassland (Pearson correlation coefficient < 0.52, Table 3). In 
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mesic grassland, initial relative biomass, as predicted by the EHM, had the strongest positive 

effect on ΔANPP (>99% of posterior distribution > 0, Figures 8, 9), more than two times the 

effect size of the next best model. Δmoisture (LRM) and N availability (CCH) had weaker 

positive effects on ΔANPP in mesic grassland (97% and 84% of respective posterior 

distributions > 0), while soil moisture (CCH) and ΔN (LRM) were not positively related to 

ΔANPP (< 18% of posterior distribution > 0) (Figure 8). In dry grassland, initial relative biomass 

(EHM) had the strongest positive effect size on ΔANPP (95% of posterior distribution > 0), soil 

moisture (CCH) had a very weak positive effect (65% of posterior distribution > 0), and no other 

model was likely to have a positive effect (< 39% of posterior distribution > 0) (Figures 8, 9).  

Grazing Experiment 

Grazing intensities were moderate but extremely variable in both grasslands (mean ± SD, 

mesic: 32 ± 22%, dry: 18 ± 25%). Grazing increased ANPP and RGR in June but had no effect 

during July (Figure 10). Grazed plots had higher N availability than ungrazed plots in each 

grassland during both months (Figure 11), while there was no effect of grazing on soil moisture 

(Figure 11). RGR was significantly negatively related to standing biomass in mesic grassland 

during June, and weakly related during July (Figure 12). At the dry grassland, RGR and standing 

biomass were weakly related in June and had no relationship during July (Figure 12, Table 1).  

 

Discussion 

 The goal of this study was to compare three models that attempt to explain the variation 

in herbivore effects on grassland aboveground net primary production (ANPP). While not 

explicitly independent of each other, the three models tested are built on distinct underlying 
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mechanisms and invoke as the key driver either background resource availability (compensatory 

continuum hypothesis, CCH), grazer effects on resource availability (limiting resource model, 

LRM), or resource limitation imposed by density-dependence (episodic herbivory model, EHM) 

(Figure 1).  

A key component of the EHM is that grazing reduces the degree of density-dependent 

resource limitation, allowing grazed communities to grow at a higher relative growth rate (RGR) 

and surpass ungrazed communities in total ANPP. I found that clipping increased RGR in each 

month by over 100 % (Figure 2). This stimulation of RGR was negatively related to standing 

biomass following clipping as predicted by the EHM (Figure 7), strongly suggesting that RGR 

was limited by biomass accumulation. This finding supports previous greenhouse studies of 

tropical grasses that found greater increases in RGR following clipping when plants initially 

grew at a low RGR (Oesterheld and McNaughton 1988, 1991, Oesterheld 1992). The tightness of 

this RGR ~ biomass relationship affects the confidence in estimates of maximum growth rate 

(RGRmax) and peak biomass (K) and therefore the ability of the EHM to predict ΔANPP. R2 

values decreased from June to July in mesic communities, suggesting that factors such as species 

composition and resource availability could become increasingly important drivers of RGRmax 

and K later in the season. Species composition, though unaffected by clipping, did vary within 

each grassland type (Figure 6), and is a well-documented driver of ANPP (Tilman et al. 1996, 

2001). Alternatively, a decrease in soil moisture from June to July could have limited RGR and 

ANPP more strongly than biomass accumulation. Moisture availability is a strong regulator of 

other ecosystem processes in this system, including the decomposition of litter and organic 

matter (Risch et al. 2007, Penner and Frank 2019). 
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In mesic grassland, the EHM was more effective at predicting clipping effects on ANPP 

than the CCH or LRM. Plots with a higher initial relative biomass were more likely to have 

ANPP stimulated by clipping. Clipping had no effect on N availability or soil moisture, yet a 

range of positive growth responses to clipping was observed. While rarely reported in the 

literature, this finding supports theory from the EHM that shows that herbivory can increase 

ANPP without directly impacting soil resource availability (Ritchie and Penner, in review). 

Biomass removal increases light availability and reduces the nutrient demand of the vegetation 

that remains, improving resource availability even if the absolute size of the resource pool does 

not change. 

