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Abstract

Using data collected with the LHCb detector in proton-proton collisions at a centre-
of-mass energy of 7 TeV, the hadronic decay B0

s → J/ψf0(980) is observed. This
CP eigenstate mode could be used to measure mixing-induced CP violation in the
B0
s system. Using a fit to the π+π− mass spectrum with interfering resonances gives

Rf0/φ ≡ Γ(B0
s
→J/ψf0, f0→π+π−)

Γ(B0
s
→J/ψφ, φ→K+K−)

= 0.252+0.046+0.027
−0.032−0.033. In the interval ±90 MeV around

980 MeV, corresponding to approximately two full f0 widths we also find R′ ≡
Γ(B0

s
→J/ψπ+π−, |m(π+π−)−980 MeV|<90 MeV)

Γ(B0
s
→J/ψφ, φ→K+K−)

= 0.162 ± 0.022 ± 0.016, where in both cases
the uncertainties are statistical and systematic, respectively.
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A. Büchler-Germann39, A. Bursche39, J. Buytaert37, S. Cadeddu15, J.M. Caicedo Carvajal37,
O. Callot7, M. Calvi20,j , M. Calvo Gomez35,n, A. Camboni35, L. Camilleri37, P. Campana18,
G. Capon18, A. Carbone14, G. Carboni21,k, R. Cardinale19,i, A. Cardini15, L. Carson36,
K. Carvalho Akiba23, G. Casse48, M. Cattaneo37, M. Charles51, Ph. Charpentier37,
N. Chiapolini39, X. Cid Vidal36, P.J. Clark46, P.E.L. Clarke46, M. Clemencic37, H.V. Cliff43,
J. Closier37, C. Coca28, V. Coco23, J. Cogan6, P. Collins37, F. Constantin28, G. Conti38,
A. Contu51, M. Coombes42, G. Corti37, G.A. Cowan38, R. Currie46, B. D’Almagne7,
C. D’Ambrosio37, W. Da Silva8, P. David8, I. De Bonis4, S. De Capua21,k, M. De Cian39,
F. De Lorenzi12, J.M. De Miranda1, L. De Paula2, P. De Simone18, D. Decamp4,
H. Degaudenzi38,37, M. Deissenroth11, L. Del Buono8, C. Deplano15, O. Deschamps5,
F. Dettori15,d, J. Dickens43, H. Dijkstra37, M. Dima28, P. Diniz Batista1, S. Donleavy48,
D. Dossett44, A. Dovbnya40, F. Dupertuis38, R. Dzhelyadin34, C. Eames49, S. Easo45,
U. Egede49, V. Egorychev30, S. Eidelman33, D. van Eijk23, F. Eisele11, S. Eisenhardt46,
L. Eklund47, D.G. d’Enterria35,o, D. Esperante Pereira36, L. Estève43, E. Fanchini20,j ,
C. Färber11, G. Fardell46, C. Farinelli23, S. Farry12, V. Fave38, V. Fernandez Albor36,
M. Ferro-Luzzi37, S. Filippov32, C. Fitzpatrick46, F. Fontanelli19,i, R. Forty37, M. Frank37,
C. Frei37, M. Frosini17,f , J.L. Fungueirino Pazos36, S. Furcas20, A. Gallas Torreira36,
D. Galli14,c, M. Gandelman2, P. Gandini51, Y. Gao3, J-C. Garnier37, J. Garofoli52,
L. Garrido35, C. Gaspar37, N. Gauvin38, M. Gersabeck37, T. Gershon44, Ph. Ghez4,
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iUniversità di Genova, Genova, Italy
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1 Introduction

In B0
s decays some final states can be reached either by a direct decay amplitude or via

a mixing amplitude. For the case of B0
s → J/ψφ decays, the interference between these

two amplitudes allows observation of a CP violating phase. In the Standard Model (SM)
this phase is −2βs = −0.036+0.0020

−0.0016 radians, where βs = arg (−VtsV
∗

tb/VcsV
∗

cb), and the Vij
are CKM matrix elements [1]. This is about 20 times smaller in magnitude than the
measured value of the corresponding phase 2β in B0 mixing. Being small, this phase can
be drastically increased by the presence of new particles beyond the SM. Thus, measuring
βs is an important probe of new physics.