There was also support for the limiting resource model in mesic grassland when soil 

moisture was the resource considered: in plots where clipping increased soil moisture, ANPP 

was likely to be stimulated as well. This is likely due to clipping reducing the transpirational 

surface area of the vegetation and conserving soil moisture, a well-documented effect of grazers 

in Yellowstone (Frank et al. 2018). In plots where clipping decreased soil moisture, ANPP 

tended to decline. This could be an effect of increased solar radiation to the soil surface that in 

turn increases soil evaporation and water loss, which has been observed in grazing lawns in 

African savanna (Veldhuis et al. 2014). The EHM more accurately predicted ΔANPP in June 

while the LRM,moist was more effective during July (Figure 9), indicating that the mechanisms by 

which grazing influences ANPP can change throughout the growing season. This could be due to 

the decline in soil moisture discussed above that may have limited RGR and ANPP more 

strongly than biomass accumulation, highlighting the impacts of interactions between herbivory 

and seasonal shifts in resource availability. Alternatively, it could be partially due to differences 

in initial biomass between paired plots at the start of the second growth period. This difference 
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occurred because clipped and control plots grew differently following the first clipping 

treatment. Future tests of the EHM should avoid repeated sampling over the course of a single 

growing season to ensure that the initial biomass in paired plots is similar.  

ΔANPP in dry grassland was best predicted by initial relative biomass and the EHM 

(Figure 8), although support for the EHM in dry grassland was weaker than in mesic grassland. 

The failure of the CCH and LRM in dry grassland could be due to their shared assumption of 

single-nutrient limitation that ignores more complex interactions between grazing and resource 

limitation. Previous work in Yellowstone grasslands suggests that grazing can shift the resource 

most limiting growth from N in ungrazed conditions towards colimitation between N, moisture, 

and potentially P in grazed conditions (Frank et al. 2018). Furthermore, resin bags measured N 

availability as steady-state pool size and not as supply rate. Pool size and supply rate are distinct 

aspects of resource availability and are expected to have different effects on the outcome of 

grazing episodes (Ritchie and Penner, in review). Alternatively, watering of the experimental 

plots could have relieved moisture limitation and lessened the probability of support for the 

CCHmoist and LRM moist.  

While there was limited statistical support for the CCH within each grassland type, there 

was support for the CCH at the larger landscape scale. Clipping stimulated ANPP in June in 

mesic grassland but not at dry grassland. The two grasslands had similar N availability during 

this period, but soil moisture was much higher in mesic grassland. This suggests that at large 

landscape scales, positive responses of ANPP to grazing may be limited to areas of high water 

availability (Knapp et al. 2001, Augustine and McNaughton 2006). In these wetter grasslands, 

the mechanisms of the EHM and LRM may be more often observed. This interpretation, 

however, is confounded by significant changes in species composition between mesic and dry 
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grasslands. An alternative explanation for this pattern is that the perennial bunchgrasses growing 

in dry grassland are more conservative in their allocation to aboveground growth following 

defoliation than species in the mesic grassland, instead choosing to invest carbon assimilated 

after grazing into roots (Augustine et al. 2011). The evolution of large belowground nutrient 

reserves that can support growth during windows of high resource availability has been proposed 

as an adaptation to grazing and drought simultaneously, and may explain why dryland species 

rarely show strong positive responses to grazing (Coughenour 1985, Milchunas et al. 1988). 

Species composition varied within each grassland type, but there was no effect of 

clipping on composition over the duration of this experiment. There are several possible reasons 

for this. While grazing can have substantial effects on composition, these are often documented 

over many years or under severe grazing intensities (Frank 2005, Derner et al. 2018), not the 

single season of relatively moderate clipping in my study. Additionally, all plots, controls 

included, were protected from grazing during the year of the study but have been intensively 

grazed for years prior to this experiment. It is possible that decades of prior grazing have already 

removed grazing-intolerant species from the community, resulting in a community composed of 

grazing-tolerant species. The mesic grasslands of Yellowstone are in fact composed almost 

entirely of non-native European pasture species that have a high RGRmax and can rapidly 

regrow after being grazed.  

Bison were the most abundant grazer at each grassland type for the duration of the 

grazing experiment (J. Penner, personal observation). Average grazing intensity was nearly twice 

as high at mesic grasslands than at dry grasslands. Bison rarely graze dry grassland as intensively 

as mesic grassland in Yellowstone, as dry grassland occupies transitional range during seasonal 

migrations to and from summer range on mesic grassland (Geremia et al. 2014). While the 
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design of the grazing study prevented a direct comparison of all three models as was done in the 

clipping study, I found some evidence for mechanisms proposed by the LRM and EHM. During 

June, grazing stimulated both ANPP and N availability in agreement with the framework of the 

LRM, and these plots also exhibited the density-dependence predicted by the EHM. Positive 

feedbacks of ungulate grazing on N availability and productivity have previously been 

documented in migratory grazing systems (McNaughton 1985, Augustine and McNaughton 

2006, Frank et al. 2018), as has density-dependent growth (Ritchie and Penner, in review), but 

this is the first time, to my knowledge, that multiple mechanisms have been shown to operate 

simultaneously. This relationship decoupled in July however, as grazing stimulated N 

availability but had no effect on ANPP. That grazing, but not clipping, had a positive effect on N 

availability is likely due to substantial N inputs from urine and feces in grazed plots that were not 

present in clipped plots (Barthelemy et al. 2018).  