Attempts to determine βs have been made by the CDF and D0 experiments at the
Tevatron using the B0

s → J/ψφ decay mode [2]. While initial results hinted at possible
large deviations from the SM, recent measurements are more consistent [3, 4]. However,
the Tevatron limits are still not very constraining. Since the final state consists of two
spin-1 particles, it is not a CP eigenstate. While it is well known that CP violation can be
measured using angular analyses [5], this requires more events to gain similar sensitivities
to those obtained if the decay proceeds via only CP-even or CP-odd channels. In Ref. [6]
it is argued that in the case of J/ψφ the analysis is complicated by the presence of an
S-wave K+K− system interfering with the φ that must be taken into account, and that
this S-wave would also manifest itself by the appearance of f0(980) → π+π− decays. This
decay B0

s → J/ψf0(980) is to a single CP-odd eigenstate and does not require an angular
analysis. Its CP violating phase in the Standard Model is −2βs (up to corrections due to
higher order diagrams). In what follows, we use the notation f0 to refer to the f0(980)
state.

By comparing D+
s → f0π

+ decays where the f0 was detected in both K+K− and π+π−

modes it was predicted that [6]

Rf0/φ ≡
Γ(B0

s → J/ψf0, f0 → π+π−)

Γ(B0
s → J/ψφ, φ → K+K−)

≈ 20%. (1)

A decay rate at this level would make these events very useful for measuring βs if back-
grounds are not too large.

The dominant decay diagram for these processes is shown in Fig. 1. It is important

b
W+

c 

}

ψ

s

}c  J/

s
s  φ or f0

}

Bs
0

Figure 1: Decay diagram for B0
s → J/ψ(f0 or φ) decays.

to realize that the ss system accompanying the J/ψ is an isospin singlet (isoscalar), and
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thus cannot produce a single meson that is anything but isospin zero. Thus, for example,
in this spectator model production of a ρ0 meson is forbidden. The dominant low mass
isoscalar resonance decaying into π+π− is the f0(980) but other higher mass objects are
possible.

Although the f0 mass is relatively well estimated at 980±10 MeV (we use units with
c = 1) by the PDG, the width is poorly known. Its measurement appears to depend on
the final state, and is complicated by the opening of the KK channel close to the pole;
the PDG estimates 40−100 MeV [11]. Recently CLEO measured these properties in the
semileptonic decay D+

s → f0e
+ν, where hadronic effects are greatly reduced, determining

a width of (91+30
−22 ± 3) MeV [12].

2 Data sample and analysis requirements

We use a data sample of approximately 33 pb−1 collected with the LHCb detector in
2010 [7]. The detector elements are placed along the beam line of the LHC starting
with the Vertex Locator (VELO), a silicon strip device that surrounds the proton-proton
interaction region and is positioned 8 mm from the beam during collisions. It provides
precise locations for primary pp interaction vertices, the locations of decays of long-lived
particles, and contributes to the measurement of track momenta. Other devices used to
measure track momenta comprise a large area silicon strip detector (TT) located in front
of a 3.7 Tm dipole magnet, and a combination of silicon strip detectors (IT) and straw
drift chambers (OT) placed behind. Two Ring Imaging Cherenkov (RICH) detectors are
used to identify charged hadrons. Further downstream an Electromagnetic Calorimeter
(ECAL) is used for photon detection and electron identification, followed by a Hadron
Calorimeter (HCAL), and a system consisting of alternating layers of iron and chambers
(MWPC and triple-GEM) that distinguishes muons from hadrons (MUON). The ECAL,
MUON, and HCAL provide the capability of first-level hardware triggering.