These experiments indicate that the recently developed episodic herbivory model can 

explain variation in herbivore effects on ANPP as well or better than alternative, commonly 

considered models. The success of the EHM in mesic and dry grassland supports the claim that 

migratory/rotational grazing behavior is essential to the long-term sustainability of ANPP. Per 

the EHM, grazing is most likely to stimulate ANPP when initial relative biomass is high, 

meaning that a grassland must have enough rest time between episodes of herbivory for 

vegetation to grow and reach this critical biomass threshold. In systems such as the Serengeti 

where grazer migrations are increasingly impeded by human activity, high grazing intensities 

and short rest intervals have triggered declines in ANPP and other ecosystem processes like soil 

carbon storage (Veldhuis et al. 2019). Grazing systems, whether natural or agricultural, that 

mimic migratory behavior by allowing episodic herbivory will likely maintain higher ANPP than 
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similar non-migratory/non-rotational systems. To confirm this prediction and investigate its 

broader utility, the episodic herbivory model needs to be experimentally tested in systems 

beyond Serengeti and Yellowstone that span a wide range of migratory/rotational behavior. 

The relative utility of all three models seems to also vary with the scale of observation. 

The applicability of the CCH or LRM at small plot or patch scales may depend on whether 

grazing changes which resource most limits ANPP and thereby violates a model’s assumption of 

single-resource limitation. In these circumstances, the EHM is likely more useful as a null model 

(in the absence of direct feedbacks of grazing on resource availability) for grazer effects on 

ANPP. As scale increases and differences in resource availability become more drastic between 

patches, the CCH and LRM become effective as well.  

Conclusion 

 North American grasslands are expansive, species-rich ecosystems, and most of them 

share a long evolutionary history with grazing mammals that provide a wide array of cultural and 

ecosystem services to human society (Milchunas et al. 1988, Naidoo et al. 2008, Wallen et al. 

2015). My work illustrates the wide range of effects that grazing can have on plant growth, 

showing how different theoretical models can explain why grazing sometimes increases plant 

productivity at different scales. This research also adds to a body of work showing that grazing 

regimes produced by migratory herds of ungulates can and do increase primary productivity. My 

theoretical approach to this study can and should be replicated across grazing systems to further 

strengthen our understanding of the mechanisms by which grazing animals influence this 

important ecosystem process. 
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Tables 

Table 1: Parameter estimates for testing of the episodic herbivory model. R2 and p-values are 

calculated from SMA regression shown in Figures 4 (clipping, n = 20) and 12 (grazing, n = 10). 

Grassland Month Experiment RGRmax (g g-1 day-1) K (g m-2) R2 p 

Mesic 

June 

Clipping 0.036 321.80 0.61 <0.001 

Grazing 0.047 292.55 0.54 0.015 

July 

Clipping 0.031 347.39 0.43 0.002 

Grazing 0.043 418.65 0.36 0.066 

Dry 

June 

Clipping 0.041 83.94 0.29 0.014 

Grazing 0.049 65.21 0.35 0.070 

July 

Clipping 0.024 98.30 0.29 0.015 

Grazing 0.034 79.51 0.21 0.180 
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Table 2: Species names for codes given in Figures 3 and 4 

Code Scientific Name Code Scientific Name 

ACHMIL Achillea millefolium FESIDA Festuca idahoensis 

AGOGLA Agoseris glauca fuzzy Erigeron Unknown Asteraceae #1 

AGRSTO Agrostis stolonifera HESCOM Hesperostipa comata 

ANTMIC Antennaria microphylla JUNBAL Juncus balticus 

ARANUT Arabis nuttallii KOEMAC Koeleria macrantha 

ASTMIS Astragalus miser LUPSER Lupinus sericeus 

Carex sp. Carex sp. PHLPRA Phleum pratense 

CARDUR Carex duriuscula POAPRA Poa pratensis 

CERARV Cerastium arvense POASEC Poa secunda 

CHRVIS Chrysothamnus viscidiflorus PHLHOO Phlox hoodii 

CIRARV Cirsium arvense PSESPI Pseudoroegneria spicata 

CREOCC Crepis occidentalis smooth Erigeron Unknown Asteraceae #2 

DRANEM Draba nemorosa TAROFF Taraxacum officinale 

EQULAV Equisetum laevigatum TRILON Trifolium longipes 

ERICOR Erigeron corymbosus TRIREP Trifolium repens 
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Table 3: Pearson correlation coefficients between predictors for the CCH, LRM, and EHM. 