This analysis is restricted to events accepted by a J/ψ → µ+µ− trigger. Subse-
quent analysis selection criteria are applied that serve to reject background, yet preserve
high efficiencies on both the J/ψπ+π− and J/ψK+K− final states, as determined by
Monte Carlo events generated using PYTHIA [8], and LHCb detector simulation based
on GEANT4 [9]. Tracks are reconstructed as described in Ref. [7]. To be considered as
a J/ψ → µ+µ− candidate opposite sign tracks are required to have transverse momen-
tum, pT, greater than 500 MeV, be identified as muons, and form a common vertex with
fit χ2 per number of degrees of freedom (ndof) less than 11. The µ+µ− invariant mass
distribution is shown in Fig. 2 with an additional requirement, used only for this plot,
that the pseudo proper-time, tz, be greater than 0.5 ps, where tz is the distance that the
J/ψ candidate travels downstream parallel to the beam, along z, times the known J/ψ
mass divided by the z component of the candidate’s momentum. The data are fit with a
Crystal Ball signal function [10] to account for the radiative tail towards low mass, and a
linear background function. There are 549,000±1100 J/ψ signal events in the entire mass
range. For subsequent use only candidates within ±48 MeV of the known J/ψ mass are

2



selected.
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Figure 2: The µ+µ− invariant mass for candidates satisfying the trigger and analysis
requirements and having tz > 0.5 ps. The data points are shown as circles; the error
bars are smaller than the circle radii. The dashed line shows the Crystal Ball signal
function [10], the dotted line the background and the solid line the sum.

Pion and kaon candidates are selected if they are inconsistent with having been pro-
duced at the closest primary vertex. The impact parameter (IP) is the minimum distance
of approach of the track with respect to the primary vertex. We require that the χ2 formed
by using the hypothesis that the IP is equal to zero be > 9 for each track. For further con-
sideration these tracks must be positively identified in the RICH system. Particles forming
opposite-sign di-pion candidates must have their scalar sum pT > 900 MeV, while those
forming opposite-sign di-kaon candidates must have their vector sum pT > 1000 MeV,
and have an invariant mass within ±20 MeV of the φ mass.

To select B0
s candidates we further require that the two pions or kaons form a vertex

with a χ2 < 10, that they form a candidate B0
s vertex with the J/ψ where the vertex fit

χ2/ndof < 5, and that this B0
s candidate points to the primary vertex at an angle not

different from its momentum direction by more than 0.68◦.
Simulations are used to evaluate our detection efficiencies. For the J/ψφ final state we

use the measured decay parameters from CDF [3]. The J/ψf0 final state is simulated using
full longitudinal polarization of the J/ψ meson. The efficiencies of having all four decay
tracks in the geometric acceptance and satisfying the trigger, track reconstruction and
data selection requirements are (1.471±0.024)% for J/ψf0, requiring the π+π− invariant
mass be within ±500 MeV of 980 MeV, and (1.454±0.021)% for J/ψφ, having the K+K−

invariant mass be within ±20 MeV of the φ mass. The uncertainties on the efficiency
estimates are statistical only.
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3 Results

The J/ψK+K− invariant mass distribution is shown in Fig. 3. The di-muon invariant
mass has been constrained to have the known value of the J/ψ mass; this is done for
all subsequent B0

s invariant mass distributions. The data are fit with a Gaussian signal
function and a linear background function. The fit gives a B0

s mass of 5366.7±0.4 MeV,
a width of 7.4 MeV r.m.s., and a yield of 635±26 events.
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Figure 3: The invariant mass of J/ψK+K− combinations when theK+K− pair is required
to be with ±20 MeV of the φmass. The data have been fit with a Gaussian signal function
whose mass and width are allowed to float and linear background function shown as a
dashed line. The solid curve shows the sum.

Initially, to search for a f0(980) signal we restrict ourselves to an interval of ±90 MeV
around the f0 mass, approximately two full f0 widths [12]. The B0

s candidate invariant
mass distribution for selected J/ψπ+π− combinations is shown in Fig. 4. The signal
is fit with a Gaussian whose mean and width are allowed to float. We also include a
background component due to B0 → J/ψπ+π− that is taken to be Gaussian, with mass
allowed to float in the fit, but whose width is constrained to be the same as the B0

s signal.
Other components in the fit are B0 → J/ψK∗0, combinatorial background taken to have
an exponential shape, B+ → J/ψK+(or π+), and other specific B0

s decay backgrounds
including B0

s → J/ψη′, η′ → ργ, B0
s → J/ψφ, φ → π+π−π0. The shape of the sum of

the combinatorial and B+ → J/ψK+(π+) components is taken from the like-sign events.
The shapes of the other components are taken from Monte Carlo simulation with their
normalizations allowed to float.

We perform a simultaneous unbinned likelihood fit to the π+π− opposite-sign and sum
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of π+π+ and π−π− like-sign event distributions. The fit gives a B0
s mass of 5366.1±1.1
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Figure 4: (a) The invariant mass of J/ψπ+π− combinations when the π+π− pair is required
to be with ±90 MeV of the f0(980) mass. The data have been fit with a signal Gaussian
and several background functions. The thin (red) solid curve shows the signal, the long-
dashed (brown) curve the combinatorial background, the dashed (green) curve the B+ →
J/ψK+(π+) background, the dotted (blue) curve the B0 → J/ψK∗0 background, the
dash-dot curve (purple) the B0 → J/ψπ+π− background, the barely visible dotted curve
(black) the sum of B0

s → J/ψη′ and J/ψφ backgrounds, and the thick-solid (black) curve
the total. (b) The same as above but for like-sign di-pion combinations.

MeV in good agreement with the known mass of 5366.3±0.6 MeV, a Gaussian width
of 8.2±1.1 MeV, consistent with the expected mass resolution and 111±14 signal events
within ±30 MeV of the B0

s mass. The change in twice the natural logarithm of the
fit likelihood when removing the B0

s signal component, shows that the signal has an
equivalent of 12.8 standard deviations of significance. The like-sign di-pion yield correctly
describes the shape and level of the background below the B0

s signal peak, both in data
and Monte Carlo simulations. There are also 23±9 B0 → J/ψπ+π− events.
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Having established a clear signal, we perform certain checks to ascertain if the struc-
ture peaking near 980 MeV is a spin-0 object. Since the B0

s is spinless, when it decays
into a spin-1 J/ψ and a spin-0 f0, the decay angle of the J/ψ should be distributed as
1− cos2 θJ/ψ, where θJ/ψ is the angle of the µ+ in the J/ψ rest frame with respect to
the B0

s direction. The polarization angle, θf0 , the angle of the π+ in the f0 rest frame
with respect to the B0

s direction, should be uniformly distributed. A simulation of the
J/ψ detection efficiency in these decays shows that it is approximately independent of
cos θJ/ψ. The acceptance for f0 → π+π− as a function of the π+ decay angle shows an
inefficiency of about 50% at cos θf0 = ±1 with respect to its value at cos θf0 = 0. It is fit
to a parabola and the inefficiency corrected in what follows.

The like-sign background subtracted J/ψ helicity distribution is fit to a 1−α cos2 θJ/ψ
function as shown in Fig. 5(a). The fit gives α = 0.81 ± 0.21 consistent with a longitu-
dinally polarized J/ψ (spin perpendicular to its momentum) and a spin-0 f0 meson. The
χ2 of the fit is 10.3 for 8 degrees of freedom. Similarly, we subtract the like-sign back-
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Figure 5: Angular distributions of events within ±30 MeV of the B0
s mass and ±90 MeV

of the f0 mass after like-sign background subtraction. (a) The cosine of the angle of the
µ+ with respect to the B0

s direction in the J/ψ rest frame for B0
s → J/ψπ+π− decays.

The data are fit with a function f(cos θJ/ψ) = 1−α cos2 θJ/ψ. (b) The cosine of the angle
of the π+ with respect to the B0

s direction in the di-pion rest frame for B0
s → J/ψπ+π−

decays. The data are fit with a flat line.

ground and fit the efficiency corrected π+π− helicity distribution to a constant function as
shown in Fig. 5(b). The fit has a χ2/ndof equal to 15.9/9, still consistent with a uniform
distribution as expected for a spinless particle.

To view the spectrum of π+π− masses, between 580 and 1480 MeV, in the J/ψπ+π−

final state we select events within±30 MeV of the B0
s and plot the invariant mass spectrum

in Fig. 6. The data show a strong peak near 980 MeV and an excess of events above the
like-sign background extending up to 1500 MeV. Our mass spectrum is similar in shape to
those seen previously in studies of the S-wave π+π− system with ss quarks in the initial
state [13–15]. To establish a value for Rf0/φ requires fitting the shape of the f0 resonance.
Simulation shows that our acceptance is independent of the π+π− mass, and we choose
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Figure 6: The invariant mass of π+π− combinations when the J/ψπ+π− is required to be
within ±30 MeV of the B0

s mass. The dashed curve is the like-sign background that is
taken from the data both in shape and absolute normalization. The dotted curve is the
result of the fit using Eq. 2 and the solid curve the total.