Values for mesic grassland are reported in upper right panel and for dry grassland in lower right 

panel. See text for full model descriptions. 

 CCHN CCHmoist LRMN LRMmoist EHM  

CCHN  0.50 0.51 0.10 -0.33 

Mesic 

CCHmoist 0.19  0.07 0.15 -0.24 

LRMN 0.74 -0.10  0.12 -0.37 

LRMmoist -0.39 -0.17 -0.07  -0.33 

EHM 0.07 -0.29 0.17 0.12   

 Dry   
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Figures 

 

  

Figure 1: Conceptual model of how grazing in Yellowstone interacts with resource limitation to 

influence grassland primary productivity (ΔANPP) according to the compensatory continuum 

hypothesis (CCH, panel A), the limiting resource model (LRM, panel B), and the episodic 

herbivory model (EHM, panel C). 
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Figure 2: Effects of grassland type, clipping, and month on ANPP (A, B) and RGR (C, D). 

Different letters represent significant differences between all treatments in each month (n = 10 

for each treatment). Error bars represent standard error. 
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Figure 3: ANPP of plant species in mesic grassland during clipping experiment. Control and 

clipped treatments are pooled. Species are listed by initial abundance at the start of the 

experiment in late May (i.e. POAPRA = most abundant). Color represents plant functional group 

(see legend). All species present in 8+ plots (of 20) are shown, with actual number of plots 

shown above species code.  
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Figure 4: ANPP of plant species in dry grassland during clipping experiment. Control and 

clipped treatments are pooled. Species are listed by initial abundance at the start of the 

experiment in late May (i.e. POASEC = most abundant). Color represents plant functional group 

(see legend). All species present in 8+ plots (of 20) are shown, with actual number of plots 

shown above species code. 

 

 



  

29 

 

 

Figure 5: Effects of grassland type, clipping, and month on soil N availability rate (A, B) and soil 

moisture (C, D). Both soil resource measurements represent a steady-state pool size. Different 

letters represent significant differences (p < 0.05) between all treatments in each month (n = 10 

for each treatment). Error bars represent standard error. 
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Figure 6: Nonmetric multidimensional scaling (NMDS) over two axes of compositional 

similarity of species before study began (A, B) and after study ended (C, D), scaled by total plot 

biomass. Within each panel, a single color represents one set of paired plots. Points with white 

fill represent control plots, and points with gray fill represent clipped plots.  
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 Figure 7: Density-dependent growth in clipped mesic and dry grassland over two months. 

Standing biomass of clipped plots was measured immediately after clipping. Solid lines represent 

significant negative slope of SMA regression (p < 0.05). Estimates of y-intercept represent 

RGRmax, while estimates of x-intercept represent K. See Table 1 for estimated parameter 

values. 
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Figure 8: Standardized model slope estimates (± 95% credible intervals) from regression of 

clipping effect on ANPP (ΔANPP) for mesic and dry sites. 
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Figure 9: Relationship between clipping effect on ANPP and models with the most support 

(>90% probability of positive effect, see Figure 5). Initial relative biomass is calculated as the 

fraction of pre-clipping biomass relative to the K-value estimated from Figure 4 and Table 1. 

Initial relative biomass > 1 is due to scatter around the regression line in Figure 4. 
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Figure 10: Effects of grassland type, grazing, and month on ANPP (A, B) and RGR (C, D). Two-

way ANOVA results are summarized in each panel (** = p <0.01, * = p < 0.05, † = p < 0.10, 

N.S. = p > 0.10). Error bars represent standard error, n = 5 for each treatment. 
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Figure 11: Effects of grassland type, grazing, and month on soil N availability (A, B) and soil 

moisture (C, D). Both soil resource measurements represent steady-state pool size. Two-way 

ANOVA results are summarized in each panel (** = p <0.01, * = p < 0.05, † = p < 0.10, N.S. = p 

> 0.10). Error bars represent standard error, n = 5 for each treatment. No soil moisture data was 

collected form grazed, mesic grassland in June (N.A.). 

 

N.A. 
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Figure 12: Density-dependent growth in grazed mesic and dry grassland over two months. SMA 

regression lines are fit separately for each grassland type. Solid lines indicate p < 0.05, dashed 

lines indicate p < 0.10, and no line indicates no significant relationship. 
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