an interval between 580 and 1480 MeV. Guidance is given by the BES collaboration who
fit the spectrum in J/ψ → φπ+π− decays [14]. We include here the f0(980) and f0(1370)
resonances, though other final states may be present, for example the f2(1270) a 2++

state [13,14]; it will take much larger statistics to sort out the higher mass states. We use
a coupled-channel Breit-Wigner amplitude (Flatté) for the f0(980) resonance [16] and a
Breit-Wigner shape (BW) for the higher mass f0(1370). Definingm as the π+π− invariant
mass, the mass distribution is fit with a function involving the square of the interfering
amplitudes

|A(m)|2 = N0mp(m)q(m)
∣

∣Flatté[f0(980)] + A1 exp
(iδ) BW[f0(1370)]

∣

∣

2
, (2)

where N0 is a normalization constant, p(m) is the momentum of the π+, q(m) the mo-
mentum of the J/ψ in the π+π− rest-frame, and δ is the relative phase between the two
components. The Flatté amplitude is defined as

Flatté(m) =
1

m2
0 −m2 − im0(g1ρππ + g2ρKK)

, (3)

where m0 refers to the mass of the f0(980) and ρππ and ρKK are Lorentz invariant phase
space factors equal to 2p(m)/m for ρππ. The g2ρKK term accounts for the opening of the

7



kaon threshold. Here ρKK = 2pK(m)/m where pK(m) is the momentum a kaon would
have in the π+π− rest-frame. It is taken as an imaginary number when m is less than
twice the kaon mass. We use m0g1 = 0.165 ± 0.018 GeV2, and g2/g1 = 4.21 ± 0.33 as
determined by BES [14].

The f0(1370) mass and width values used here are 1434±20 MeV, and 172±33 MeV
from an analysis by E791 [15]. We fix the central values of these masses and widths
in the fit, as well as m0g1 and the g2/g1 ratio for the f0(980) amplitude. The mass
resolution is incorporated as a Gaussian convolution in the fit as a function of π+π−

mass. It has an r.m.s. of 5.4 MeV at 980 MeV. We fit both the opposite-sign and like-sign
distributions simultaneously. The results of the fit are shown in Fig. 6. The χ2/ndof
is 44/56. We find an f0(980) mass value of 972±25 MeV. There are 265±26 events
above background in the extended mass region, of which (64+10

− 6)% are associated with
the f0(980), (12 ± 4)% are ascribed to the f0(1370) and (24+2

−6)% are from interference.
The fit determines δ = 61 ± 36◦. The fit fraction is defined as the integral of a single
component divided by the coherent sum of all components. The f0(980) yield is 169+31

−21

events. The lower mass cutoff of the fit region loses 1% of the f0(980) events. The change
in twice the log likelihood of the fit when removing the f0(980) component shows that it
has an equivalent of 12.5 standard deviations of significance.

Using the 169 f0 events from J/ψπ+π−, and the 635 φ events from J/ψK+K−, cor-
recting by the relative efficiency, and ignoring a possible small S-wave contribution under
the φ peak [17], yields

Rf0/φ ≡
Γ(B0

s → J/ψf0, f0 → π+π−)

Γ(B0
s → J/ψφ, φ→ K+K−)

= 0.252+0.046+0.027
−0.032−0.033 . (4)

Here and throughout this Letter whenever two uncertainties are quoted the first is statisti-
cal and the second is systematic. This value of Rf/φ depends on the decay amplitudes used
to fit the π+π− mass distribution and could change with different assumptions. To check
the robustness of this result, an incoherent phase space background is added to the above
fit function. The number of signal f0(980) events is decreased by 7.3%. If we leave the
f0(1370) out of this fit, the original f0(980) yield is decreased by 6.5%. The larger number
of these two numbers is included in the systematic uncertainty. The BES collaboration
also included a σ resonance in their fit to the π+π− mass spectrum in J/ψ → φπ+π−

decays [14]. We do not find it necessary to add this component to the fit.
The systematic uncertainty has several contributions listed in Table 1. There is an un-

certainty due to our kaon and pion identification. The identification efficiency is measured
with respect to the Monte Carlo simulation using samples of D∗+ → π+D0, D0 → K−π+

events for kaons, and samples of K0
S → π+π− decays for pions. The correction to Rf0/φ is

0.947±0.009. This correction is already included in the efficiencies quoted above, and the
1% systematic uncertainty is assigned for the relative particle identification efficiencies.

The efficiency for detecting φ → K+K− versus a π+π− pair is measured using
D+ meson decays into φπ+ and K−π+π+ in a sample of semileptonic B decays where
B → D+Xµ−ν [18]. The simulation underestimates the φ efficiency relative to the π+π−

efficiency by (6±9)%, so we take 9% as the systematic error.
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Besides the sources of uncertainty discussed above, there is a variation due to varying
the parameters of the two resonant contributions. We also include an uncertainty for a
mass dependent efficiency as a function of π+π− mass by changing the acceptance function
from flat to linear and found that the f0 yield changed by 2.3%. The difference ∆Γ/Γ
between CP even and CP odd Bs eigenstates is taken as 0.088. Ignoring this difference
results in less than a 1% change in the relative efficiency.

Table 1: Relative systematic uncertainties on Rf0/φ (%). Both negative and positive
changes resulting from the parameter variations are indicated in separate columns.

Parameter Negative change Positive change
f0(1370) mass 0.3 1.9
f0(1370) width 2.3 2.6
π+π− mass dependent efficiency 2.3 2.3
m0g1 4.2 3.6
g2/g1 0.7 0.7
Addition of non-resonant π+π− 7.3 0
MC statistics (efficiency ratio) 2.3 2.3
B0
s pT distribution 0.5 0.5

B0
s mass resolution 0.5 0.5

PID efficiency 1.0 1.0
φ detection 9.0 9.0
Total 13.1 10.8

In order to give a model independent result we also quote the fraction, R′, in the
interval ±90 MeV around 980 MeV, corresponding to approximately two full-widths,
where there are 111±14 events. Then

R′ ≡
Γ (B0

s → J/ψπ+π−, |m(π+π−)− 980 MeV| < 90 MeV)

Γ(B0
s → J/ψφ, φ → K+K−)

= 0.162± 0.022± 0.016 .

(5)
This ratio is based on the fit to the B0

s mass distribution and does not have any uncer-
tainties related to the fit of the π+π− mass distribution. Based on our fits to the π+π−

mass distribution, there are negligible contributions from any other signal components
than the f0(980) in this interval.

The original estimate from Stone and Zhang was Rf0/φ = 0.20 [6]. More recent pre-
dictions have been summarized by Stone [19] and have a rather wide range from 0.07 to
0.50.

4 Conclusions

Based on the polarization and rate estimates described above, the first observation of a
new CP-odd eigenstate decay mode of the B0

s meson into J/ψf0(980) has been made.
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Using a fit including two interfering resonances, the f0(980) and f0(1370), the ratio to
J/ψφ production is measured as

Rf0/φ ≡
Γ(B0

s → J/ψf0, f0 → π+π−)

Γ(B0
s → J/ψφ, φ→ K+K−)

= 0.252+0.046+0.027
−0.032−0.033 . (6)

By selecting events within ±90 MeV of the f0(980) mass the ratio becomes R′ = 0.162±
0.022± 0.016 .

The events around the f0(980) mass are large enough in rate and have small enough
backgrounds that they could be used to measure βs without angular analysis. It may also
be possible to use other data in the π+π− mass region above the f0(980) for this purpose
if they turn out to be dominated by S-wave.
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[8] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026.

[9] S. Agostinelli et al., Nucl. Instrum. and Meth. 506 (2003) 250.

[10] J. E. Gaiser, Ph.D. Thesis, SLAC-R-255 (1982), Appendix F; T. Skwarnicki, Ph. D.
Thesis, DESY F31-86-02(1986), Appendix E.

[11] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021.

[12] K. M. Ecklund et al. (CLEO Collaboration), Phys. Rev. D 80 (2009) 052009.

[13] B. Aubert et al. (Babar Collaboration), Phys. Rev. D 79 (2009) 032003.

[14] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 607 (2005) 243.

[15] E. M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 86 (2001) 765.
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